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Abstract Smooth muscle cells (SMCs) possess remarkable phenotypic plasticity that allows rapid adaptation to fluctuating en-
vironmental cues, including during development and progression of vascular diseases such as atherosclerosis. Al-
though much is known regarding factors and mechanisms that control SMC phenotypic plasticity in cultured cells,
our knowledge of the mechanisms controlling SMC phenotypic switching in vivo is far from complete. Indeed, the
lack of definitive SMC lineage-tracing studies in the context of atherosclerosis, and difficulties in identifying pheno-
typically modulated SMCs within lesions that have down-regulated typical SMC marker genes, and/or activated ex-
pression of markers of alternative cell types including macrophages, raise major questions regarding the
contributions of SMCs at all stages of atherogenesis. The goal of this review is to rigorously evaluate the current
state of our knowledge regarding possible phenotypes exhibited by SMCs within atherosclerotic lesions and the
factors and mechanisms that may control these phenotypic transitions.
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1. Smooth muscle cell exhibits an
extensive plasticity
The vascular smooth muscle cell (SMC) is a highly specialized and dif-
ferentiated cell in adult animals. Its principal function is contraction
which permits regulation of vessel tone and diameter and thus
control of blood pressure and blood flow distribution. SMCs within
the adult blood vessel proliferate at an extremely low rate and
exhibit a very low synthetic activity. They express a unique repertoire
of contractile proteins, ion channels, and signalling molecules required
for SMC contractile function that is clearly unique compared with
other cell types and other muscle lineages including the skeletal
muscle and cardiac muscle (reviewed in Owens et al.1,2). A number
of SMC-selective or -specific genes have been identified that are
used as markers of the mature-differentiated SMC. These include
the smooth muscle isoforms of proteins that comprise the contractile
apparatus including SM a-actin,3– 5 SM myosin heavy chain (MHC),6– 9

h1-calponin,10,11 SM22a,10,12 and smoothelin.13 Although this reper-
toire is specifically expressed in the fully differentiated SMC, most
of these SMC markers are expressed, at least transiently in other
cell types during development, tissue repair, or disease states.14 As
such, evidence of expression of a single SMC differentiation marker

gene alone is not sufficient for SMC identification and assessment
of SMC maturation, with the possible exception for the SM MHC iso-
forms which are considered the most specific markers of SMC. Thus,
the rigorous identification of mature SMC requires examination of
multiple marker genes1 and if in tissues, appropriate localization
within the medial layer of blood vessels or other SMC tissues.

The mature SMC is a cell type which is not terminally differentiated
and that retains remarkable plasticity. SMC plasticity is likely depend-
ent on variations in environmental cues and extracellular signals
sensed by the cell. The plasticity of SMCs and SMC-like pericytes is
required for vascular formation and maturation during embryogenesis
and vascular remodelling.15 –17 These fundamental properties discrim-
inate SMC from the other muscle cell types including skeletal muscle
and cardiac muscle cells which are terminally differentiated.18 Al-
though different types of phenotypic states can be envisaged, SMC
phenotypic switching is generally associated with markedly decreased
SMC-selective marker gene expression and increased SMC prolifer-
ation and migration.

The concept of phenotypic switching is widely accepted. However,
remarkably, there has not been a single study that has definitively or
quantitatively assessed the contribution of SMCs to development of
alternative phenotypes within atherosclerotic lesions and how these
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processes influence plaque stability in either experimental animal
models or man. Indeed, all previous studies in this area are inconclu-
sive due to three major limitations (Table 1): first, the lack of rigorous
lineage-tracing methods that permit unambiguous identification of
cells of SMC origin even if the cell has undergone major morphologic-
al changes and/or has undetectable expression of endogenous SMC
differentiation markers such as SM a-actin, SM22a, and SM MHC
that are typically used to identify it as an SMC. As such, many pheno-
typically modulated SMC within lesions may not be identified as being
of SMC origin. Secondly, multiple cell types other than SMC within

