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SUMMARY

In many applications of Monte Carlo nonlinear filtering, the propagation step is computa-
tionally expensive, and hence the sample size is limited. With small sample sizes, the update
step becomes crucial. Particle filtering suffers from the well-known problem of sample degen-
eracy. Ensemble Kalman filtering avoids this, at the expense of treating non-Gaussian features
of the forecast distribution incorrectly. Here we introduce a procedure that makes a continuous
transition indexed by γ ∈ [0, 1] between the ensemble and the particle filter update. We propose
automatic choices of the parameter γ such that the update stays as close as possible to the particle
filter update subject to avoiding degeneracy. In various examples, we show that this procedure
leads to updates that are able to handle non-Gaussian features of the forecast sample even in
high-dimensional situations.

Some key words: Ensemble Kalman filter; Nonlinear filtering; Particle filter; State space model.

1. INTRODUCTION

State space models consist of a discrete or continuous time Markov process that is partially
observed at discrete time-points and subject to independent random errors. Estimation of the
state at time t given observations up to the same time is called filtering or data assimilation. Since
exact computations are possible essentially only in linear Gaussian situations, Monte Carlo meth-
ods are typically used for filtering. In many environmental applications, in particular in atmo-
spheric physics, oceanography and reservoir modelling, the dimension of the state is very large,
and the computational costs of simulation from the state transitions are huge, which severely
limits the potential sample size for Monte Carlo filtering methods. Standard particle filters
(Gordon et al., 1993; Pitt & Shephard, 1999; Doucet et al., 2000) suffer from sample degener-
acy (Snyder et al., 2008). In contrast, the ensemble Kalman filter (Evensen, 1994; Burgers et al.,
1998; Houtekamer & Mitchell, 1998) can handle some problems where the dimensions of states
and observations are large, and the number of replicates is small, but at the expense of incorrectly
treating non-Gaussian features of the forecast distribution that arise in nonlinear systems.

To relax the Gaussian assumption, two paradigms are predominant: mixture filters that
approximate the forecast distribution as a mixture of Gaussian distributions (Bengtsson et al.,
2003; Sun et al., 2009; Dovera & Della Rossa, 2011; Stordal et al., 2011; Hoteit et al., 2012;
Rezaie & Eidsvik, 2012; Frei & Künsch, 2013), and sequential importance samplers that use the
ensemble Kalman filter as a proposal distribution (Mandel & Beezley, 2009; Papadakis et al.,
2010). In this article, we introduce an update scheme that blends these: a Gaussian mixture pro-
posal obtained from an ensemble Kalman filter update based on a tempered likelihood is cor-
rected by a particle filter update. In this way we do not have to fit a Gaussian mixture to the
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forecast sample or to approximate the ratio of the predictive density to the proposal density. A
further advantage of our procedure is that we can implement these two steps in such a way that
the particle weights do not depend on artificial observation noise variables and the resampling
avoids ties. Our method does not require any special structure for the state dynamics: they may
be stochastic or deterministic, all we need is the ability to simulate from the state transitions.
This contrasts with some of the recent generalizations to particle filtering as proposed in, e.g.,
van Leeuwen (2010) or Morzfeld & Chorin (2012).

Our procedure depends on a single tuning parameter γ ∈ [0, 1], which allows continuous inter-
polation between the ensemble Kalman filter and the particle filter. Hence, the parameter γ con-
trols the bias-variance trade-off between a correct update and maintaining the diversity of the
sample. It can be chosen without prior knowledge based on a suitable measure of diversity like
effective sample size (Liu, 1996), or the expected number of Gaussian components that are rep-
resented in the resample.

2. PROBLEM SETTING, NOTATION AND BACKGROUND MATERIAL

We consider a dynamical system with state variables {xt ∈ R
q : t = 0, 1, . . .} and observations

{yt ∈ R
r : t = 1, 2, . . .}. The state follows a deterministic or stochastic Markovian evolution, that

is xt = g(xt−1, ξt ), where the system noise ξt is independent of all past values xs and all ξs , s < t .
There is no need to know the function g in explicit form, we assume only that for given xt−1 we
are able to simulate from the distribution of g(xt−1, ξt ). In particular, the evolution can be in
continuous time, given by an ordinary or stochastic differential equation.

In all cases we assume linear observations with Gaussian noise: yt = H xt + εt , where
εt ∼N (0, R). Thus the likelihood for the state xt given the observation yt is �(xt | yt ) =
ϕ(yt ; H xt , R). Here and below ϕ(x; μ, �) denotes the multivariate normal density at x with
mean μ and covariance �. In the final section, we will discuss briefly how to modify the method
for non-Gaussian likelihoods.

We denote all observations up to time t , (y1, . . . , yt ), by y1:t . The forecast distribution π
p
t at

time t is the conditional distribution of xt given y1:t−1, and the filter distribution πu
t at time t

is the conditional distribution of xt given y1:t . In principle, these distributions can be computed
recursively, alternating between propagation and update steps. The propagation step leads from
πu

t−1 to π
p
t : π

p
t is the distribution of g(xt−1, ξt ), where xt−1 ∼ πu

t−1 and ξt is independent of
xt−1 and has the distribution given by the evolution of the system. The update step leads from
π

p
t to πu

t and is Bayes’s formula: πu
t (dxt ) ∝ �(xt | yt )π

p
t (dxt ). However, analytical computations

are possible essentially only if the system evolution is also linear with additive Gaussian noise.
Hence one resorts to Monte Carlo approximations, i.e., one represents π

p
t and πu

t by ensembles
{x p

t, j } and {xu
t, j } respectively. The members of these ensembles are called particles.

The propagation step lets the particles evolve according to the dynamics of the state, i.e., we
simulate according to the time evolution starting at xu

t−1, j at time t − 1, x p
t, j = g(xu

t−1, j , ξt, j ).
However, the computational complexity of this step limits the number N of particles, that is the
size of the sample.

The bootstrap particle filter (Gordon et al., 1993) updates the forecast particles by weighting
with weights proportional to the likelihood �(xt | yt ) and converts this into an unweighted sample
by resampling, i.e., {xu

t, j } is obtained by sampling from

N∑
i=1

ωt,i
x p
t,i

, ωt,i = �(x p
t,i | yt )∑N

j=1 �(x p
t, j | yt )

.
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Thus some of the forecast particles disappear and others are replicated. If the likelihood is quite
peaked, which is the case in high dimensions with many independent observations, the weights
will be heavily unbalanced, and the filter sample eventually degenerates since it concentrates on
a single or a few particles; see Snyder et al. (2008). Auxiliary particle filters (Pitt & Shephard,
1999) can attenuate this behaviour to some extent, but they require good proposal distributions
for the propagation, and an analytical expression for the transition densities.

