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Abstract: If we accept temperature and entropy as primi-
tive quantities, we can construct a direct approach to a
dynamical thermal theory of spatially continuous and
uniform processes. The theory of uniform models serves
as a simple entry point for learners of modern thermo-
dynamics. Such models can be applied fruitfully to an
understanding of (the dynamics of) thermoelectric pro-
cesses and devices. Entropy, temperature, charge, and
voltage allow us to describe the role of energy concisely,
and constitutive quantities can be given their natural
entropic interpretation. In this paper, aggregate dynami-
cal models of a Peltier device will be created and simula-
tions will be compared to non-steady-state experimental
data. Such overall models give us a simple image of
the transport of charge and transport, production, and
storage of entropy and can be easily extended to the
spatially continuous case. Process diagrams for a uniform
model can be used to visualize these processes and the
role of energy. Device efficiency can be easily read from
the model. Apart from external parameters such as load
resistances or temperature differences, it depends upon
three parameters of the device: internal electric resis-
tance, entropy conductance, and Seebeck coefficient.
The Second Law efficiency of a generator suggests how
to define the figure of merit (zT) of the thermoelectric
material. Distinction between ideal and dissipative pro-
cesses and the rates at which energy is made available or
used allows us to construct a simple argument for the
equality of the Seebeck and Peltier coefficients.
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Introduction

The goal of this paper is to provide a macroscopic
approach to thermoelectric processes suitable for a first
course in physics, physical chemistry, or thermody-
namics. This approach starts with phenomenology and
uses an interpretation of temperature as the thermal
potential and entropy as the fundamental property that
is transported in thermal process (what in lay terms
would be called “heat”). The resulting theory of the crea-
tion, flow, and balance of entropy provides the found-
ation of a truly dynamical theory of heat that unites
thermodynamics and heat transfer into a single subject.
Conceptualizing entropy in this manner makes it clear
that it corresponds to Carnot’s caloric if we allow for
caloric to be created in irreversible processes. Such an
interpretation leads to visual metaphors that serve as a
guide to model building – as we will show by applying it
to thermoelectricity.

The presentation in this paper is both foundational
and applied. It demonstrates how to create elementary
conceptualizations based upon phenomenology and how
to apply them to the case of thermoelectric devices. No
microscopic interpretation or formalism is intended and
no particular material is discussed. The result is a simple
and visual representation of processes that can be used
to suggest mathematically formal versions of spatially
continuous processes.

In Section “Macroscopic dynamical processes,” a
short outline of the ideas behind continuum physics
and the approach to the creation of spatially uniform
dynamical models in thermal processes is given. Section
“Phenomenology of thermoelectric processes” is devoted
to the phenomenology of thermoelectric effects and
demonstrates how to construct simple global represen-
tations of the underlying processes, leading to the
simplest dynamical model of a Peltier device. A first
discussion of the role of energy in these processes
already leads to a proof of the equality of Peltier and

*Corresponding author: Hans U. Fuchs, Institute of Applied
Mathematics and Physics, Zurich University of Applied Sciences
at Winterthur, 8400 Winterthur, Switzerland,
E-mail: hans.fuchs@zhaw.ch

Energy Harvesting and Systems 2014; 1(3-4): 253–265

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/85222322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Seebeck coefficients – suggesting that laborious micro-
scopic arguments for the equality of Onsager’s reciprocity
relations are unnecessary.

These results suggest directly and simply how to
write the transport equations in a thermoelectric mate-
rial in spatially continuous form (Section “Continuous
models of transport processes”). There we consider the
coupled transport of substance, charge, and entropy,
and the independent phenomenon of the diffusion of
entropy. In sum, this leads to the well-known equations
of thermoelectric materials without the need of much of
the apparatus of irreversible thermodynamics.

Finally, in Section “Efficiency and figure of merit,” we
derive global Second Law efficiencies of thermoelectric
devices for generators and heat pumps. The simple form
found for generators lends itself to introduce and motivate
the figure of merit zT as a dimensionless combination of
internal electric resistance, entropy conductance, and
Seebeck coefficient.

Macroscopic dynamical processes

As mentioned in the Introduction, a macroscopic approach
will be used to build the foundations for an understanding
of thermoelectric processes and devices. This approach
relies upon continuum physics and a direct entropic (calo-
ric) representation of thermal processes. In this section, a
brief outline of how to create models of dynamical thermal
systems will be presented.

Continuum physics

Continuum physics (Truesdell and Toupin 1960; Truesdell
and Noll 1965; Eringen 1971–1976) leads to a unified
approach to macroscopic processes that use the same
few basic steps for conceptualization and formulation
of different types of phenomena. First, we have to agree
on which physical quantities we are going to use as
the fundamental or primitive ones. Other quantities are
defined on their basis, and with their help laws are
expressed. Second, there are the fundamental laws of
balance of the quantities which are exchanged in pro-
cesses, such as momentum, charge, amount of substance,
or entropy; we call these quantities fluidlike. Third, we
need particular laws governing the behavior of, or distin-
guishing between, different bodies; these laws are called
constitutive relations. Last but not least, we need a means
of relating different types of physical phenomena. The tool

which permits us to do this is energy. We use the energy
principle, that is, the law which expresses our belief that
there is a conserved quantity which appears in all phe-
nomena, and which has a particular relationship with
each of the types of processes. A modern introduction
to continuum thermodynamics that builds upon this
approach and starts from the construction of spatially
uniform models has been presented in Fuchs (2010).