lesions can express SMC marker genes such as SM a-actin, a
marker that has routinely been used to identify SMCs within
lesions.19,20 Indeed, Caplice et al.20 presented evidence that �10%
of cells within advanced human coronary artery atherosclerotic
lesions that express SM a-actin are of myeloid and not SMC
lineage. There is also evidence that macrophages can be induced to
express multiple SMC markers including SM a-actin and SM22a in re-
sponse to treatment with transforming growth factor-b or throm-
bin.21,22 As such, a subset of SMC marker-positive cells in lesions is
not derived from SMCs. Thirdly, Rong et al.23 have shown that
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Table 1 Ambiguities regarding lesion cell origin and possible cell transition in human and animal model of atherosclerosis

Transition/
transdifferentiation

Model Observations Ambiguity Reference

Macrophages � SMC-like cells In vitro stimulation TGF-b induces SM a-actin expression
in macrophages

No evidence in vivo Stewart
et al.21

Macrophages � SMC-like cells In vitro stimulation Thrombin induces SM a-actin
expression in macrophages

No evidence in vivo Martin
et al.22

Myeloid cells � SMC-like cells
and
SMCs � macrophage-like
cells

Cross-gender bone
marrow transplant—
human coronary
arteries

Approximately 10% of cells within
advanced atherosclerotic lesion
that express SM a-actin are of
myeloid origin

Studies were focused exclusively on
determining whether
haematopoietic cells give rise to
SMCs or SMC-like cells in lesions
and did not attempt to do SMC
lineage tracing

Caplice
et al.20

Myeloid cells � SMC-like cells ApoE2/2 transplanted
with BM from eGFP+
ApoE2/2 mice

SMCs in atherosclerotic plaques are
derived from the local vessel and
not from circulating cells. A
significant fraction of Mac2+ cells
are NOT of myeloid origin (GFP+)

Studies were focused exclusively on
determining whether
haematopoietic cells give rise to
SMCs or SMC-like cells in lesions
and did not attempt to do SMC
lineage tracing

Bentzon
et al.24

Myeloid cells � SMC-like cells ApoE2/2 transplanted
with BM from eGFP
transgenic ApoE2/2
mice

SMCs required in healing within the
atherosclerotic lesion are of local
but not bone marrow-derived
origin

Bentzon
et al.35

Myeloid cells � SMC-like cells Vascular injury of femoral
artery in WT mice
transplanted with
ROSA26/LacZ bone
marrow.

Claim that the majority of the SM
aA+ cells within the neointima are
of haematopoietic origin but
results were later refuted by
Bentzon et al. and this same lab in
Iwata et al.

Studies were focused exclusively on
determining whether
haematopoietic cells give rise to
SMCs or SMC-like cells in lesions,
and did not attempt to do SMC
lineage tracing. HSC lineage-tracing
studies were compromised by poor
resolution of images and failure to
validate markers present in
individual cells

Sata et al.34

Myeloid cells � SMC-like cells ApoE2/2 transplanted
with bone marrow from
SM a-actin-EGFP or
SM-MHC+/LacZ mice

Claim that some SM aA+ cells in
lesions are of myeloid origin but
that cells do not differentiate into
mature SMCs as evidenced by
activation of definitive SMC
markers like SM MHC

Studies were focused exclusively on
determining whether
haematopoietic cells give rise to
SMCs or SMC-like cells in lesions
and did not attempt to do SMC
lineage tracing

Iwata et al.37

SMCs � macrophage-like cells Cholesterol loading in
cultured SMCs

Cholesterol loading of cultured SMC
causes reduced expression of SMC
marker genes while activating
expression of macrophage markers
and functions including
phagocytosis and antigen
presentation

Results were based entirely on studies
in cultured SMC. No evidence was
presented to show that this
phenomenon occurs in vivo within
atherosclerotic lesions

Rong et al.23

SMCs � macrophage-like cells Human atherosclerotic
lesions

Co-localization SMaA+/CD68+ cells
within the lesion

Impossible to ascertain if dual SMaA+/
CD68+ cells are derived from
SMC, macrophages, or other cell
type