The ensemble Kalman filter (Burgers et al., 1998; Houtekamer & Mitchell, 1998) makes an
affine correction of the forecast particles based on the new observation yt and artificial observa-
tion noise variables εt, j ∼N (0, R):

xu
t, j = x p

t, j + K (P̂ p
t )

(
yt − H x p

t, j + εt, j

)
,

where P̂ p
t is an estimate of the forecast covariance at time t , typically a regularized version of the

sample covariance of {x p
t, j }, and K (P) is the Kalman gain K (P) = P H ′(H P H ′ + R)−1. This

update formula is asymptotically correct under the assumption that the forecast distribution π
p
t

is Gaussian (Le Gland et al., 2011). Although this is usually not true, the update nevertheless has
been found to work well in a variety of situations; see Evensen (2007) and references therein.
For later use, we note that conditional on the forecast sample,

xu
t, j ∼N {x p

t, j + K (P̂ p
t )(yt − H x p

t, j ), K (P̂ p
t )RK (P̂ p

t )′}.
Therefore the filter sample can be considered as a balanced sample from the conditional Gaussian
mixture

1

N

N∑
i=1

N {x p
t,i + K (P̂ p

t )(yt − H x p
t,i ), K (P̂ p

t )RK (P̂ p
t )′}. (1)

Here, balanced sample simply means that we draw exactly one realization from each of the N
equally weighted Gaussian components. One can also adjust the first two moments systematically
by a deterministic affine correction of the forecast particles, which leads to the class of so-called
ensemble square root filters (Anderson, 2001; Whitaker & Hamill, 2002; Tippett et al., 2003).
Here, we focus on the stochastic version, for two reasons: first, the representation (1) is crucial
for our developments; second, the stochastic ensemble Kalman filter is known to be more robust
than the deterministic variants in nonlinear and/or non-Gaussian situations that are of interest to
us (Lawson & Hansen, 2004; Lei et al., 2010).

3. ENSEMBLE KALMAN PARTICLE FILTER

3·1. New method

We consider here the update at a single fixed time t and thus suppress t in the notation. We
follow the progressive correction idea (Musso et al., 2001) and write

πu(dx) ∝ �(x | y)1−γ πu,γ (dx), πu,γ (dx) ∝ �(x | y)γ π p(dx)

where 0 � γ � 1 is arbitrary. Our approach is to use an ensemble Kalman filter update to go from
π p to πu,γ , and a particle filter update to go from πu,γ to πu . The rationale behind this two-stage
procedure is to achieve a compromise between sample diversity and systematic error due to non-
Gaussian features of π p. The former is large if γ is close to one because the ensemble Kalman
filter update draws the particles closer to the observation y, and the exponent 1 − γ dampens the
ratio of any two resampling probabilities. The latter is small if γ is small.
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Since �(x | y)γ ∝ ϕ(y; H x, R/γ ), and

P H ′(H P H ′ + R/γ )−1 = γ P H ′(γ H P H ′ + R)−1 = K (γ P), (2)

the ensemble filter update is straightforward: we need compute only the gain with the reduced
covariance γ P̂ p. The particle update then resamples with weights proportional to �(x | y)1−γ ∝
ϕ{y; H x, R/(1 − γ )}. However, there are two immediate drawbacks to such an algorithm: the
particle weights depend on the artificial observation noise variables needed for the ensemble
Kalman filter update, and the resampling introduces tied values. We show next how to address
both points. By (1), we can write

πu,γ ≈ π
u,γ
EnKF = 1

N

N∑
i=1

N {νu,γ
i , Q(γ, P̂ p)} (3)

where

ν
u,γ
i = x p

i + K (γ P̂ p)(y − H x p
i ), (4)

Q(γ, P̂ p) = 1

γ
K (γ P̂ p)RK (γ P̂ p)′. (5)

Instead of sampling from (3) and applying a particle correction, we delay the ensemble Kalman
filter sampling step, and update (3) analytically. This is easy because the update of a Gaussian
mixture by a Gaussian likelihood is again a Gaussian mixture whose parameters can be computed
easily (Alspach & Sorenson, 1972). We obtain

πu ≈ πu
EnKPF =

N∑
i=1

α
u,γ
i N (μ

u,γ
i , Pu,γ ) (6)

where EnKPF stands for ensemble Kalman particle filter and

α
u,γ
i ∝ ϕ{y; Hν

u,γ
i , H Q(γ, P̂ p)H ′ + R/(1 − γ )}, (7)

μ
u,γ
i = ν

u,γ
i + K {(1 − γ )Q(γ, P̂ p)}(y − Hν

u,γ
i ),

Pu,γ = [I − K {(1 − γ )Q(γ, P̂ p)}H ]Q(γ, P̂ p).

The update consists now in sampling from (6). The mixture proportions {αu,γ
i } do not depend

on the artificial observation noise variables, and even if one α
u,γ
i dominates, there is still some

diversity in the filter sample because the covariance Pu,γ is not zero if γ > 0.
Sampling from the i th component of (6) can be done as follows: let ε1 and ε2 be two indepen-

dent N (0, R) random variables. Then

xu,γ = x p
i + K (γ P̂ p)(y + γ −1/2ε1 − H x p

i ) = ν
u,γ
i + K (γ P̂ p)γ −1/2ε1

clearly has distribution N {νu,γ
i , Q(γ, P̂ p)}, and thus by standard arguments

xu = xu,γ + K {(1 − γ )Q(γ, P̂ p)}{y + (1 − γ )−1/2ε2 − H xu,γ }
is a sample from N (μ

u,γ
i , Pu,γ ). Hence there is no need to compute a square root of Pu,γ .

A summary of the ensemble Kalman particle filter is given in Algorithm 1.
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Algorithm 1. Ensemble Kalman particle filter.
Given a forecast ensemble {x p

j } and an observation y:

Step 1. Compute the estimated forecast covariance P̂ p.

Step 2. Choose γ and compute K (γ P̂ p) according to (2) and ν
u,γ
i according to (4).

Step 3. Compute Q(γ, P̂ p) according to (5) and α
u,γ
i according to (7).

Step 4. Choose indices I ( j) by sampling from the weights {αu,γ
i } with some balanced sam-

pling scheme; e.g., equation (12) in Künsch (2005).

Step 5. Generate ε1, j ∼N (0, R) and set xu,γ
j = ν

u,γ
I ( j) + K (γ P̂ p)γ −1/2ε1, j .

