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1. Introduction

One of the outstanding problems in four-dimensional topology is to find the
minimal genus of an oriented smoothly embedded surface representing a given
homology class in a smooth four-manifold. For an arbitrary homology class in an
arbitrary smooth manifold not even a conjectural lower bound is known. However,
for the classes represented by smooth algebraic curves in (simply connected)
algebraic surfaces, it is possible that the genus of the algebraic curve, given by the
adjunction formula

g(C) = 1+\(C* + CK), (1)
is the minimal genus. This is usually called the (generalized) Thorn conjecture. It is
mentioned in Kirby's problem list [11] as Problem 4-36.

There are a number of results on this question in the literature. They can be
divided into two classes, those proved by classical topological methods, which apply
to topologically locally flat embeddings, including the G-signature theorem, and
those proved by methods of gauge theory, which apply to smooth embeddings only.

On the classical side, there is the result of Kervaire and Milnor[10], based on
Rokhlin's theorem, which shows that certain homology classes are not represented
by spheres. A major step forward was made by Rokhlin[20] and Hsiang and
Szczarba[8] who introduced branched covers to study this problem for divisible
homology classes. If the integral homology class represented by an embedded surface
£ c: X is divisible by k, then the corresponding cover of X of order k branched along
£ is again a smooth 4-manifold, so there is an obvious inequality, simply from the
existence of the covering, asserting that its second Betti number is at least the
absolute value of its signature. In the case k = 2, this gives

gV)>\$?-o-(X)\-b2(X). (2)

A better bound follows from the Cr-signature theorem [8], [20]. Again, we state it
only for even homology classes:

0(S)^&S»-K*) | - |& 2 (X) . (3)
In the case of CP2, if 2d represents d times a generator, and d is even, the bound (2)
gives (jr(Xd) ^ }d2 — 2, and the 6?-signature theorem (3) gives gr(2d) ^ ±d2 — 1. The Thom
conjecture asserts that gr(2d) ^ \d2 — %d+1.
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276 D. KOTSCHICK AND G. MATIC

The applications of gauge theory to this problem were initially concerned with the
representability of homology classes by spheres only. These are collected in the
survey article by Lawson[16]. They usually relied on Donaldson's early theorems [2]
on manifolds with b% ^ 2. Next, Donaldson [3] used his polynomial invariants [4] for
manifolds with b% $s 3 to prove that one cannot construct a counterexample to the
Thorn conjecture by doing surgery, i.e. killing a handle, on an ample curve.
Substantial progress was made recently by Kronheimer and Mrowka[15] who
developed gauge theory for singular connections with non-trivial holonomy around
a loop linking an embedded surface 2. They used this to prove that if X has a
non-trivial Donaldson invariant in the sense of [4], then

<7(2)>i+p:2, (4)

except if 2 is an inessential sphere or a sphere of self-intersection — 1. In particular,
this proves the Thorn conjecture for K3 surfaces. In other cases, however, it falls
short of the bound (1). Even more recently, Kronheimer [14] announced a proof of
the Thorn conjecture for homology classes of positive self-intersection in certain
surfaces of general type. The restriction to classes of positive self-intersection is
reminiscent of the ampleness assumption in Donaldson's theorem [3].

In this paper we combine the classical method using branched covers with gauge
theoretic arguments in two different ways to prove some results pertaining to the
Thom conjecture for cases which are not addressed by the results of [3], [15] and [14].

First, using Donaldson's theorems [2] on spin manifolds with b~£ ^ 2, we prove a
lower bound on the genera of surfaces representing certain divisible classes in 4-
manifolds (Theorem 3.1). As a special case, we obtain:

THEOREM 1-1. Let ~Ld be a smoothly embedded surface representing d times the
generator of H2(CP2,Z). If d is even, d > 2 and %d is odd, then g(1id) ^ffi + l.

This improves the best previously known bound by 2, and proves the Thom
conjecture for degree 6 curves in CP2. Lee and Wilczynski [17] have shown that the
lower bounds proved in [8], [20] are realized by topologically locally flat surfaces, for
all d which are even or powers of an odd prime.

COROLLARY 1-2. For d even, d > 2 and \d odd, the topologically locally flat surfaces of
genus g = %d2— 1 representing d times the generator ofH2(CP2, Z) constructed in [17] are
not smoothable.