Andreeva
et al.19
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cholesterol loading of cultured SMCs resulted in marked suppression
of SMC markers, but activation of multiple macrophage markers in
cultured vascular SMCs raising the possibility that at least some
macrophage marker-positive cells within lesions may be of SMC
origin. Consistent with this possibility, Bentzon et al.24 presented evi-
dence showing that a significant fraction of lesion cells positive for the
macrophage marker Mac2 are not derived from bone marrow cells.
Given these uncertainties regarding which cells in lesions are actually
of SMC origin, it becomes impossible to ascertain how the cells might
positively or negatively influence plaque stability, or what factors and
mechanisms might regulate transitions in SMC phenotype within
lesions (Table 1 and Figure 1). This review will summarize evidence
regarding possible phenotypes exhibited by SMC within atheroscler-
otic lesions, and mechanisms that control these phenotypic transi-
tions. Importantly, we will focus on studies in vivo in animal models
and in human lesions rather than cell culture, which, unfortunately,
is where most studies of SMC phenotypic switching have been done.

2. SMC phenotypic switching in
atherosclerosis
Atherosclerosis is a chronic disease of the arterial wall that is respon-
sible for nearly 50% of all deaths in developed countries.25,26 The
prevalence of this disease continues to rise due to adoption of a
‘Western life-style’ by an increasing fraction of the World’s population
and is likely to reach epidemic proportions in the next few decades.
However, despite expenditure of billions of dollars and decades of re-
search, there are still fundamental gaps in our knowledge of the
underlying mechanisms that contribute to its development, progres-
sion, and end-stage clinical events including plaque rupture, myocar-
dial infarction, and stroke. For example, whereas there is general
agreement that increased SMC content of atherosclerotic lesions is
associated with increased plaque stability,25,27– 29 the mechanisms
for this are poorly understood. Indeed, the long-standing dogma in
the field is that the majority of intimal SMCs within atherosclerotic

Figure 1 Hypothetical origins of SMC- and macrophage-like cells within atherosclerotic lesions. The lack of definitive SMC lineage-tracing studies in
the context of atherosclerosis, and difficulties in identifying phenotypically modulated SMCs within lesions that have down-regulated typical SMC
marker genes, and/or activated expression of markers of alternative cell types including macrophages, raise major questions regarding the contribu-
tions of SMC within atherosclerotic lesions. Similarly, there is evidence showing that macrophages can activate at least some SMC markers. The net
result is that there are major ambiguities regarding the origins of many of the principal cell types present within atherosclerotic lesions and their roles
in plaque development and stability. For the purpose of this figure and review, we define SM-like lesion cells as being positive for at least some SMC
marker genes such as SM a-actin, whereas macrophage-like cells are those expressing at least some macrophage marker genes but negative for SMC
markers. Interestingly, Andreeva et al.19 reported the presence of cells that express both SM a-actin and the macrophage marker CD68 within human
atherosclerotic lesions. What is unclear is whether these are SMCs that have activated macrophage markers or macrophages that have activated SMC
markers? Numbers within parentheses are the references of studies summarized in this figure.
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lesions are derived from resident medial SMCs that undergo pheno-
typic modulation and migration into the intima where they proliferate,
produce extracellular matrix, and participate in fibrous cap forma-
tion.28,30 However, there is only indirect evidence in support of this
hypothesis including the following. First, ultrastructural studies of
human atherosclerotic lesions have routinely described cells with
morphological characteristics of SMCs which appear to be in the
process of migrating through the internal elastic lamina into the
intima.31– 33 Although these studies provide evidence that medial
SMCs contribute to formation of the intima, the subsequent fate of
these cells once they get into the lesion is poorly understood. Sec-
ondly, although a previous study by the Nagai lab34 claimed that the
majority of SM-like cells in lesions were of haematopoietic cell
origin, subsequent rigorous lineage-tracing and confocal studies by
Bentzon et al.,24,35 Daniel et al.,36 and the Nagai group37 showed
that the majority of SMC-like cells within atherosclerotic lesions of
ApoE2/2 Western diet fed mice are NOT of haematopoietic
origin. Bentzon et al.24 presented results of rigorous bone marrow
transfer (BMT) green fluorescent protein (GFP) lineage-tracing
studies showing that a large fraction of Mac2+ cells within athero-
sclerotic lesions of Western diet fed ApoE2/2 mice were NOT
derived from haematopoietic cells. Indeed, our analyses of the
co-localization between haematopoietic cells and Mac2 staining of
this paper indicate that up to 30% of Mac2+ cells within lesions
were of non-myeloid origin (i.e. GFP-negative), indicating that they
are derived from some source other than monocytes. The design of
the Bentzon studies did not permit assessing whether these cells
were of SMC origin. However, results are highly consistent with the
possibility that a significant fraction of macrophage-like cells within
lesions are derived from SMCs not monocytes. Consistent with
these findings, based on Y-chromosome lineage-tracing studies in cor-
onary lesions from subjects who had a cross-gender bone marrow
transplantation, Caplice et al.20 showed that .90% SM
a-actin-expressing cells within lesions are not of haematopoietic cell
origin.