Step 6. Compute K {(1 − γ )Q(γ, P̂ p)}, generate ε2, j ∼N (0, R) and set xu
j = xu,γ

j +
K {(1 − γ )Q(γ, P̂ p)}{y + (1 − γ )−1/2ε2, j − H xu,γ

j }.

Because matrix inversion is continuous, it is easy to check that as γ → 0, ν
u,γ
i → x p

i ,
Q(γ, P̂ p) → 0, α

u,γ
i → ϕ(y; H x p

i , R), μ
u,γ
i → x p

i and Pu,γ → 0. Hence in the limit γ → 0,
we obtain the particle filter update. Similarly, in the limit γ → 1 we obtain the ensemble Kalman
filter update because for γ → 1, {H Q(γ, P̂ p)H ′ + R/(1 − γ )}−1 converges to zero and thus
α

u,γ
i → 1/N . The ensemble Kalman particle filter therefore provides a continuous interpolation

between the particle and the ensemble Kalman filters.

4. MODIFICATIONS IN HIGH DIMENSIONS

4·1. Efficient implementation

We focus here on the situation where N 	 q with N small and q very large. If the linear
algebra is carefully implemented, the ensemble Kalman particle filter has the same asymptotic
complexity as the ensemble Kalman filter. The choice of an appropriate implementation depends
mainly on the dimension r of the observations. If r =O(N ), the ensemble Kalman particle fil-
ter should be implemented as described in Algorithm 1. If r 
 N , efficient subspace pseudo-
inversion as detailed in Evensen (2007, § § 14.2 and 14.3) should be adopted. If R is diagonal
or block-diagonal, a third possibility is to assimilate the observations one at a time or in small
groups using again the implementation as provided in Algorithm 1. For large r , this is more costly
than subspace pseudo-inversion but no low-rank approximations are needed.

4·2. Covariance tapering and localization

If the dimension q of the state space is not small compared to the number N of particles,
the variability of the usual sample covariance is large, and regularization may be necessary. In
the context of the ensemble Kalman filter, two regularization techniques are common. Either one
uses a tapered estimate for P̂ p (Houtekamer & Mitchell, 2001; Furrer & Bengtsson, 2007), that
is, the sample covariance matrix is multiplied elementwise by a sparse correlation matrix that is
zero when the distance between two components of the state is larger than some threshold; or
one uses localized updates in grid space (Ott et al., 2004; Sakov & Bertino, 2011), where, in the
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simplest case, each state variable is updated only with local observations that depend on spatially
close state variables in some local window.

As pointed out in, e.g., Lei & Bickel (2011), local update schemes are incompatible with
resampling since it is not clear how to glue together the locally updated ensembles to a sin-
gle global ensemble without introducing discontinuities. For this reason, we focus on covariance
tapering, which in principle is straightforward to apply in the context of the ensemble Kalman
particle filter. In practice though, tapering has implications for the efficient implementations
described above. The direct and serial assimilation schemes are unaffected and can be carried
out as usual, but subspace pseudo-inversion is no longer possible since it requires a low-rank
P̂ p. For large r , a different approach is needed. If the error covariance matrix R and the obser-
vation matrix H are sparse, tapering has the additional benefit that the computation of ν

u,γ
i in

Step 2 and of xu,γ
j in Step 5 is much faster because we do not need to compute K (γ P̂ p) for this.

It is sufficient to solve 2N equations of the form (γ H P H ′ + R)x = b, which is fast for sparse
matrices. However, this advantage is lost because for Q(γ, P̂ p) we need K (γ P̂ p), which is in
general a full matrix. We could multiply the gain matrix by another taper in order to facilitate
the computation of Q(γ, P̂ p) and to turn Q(γ, P̂ p) into a sparse matrix. This would then make
Steps 3 and 6 in Algorithm 1 faster because again all we need to do is to solve 2N equations of
the form {(1 − γ )H Q(γ, P̂ p)H ′ + R}x = b.

Because K (γ P̂ p) is used only to compute Q(γ, P̂ p), a simpler alternative that avoids com-
puting gain matrices is to generate the values K (γ P̂ p)γ −1/2ε1, j needed in Step 5 before Step 3
and 4, and then to replace Q(γ, P̂ p) by a sparse regularized version of the sample covariance of
these values. If this approach is taken, it is usually feasible to generate more than N such values
in order to reduce the Monte Carlo error in the regularized sample covariance matrix.

4·3. Covariance inflation

A common tuning heuristic to combat filter divergence due to, e.g., Monte Carlo errors
or model bias is covariance inflation (Anderson, 2007). This means that the forecast ensem-
ble {x p

j } is artificially inflated before the update is performed, x p
j �→ x̄ p + δ(x p

j − x̄ p), where

x̄ p = N−1 ∑N
j=1 x p

j is the sample mean and δ � 1 some inflation factor. In principle, covariance
inflation can be used in conjunction with any Monte Carlo filter that operates on the forecast
ensemble, i.e., also with the ensemble Kalman particle filter.

5. CHOICE OF γ

5·1. Asymptotics of πu
EnKPF

It is not difficult to see that if {x p
j } is an independent and identically distributed sample from

π p with finite second moments, then for any γ ∈ [0, 1] and any fixed observation y, the random
probability measure πu

EnKPF as defined in (6) converges almost surely weakly to a nonrandom
limit distribution π

u,∞
EnKPF as N → ∞. If π p is Gaussian, the limit distribution equals the true

posterior πu(dx) ∝ ϕ(y; H x, R)π p(dx). If π p is non-Gaussian, the limit distribution depends
on γ and generally differs from the correct posterior if γ > 0. Unfortunately, the limit cannot be
easily identified, and in particular it is difficult to quantify the systematic error as a function of
γ . Using arguments similar to Randles (1982), it is also possible to show that for bounded test
functions h,

N 1/2
{∫

h(x)πu
EnKPF dx −

∫
h(x)π

u,∞
EnKPF dx

}
→N (0, V )
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weakly, where the asymptotic covariance V depends on h, π p and γ . In general, V is analytically
intractable, and for instance, we cannot verify whether V decreases as a function of γ , as one
would expect. The bottom line is that the asymptotics of πu

EnKPF do not lead to practically
exploitable rules on how to choose γ by balancing bias and variance.