The most basic constitutive relations result from the
metaphoric interpretation of the intensive quantities
associated with processes – speed with momentum, elec-
tric potential with charge, or temperature with entropy
(Fuchs 2013a). These quantities are levels – they are
described as being high or low by virtue of the projection
of the schema of verticality onto the polarity which is
constructed by our perception. Intensity results from the
containment of a fluidlike quantity in a system: Pressure
goes up if more liquid or gas is put into a container. This
we call a capacitive relation. Differences of intensities are
conceptualized as driving forces of processes. So the
electric potential difference serves as a driving force for
the flow of charge through a conductor, and a chemical
potential difference is visualized as the driving force for
the diffusion of a substance through a material. Such
relations we call resistive characteristics. See Section
“Entropy and models of dynamical thermal processes”
for an example of the construction of a dynamical
thermal model.

The notion of levels and level differences as driving
forces is instrumental also for understanding the role of
energy in physical processes (Section “Energy in physical
processes”). We simply relate the power of processes
to driving forces and flows, as Carnot did. This is the
starting point for the approach used in this paper.

Entropy and models of dynamical
thermal processes

Even though the balance of entropy is used as a stepping
stone in continuum thermodynamics (Müller 1985; Jou,
Casas-Vazquez, and Lebon 1996), we are commonly left
to learning about this concept in the roundabout way of
the traditional approach of a static theory of heat. Heat is
identified with energy (in some form) and this quantity
is used as the starting point for conceptualizations. In
traditional presentations, entropy appears as a derived
quantity and is commonly assumed to acquire a more
foundational status only in statistical physics.

A direct macroscopic approach has been lacking even
though suggestions for turning Carnot’s (1824) caloric into
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a concept for basing macroscopic entropy upon have
appeared time and again in the literature (Callendar 1911;
Job 1972; Falk 1985; Fuchs 1987; Mares et al. 2008). A
complete dynamical theory of heat inspired by continuum
thermodynamics has been worked out by Fuchs (1996,
2010). It takes entropy (caloric) as one of two fundamental
thermal quantities (the other is hotness as a foundation of
temperature as the thermal potential). In particular, spa-
tially uniform models can be found there of dynamical
thermal processes suitable for a first encounter with
modern thermodynamics as a macroscopic theory. Prior
assumptions of equilibrium are just as alien and unneces-
sary as they are in mechanics or electrodynamics
(Truesdell 1984). Equilibrium may or may not be attained,
depending upon the situation and the model (see Jou and
Casas-Vasquez 1988, for a non-equilibrium model of iner-
tia in the conduction of heat). Second law analysis and
optimization are standard elements of this approach
(Bejan 1996; Sieniutycz and de Vos 2000; Fuchs 2010,
Chapter 9).

Here is a brief outline of the theory of uniform dyna-
mical thermal processes by way of a simple example. The
aim is to facilitate (dynamical) modeling of thermoelec-
tric generators and coolers as efficiently as possible
(Section “Phenomenology of thermoelectric processes”)
and to prepare for continuous models at the same time
(Section “Continuous models of transport processes”).
Imagine a closed container with hot water cooling by
emitting entropy to the environment. Entropy (S) makes
the water hot and because of the temperature difference
between water and environment (T � Ta), entropy will
flow out (IS). The model consists of the dynamical version
of the balance of entropy for the water (eq. [1]) and con-
stitutive relations between entropy content and tempera-
ture (leading to the concept of entropy capacitance K) and
between an entropy current and a temperature difference
(leading to the concept of entropy conductance GS of a
series of heat transfer layers). If we accept linear relations
and spatially uniform conditions, the model takes the
simple form:

dS
dt

¼ IS; S 0ð Þ ¼ S0 ½1�

S ¼ KT ½2�

IS ¼ �GS T � Tað Þ ½3�

The model can be transformed into an initial value pro-
blem for the temperature of the water as a function of
time. It can be improved upon in various ways, for
instance by making the constitutive quantities K and GS

temperature dependent or by using a lumped parameter
approach in the case of spatially variable systems.

In uniform models, dissipation as a result of heat
transfer takes place in thermal resistors between uniform
elements, in this case, between the water and the envir-
onment. The rate of production of entropy, PS, equals
PS ¼ T1 � T2ð ÞIS=T2 (indices 1 and 2 denote positions in
the direction of flow of entropy; see Section “Energy in
physical processes”). In our example, this equals

PS ¼ GS
T � Tað Þ2

Ta
½4�

The dynamical model for a Peltier device presented below
in Section “Interpretation: a uniform dynamical model”
contains elements of what we have used in this simple
example.