Whereas the preceding studies clearly demonstrate that haemato-
poietic cells are not the primary source of SMC-like cells within
lesions, unfortunately, none of these studies directly tested
whether SMCs give rise to SMC-like cells in lesions, a critical defi-
ciency given that intimal cells positive for at least some SMC
markers could be derived from adventitial fibroblasts,38 activated
macrophages,20–22 or other cell types. Moreover, the design of
these studies did not permit detection of phenotypically modulated
SMCs within lesions that may have lost detectible expression of
known SMC marker genes and turned on markers of other cell
types including macrophages. Remarkably, there are no direct SMC
lineage-tracing studies that have clearly defined the roles of SMC
within atherosclerotic lesions. Indeed, to our knowledge, there are
no definitive SMC lineage-tracing studies at all outside of a develop-
mental setting (reviewed by Majesky et al.39) with the exception of a
study by Giachelli and co-workers (Speer et al.)40 who presented
evidence suggesting that medial SMCs transdifferentiate into osteo-
chrondrogenic precursor and chrondrogenic cells in calcified
vessels of matrix Gla protein-deficient (MGP2/2) mice using an
SM22a-cre×ROSA26 LacZ lineage-tracing model. However, al-
though calcification plays a key role in atherosclerosis, this model
is not atherosclerosis per se. In addition, in the light of recent
studies showing that activated macrophages express SM22a,37 even
these studies are ambiguous as to whether cells were derived

from SMCs or myeloid cells. Taken together, we ascertain that
there is complete ambiguity as to which cells within atherosclerotic
lesions are indeed of SMC origin, and what role these cells might
play in lesion development, progression, and end-stage disease con-
sequences such as plaque rupture with possible myocardial infarction
or stroke. Moreover, we ascertain that the dogma that SMCs
undergo phenotypic transitions to states that might play a key role
in atherosclerotic lesions is based nearly completely on results of
studies in cultured SMCs, and extrapolation of these findings, prob-
ably inappropriately in many cases, to processes that might occur
within atherosclerotic lesions. Finally, we suggest that clear and un-
ambiguous identification of which cells within lesions are derived
from SMC is a prerequisite for defining factors and mechanisms
that control SMC phenotypic switching and the functional roles of
these cells within lesions as well as for developing new therapeutic
approaches targeting SMC phenotypic switching for purposes of pro-
moting plaque stabilization. Indeed, consistent with this possibility,
we recently demonstrated that genetic loss of interleukin (IL)-1 sig-
nalling in ApoE2/2 Western diet fed mice surprisingly resulted in
reduced rather than increased plaque stability and impaired beneficial
outward remodelling.41 This is exactly opposite to expectation-based
effects of IL-1 in enhancing activation of inflammatory cells and indu-
cing cultured SMCs into an inflammatory phenotype.42 Results high-
light the need for clearly defining which cells within lesions are SMC
derived, the functional role of these cells in plaque development,
progression, and stability, the factors that mediate these transitions,
and how one might modulate these responses therapeutically to
enhance plaque stability.