5·2. Asymptotics of weights

Recall that for γ = 0 the method is exactly the particle filter, and for γ = 1 it is exactly the
ensemble Kalman filter. Hence it is clear that there is a range of values γ where we obtain an
interesting compromise between the two methods in the sense that the weights {αu,γ

i } are neither
uniform nor degenerate. We try to provide some theoretical insight where this range of values γ

is, and later we develop a criterion that chooses a good value γ automatically.
We want to see how the weights {αu,γ

i } in (6) behave as a function of γ when the dimension
of the observations is large. By definition

α
u,γ
i ∝ exp

{
−1

2
(y − Hν

u,γ
i )′

{
H Q(γ, P̂ p)H ′ + 1

1 − γ
R

}−1

(y − Hν
u,γ
i )

}

∝ exp

{
−1

2
(x p

i − μp)′Ĉγ (x p
i − μp) + d̂ ′

γ (x p
i − μp)

}
where μp is the prediction mean,

Ĉγ = (1 − γ )H ′(I − K̂ ′
γ H ′){(1 − γ )H Q̂γ H ′ + R}−1(I − H K̂γ )H,

d̂γ = (1 − γ )H ′(I − K̂ ′
γ H ′){(1 − γ )H Q̂γ H ′ + R}−1(I − H K̂γ )(y − Hμp)

and K̂γ and Q̂γ stand for K (γ P̂ p) and Q(γ, P̂ p).
The following lemma gives an approximate formula for the variance of α

u,γ
i .

LEMMA 1. Define approximate weights by

α̃
u,γ
i = 1

N

exp{−1
2(x p

i − μp)′Cγ (x p
i − μp) + d ′

γ (x p
i − μp)}

E[exp{−1
2(x p

i − μp)′Cγ (x p
i − μp) + d ′

γ (x p
i − μp)}] .

where Cγ and dγ are as defined above, but with the true forecast covariance P p instead of P̂ p.
If the forecast sample is independent and identically N (μp, P p) distributed, then

N 2var(α̃u,γ
i ) = det(P pCγ + I )

det(2P pCγ + I )1/2
exp(d ′

γ [{Cγ + (P p)−1/2}−1 − {Cγ + (P p)−1}−1]dγ ) − 1.

Moreover,

lim
γ↑1

N 2var(α̃u,γ
i )

(1 − γ )2
= 1

2
tr(H P p H ′M) + (y − Hμp)′M(y − Hμp), (8)

where M = (I − K ′
1 H ′)R−1(I − H K1)H P p H ′(I − K ′

1 H ′)R−1(I − H K1).

A proof is given in the Appendix. The matrix M is positive definite and also the trace in
formula (8) is positive. Therefore we expect that the variance of the weights is of the order
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O {
N−2(1 − γ )2r

}
, where r is the dimension of the observations. This is true if P p, R and

H are all multiples of the identity, and there is no reason for different behaviour in other cases.
This suggests that for high-dimensional observations, we need to choose γ close to one in order
to avoid degeneracy. For any fixed γ , the weights will collapse as r → ∞, and the asymptotic
behaviour is the same as for the particle filter examined in Snyder et al. (2008). The final update
can still differ from the ensemble Kalman filter update, even if its largest part occurs with the
ensemble Kalman filter.

5·3. Criteria for the selection of γ

We aim to choose the smallest value of γ that still gives a realistic amount of uncertainty
about the value of the state. If we believe that the uncertainty contained in the ensemble Kalman
filter is reasonable and if the spread of the sample is considered to be a meaningful measure of
uncertainty, we can choose γ such that the spread of the update is not smaller than a factor τ times
the spread of an ensemble Kalman filter update, where τ is maybe between 0·5 and 0·8. More
precisely, denoting the standard deviations of the Gaussian mixture (6) by σ u

k and the square roots

of the diagonal elements of {I − K (P̂ p)H}P̂ p by σ
u,En
k , we could take the smallest γ such that∑

k σ u
k � τ

∑
k σ

u,En
k . If we want to control not only the total spread but all marginal spreads,

we would take γ such that
∑

k min{1, σ u
k (σ

u,En
k )−1} � τq.

However, there are two problems with this approach. First, computing σ u
k is demanding

because we have to compute among other things Pu,γ ; cf. the discussion in § 4. Estimating σ u
k

and σ
u,En
k from the final update samples is simpler, but this would then depend also on the gen-

erated noise variables. Although this can be reduced somewhat by taking the same realizations
of ε1, j and ε2, j for all values of γ under consideration, it is not satisfactory.

A second argument against a choice of γ based on the spread of the update distribution is that
it is not necessarily a monotone function of γ because the variance of the correct posterior is only
on average smaller than the variance {I − K (P p)H}P p of the ensemble Kalman filter update.
If the prior is multimodal, the correct update can have a larger variance for some values of y.

For these reasons we decided to look only at the weights α
u,γ
i and to measure the sampling

diversity by the so-called effective sample size (Liu, 1996), which is defined as

ESS = 1∑
i (α

u,γ
i )2

= N

1 + N
∑

i (α
u,γ
i − 1/N )2

.

We then choose γ as the smallest value for which ESS > τ N . This criterion does not take into
account the spread in Pu,γ , which also increases if γ increases. Therefore, it gives only a lower
bound for the diversity, but it is easy to compute. In order to avoid an extensive search over
γ ∈ [0, 1], in the examples below we considered only multiples of 1/15 as values for γ and
used a binary search tree that results in at most four search steps, assuming that the diversity is
increasing in γ . We did not try to prove this assumption since the calculation is expected to be
extremely tedious; the assumption is safe to make, though, since at the worst we end up with γ

too large. Alternatively one could use an approximation of ESS based on (8).

6. EXAMPLES OF SINGLE UPDATES

6·1. Description of the set-up

We consider a single update for four situations. In all cases H = I and R = σ 2 I . There are
two forecast samples {x p

j } combined with two values y = y1 and y = y2 for the observations. The
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Fig. 1. Diversity N−1 × ESS as a function of γ . Top row: Gaussian prior, bot-
tom row: bimodal prior. Left column: y1, right column: y2. Dimension q of the
state variable (from top line to bottom line): q = 10, 50, 250. The solid lines
show N−1 × ESS, whereas the dotted lines show the approximations to this

quantity computed from (8) with μp and P p estimated from the sample.

construction of the forecast sample starts with a sample z j ∼Nq(0, I ), which is then modified
to introduce non-Gaussian features. More precisely, we consider the following situations:

1. A Gaussian prior: we set σ = 0·5, x p
j = z j , y1 = (0, . . . , 0)′, and y2 = (1·5, 1·5, 0, . . . , 0)′.

This means that the second observation contradicts the prior, although not excessively.
2. A bimodal prior: we set σ = 3, x p

j = z j for j � N/2 and x p
j = z j + (6, 0, . . . , 0)′ for j >

N/2, y1 = (−2, 0, . . . , 0)′ and y2 = (3, 0, . . . , 0). In the former case, the true posterior is
unimodal and in the latter case it is bimodal.