There were earlier counterexamples to the topologically locally flat version of the
Thom conjecture, due to Rudolph[21]; see also [22]. It follows from Theorem 1-1
that some of these are not smoothable, cf. Section 3.

In Section 3 we also give applications of Theorem 3-l to other rational surfaces,
including a proof of the Thom conjecture for the class — 2K on any del Pezzo surface.
As above, this shows that certain topologically locally flatly embedded surfaces are
not smoothable.

Secondly, if a suitable branched cover has b2 ^ 3, then we prove in Theorem 5-1
that its Donaldson polynomials give obstructions to doing surgery on an embedded
surface. This idea has already been used by Donaldson [3], and we generalize (and
reprove) his result to show that under very general assumptions surgery cannot be
done on complex curves to produce a counterexample to the Thom conjecture.
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Embedded surfaces 211

THEOREM 52. Let X be a simply connected smooth complex algebraic surface and
B a X a smooth algebraic curve. Then surgery cannot be done on B if either

1. the self-intersection number B2 is positive, or
2. [B] is divisible in H2(X,Z).

The second part is probably the more interesting one, because, unlike the results
of [15] and [14], it applies to complex curves of non-positive self-intersection.
Although the first part looks like an immediate generalization of Donaldson's result
on ample curves, his proof does not generalize. By necessity, our proof is rather
different. The main difference is that instead of using Donaldson's vanishing theorem
for his polynomial invariants [4] of connected sums, we use the following theorem,
proved in section 4, which says that certain homology classes can not be represented
by spheres.

THEOREM 4-2. Let X be a smooth closed oriented 4-manifold with b^X) = 0 and b^{X)
odd and > 1. Suppose X contains a smoothly embedded 2-sphere S of zero self-intersection
with [S] #= 0eH2(X,Q). Then all Donaldson invariants of X vanish.

This theorem was first proved for the SU(2) Donaldson invariants of simply
connected manifolds by Morgan, Mrowka and Ruberman (unpublished). That case is
also covered by the results of [6] and by (4) and the proofs can probably be extended
to the general case. However, our argument is much simpler, based, as it is, on a
simple observation about the orientations of SO(3) moduli spaces [13].

To prove Theorem 5-2 for curves which are not ample, we have to apply the
vanishing theorem to a branched cover with non-trivial fundamental group. In this
sense, we need the full strength of Theorem 4-2. See the final Remark in section 5 for
a further comparison of Donaldson's proof in [3] with ours.

2. Homology of branched covers

Let X be a closed oriented 4-manifold with nx{X) = 1, and B<=.X a connected
closed oriented surface. If p is a prime such that pr divides [B] eH2(X, Z), denote by
Y^-X the corresponding branched cover with covering group Zy. The Betti numbers
of Y with coefficients in a field of characteristic zero and the signature of Y were
calculated in [8], [20] to be

bo(Y) = bi(Y) = l,b1(Y) = ba(Y) = O (5)

b2(Y)=p'b2(X) + 2(j)r-l)g(B) (6)

a(Y)=p^(X)-^=^B2. (7)

We have the following result concerning homology with integral coefficients:

PROPOSITION 2*1. If pr is the maximal power of p dividing [B]eH2(X,Z), then the
homology of Y has no p-torsion.

Proof. Poincare duality and the universal coefficient theorem imply that it is
enough to show H^Y, Zp) = 0.
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278 D. KOTSCHICK AND G. MATIC

Let tfclbea tubular neighbourhood of the branch locus B, and W = X—N. If
d is the divisibility of [B] in H2(X, Z), then Ht(W, Z) = Zd [8], [20]. Let V-> W be the
unramified covering corresponding to the homomorphism

Adding the standard ramified cover M^-N we obtain Y = V [}M. The Mayer-Vietoris
sequence for this decomposition gives

for homology with arbitrary coefficients. If we prove H^V, Zp) = 0, then, because
Hx(dV) = H1(8M)^H1(M) is surjective, HX{Y,XV) = 0 as claimed.

Let L = n^W) and K = n^V). Then we have Diagram 1 of short exact sequences:
1 1

K' V

K

KjK'

1 1
Diagram 1

By Lemma 4-1 of [8] or section 3 of [20], K/K' =H1(V)\s& finite group H. We have
to show that p does not divide its order.