Given major ambiguities regarding phenotypes exhibited by SMC
in vivo within atherosclerotic lesions, there are, of course, also
major questions regarding the mechanisms and factors that might
control SMC phenotypic transitions. For example, although there
is compelling evidence from our lab and many other labs showing
that platelet-derived growth factor-BB (PDGF-BB) can induce
phenotypic switching in vitro in cultured SMCs,43,44 there is a lack
of clear evidence that it does so in vivo, in spite of the attractiveness
of a mechanism wherein damage to a blood vessel would result in
platelet adhesion/activation and release of PDGF-BB, which in turn
reprogrammes SMCs into a phenotype that is beneficial for wound
repair. Indeed, PDGF-BB has been shown to be a highly efficacious
in suppressing SM marker gene expression, as well as in inducing
increased SMC proliferation and migration.43,45,46 However, there
is no direct evidence that PDGF-BB is a potent regulator of SMC
differentiation, proliferation, and migration in vivo. Conventional
knockout of PDGF-B chain and PDGFR-b has been shown to
result in early embryonic or perinatal lethality47,48 and as yet,
there have been no studies to our knowledge testing the effects
of conditional knockout of PDGF receptors in SMCs in models
of atherosclerosis, vascular injury, angiogenesis, arteriolar remodel-
ling, or other model system in which PDGF-BB signalling in SMC or
pericytes is postulated to play a critical role. Administration of
blocking antibodies against PDGF receptors in ApoE2/2 mice
on a Western diet has been shown to be associated with a 67% re-
duction in atherosclerotic lesion size and with reduced SMC invest-
ment of the neointima. However, results of these studies may have
been due to blocking PDGF receptors in multiple cell types not just
SMCs. Kozaki et al.49 generated chimeric PDGF-B chain-knockout
mice by lethally irradiating wild-type mice and reconstituting with
foetal liver cells (a primary site of haematopoiesis in late-stage
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foetuses) from PDGF-B chain-deficient E16.5-day mice. Although
plaque development was reduced at early stages, SMC investment
in the fibrous cap was indistinguishable from controls after 45
weeks of Western diet. Moreover, it is not possible to deduce
from these studies whether PDGF deficiency directly impacted
SMC phenotype. Indeed, resolution of the possible role of
PDGF-BB in SMC phenotypic switching in vivo will be dependent
on the development of SMC-specific conditional PDGF receptor-
knockout mice in an ApoE2/2 or LDL receptor2/2 background.
Although we do not refute the possible involvement of PDGF-BB in
inducing SMC phenotypic switching and this may contribute to
lesion formation as well as fibrous cap formation, at present,
there is no direct evidence that this is the case. Similarly, although
in vitro studies have implicated a wide range of factors in SMC
phenotypic switching, including oxidized phospholipids,50,51 inflam-
matory cytokines,52,53 and lysophosphatidic acid,54 in no case is
their corroborative direct evidence for a role of these factors in
directly controlling SMC phenotype in vivo.