We take N = 50 and q = 10, 50, 250. We generate one sample in dimension 250 and use the first
q components. In all cases, we use a triangular taper with range 10, assuming that the states
are values along a line; the optimal taper has range 0, since the true covariance P p is diagonal.
Without a taper, all procedures including the ensemble Kalman filter break down: the spread
becomes much too low as the dimension increases, and the weights of the ensemble Kalman
particle filter become more balanced as the dimension increases.

6·2. Variation of γ

We compute the update for γ ∈ {0, 0·05, 0·10, . . . , 1} and take as the measure of the sam-
pling diversity the quantity N−1 × ESS introduced above. Some results are shown in Fig. 1.
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Fig. 2. First two coordinates of the update of the bimodal prior with q = 250. Upper
row: y1, lower row: y2. Left column: ensemble Kalman particle filter with γ chosen to
achieve a diversity of about 40%, which corresponds to γ = 0·3 for the upper plot, and
γ = 0·05 for the lower plot. Right column: ensemble Kalman filter. The prior sample
is given by the light grey dots, the observation is marked with a cross, and the contours
show the Gaussian mixture (6): levels are equidistant on a log scale such that the lowest

level corresponds to 1% of the maximum.

The diversity increases with γ and decreases with the dimension q as expected. In the bimodal
case shown here, even the particle filter does not degenerate, and small or moderate values of γ

apparently give sufficient diversity. Of course, the diversity for γ = 0, i.e., for the particle filter,
depends not only on the shape of the prior but also on other specifications of the problem, and
no simple general rule can be deduced.

6·3. Updates of the first two coordinates

We concentrate on the first two coordinates of xu,γ
j that contain the non-Gaussian features,

if present. We show the contours of the true update density (6) for the ensemble Kalman fil-
ter and for the filter with γ chosen such that the diversity τ = N−1 × ESS is approximately
40%. Figure 2 shows the results for the bimodal prior with q = 250. In case of the Gaussian
prior, the two plots, which are not shown here, are virtually identical. In the non-Gaussian situa-
tion, the combined filter is able to pick up some non-Gaussian features. In particular, the shape
and not only the location depends on the observation, and the bimodality of the posterior is
captured.
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7. EXAMPLES OF FILTERING WITH MANY CYCLES

7·1. The Lorenz 96 model

The 40-variable configuration of the Lorenz 96 model (Lorenz & Emanuel, 1998) is governed
by the ordinary differential equation

dXk
t

dt
= (Xk+1

t − Xk−2
t )Xk−1

t − Xk
t + 8 (k = 1, . . . , 40)

where the boundary conditions are assumed to be cyclic, i.e., Xk = X40+k . The model is chaotic
and mimics the time evolution of a scalar meteorological quantity on a latitude circle. We
adopt the experimental set-up of Bengtsson et al. (2003), Lei & Bickel (2011) and Frei & Künsch
(2013): measurements of odd components X2k−1 with uncorrelated additive N (0, 0·5) noise at
observation times 0·4 × n (n = 1, . . . , 2000) are taken. The large lead time produces a strongly
nonlinear propagation step. The system is integrated using Euler’s method with step size 0·001.
Both the ensemble Kalman filter and ensemble Kalman particle filter are run with N = 400
ensemble members. The true initial state and the initial ensemble members are randomly drawn
from N40(0, I ). All sample covariance matrices are replaced by tapered estimates; for the sake
of simplicity, we used the same taper matrix C throughout, with

Ckl = C0{min(|k − l|, 40 − |k − l|)},
where C0 is the correlation function given in Gaspari & Cohn (1999, equation (4.10)) with sup-
port half-length c = 10. No covariance inflation is used, in contrast to Lei & Bickel (2011) where
the inflation factors are presumably determined by off-line tuning. For the ensemble Kalman par-
ticle filter, the parameter γ is chosen adaptively to ensure that the diversity τ = N−1 × ESS stays
within a prespecified interval [τ0, τ1] ⊂ [0, 1] if possible; the resampling uses balanced sampling.

The filter performance is assessed via a scoring rule evaluated at observation times. Here, we
use the root mean square error of the ensemble mean, and the continuous ranked probability score
(Gneiting et al., 2007) for the first two state variables. More precisely, if Xk

t is the true solution at
time t , and X̂ k

t the mean of the updated ensemble, and F̂k
t (y) the marginal empirical cumulative

distribution function of the updated ensemble, then the root mean square error of the ensemble
mean at time t is

RMSEt =
{

1

q

q∑
k=1

(Xk
t − X̂ k

t )
2

}1/2

(9)

and the continuous ranked probability score for the kth variable at time t is

CRPS
k
t =

∫
R

{
F̂k

t (y) − 1{y�Xk
t }

}2
dy (k = 1, 2) (10)

where t = 0·4 × n (n = 1, . . . , 2000). For reasons of symmetry, we consider only the continu-
ous ranked probability score of the first two state variables, one observed and one unobserved.
Tables 1 and 2 compile the first and ninth deciles, mean and median of the scores. The gain
over the ensemble Kalman filter achieved by the ensemble Kalman particle filter is substantial.
In particular, as the continuous ranked probability scores show, the ensemble Kalman particle
filter is able to track the unobserved states much more accurately than is the ensemble Kalman
filter. Overall, the relative improvement over the ensemble Kalman filter is comparable with
the improvement reported for the localized nonlinear ensemble adjustment filter with first-order
correction in Lei & Bickel (2011) and for the mixture ensemble Kalman filter in Frei & Künsch
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Table 1. Summary statistics of RMSE (9) over 2000
cycles for the Lorenz 96 system, experimental set-up

as given in § 7·1
N = 400 [τ0, τ1] 10% 50% Mean 90%

EnKF 0·56 0·81 0·87 1·25
EnKPF [0·80, 0·90] 0·52 0·75 0·83 1·21
EnKPF [0·50, 0·80] 0·51 0·73 0·80 1·18
EnKPF [0·30, 0·60] 0·50 0·71 0·79 1·17
EnKPF [0·25, 0·50] 0·49 0·70 0·78 1·16
EnKPF [0·10, 0·30] 0·49 0·71 0·79 1·17

Ensemble Kalman filter (EnKF) and ensemble Kalman parti-
cle filter (EnKPF) with constrained diversity τ = N−1 × ESS ∈
[τ0, τ1] for the weights.