Energy in physical processes

The treatment of energy in physical processes follows the
example of Sadi Carnot (1824) and makes use of a proposal
by Falk, Herrmann, and Schmid (1983). The former intro-
duces the notion of power P as the result of a fluidlike
quantity (volume of fluid, charge, entropy, amount of
substance, momentum, or angular momentum) falling
(or being pumped) through a potential difference (Fuchs
2010, Chapter 2); this corresponds to the notion of avail-
able power Pav of a process. The latter was inspired by the
Gibbs Fundamental Form of uniform systems and intro-
duces us to the concept of energy carrier and associated
energy flow: an energy current IE equals the current IX of a
fluidlike quantity X multiplied by the associated potential
’X at which it flows (Falk, Herrmann, and Schmid 1983;
Fuchs 2010, Chapters 2–4). Together with the generalized
balance of energy E (assuming no production or destruc-
tion of energy), we obtain a complete picture of the role of
energy in physical (and chemical) processes:

PX ¼ ’X2 � ’X1ð ÞjIXj ½5�

IE;X ¼ ’XIX ½6�

dE
dt

¼
X

IE;i ½7�

In the case of thermal processes, this leads to three rela-
tions well-known from irreversible thermodynamics or
continuum thermodynamics:

Pth ¼ T2 � T1ð ÞjISj ½8�
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IE;th ¼ T IS ½9�

Pdiss ¼ T IIS ½10�
Pth is the thermal power (the rate at which energy is
made available or used as a consequence of the flow of
a current of entropy through a temperature difference).
Pdiss is the rate of dissipation of energy taking place at
temperature T; this is equal to the energy used to produce
entropy in an irreversible process. Here, all the equations
have been written for simple uniform dynamical models;
equivalent forms for spatially continuous forms will
be given in Section “Continuous models of transport
processes.”

The approach is simple and rests upon a conceptua-
lization that can make use of visual metaphors (Fuchs
2010, 2013b). Doing so introduces process diagrams that
depict processes in terms of the flow, storage, and pro-
duction of the fluidlike quantities, associated potentials
and potential differences, and related energy quantities
(available power, energy currents, and stored energy;
Figure 1). The basic image of a process derives from
Carnot’s suggestion of using a waterfall as the archetypal
process applicable to all types of phenomena (fluid, elec-
tric, thermal, chemical, mechanical). Clearly, this leads to
a strong form of analogical reasoning in physics and
physical chemistry.

A process diagram for the example of cooling of water
presented above can be seen in Figure 1. As discussed
above, the body of water is treated as a uniform element,
and entropy production takes place in the heat transfer
layers treated as a thermal resistor placed between water
and environment.

Phenomenology of thermoelectric
processes

In this section, we will discuss an approach to creating a
dynamical model of a Peltier device as a beginners’ guide
to thermoelectricity. The approach rests upon direct
observation of some basic phenomena and interpretation
in terms of the figures of mind presented in Section
“Macroscopic dynamical processes.” To demonstrate the
power of the simple models, comparison of simulations
with data taken in the laboratory can be performed.

Observations

Several versions of a simple experiment suitable for an
introductory laboratory course are performed. A Peltier
device (Melcor CP2-127-06L) is sandwiched between two
copper plates (having the same surface area as the
device) whose temperatures can be measured; the copper
plates are insulated from the environment. The tempera-
tures of the copper plates (T1C and T2C in Figure 2A) serve
as estimates of the surface temperatures of the Peltier
device (T1 and T2, respectively). The thermoelectric ele-
ment is operated with a power supply whose voltage can
be changed to different settings (US) and is turned on and
off during the experiment. Power supply, device, and an
external resistive element form a simple circuit, and vol-
tages (US, UPD, Uext; the index PD denotes the Peltier
device) are recorded (Figure 2B).

Figure 2 shows a typical run of an experiment. The
power supply is set to a fixed voltage for 100 s; then it is
turned off. In this experiment, the circuit is left open after
the power supply was turned off. UPD then equals the
open circuit voltage of the Peltier device after the power
supply has been switched off.

Some conclusions can already be drawn by direct
inspection of the results of measurements. The device
works as an entropy pump driven by electricity (0–100
s, Figure 2A); when the power supply is switched off and
the temperatures of the faces of the device are different,
an open circuit voltage is set up: the device works as a
generator (100–300 s, Figure 2B); at the very beginning,
the voltages across the device (UPD) and the external
resistor (Uext) are almost equal, suggesting that the device
has an internal resistance roughly equal to that of the
external resistor (1.0 Ω); the fact that UPD and Uext

become unequal when a temperature difference across
the device is established (and grows with this difference)
indicates that a “generator voltage” (thermoelectric

Entropy

Energy

Entropy

Energy

Entropy

Water

T1
T2

Entropy

EnvironmentConductor

Power

Production
of entropy

Energy

Energy

Figure 1 A process diagram of hot water cooling. Entropy flows
downhill from the hot water into the cool environment (note the
waterfall metaphor in the center). Entropy is stored in the water and
the environment and produced in the heat transfer layers between
the storage elements. When entropy falls, energy is released (made
available) at a certain rate (power). When entropy flows into or out
of an element, energy flows along with it
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voltage) is already present during heat pumping mode:
the Peltier device seems to operate like a battery with
internal resistance.

If we use different fixed voltages (and therefore dif-
ferent electric currents going through the device), the
initial rate at which T1 and T2 spread (Figure 3A) is
proportional to the electric current (Figure 3B). Since
the rate of change of temperatures of the copper plates
indicates the rate at which they loose or gain entropy, we
can hypothesize that charge sweeps entropy along with it
in proportion to the magnitude of its flow. Furthermore,
we conclude from the fact that the first plate cools more
slowly than the second heats up that entropy is produced
by the Peltier device, most likely as a result of the con-
duction of charge through the device.