LEMMA 2-2. Let L and K be as in Diagram 1, with K/K' = H finite and pr+1 not a
divisor of d. Then p does not divide the order of H.

The subgroup K' a L is normal. Dividing by K' and setting G = L/K', we obtain
Diagram 2 of short exact sequence of groups:

1

G'

H y G-

\ /

1
Diagram 2
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Embedded surfaces 279

Note that H is finite Abelian and contains G' as a subgroup. The claim is that p does
not divide \H\, which is equivalent to p not dividing \G'\. The factor group
V = G'/{xp | xeG'} is a vector space over Zp, and the claim is equivalent to V = 0.

Let aeGbe such that its image in Zd is a generator. The assignment [x] -> [axa'1]
gives a well-defined linear endomorphism / of V. Since ap sH and H is Abelian, we
have/p r = Idv and so (Idv—f)v' = Idv—fpT = 0. Thusldv—fis not surjective, unless
V = 0.

The commutator G' is generated by elements of the form akxa~kx~1 with xeH.
Thus Fis generated by elements of the form/*(#) — x. (We write the group operation
in Fadditively.) Puttingy = x+f(x) + ...+fk~1(x), we have/*(x) — x = f(y)—y. Thus
f—Idv is surjective and we conclude V = 0 as desired.

This completes the proof of the lemma and of the proposition. I

Remark. It has been pointed out to us by P. Gilmer and 0. Viro that the
assumption of maximality in the Proposition can be dropped at the expense of using
Smith theory [9]|. Proposition 2-1 suffices for all our applications, except the case of
S2xS2 in Corollary 32.

3. A lower bound on the genera of embedded surfaces

Combining the homology calculation of Section 2 with Donaldson's results in [2] we
prove here as lower bound on the genera of embedded surfaces representing certain
homology classes in a smooth simply connected 4-manifold.

THEOREM 3-1. Let X be a smooth oriented ^-manifold with n^X) = 1, and I, a X a
connected oriented smoothly embedded surface representing a non-zero homology class
[T,]eH2(X,Z). Assume that [L]eH2(X,Z) is divisible by 2r, that (l/2r) [2] is Poincare
dual to a lift of w2(X) to integral coefficients, and that

2!r-lv2 i .„.

Then
"•_!_ 1 o r—1

.2r+l3-2

Proof. Let v: Y-+X be the 2r-fold cover branched along 2. Then w2(Y) =
n*(w2(X)+PD([(l/2r)T,]) = TT*(O) = 0, where PD(tx) denotes the Poincare dual
of a. Thus Y is a spin manifold. By Proposition 2-1 and the subsequent
Remark, HX(Y,Z2) = 0. Moreover, <r(Y) * 0 because ( (22 r - l ) /3 .22 r )22 # o-(X). Thus
Donaldson's Theorems A, B and C in [2] apply to show that min{b2(Y),b2(Y)} ^ 3.
Substituting from the formulae (6) and (7) gives the claimed inequality. I

If b2(X) is small, then this inequality improves the estimate of Hsiang and
Szczarba[8] and Rokhlin[20] for the classes to which it applies. In particular, using
r = 1, it implies Theorem 11 in the Introduction.

f Note added in proof. We are grateful to J. Davis for showing us an argument to deduce this
more general statement directly from Proposition 2-1.
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280 D. KOTSCHICK AND G. MATIC

Another consequence is:

COROLLARY 3-2. Let X be a rational surface with the class —2KX represented by a
smooth complex curve (where Kx is the canonical divisor ofX). Then the Thorn conjecture
holds for this class.

Proof. The surface X is diffeomorphic to CP2 # kCP2, or to S2 x S2. The genus of the
complex curve representing — 2KX is given by the adjunction formula (1) to be
g(-2Kx) = 1+K2

X = 10-k in the first case and g(-2Kx) = l+K2
x = 9 in the

second. Using r = 1 and substituting in (8) one sees that these values are the smallest
possible. I

Remark. This corollary proves the Thom conjecture for degree 6 curves in CP2 as
does Theorem 1-1. It was previously proved for degrees 3 ([10], [8], [20]) and 4
(8], [20]). We can recover the result in the degree 4 case from Theorem 34 using
r = 2. The result for d = 3 follows from that for d = 6. Indeed, suppose there was a
counterexample in degree 3. This would be a sphere S. One could make a small
perturbation S' of S such that S and S' have precisely 9 intersection points.
Replacing the intersection points by handles, one would obtain a counterexample in
degree 6.