Table 2. Summary statistics of CRPS (10) over 2000 cycles for the state variables
X1 (observed) and X2 (unobserved) of the Lorenz 96 system, experimental set-up

as given in § 7·1
X1 X2

N = 400 [τ0, τ1] 10% 50% Mean 90% 10% 50% Mean 90%

EnKF 0·12 0·22 0·32 0·65 0·14 0·38 0·57 1·18
EnKPF [0·80, 0·90] 0·11 0·21 0·30 0·62 0·13 0·33 0·54 1·13
EnKPF [0·50, 0·80] 0·11 0·21 0·29 0·61 0·12 0·32 0·51 1·10
EnKPF [0·30, 0·60] 0·11 0·20 0·29 0·59 0·12 0·32 0·49 1·02
EnKPF [0·25, 0·50] 0·10 0·20 0·28 0·58 0·11 0·31 0·48 1·00
EnKPF [0·10, 0·30] 0·10 0·21 0·29 0·59 0·11 0·31 0·50 1·05

Ensemble Kalman filter (EnKF) and ensemble Kalman particle filter (EnKPF) with constrained
diversity τ = N−1 × ESS ∈ [τ0, τ1] for the weights.

(2013). Arguably, the best performance of the ensemble Kalman particle filter is achieved with
diversity constrained to [0·25, 0·50], but the scores are surprisingly robust.

To shed some light on our heuristic to adaptively choose γ , Fig. 3 shows a time series plot of
these values for one of the runs; the following remarks also apply to the other runs. The series
appears to be stationary, and the running mean of the values quickly stabilizes. We also re-ran
the filter with γ fixed to the mean, which did not noteworthily impact the filter performance.
Practically speaking, one could in fact monitor the sequence for convergence using, say, standard
Markov chain Monte Carlo diagnostics, and after the spin-up, work with the mean as static value
for γ to reduce the computational load.

For smaller ensemble sizes, the ensemble Kalman particle filter can still improve on the ensem-
ble Kalman filter, but the results are less impressive. Tables 3 and 4 compile the summaries. Obvi-
ously, the range of constraints for the diversity that lead to an improvement over the ensemble
Kalman filter narrows when the ensemble size decreases. For the nonlinear ensemble adjustment
filter from Lei & Bickel (2011) we were not able to obtain a stable run with N = 100 particles
even with extensive trial and error for the tunable parameter, that is, the window sizes for the
sliding-window localization and the inflation amount. The same applies for the filter proposed
in Papadakis et al. (2010). Moreover, for a particle filter, many more particles are required to
compete with the ensemble Kalman filter, as illustrated in Bocquet et al. (2010) for a slightly
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Fig. 3. Lorenz 96 system, experimental set-up as given in § 7·1: time series plot (black line) of the adaptively
chosen values of γ with diversity τ constrained to [0·80, 0·90]. (a) shows the whole 2000 cycles, whereas

(b) gives a zoomed-in view of the first 100 cycles. The running mean is shown in grey.

Table 3. As Table 1, but for N = 100 particles

N = 100 [τ0, τ1] 10% 50% Mean 90%

EnKF 0·57 0·82 0·94 1·41
EnKPF [0·80, 0·90] 0·55 0·81 0·94 1·48
EnKPF [0·50, 0·80] 0·54 0·81 0·95 1·52
EnKPF [0·30, 0·60] 0·55 0·82 0·97 1·57
EnKPF [0·25, 0·50] 0·54 0·84 1·00 1·75
EnKPF [0·10, 0·30] 0·69 1·37 1·61 2·93

Table 4. As Table 2, but for N = 100 particles

X1 X2

N = 100 [τ0, τ1] 10% 50% Mean 90% 10% 50% Mean 90%

EnKF 0·12 0·23 0·34 0·69 0·14 0·38 0·68 1·47
EnKPF [0·80, 0·90] 0·11 0·23 0·34 0·70 0·13 0·37 0·66 1·48
EnKPF [0·50, 0·80] 0·11 0·23 0·33 0·68 0·13 0·36 0·70 1·46
EnKPF [0·30, 0·60] 0·11 0·22 0·34 0·71 0·13 0·36 0·66 1·44
EnKPF [0·25, 0·50] 0·10 0·23 0·33 0·68 0·12 0·36 0·68 1·52
EnKPF [0·10, 0·30] 0·11 0·30 0·52 1·14 0·14 0·55 1·18 3·02

different configuration of the stochastic Lorenz model. We also did some tests with fewer parti-
cles, but things become very unstable, and even the ensemble Kalman filter with carefully tuned
covariance inflation tends to diverge for N = 50 particles.

7·2. A many-species Lotka–Volterra model

We consider the following spatiotemporal chaotic Lotka–Volterra model introduced and stud-
ied in detail in Sprott et al. (2005):

dZk
t

dt
= Zk

t (1 − Zk−2
t − Zk

t − Zk+1
t ) (k = 1, . . . , 100)
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Table 5. Summary statistics of 10 × RMSE (9) over 2000
cycles for the Lotka–Volterra model, experimental set-

up as given in § 7·2
N = 50 [τ0, τ1] 10% 50% Mean 90%

EnKF 1·28 1·95 2·01 2·75
EnKPF [0·80, 0·90] 1·17 1·86 1·93 2·69
EnKPF [0·50, 0·80] 1·06 1·73 1·78 2·55
EnKPF [0·30, 0·60] 1·00 1·71 1·86 2·73
EnKPF [0·25, 0·50] 1·03 1·77 1·94 2·92
EnKPF [0·10, 0·30] 1·25 2·49 3·40 6·72
Ensemble Kalman filter (EnKF) and ensemble Kalman particle fil-
ter (EnKPF) with constrained diversity τ = N−1 × ESS ∈ [τ0, τ1]
for the weights.

with cyclic boundary conditions, Zk = Z100+k . This system describes 100 populations of identi-
cal species located at 100 different sites along a circle. Each population competes for resources
with two of its four nearest neighbours, and Zk

t ∈ (0, 1) is the size at time t of the kth popula-
tion measured in units of the carrier capacity relative to no competition. Since the solutions are
constrained to the unit cube, we consider the system on the logistic scale

Xk
t = logit(Zk

t ) = log
Zk

t

1 − Zk
t
.

This transformation is natural since the decoupled system dZ̃ k
t /dt = Z̃ k

t (1 − Z̃ k
t ), which is com-

monly known as the logistic equation, satisfies dX̃ k
t /dt = 1.