The second part of the data shown in Figure 2, after
the power supply has been switched off, can be used to
investigate the generator function of the device. If we plot
the open circuit voltage (UPD) as a function of tempera-
ture difference T2C � T1Cð Þ, we see that the former is
proportional to the latter (Figure 4A): a temperature dif-
ference across a Peltier device leads to a voltage and the
device could be used as a generator.

We can change the experiment slightly by leaving the
electric circuit closed after switching off the power sup-
ply. We notice that UPD is lower than before, and the
smaller the resistance of the external resistor, the lower
it will be. This allows us to produce a characteristic
diagram of the device (Figure 4B): the electric current
going through the device operating as a generator is a
falling linear function of the voltage UPD across the
device. Since this looks very much like the characteristic
diagram of a battery modeled as an electrochemical gen-
erator having (constant) internal resistance, we suggest
that a Peltier device is a thermoelectric generator having
constant internal resistance.

Interpretation: a uniform dynamical model

The interpretation of the behavior of the Peltier device
rests upon a general observation and the concrete results
of the experiments described in Section “Observations”.
This general observation is that the device, when operat-
ing, has a hot side and a cold side, and an electrically
high side and a low side, respectively. Most simply, these
observations mean that we are dealing with (coupled)
thermal and electric processes: entropy and charge flow
and are stored, and entropy is produced. Neglecting the
coupling for the moment, the simplest model of the
device is one consisting of two storage elements for
entropy (to represent the hot and cold sides, respectively)
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and two electric capacitive elements (to represent two
different potentials). Charge is allowed to flow (diffuse)
between the capacitors, and entropy diffuses from the
hotter to the colder thermal capacitor (Figure 5; see also
Fuchs 2010, chapter 4). Both transport processes are
known to be dissipative, that is, entropy is produced.

We are most interested in the apparent coupling of the
transports of charge and entropy. Overall, the experi-
ments suggest that there are two types of coupling
between electric and thermal processes. The result in
Figure 3B can be interpreted as follows. At ΔT ¼ 0,
there is a flow of entropy from one side of the device to
the other that leads to the cooling of the first and the
heating of the second. The rate of change of the tempera-
tures is proportional to the entropy current (eqs [1] and
[2]), and since the former is proportional to the electric
current forced through the device, we may hypothesize
that

IS;TE ¼ α Iq; if T2 ¼ T1 ½11�
The index TE stands for thermoelectric. Figuratively
speaking, entropy is swept along with the electric charge
flowing through the thermoelectric device. (This point
should be clarified. The direction of flow of charge and
entropy need not be the same; it depends upon the con-
ductor. For example, in a p-type semiconductor, charge
and entropy flow in the same direction, in an n-type
conductor they flow in opposite directions. Thus it is
possible to build a TE-device from (multiple) thermocou-
ples using different materials. The device typically has a
geometry as shown in Feldhoff and Geppert (2014, 70) or

in Fuchs (2010, 175).) In Section “Continuous models of
transport processes,” we will interpret this as a phenom-
enon akin to convection where a fluid (here electric
charge) carries a certain amount of entropy “stored” in it.

We call α the Peltier coefficient of the device. In
general, with a temperature difference across the device,
the current of entropy must be the result of two effects:
the thermoelectric effect of entropy carried by charge
(IS;TE, eq. [11]) and diffusion (conduction) of entropy
(ISðcÞ, Fourier effect):

IS ¼ α Iq � GS T2 � T1ð Þ ½12�
On the other hand, the results shown in Figure 4A tell us
that – for open circuit conditions – a voltage UPD ¼ UTE is
set up across the device that is proportional to the tem-
perature difference T2 � T1ð Þ:

UTE ¼ " T2 � T1ð Þ ; if Iq ¼ 0 ½13�
(Remember that voltages are negative potential differ-
ences.) " is the Seebeck coefficient of the thermoelectric
device and UTE is the thermoelectric generator voltage
analogous to the open circuit voltage (stemming from
the “electromotoric force” or emf) of a battery. As we
know, the Seebeck coefficient must be equal to the
Peltier coefficient, " ¼ α. Below, we will be able to give
a rather simple argument for this claim based upon
energy considerations (Sections “Energy in thermoelectric
processes” and “Power and the equality of Seebeck and
Peltier coefficients”).

Finally, Figure 4B suggests that the thermoelectric
device functions analogously to a battery with internal
resistance R. Therefore, we hypothesize that, in general,
the electric current through the device must be given by

Iq ¼ G UPD � " T2 � T1ð Þð Þ ½14�
G ¼ 1=R denotes the electric conductance. For a generator,
going in the direction of the flow of charge, " T2 � T1ð Þ is
negative, and so is UPD; their difference will be positive,
leading to a current from position 1 to position 2 in Figure 5.