Remark. Rudolph [21] showed that for every d > 6 there is a topologically locally
flat counterexample to the Thom conjecture. By Theorem 1-1, this is not smoothable
for d = 6. In [22], there is an example of a topologically locally flat embedding of a
surface of genus 5 representing 5 times the generator of H2(CP2,Z), which has
geometric intersection number 5 with a complex line. This, too, cannot be
smoothable, since by replacing the intersection points with handles, one would
obtain an embedded surface of degree 6 and genus 9, contradicting Theorem 1-1.

The following corollary answers the question posed by L. Taylor in [11], Problem
4-26.

COROLLARY 3-3. Let X = CP2 # 8CP2. The class 6y0 + 2y1 + ... + 2ys in the canonical
generators of H2(X, Z) cannot be represented by a smoothly embedded sphere or torus.

Proof. Using r = 1 again, the lower, bound from (8) gives g ̂  2 for this class. I

Taylor (loc. cit.) notes that this class can be represented by a smoothly embedded
surface of genus 2.

Remark. Suciu [23] proved lower bounds on the number of transverse double
points of immersed spheres representing certain homology classes in rational surfaces
using Donaldson's Theorem A from [2]. Unlike our argument which applies gauge
theory on a cover, Suciu applied Theorem A directly on X or a suitable blowup or
blowdown. By replacing double points with small handles, the lower bound we have
proved on the genus of embedded surfaces gives a lower bound on the number of
double points. In the cases to which our theorem applies, it improves Suciu's
estimates. For example for immersed spheres in CP2 representing d times the
generator, with d twice an odd number, the lower bound on the number of double
points we obtain is one larger than the bound proved in [23].

Remark. It has been conjectured (cf. [5]) that every smooth simply connected spin
4-manifold Y satisfies 8b2(Y) ^ llo~(Y). Donaldson's theorems that we have used in
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Embedded surfaces 281

the proof of (8) can be thought of as special cases of this conjecture, generalized to
manifolds with H1(Y,Z2) = 0. If this general form of the '11/8' conjecture is true,
then under the same assumptions as Theorem 31 our argument above gives a much
better inequality than (8):

^
3 . 2 r + l - 2 r - l 2 r - l

&„(*). (9)

For the special case of a surface Sd in CP2, with d even and %d odd, one would have
g(2,) ^ M^2~¥- This would be a substantial improvement, but would still be weaker
than the Thom conjecture, compare (1).

Note that the '11/8' conjecture is true for connected sums of spin algebraic
surfaces with H1(Y,Z2) = 0, by Moishezon's argument given in [5] for the simply
connected case.

4. S0(3)-invariants and a vanishing theorem
Throughout this section, X denotes a smooth closed oriented 4-manifold with
6j(X) = 0 and b2(X) odd and greater than 1.

Donaldson [4] defined polynomial invariants for X under the additional as-
sumption that X is simply connected. His definition works for SU(2)-bundles with
large enough second Chern class, and for all SO(3)-bundles with non-zero second
Stiefel-Whitney class w2 for which the predicted dimension of the moduli space of
anti-self-dual connections is non-negative. Donaldson's definition was extended in
various ways, to remove both the restriction on the second Chern class of SU(2)-
bundles [6] and the assumption on the fundamental group [18]. It was pointed out
in [13] that if b^X) = 0, then Donaldson's original definition of polynomial
invariants goes through if one uses bundles P^-X with w2(P) the mod 2 reduction of
some integral class and not a pullback from ^(K^^X), 1),Z2). This is because the
moduli spaces of anti-self-dual connections have a fundamental homology class, due
to the fact that no flat connections arise in their compactifications.

As a point of notation, we will refer to the invariants defined using these special
SO(3)-bundles as SO(3)-invariants. The term Donaldson invariants will be used more
generally to denote all of the above-mentioned invariants.