Even more confounding is the controversy regarding the participa-
tion of SMC and myeloid (mainly monocyte/macrophage) lineages in
the progression of atherosclerotic disease and end-stage clinical con-
sequences including plaque rupture with possible myocardial infarc-
tion and stroke. We do not refute the well-established dogma that
an increase in the ratio of macrophages to SMC within lesions is
causally linked to plaque destabilization as stated repeatedly in
major reviews in the field.26,55 However, given the uncertainties in
identification of cells within lesions already discussed, we challenge
the dogma regarding the possible origins of lesion cells including
the general assumption in the field that SM a-actin+ lesion cells
are ‘SMC derived’ and macrophage marker-positive cells are ‘macro-
phages’ (Figure 1). Of course, this becomes highly ambiguous given
that phenotypically modulated SMCs profoundly down-regulate
SMC markers,56–58 whereas macrophages turn on at least some of
these SMC markers.21,22 Similarly, cholesterol-loaded SMCs, at
least in culture, activate multiple macrophage markers and exhibit
functional properties of macrophages including antigen presentation
and phagocytosis, while simultaneously suppressing SMC markers
needed to identify them as SMC.23 As such, there are many unre-
solved questions including the following. Are SM a-actin+ cells
within the fibrous cap of SMC (the dogma) or macrophage origin?
Are macrophage marker-positive intimal cells of macrophage origin
or SMC origin? Do SMC-derived macrophage-like cells exhibit differ-
ent functional properties than macrophages derived from myeloid
cells and how do these impact plaque stability? What proportion
of macrophage-like cells in lesions may not be of myeloid origin?
What mechanisms and factors control the phenotypic transitions
of macrophages and SMCs? What other cell types contribute to
lesion development but may be mis-identified using conventional
markers? We ascertain that definitive resolution of these questions
is paramount to understanding mechanisms and factors that contrib-
ute to atherosclerosis development, progression, and its end-stage
complications, and that the initial step in this process needs to
start with much more rigorous and definitive SMC and macrophage
lineage-tracing studies. Moreover, it is critical to resolve these issues
for purposes of identifying novel therapeutic approaches to treating
atherosclerosis and to better understand the effects of the current
therapies including the widespread use of statins and other
lipid-lowering agents.

3. Molecular mechanisms
regulating SMC phenotypic
switching following vascular injury
or atherosclerosis
So given the major ambiguities regarding identification of the origins of
SMC-like cells in atherosclerotic lesions, what, if anything, do we
know regarding cellular and molecular mechanisms that control
SMC phenotypic switching in vivo. We have previously identified suffi-
cient regions of the SM a-actin5 and SM MHC8,59 promoters neces-
sary to recapitulate expression patterns of these endogenous genes
in transgenic mice and identified numerous cis-regulatory elements
required for SMC-specific expression in vivo in transgenic mice.5,60–

68 Of major significance, we previously demonstrated that mutation
of a highly conserved G/C repressor element 5′ to the proximal
CARG element in the SM22a promoter, and also found in the pro-
moters of many other SMC marker genes (reviewed in Owens
et al.1), nearly abolished down-regulation of this gene in vivo in re-
sponse to vascular injury56 or in atherosclerotic lesions of
ApoE2/2 mice58 (Figure 2). Of major significance, using this
mutant SM22a transgene, we were able to identify large numbers
of presumptive SMC-derived cells within lesions (as well as the
media underlying lesions, compare the top and bottom panels in
Figure 2) that could not be identified as being of SMC origin using
either a wild-type SM22a transgene or expression of endogenous
SMC marker genes such as SM a-actin or SM22a. Indeed, these
studies were the first, and to date, the only studies to our knowledge
that have identified presumptive phenotypically modulated SMC
within lesions that are unrecognizable as being SMC based on expres-
sion of endogenous marker genes. Even more importantly, however,
is that we have identified a specific molecular mechanism (i.e. a G/C
repressor-dependent process) critical in mediating SMC phenotypic
switching within atherosclerotic lesions in vivo.