The model is completed by adding the effects of
entropy production. Only two processes are dissipative:
diffusion of charge and diffusion of entropy. The former
leads to

PS;el ¼ 1
T2

1
G
I2q ½15�

Entropy produced as a result of the conduction of entropy
equals

PS;th ¼ 1
T2

GS T2 � T1ð Þ2 ½16�

Thermal
capacitor 1

Thermal
capacitor 2

Electric
capacitor 1 S

Electric
capacitor 2

IS

Iq

+

UTE

+

T1 T2

IS,TE

Thermal
resistor

Electric
resistor

Coupling

UTE

Currents of
entropy and
charge

Figure 5 Simplest possible lumped parameter (uniform) dynamical
model of a Peltier device. Thermally and electrically high and low
faces are represented by capacitive elements. Transports of entropy
(IS, IS;TE) and of charge (Iq) take place between these capacitors.
Entropy flows conductively, is carried by charge, and is produced
(�S; source symbol at top center). A temperature difference sets up
a thermoelectric voltage UTE (“electromotoric force”)
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These equations are the results of eqs [5], [8] and [10]
applied to our element. Electric power equals RI2q, and
the power of the conductive (diffusive) current of entropy
equals GS T2 � T1ð Þ2. For a finite body having a range of
temperatures from T1 to T2, dissipation takes place at T2

which means we divide the power of the dissipative
process by this temperature (the result is the same for
the model in Figure 5 running in either generator or heat
pump mode).

The equations developed here can be combined with
expressions for the thermal and electric capacitive ele-
ments to complete a dynamical model according to the
ideas sketched in Figure 5. For higher accuracy, a device
can be divided into a few elements in a single spatial
dimension. Models of this type can be used to quantify
the parameters of a thermoelectric device by comparing
simulation results to data. Despite their simplicity, they
work well. (A note on numerical methods: If the electric
capacitance is given suitably small values, the initial
value problem becomes stiff. Tools for solving initial
value problems (IVPs) usually include methods for stiff
differential equations that work very well on the present
systems of IVPs. As an alternative, one may treat the
electric process as running in (pseudo) steady state in
which case storage of charge is not considered and the
model becomes simpler, also for numerical methods.)

Energy in thermoelectric processes

Details of the role of energy vary slightly if a thermo-
electric device is operated in generator or in pumping
mode. For this reason, let us concentrate on the first of
these cases in our discussion of power, energy transfer,
and dissipation.

A process diagram of a thermoelectric generator
looks like the following (Figure 6; the equivalent diagram
for a device in heat pump mode is found in Fuchs 2010,
174). Overall, entropy enters the device at high tempera-
ture and leaves at low temperature. Charge is pumped
through the device. The entropy leaving equals the
entropy entering plus what is produced inside. Energy
enters with entropy and leaves with entropy and charge.

In order to understand the operation of the device,
we need to consider the power of various processes.
Entropy flows downhill from T1 to T2 by two processes:
by conduction (IS cð Þ) and coupled to charge (IS;TE); each of
these flows releases energy at a certain rate. The energy
made available by conduction (PthðcÞ) is dissipated:

Pdiss;th ¼ � T2 � T1ð ÞjISðcÞj ½17�

The energy made available by the fall of entropy coupled
to the flow of charge (Pth;TE) is used for pumping charge:
Pth;TE ¼ �Pel;TE. This is the part of the thermal power that
is initially non-dissipative:

Pth;TE ¼ T2 � T1ð ÞjIS;TEj ½18�
Now we can create a simple argument based upon
relations of power in the device that will lead to a proof
of the equality of Seebeck and Peltier coefficients. Since
Pth;TE ¼ �Pel;TE, and after inserting the expressions from
eqs [11] and [13], we obtain T2 � T1ð Þα Iq ¼ " T2 � T1ð ÞIq,
which means that

α ¼ " ½19�
A slightly more sophisticated version of this argument
and proof will be delivered in Section “Continuous mod-
els of transport processes” and efficiencies and the figure
of merit will be introduced in Section “Efficiency and
figure of merit.”

Continuous models of transport
processes

Spatially continuous models (dynamical or steady state)
follow very directly from the ideas worked out in Section
“Phenomenology of thermoelectric processes”; it is not
difficult to convert eqs [12] and [14]. However, it may be
useful to discuss the continuous case more carefully and
at the same time, widen the scope by introducing the
chemical nature of the transport processes in parallel
with electric and thermal aspects. We will be rewarded

THERMOELECTRIC GENERATOR

T1

S1 T2

IS1

IS2

IE,th 1

th(c)

diss

th,TE

el,TE
IQ

IE,th 2

IE,el

IS,TE

IS(c)

UTE

Ri

UPD
S2

Figure 6 Steady-state process diagram of a thermoelectric device
operated in generator mode. The electric resistive element is shown
separately. Energy is made available in the fall of entropy
(IS1 ¼ IS cð Þ þ IS;TE where IS cð Þ is the conductive part of the current)
from T1 to T2 (PthðcÞ and Pth;TE , respectively) and used partly to pump
electric charge (Pel;TE). Entropy is produced as a result of the
diffusion of entropy and charge (PS1 associated with IS cð Þ and PS1

associated with Iq)
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with an enhanced visual conceptualization of thermo-
electric processes and an introduction to the notions of
coupled potentials, gradients of potentials, and entropy
associated with amount of substance and charge of the
(mobile) charge carriers (holes or electrons) in the mate-
rial of the thermoelectric device.

Transports of substance, charge, and
entropy

Consider a long, thin slab of a thermoelectric material
(having a cross section A and length L) that allows for
quantities such as entropy or charge to flow in a single
direction only (Figure 7). Densities and potentials of the
quantities involved change in the direction of flow.