Let P-+X be an SO(3)-bundle with w2(P) not a pullback from IPiK^^X), 1), Z2).
Denote by Id the dimension of the moduli space of anti-self-dual connections on P,
with respect to a generic Riemannian metric. To fix the orientation of the moduli
space, one needs to choose (an equivalence class of) a lift c of w2(P) to integral
cohomology. We assume that such a lift exists. IiaeH2(X, Z), then according to [13]
the class 2fi(a) is an integral class on any family of connections. (Here we use
Donaldson's definition /i(a) = — £pj(P)/a, where P is a universal SO(3)-bundle.) We
evaluate d-fold cup products of the classes 2fi(a) on the fundamental class of the
moduli space. The resulting invariant is an integral polynomial of degree d and will
be denoted <b$c-

PROPOSITION 4-1 ([13]). Consider an SO(3)-bundle P^-X #CP2 with w2(P) non-trivial
on H2(CP2). The corresponding SO {^-invariant ^a*?^-h ^s an °dd polynomial in the
generator heH2(CP2,Z). Moreover,

££ . (10)
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Proof. If w2(P) is non-trivial on H2(CP2), then it is not a pullback from
K(n1(X#CP2), 1). Thus, if it has a lift to integral cohomology, there are associated
SO(3)-invariants.

The reflection in h on the cohomology of X#CP2 is realized by a self-
diffeomorphism of the manifold, which changes the orientation of the moduli space.
This implies that the polynomial is odd in h. See [13] for details.

The precise formula for the leading order term is proved by degenerating the
metric on the connected sum to shrink the connecting tube. In the limit, anti-self-
dual connections decompose into anti-self-dual connections on the two summands.
This splitting is restricted by the decomposition of w2(P). For the leading term one
only has to consider the unique reducible connection with p1 = — 1 on CP2. Gluing
this to connections on the bundle P restricted to X, the moduli space over X # CP2

is seen to be an S2-bundle over a moduli space of connections on X. The S2 is the
gluing parameter SO(3) divided by the stabilizer of the reducible connection. It is the
evaluation of the class 2/i(PD(h)) on the fibre S2 which produces the factor 2h in the
formula. If <£>$ c was well-defined by any one of the methods in [4], [6], [18], then it
appears here as the contribution from the base of the $2-fibration. If not, the term
appearing can be taken as a definition of the appropriate invariant of X. Again,
details of such arguments have appeared in [13] and [6]. I

Remark. If one uses the classes fi(a) instead of 2/i{a), as is done in [18], then the
formula for the leading order term does not have a factor of 2 in it. Thus, the
formulae in [18] have unnecessary powers of 2 in them.

As an application of this proposition we prove a general vanishing theorem for
Donaldson invariants.

THEOKEM 4-2. Suppose X contains a smoothly embedded 2-sphere S of zero
self-intersection with [S] 4= OeH2(X, Q). Then all Donaldson invariants of X vanish.

Proof. As above, if X has some non-trivial Donaldson invariant <t>$ c, then X # CP2

has a non-trivial S0(3)-invariant (I) +̂1
cf_ft defined using a bundle P with w2{P) =

c — h(mod2) and therefore non-trivial on H2(CP2).
Tubing together 2n parallel copies of S and one copy of the sphere E of

self-intersection —1 in CP2, we find that for all n the class an = 2n[S] + [E] is
represented by a smoothly embedded 2-sphere with self-intersection number — 1 on
which w2(P) evaluates non-trivially. By the Proposition, the Poincare dual of the class
an divides Q$fi£.h.

But the classes <xn are all distinct because [S] is non-trivial in rational homology.
Thus ^a*?,c-h has infinitely many linear factors. As it has finite degree, it must vanish
identically. A fortiori, O*c vanishes identically. I

Remark. This argument applies not only to invariants for manifolds with b2 ^ 3.
It applies just as well to the invariant <j) for manifolds with b2 = 1 introduced in [12],
because that invariant and the corresponding one on the connected sum X # CP2 are
absolute invariants, i.e. they do not depend on a chamber structure [13]. Thus, the
argument shows that a manifold for which <p is nonzero, e.g. the Barlow surface or
the classical Godeaux surface [12], does not contain any smoothly embedded
essential sphere of zero selfintersection.
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5. Surgery on embedded surfaces

Let X be a smooth closed oriented 4-manifold with n^X) = 1, and B c X a
smoothly embedded closed oriented surface.

We say that surgery can be done on B if there is a simple closed curve S c B with
[ft] =£ OeH^B) which bounds an embedded 2-disc D c X—B in such a way that the
section of the normal bundle to D defined by B over S extends to the interior of D as
a nowhere vanishing section. Then two parallel copies of D can be attached to B cut
along parallel copies of S to lower the genus of B without changing its homology class.