We adopt a similar experimental design as for the Lorenz 96 model: measurements of odd
components X2k−1 with uncorrelated additive N (0, 0·5) noise at observation times 50 × n (n =
1, . . . , 2000) are taken. The large lead time leads to a strongly nonlinear propagation step
(Sprott et al., 2005, § 3). The system is integrated using the common explicit fourth-order Runge–
Kutta method with step size 0·05. The true initial state and the initial ensemble members are
randomly drawn from N100(m, I ), where mk = logit(1/3) (k = 1, . . . , 100) is an unstable equi-
librium point that corresponds to coexistence of the populations.

Both the ensemble Kalman filter and ensemble Kalman particle filter, with adaptively chosen
γ , are run with N = 50 ensemble members, i.e., N < q. The Gaspari–Cohn taper as described in
§ 7·1 is used with c = 25, no covariance inflation is applied. The scores are compiled in Tables 5
and 6. The gain over the ensemble Kalman filter achieved by the ensemble Kalman particle
filter is substantial. We were not able to obtain a stable run for the localized nonlinear ensemble
adjustment filter (Lei & Bickel, 2011). With minor tuning, the mixture ensemble Kalman filter
(Frei & Künsch, 2013) runs stably, but produces worse results than the ensemble Kalman filter.

7·3. The Korteweg–de Vries equation

We consider the Korteweg–de Vries equation on the circle (Drazin & Johnson, 1989):

∂t X + ∂3
s X + 3∂s X2 = 0

with domain (s, t) ∈ [−1, 1) × [0, ∞) and periodic boundary conditions, X (s = −1, t) = X (s =
1, t). Variants of this equation have been used as test beds for data assimilation in, e.g.,
van Leeuwen (2003), Lawson & Hansen (2005), or Zupanski & Zupanski (2006). The spatial
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Table 6. Summary statistics of 10 × CRPS (10) over 2000 cycles for the state variables
X1 (observed) and X2 (unobserved) of the Lotka–Volterra model, experimental set-up as

given in § 7·2
X1 X2

N = 50 [τ0, τ1] 10% 50% Mean 90% 10% 50% Mean 90%

EnKF 0·15 0·63 0·98 2·26 0·16 0·67 1·03 2·44
EnKPF [0·80, 0·90] 0·13 0·61 0·95 2·16 0·13 0·60 0·96 2·19
EnKPF [0·50, 0·80] 0·11 0·53 0·87 2·08 0·11 0·57 0·87 2·03
EnKPF [0·30, 0·60] 0·10 0·55 0·90 2·08 0·11 0·55 0·92 2·10
EnKPF [0·25, 0·50] 0·10 0·55 0·94 2·22 0·10 0·58 0·99 2·43
EnKPF [0·10, 0·30] 0·12 0·77 1·83 4·26 0·13 0·80 2·00 4·76
Ensemble Kalman filter (EnKF) and ensemble Kalman particle filter (EnKPF) with constrained diversity
τ = N−1 × ESS ∈ [τ0, τ1] for the weights.
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Fig. 4. Korteweg–de Vries equation, experimental set-up as given in § 7·3. (a) shows the initial 16-member
ensemble (grey) at time t = 0 together with the true solution (black). (b) shows the forecast ensemble (grey) at
the first observation time t = 0·01 together with the observations (black bullets) and the true solution (black).

domain [−1, 1) is discretized using an equispaced grid with q = 128 grid points. The spectral
split step method is used to solve the equation numerically, with an explicit fourth-order Runge–
Kutta time-step with step size 10−4 for the nonlinear part of the equation. As prior we take the
random field

X (s, t = 0) = exp

(
− s2

η2

)
, log(η) ∼ U {log(0·05), log(0·3)} .

For the truth, we use η = 0·2. The initial ensemble is a quasi-random sample from X (·, t = 0). The
ensemble size is N = 16, and thus N 	 q. Six irregularly spaced observations with uncorrelated
additive N (0, 0·02) noise at observation times 0·01 × n (n = 1, . . . , 10) are taken. The lead time
is rather short and corresponds to weakly nonlinear behaviour. For illustration, Fig. 4 displays the
initial 16-member ensemble and the forecast ensemble at the first observation time together with
the observations.

The particle filter, the ensemble Kalman filter and the ensemble Kalman particle filter are run
without tapering, for reasons discussed below. For the ensemble Kalman particle filter, we fix
γ = 0·05, which ensures that τ = N−1 × ESS lies roughly in the interval [0·80, 0·90]. Since the
particle filter degenerates very quickly for such a small ensemble, a benchmark run with N = 256
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Fig. 5. Korteweg–de Vries equation, experimental set-up as given in § 7·3. Ensemble deviations about the
truth, i.e., filtered ensemble minus true solution, after the 1st (t = 0·01, left panel) and 10th (t = 0·1, right
panel) update cycle, for the ensemble Kalman filter and ensemble Kalman particle filter with N = 16 particles
(top two rows), and for the particle filter with N = 256 particles (bottom row). The solid grey lines are the
deviations, the dotted grey lines the average of the deviations, and the black bullets are the observations minus

the truth.

particles is carried out using balanced resampling as in Künsch (2005, equation (12)). Figure 5
displays ensemble deviations from the true solution after 1 and 10 update cycles. Apparently,
both the ensemble Kalman filter and ensemble Kalman particle filter track the true solution
reasonably well, and the state uncertainty is well represented. In terms of error of the ensemble
mean, there is not much difference between the ensemble Kalman filter and the ensemble Kalman
particle filter. However, the ensemble Kalman particle filter produces particles that exhibit fewer
dynamical inconsistencies. In Fig. 6, for each filter, the particle with the most curvature after 10
update cycles is shown, where the curvature of a solution X (s, t) is defined by

∫ 1
−1 |∂2

s X |{1 +
(∂s X)2}−3/2 ds, and a finite difference approximation is used for the discretized solutions. The
true solution, which is not shown in the plots, is virtually identical to the particle shown in the
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Fig. 6. Korteweg–de Vries equation, experimental set-up as given in § 7·3. Particle with most curvature after
10 update cycles (t = 0·1), for the ensemble Kalman filter (a), ensemble Kalman particle filter (b) and particle

filter (c).

rightmost plot. The particle filter, which conserves dynamical constraints, yields very smooth
particles, whereas the ensemble Kalman filter may produce wiggly, unphysical particles. The
ensemble Kalman particle filter lies in between them: some particles still show slight dynamical
imbalances, but these are much less pronounced than for the ensemble Kalman filter. Also, if a
taper is applied to the forecast covariance matrix, which is not the case in the example here, the
ensemble Kalman filter suffers even more from these imbalances.