The question now is how to create a complete description
of processes with the least number of basic assumptions
that lend themselves to graphic visualization. We know
that entropy and charge must flow to create the phenom-
ena of thermoelectricity. The transport of charge may be
interpreted as a consequence of the diffusion of a charged
substance (holes or electrons); if we give this substance
not only charge but entropy as well, and if we allow
entropy to diffuse independently, we can explain what
we have discussed so far. In summary, all we need is a
picture of the transport of amount of substance n and of
entropy S through the material. To explain their flows, we
need to consider the gradients of their potentials, chemical
potential μn, and temperature T, respectively.

Combined potentials

To describe the flow of amount of substance, we need the
idea of chemical potential whose difference is the drive

for currents of substance. However, if the substance has
additional – non-chemical – properties such as charge or
entropy, the gradients of electric potential and of tem-
perature “pull” at the substance in parallel with the
gradient of chemical potential.

To formalize this idea, we need to create the concept
of combined potentials of a substance being electrically
charged and charged with entropy. We use the image of
an energy current being carried by a bundle of carriers,
here amount of substance, charge, and entropy (see Falk,
Herrmann, and Schmid 1983):

IE ¼ μn In þ ’ Iq þ T IS ½20�
Here, IS is the total transport of entropy composed of the
usual conductive part and the thermoelectric part asso-
ciated with the transport of substance (which we may call
a form of convection): IS ¼ IS;cond þ IS;TE.

Charge is coupled to amount of substance, and so is
a part of the entropy of the substance. If amount of
substance flows, so do charge and entropy:

Iq ¼ qnIn ½21�

IS;TE ¼ SnIn ½22�
qn is the molar charge (charge per amount of substance);
note that qn ¼ zF where z ¼ �1 and F is the Faraday
constant. Analogously, Sn is the entropy transported by
the diffusing substance, per amount of substance (see
Goupil et al. 2011, 1490; it is a kind of molar entropy,
i.e., a constitutive quantity of the thermoelectric mate-
rial). In other words, we imagine the substance in ques-
tion to “hold” charge and entropy in accordance with
these molar values, and when the substance flows, so
do the associated amounts of charge and entropy. If we
insert eqs [21] and [22] into eq. [20], we obtain

IE ¼ μn þ qn’þ SnTð ÞIn þ T IS;cond ½23�
The quantity in parentheses is called thermo-electro-
chemical potential:

μn;TEC ¼ μþ qn’þ SnT ½24�
In other words, we make this combined thermo-electro-
chemical potential responsible for the “pull” exerted
upon the substance.

Transport of substance

We now assume that the first flow, substance together
with its charge and entropy, is forced by the (negative)
gradient of this combined potential. If we write this

Figure 7 A slab of thermoelectric material (length L and cross
section A) allowing for transport of amount of substance (In), charge
(Iq), and entropy (IS) in a single spatial dimension. Potentials shown
are temperature T, electric potential ’, and chemical potential μn.
Transports of amount of substance, charge, and entropy are
coupled. In addition, there is a conductive flow of entropy (ISðcÞ)

260 H. U. Fuchs: Direct Entropic Approach to Thermoelectricity



diffusive transport in terms of the current density of
amount of substance driven by a gradient of the
thermo-electro-chemical potential,

jn ¼ �σn
d
dx

μn;TEC ½25�

we have

jn ¼ �σn
d
dx

μn þ qn’þ SnTð Þ ½26�

σn is the (chemical) conductivity of the substance diffus-
ing through the thermoelectric material. If desired, we
can rewrite this equation in terms of the flow of electric
charge:

jq ¼ �σ
d
dx

μn;EC
qn

� �
� σ

Sn
qn

dT
dx

; σ ¼ q2nσn ½27�

σ is the electric conductivity, and μn;EC equals the sum of
the first two terms on the right-hand side of eq. [24]
which we call the electro-chemical potential. Note that
Sq ¼ Sn=qn equals the entropy per charge of the thermo-
electric material. Here and in the following, we will
assume that material properties are constant; results
will be easier to read and to interpret.

Transport of entropy

The second transport is quite simple to visualize. Entropy
flows (1) because it is carried by the diffusing (charged)
substance and (2) because of a gradient of temperature (it
diffuses):

jS ¼ Snjn � κS
dT
dx

½28�

Here, κS is the entropy conductivity of the material. The
second term on the right is the well-known Fourier
expression written for the conduction of the basic ther-
mal extensive quantity, entropy. The first term on the
right can be transformed with the help of eq. [21]:

jS ¼ Sn
qn

jq � κS
dT
dx

½29�

Comparison with phenomenology

We can take eqs [27] and [29] as the spatially continuous
equivalents of the expressions formulated in eqs [12] and
[14]. If we compare them, we obtain relations between the
phenomenological Peltier and Seebeck coefficients and
the material parameter entropy per charge:

α ¼ Sn
qn

:¼ Sq; " ¼ Sn
qn

:¼ Sq ½30�

Interestingly, the graphical interpretation of the (local)
transport processes used to formulate eqs [27] and [29]
already suffices to suggest that the Peltier and Seebeck
coefficients are equal. We can now write our transport
equations of a spatially continuous thermoelectric mate-
rial as follows:

jq ¼ �σ
d
dx

μn;EC
qn

� �
� σ "

dT
dx

½31�

jS ¼ α jq � κS
dT
dx

½32�

These equations are often given in a form with jq from
eq. (31) inserted in the first term on the right-hand side of
eq. [32]. Written in matrix form, we have

jq

jS

 !
¼ � σ σ"

σα σα"þ κS

 !
d
dx

μn;EC
qn

� �
dT
dx

0
@

1
A ½33�

This corresponds to what we find in the literature on
thermoelectricity; see for example, Feldhoff and Geppert
(2014) or Goupil et al. (2011).