For any neZ the class n[B] can be represented by a smoothly embedded surface
Bn contained in a tubular neighbourhood of B. For every prime p let pr(p'n) be the
maximal power of p which divides [Bn] in H2(X,Z) and Yn p->X the corresponding
cover of order pr<-p-n') branched along Bn.

THEOREM 5-1. If for some n and some p with r(p,n) > 0 the covering Yn p has a
non-trivial Donaldson invariant, then surgery cannot be done on B.

Proof. Note that b1(Yn p) = 0 by (5), so that the arguments of the previous section
can be applied to Yn p.

Suppose Yn p has a non-trivial Donaldson invariant. If B can be surgered along
some oriented curve S, then S can be isotoped so that it lifts to n disjoint copies in
Bn, each of which can be used to surger Bn, cf. [3] p. 95. Thus, it suffices to prove that
surgery can not be done on Bn.

We may assume n = 1 and set Y = Yl p and k = j)r(p-1). The surgering discD for B
lifts to k copies with disjoint interiors in Y. Gluing together any two of these with
opposite orientations along their common boundary we find a smoothly embedded 2-
sphere with zero self-intersection number.

If one of these 2-spheres is non-trivial in rational homology, then the vanishing
Theorem 4-2 contradicts the assumption that Yhas a non-trivial Donaldson invariant.
This would complete the proof.

Let y c f i b e a n oriented simple closed curve intersecting the surgering curve S
transversely and precisely once. Denote the intersection point by P. In X the curve
y bounds an oriented smoothly embedded surface C which can be chosen in such a
way that its interior is disjoint from B, its interior intersects the interior of D
transversely and TPD@TPC = TPX. Let aeTPD be an inward pointing normal
vector to the boundary of D and b e TP C be an inward pointing normal vector to the
boundary of G. Then a and b span a disc normal to B at P. The above choices can be
made in such a way that aAb agrees with the orientation of the normal disc defined
by the orientations of X and B.

The branched cover of the normal disc is an oriented disc in Y, and the preimages
of the intersection of D with the normal disc can be labelled Do,... ,Dk_1 by going
around the boundary of this oriented disc in the positive direction. See Figure 1. The
preimage C of C in Y is a Zp-manifold and in the normal disc to B there is one sheet
of C between Dt and Di+1, for each i. See Figure 1 again.

Now C defines a Zp-cycle whose intersection number with the sphere S = D1 —Do

is 1. To see this, observe that the intersection points of C with the interiors o£Dx and
Do cancel each other. There is one other intersection point, the preimage of P in the
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C
D,

D,•k-\

Figure 1: The normal disc to B at P in X and in the fc-fold cover

singular set of C". Perturbing S to make this intersection transverse gives intersection
number 1.

Thus [S] is non-trivial in H2(Y, Zp). By Proposition 21 the integral homology of Y
is free of p-torsion. We conclude that [S] =t= 0eH2(Y, Q).

This concludes the proof of the Theorem. I

Remark. The assumption about the maximality of the prime power pr<-Pt n> in this
theorem is there to ensure that we can apply Proposition 21 to conclude that the
branched cover has no ^-torsion.

Instead of beginning with X and constructing some covering Y, one can sometimes
start from Y and apply a variant of this argument, as in the following example.

Example. Let Y be a smooth complex algebraic surface with HX(Y, Z2) = 0 and with
positive geometric genus. If cr: Y-+Y is an anti-holomorphic involution with non-
empty connected orientable fixed locus B, then B is a smoothly embedded surface in
the smooth manifold X = Y/a and our argument shows that surgery cannot be done
on B.

There is an alternative way to prove this, based on the lower bound (4) proved by
Kronheimer and Mrowka[15]. In fact, the fixed locus B satisfies the equality
2g(B) — 2 = B2 in Y, so that it has minimal genus in its homology class. If B could be
surgered in X, then it could also be surgered in Y, contradicting the minimality.

Our main application of Theorem 51 is to show that the naive approach to
constructing a counterexample to the Thorn conjecture fails in almost all cases.