8. POSSIBLE GENERALIZATIONS

In the spirit of the progressive correction idea (Musso et al., 2001), the ensemble Kalman par-
ticle filter update could also be split up in several steps. We fix constants γi > 0 and δi > 0 with∑L

i=1 γi + δi = 1. Then, for i = 1, . . . , L , we apply an ensemble Kalman filter update with like-
lihood �(x | y)γi , followed by a particle filter update with likelihood �(x | y)δi , followed by the
resampling step. It is necessary to estimate the predictive covariance only for the first step; for
the subsequent steps, i = 2, . . . , L , we can compute the covariance analytically from the mixture
representation (6); for large q, this is numerically delicate, but the remedies discussed in § 4 can
be applied. We expect that the bias of such an iterative ensemble Kalman particle filter update
is similar as for a single ensemble Kalman particle filter update with γ = ∑L

i=1 γi , but the vari-
ance will decrease with increasing L since the likelihoods become flatter. In the limiting case∑L

i=1 γi → 0, which corresponds to a full particle filter update, we conjecture that L =O(r) is
sufficient to retain the sampling diversity. This claim is supported by recent work of Alexan-
dros Beskos et al., from University College London who analyse the tempering idea in simpler
but related situations.

A potential drawback of the ensemble Kalman particle filter in comparison to non-Gaussian
ensemble filters akin to Lei & Bickel (2011) is its restriction to Gaussian linear observations.
However, the idea of combining an ensemble Kalman filter and a particle filter update could also
be used for arbitrary observation densities. Let H be a matrix that selects those components of
the state variable that influence the observation, and assume that we have an approximation of
the likelihood of the form �(H x | y) ≈ ϕ{g(y); H x, R(y)}. Then we can use this approximation
for an ensemble Kalman filter update, and correct by a particle filter update with weights pro-
portional to �(H xu

j | y)[ϕ{g(y); H xu
j , R(y)}]−1. In order to construct an approximation of the

likelihood of the above form, we can use a Taylor approximation

log �(H x | y) ≈ log �(Hμp | y) + a(y)′H(x − μp) + 1

2
(x − μp)′H ′b(y)H(x − μp)
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where a(y) and b(y) are the gradient and the Hessian, respectively, of the loglikelihood. Then
R(y) = −b(y)−1 and g(y) = R(y)a(y). Alternatively, one could centre the expansion at the
mode of the likelihood. Such an approximation is expected to work well in cases where the
likelihood is log-concave, e.g., when y given x is Poisson with parameter exp(x). An obvious
drawback to this approach is that the resampling step produces tied values, which makes the
method unsuitable for deterministic models. A simple remedy is to use kernel resampling with
shrinkage (Liu & West, 2001). We tested this for the set-up described in Lei & Bickel (2011,
§ 4.b.2), where the observation errors are generated from a Laplace distribution. For N = 400 par-
ticles, the relative improvement over the ensemble Kalman filter is competitive with the improve-
ment reported for the nonlinear ensemble adjustment filter, but for smaller ensemble sizes, our
method gives poorer results than the ensemble Kalman filter.

ACKNOWLEDGEMENT

The authors thank Jo Eidsvik for fruitful discussions, and an associate editor and two referees
for helpful comments.

APPENDIX

Proof of Lemma 1

We set

Z = exp

{
−1

2
(x p

i − μp)′Cγ (x p
i − μp) + d ′

γ (x p
i − μp)

}
.

Then by definition

var(α̃u,γ
i ) = 1

N 2

{
E(Z2)

E(Z)2
− 1

}
.

The lemma follows by completing the square and recalling that Gaussian densities integrate to one. More
precisely, for any x and any positive definite matrix �:

x ′(Cγ + �)x − 2d ′
γ x = {x − (Cγ + �)−1dγ }′(Cγ + �){x − (Cγ + �)−1dγ } − d ′

γ (Cγ + �)−1dγ .

Therefore

E(Z) = [det(P p) det{Cγ + (P p)−1}]−1/2 exp

[
1

2
d ′

γ {Cγ + (P p)−1}−1dγ

]
and

E(Z2) = [det(P p) det{2Cγ + (P p)−1}]−1/2 exp[2d ′
γ {2Cγ + (P p)−1}−1dγ ].

Taking these results together, the first claim follows.
For the second claim, we note that as γ ↑ 1

Cγ ∼ (1 − γ )H ′(I − K ′
1 H ′)R−1(I − H K1)H,

dγ ∼ (1 − γ )H ′(I − K ′
1 H ′)R−1(I − H K1)(y − Hμp)

because Kγ and Qγ are continuous. The result then follows by a straightforward computation.

REFERENCES

ALSPACH, D. L. & SORENSON, H. W. (1972). Nonlinear Bayesian estimation using Gaussian sum approximations.
IEEE Trans. Auto. Contr. 17, 439–48.

ANDERSON, J. L. (2001). An ensemble adjustment Kalman filter for data assimilation. Mon. Weather Rev. 129, 2884–
903.



Ensemble Kalman and particle filters 799

ANDERSON, J. L. (2007). An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus A 59,
210–24.

BENGTSSON, T., SNYDER, C. & NYCHKA, D. (2003). Toward a nonlinear ensemble filter for high-dimensional systems.
J. Geophys. Res. 108, 8775.

BOCQUET, M., PIRES, C. A. & WU, L. (2010). Beyond Gaussian statistical modeling in geophysical data assimilation.
Mon. Weather Rev. 138, 2997–3023.

BURGERS, G., VAN LEEUWEN, P. J. & EVENSEN, G. (1998). Analysis scheme in the ensemble Kalman filter. Mon.
Weather Rev. 126, 1719–24.

DOUCET, A., GODSILL, S. & ANDRIEU, C. (2000). On sequential Monte Carlo sampling methods for Bayesian filtering.
Statist. Comp. 10, 197–208.

DOVERA, L. & DELLA ROSSA, E. (2011). Multimodal ensemble Kalman filtering using Gaussian mixture models.
Comp. Geosci. 15, 307–23.

DRAZIN, P. G. & JOHNSON, R. S. (1989). Solitons: An Introduction. Cambridge: Cambridge University Press.
EVENSEN, G. (1994). Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo meth-

ods to forecast error statistics. J. Geophys. Res. 99, 10143–62.
EVENSEN, G. (2007). Data Assimilation: The Ensemble Kalman Filter. Berlin: Springer.
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