Power and the equality of Seebeck and
Peltier coefficients

As a last step in this section, let us revisit the point of the
equality of Seebeck and Peltier coefficients. We already
have two arguments that this should be so, the first based
upon the overall reversible power of a device and the
second based upon the phenomenological interpretation
of material properties and transport phenomena relating
to a thermoelectric material. Now we will take a closer
look at the question of energy relations in the case of the
continuous model.

The local (volume) density of the power (p) of the
thermal process – as a consequence of the fall of entropy
through the gradient of temperature – is expressed as
follows:

p th ¼ jS
dT
dx

½34�

whereas the local balance of power takes the form

� p th ¼ pdiss;th þ pdiss;el þ pel ½35�
In simple terms, this tells us that energy is made avail-
able by a single process and used by three others, two of
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them dissipative. The first term on the right represents
the dissipation rate due to thermal conduction; the sec-
ond equals electric dissipation; and the third is the elec-
tric power of the device. If we introduce eq. [32] into eq.
[34], we obtain

p th ¼ jS
dT
dx

¼ α jq � κS
dT
dx

� �
dT
dx

¼ α jq
dT
dx

� κS
dT
dx

� �2

If we replace the first of the dT=dx – terms according to
eq. [31], we have

p th ¼ αjq � 1
σ"

jq � 1
"

d
dx

μn;EC
qn

� �� �
� κS

dT
dx

� �2

and finally, by using eq. [35]:

pdiss;th þ pdiss;el þ pel ¼ κS
dT
dx

� �2

þ α
σ"

j2q þ
α
"
jq

d
dx

μn;EC
qn

� �
½36�

The terms on the right have forms we recognize from our
conceptualization of energy in physical processes
(Section “Energy in physical processes”). The first is
indeed equal to dissipation in thermal conduction (it is
the local version of eq. [16]), the second takes the form of
electric dissipation if α ¼ " (it is the local equivalent of
eq. [15]), and if we again set α ¼ ", the third is equal to
the power of pumping of a current of charge jq through
the gradient of the electro-chemical potential per molar
charge (giving us the electric power of the device).

Continuous dynamical and steady-state
models

Now that we know how to express the pertinent transport
equations, we can formulate complete continuous
models by introducing the constitutive relations into the
relevant laws of balance. For charge and for entropy,
these are

@ρq
@t

þ @jq
@x

¼ 0 ½37�

@ρS
@t

þ @jS
@x

¼ πS ½38�

where ρ stands for volumetric density and πS is the volu-
metric density of the production rate of entropy. These
are the single-dimensional versions of the general laws of
balance of charge and entropy known from continuum
physics (Müller 1985; Fuchs 2010, Chapter 11). The local
rate of production of entropy equals the local dissipation
rate (which is the sum of thermal and electric contribu-
tions as in eq. [36]) divided by the local temperature:

πS ¼ 1
T
κS

dT
dx

� �2

þ 1
T
1
σ
j2q ½39�

A steady-state model

In steady state, the derivatives with respect to time van-
ish in eqs [37] and [38]. The former then tells us that the
current density of charge must be (temporally and spa-
tially) constant, and the latter turns into

d
dx

α jq � κS
dT
dx

� �
¼ 1

T
κS

dT
dx

� �2

þ 1
T
1
σ
j2q ½40�

(Note that the derivative of the first term on the left will be
equal to zero.) To obtain global results similar to those
suggested in Section “Interpretation: a uniform dynamical
model” (see eqs [12] and [14]), we must solve the differen-
tial equation for T xð Þ. In general, when the material coef-
ficients α, σ, and κS are arbitrary functions of T, we cannot
find simple solutions. One commonly used result holds for
constant αE ¼ T α, constant κE ¼ T κS, and constant σ. In
this case, the electric current is constant and the entropy
currents at the ends of the slab in Figure 7 are equal to

x ¼ 0 : IS x ¼ 0ð Þ ¼ αE
T0

Iq � GE

T0
TL � T0ð Þ � 1

2
1
T0

RI2q

½41�

x ¼ L : IS x ¼ Lð Þ ¼ αE
TL

Iq � GE

TL
TL � T0ð Þ þ 1

2
1
TL

RI2q

½42�
Here, GE can be interpreted as the conductance for the
energy current accompanying the transport of entropy
(GE ¼ TGS). Note that these are rather special results
that do not hold in general. Nevertheless, they will be
useful in our discussion of efficiency in the next section.

Efficiency and figure of merit

In this section, global Second Law efficiencies will be
derived for steady-state operation and a natural definition
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of the figure of merit of thermoelectric devices will be
defined. The discussion will be based upon a form of an
entropy current at x ¼ 0 suggested by eq. [41] and of the
electric current by eq. [14]:

Iq ¼ 1
R

UPD � αΔTð Þ ½43�

IS ¼ α Iq � GSΔT � 1
2
1
T0

RI2q ½44�

In the following, α; G ¼ 1=R, and GS will be assumed to
be constant. It turns out that the last term on the right
side of eq. [44] is small compared to the others when the
device is used in generator mode. It cannot be neglected,
however, when we discuss the Second Law efficiency of a
device used as a heat pump.