THEOREM 5-2. Let X be a simply connected smooth complex algebraic surface and
B c X a smooth algebraic curve. Then surgery cannot be done on B if either

1. the self-intersection number B2 is positive, or
2. [B] is divisible in H2(X,Z).

Proof. We reduce the proof of the first case to that of the second one as follows. By
a theorem of Hartshorne (Theorem 4-2 in [7]), the linear system \nB\ is free of base
points if B2 > 0 and n is sufficiently large. Thus, using Bertini's theorem, we can
choose a surface Bn as in the proof of Theorem 5-1 to be a smooth algebraic curve
supported near B. If the original curve can be surgered, then so can the new one, as
in the proof of Theorem 51 . Therefore, we may assume that we are in the second case.

If [B] is divisible in integral homology we apply Theorem 5-1 in the following way.
Let pr > 1 be the maximal power of some prime p which divides [B] in H2(X,Z).
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Consider the branched cover Y-+X of order pr whose branch locus is B. Then Y is
a regular algebraic surface and so has a non-trivial Donaldson invariant as soon as
pg(Y) > 0. This condition is trivially satisfied if pg(X) > 0. In general, we have
pg(Y) ^h°(Kx + ((pr-l)/pr)B). Using Serre duality, h°(Kx+((pr-l)/pr)B) can be
estimated from below by the holomorphic Euler characteristic, which is computed
from the Riemann-Roch theorem:

^ ^ ^ B \ (11)

The only case when there is anything to prove is when g(B) > 0, which, by the
adjunction formula (1), is equivalent to KXB+B2 ^ 0. Using this, we find

X)-^^B2. (12)

This shows that pg(Y) > 0, unless possibly if B2 > 0. In this last case, by replacing B
with a large enough multiple Bn with p not dividing n, we may assume that the linear
system \((pr— l)/pr)B\ contains a smooth curve of positive genus. Thus, using (11)
again,

pg(Y) > l+pg{X)+^KxB+^^B2=pg(X) + g(^B} > 0. (13)

This completes the proof of the theorem. I

The following example shows that the argument replacing B by a multiple Bn

cannot be avoided, even when one assumes that [B] is divisible.

Example. Let X be the blowup of CP2 in one point, and B a smooth curve in the
linear system \4H—2E\, where H is the pullback of a hyperplane section of the plane
and E is the exceptional curve. Then g(B) = 2 and the divisibility of [B] in H2(X, Z)
is 2. The corresponding double cover Y has pg{Y) = pg(X) + h°(Kx + ̂ B) = 0. In fact,
Y is a rational surface diffeomorphic to CP2#7CP2.

Remark. As mentioned in the introduction, Theorem 5-2 is a generalization of
Donaldson's result [3] for ample curves. In his proof, ampleness is used in several
different ways.

It is used to replace the curve B by a multiple, in order to make its homology class
divisible and to make the branched cover have pg > 0. If B2 ^ 0, then the estimate
(12) shows that the geometric genus of the cover is positive, so there is no need to pass
to a multiple as we assume that [B] is divisible. If B2 > 0, then we use Hartshorne's
theorem to pass to a multiple.

In [3] ampleness is also used via the Lefschetz hyperplane theorem to conclude
that n^X—B) — Zd. This implies on the one hand that the branched cover is simply
connected, and, on the other, that B is isotopic to the surgered surface 2 with a small
handle attached. We deal with the first point by doing gauge theory on manifolds
with by = 0 as in [13]. The question of the isotopy is not so easily dealt with. For an
arbitrary smooth algebraic curve in an algebraic surface the fundamental group of
the complement is not understood, and can be very large. It is this problem which
forced us to abandon the line of proof of [3]. When the isotopy can be done, as in [3],
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then a double branched cover splits off a copy of S2 x S2 and one can apply
Donaldson's vanishing theorem for connected sums [4]. When the isotopy cannot be
done, then the surgering disc still produces essential embedded spheres of zero
self-intersection in the cover, but there is no obvious connected sum decomposition.
This is why we use Theorem 42 instead of Donaldson's vanishing theorem.

It seems an interesting problem to understand the fundamental groups of
complements of (smooth) curves in algebraic surfaces. Only in the case of curves of
positive self-intersection (with some additional hypotheses) have we found results in
the literature, cf. [1], [19].

I t is a pleasure to thank Mikio Furuta and Peter Kronheimer for helpful
discussions.
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