Second Law and First Law efficiencies

A natural measure of efficiency of heat engines – or any
other type of device for that matter – can be gleaned from
Figure 6 or the equivalent process diagram for a heat
pump (see Fuchs 2010, chapter 4). This measure, called
Second Law efficiency ηI I , is defined by the ratio of useful
power to available power:

ηI I ¼
Puse

Pav
½45�

Note that ηI I ¼ 1 for a Carnot heat engine. The usual
thermal efficiency (First Law efficiency ηI ) is related to
ηI I as follows:

ηI ¼ ηCηI I ; ηC ¼ 1� T2=T1 ½46�
Here, ηC is the well-known Carnot factor.

Efficiency of a thermoelectric generator

Let us now discuss the Second Law efficiency of a
thermoelectric device running in generator mode as in
Figure 6. Energy is made available at a rate T1 � T2ð ÞIS1
and it is usefully employed (not dissipated) at a rate
equal to UPDIq. Therefore, this natural measure of effi-
ciency is defined by

ηI I ¼
UPDIq
IS1ΔT

½47�

Remember that, in this case, the third term on the right
side of eq. [44] can be neglected. Furthermore, if the
device is in a simple circuit having an external resistive
element with resistance Rext, the electric current through

the element is given by Iq ¼ �"ΔT= Rþ Rextð Þ, and ηI I
becomes

ηI I ¼
Rext

Rþ Rþ Rextð Þ RGS
α2

R
Rþ Rext

½48�

There is only a single external parameter, Rext, determin-
ing the efficiency. Beyond that, ηI I depends upon the
parameters of the device. Most interestingly, there is a
figure of merit zT,

zT ¼ α2

RGS
¼ α2σ

κS
½49�

so that ηI I ! Rext= Rþ Rextð Þ for zT ! 1. Efficiency as a
function of Rext is shown for the Melcor CP2-127-06L
device and two hypothetical devices with different zT in
Figure 8A. For given zT, the efficiency has a maximum at

Rext;opt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ zT

p
R ½50�

The meaning of zT is quite clear. First, it is dimensionless
and only dependent upon thermoelectric material or
device properties. It grows with an increasing Seebeck
or Peltier coefficient (which measures the strength of the
thermoelectric effect) and increasing electric conductivity
(which decreases electric dissipation) and decreasing
entropy conductivity (which decreases the unwanted dif-
fusion of entropy and related dissipation).

Efficiency of a thermoelectric heat pump

Let us now discuss the Second Law efficiency of a Peltier
device used as a heat pump. In this case, the efficiency is
defined by the ratio of (net) entropy pumping power and
the electric power:

ηII ¼
IS1ΔT
UPDIq

½51�

If we introduce eqs [43] and [44], we notice that two
external parameters – such as the voltage applied to the
device and the temperature difference across it – have to
be specified for the efficiency to be defined:

ηII ¼
UPD � αΔT 1þ 1=zTð Þ

UPD � αΔT
α� 1

2
1
T0

UPD � αΔTð Þ
� �

ΔT
UPD

½52�

If the second term in the brackets could be neglected, and
if zT were to be made large, the efficiency would
approach a value of αΔT=UPD. Numerical values of the
Second Law efficiency of the Melcor CP2-127-06L device
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for different temperature differences are shown in
Figure 8B.

Conclusion

It is indeed possible to create the background for an
understanding of thermoelectric processes in a simple
and straightforward manner. The conceptual tools for
this approach are a combination of continuum thermo-
dynamics and the forms of analogical reasoning afforded
by it. Mechanics, electricity, chemistry, and heat can be
based upon strictly analogous structures if momentum,
charge, amount of substance, and entropy and their
related potentials (velocity, electric and chemical poten-
tials, and temperature) are used as primitive quantities.
Macroscopic entropy can be visualized as the caloric of
the caloric theory suitably extended by the requirement
that caloric is produced in irreversible processes (Falk
1985; Fuchs 1996; Mares et al. 2008). In this form, ther-
modynamics joins the other macroscopic theories of phy-
sics and physical chemistry as an example of the
conceptualization of forces of nature (Fuchs 2013a,
2013b).

As we have seen here, the most easily accessible
theory of a thermoelectric device is a spatially uniform
dynamical model suggested to us directly by the phenom-
enology of thermoelectric processes. This model serves as
a first-order computational model and suggests how to
write the spatially continuous transport relations.
Identification of the power of various elementary pro-
cesses or, even more simply, association of Peltier and

Seebeck coefficients with the (molar) entropy swept along
by the diffusing (charged) substance, leads to a one-line
proof of the equality of these coefficients. There is no
need for laborious microscopic arguments for the equal-
ity of Onsager’s reciprocity relation.

Finally, if we use the Second Law efficiency sug-
gested by modern thermodynamics as a natural measure
of efficiency, we can derive a simple result – at least for
thermoelectric generators – that allows for a direct inter-
pretation of the figure of merit composed of electric con-
ductance, Seebeck coefficient, and entropy conductance.
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