We subsequently demonstrated that transcriptional repression of
SMC marker genes in response to treatment of cultured SMC with
PDGF-BB, PDGF DD, or pro-atherogenic oxidized phospholipids
such as POVPC was dependent on binding of Krüppel-Like Factor-4
(KLF4) to the G/C repressor.50,51,69,70 KLF4 is a gene known to be
critical in maintenance of pluripotency in embryonic stem cells
(ESC)71 and more recently was shown to be one of four
factors72,73 along with Oct4, Sox2, and c-myc, shown to be capable
of reprogramming a variety of somatic cells including dermal fibro-
blasts into ESC-like cells or induced pluripotential stem (iPS) cells.
Of major importance, KLF4 is not expressed in adult-differentiated
mesenchymal cells including SMCs. Nevertheless, several studies
provide evidence that KLF4 is re-expressed and involved in mediating
SMC phenotypic switching in vivo as described below. First, KLF4 ex-
pression is increased within lesions of ApoE2/2 mice on a Western
diet69 as well as following vascular injury.74 Secondly, KLF4 overex-
pression is associated with profound inhibition of expression of the
potent SMC-selective SRF co-activator myocardin and all known
SMC marker genes,75 and also induces epigenetic changes of SMC
marker gene loci associated with transcriptional silencing, including
HDAC recruitment and histone hypo-acetylation.51,76,77 Thirdly, con-
ditional knockout of KLF4 was associated with a transient delay in re-
pression of SM a-actin and SM22a following vascular injury in vivo, but
with subsequent hyperproliferation of SMC and increased neointima
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formation, likely as the result of reduced KLF4-dependent activation
of the cell cycle inhibitory gene p21.74 However, it should be noted
that conditional knockout of KLF4 in the preceding studies occurred
in all cell types so that effects cannot be ascribed solely to loss of
KLF4 in SMCs. Fourthly, oxidized phospholipid-induced increases in
extracellular matrix gene expression were shown to be
KLF4-dependent. Taken together, the preceding results provide com-
pelling evidence in support of the hypothesis that the G/C repressor is
required for suppression of SMC marker genes in vivo during the de-
velopment of experimental atherosclerosis and that the transcription-
al suppressor activity of the G/C repressor is regulated by binding the
iPS cell-ESC pluripotency factor KLF4. However, further studies are
needed to directly test this hypothesis including generation of
SMC-specific conditional KLF4-knockout mice and investigation of
how this impacts SMC phenotypic switching, as well as overall
lesion development, plaque composition, and stability. Key questions
include the following. Is KLF4-dependent SMC phenotypic switching
beneficial (because it augments fibrous cap formation) or detrimental
(because it promotes a phenotype that may increase overall lesion
size) in the context of atherosclerotic lesions? Does KLF4-dependent
SMC phenotypic switching also play an important role in beneficial
outward remodelling of atherosclerotic blood vessels? Are ESC and
iPS cell pluripotency factors other than KLF4 also involved in mediat-
ing SMC phenotypic switching during atherogenesis? If so, what are
the molecular mechanisms that result in activation of expression of
KLF4 and other ESC pluripotency factors in mature SMCs given it
was believed that these genes including Oct4 undergo stable epigen-
etic silencing in somatic cells? Is re-activation of pluripotency factors in

SMC as well as other cell types a general mechanism that evolved
because it optimized survival of organisms by increasing cellular plas-
ticity and injury-repair processes? Indeed, we postulate that the
reason it is feasible to reprogramme somatic cells into iPS cells is
because normal cells retain at least some capacity to activate and
respond to these pluripotency factors to increase cell plasticity in
the face of injury, repair, and inflammation, all processes believed to
be critical in the aetiology of atherosclerosis. Consistent with this pos-
sibility, Peault and co-workers (Crisan et al.)78 have presented evi-
dence, albeit based on results in culture studies, that SMC and
pericytes give rise to mesenchymal stem cells. Clearly further
studies are needed to address these important questions.

4. The SMC epigenetic signature
Epigenetic mechanisms are defined as a heritable code other than the
genomic sequence and include histone post-translational modifica-
tions, DNA methylation, ATP-dependent chromatin remodelling,
exchange of histone and histone variants, and small RNA mole-
cules.79– 82 These epigenetic mechanisms have been implicated in
the regulation of gene activation and silencing at the transcription
level by regulating chromatin packaging and accessibility. Properties
of epigenetic modifications, whatever their types, are the dependence
towards environmental cues, reversibility, stability, and heritability
through mitosis.83,84 Due to these properties, epigenetics plays a
crucial role in cell differentiation and cell lineage determination. Pluri-
potent cells such as ESC employ several unique histone modification
mechanisms for maintaining pluripotency, as well as permissiveness

Figure 2 Molecular mechanisms of decreased SM marker gene expression in vivo within atherosclerotic lesions of ApoE2/2 Western diet fed mice
(reprinted from Wamhoff et al., Circ Res 2004;95:981–988; used with permission). Mutation of the G/C repressor virtually abolished repression of the
SM22a transgene in intimal SMC in atherosclerotic lesions within the aortic arch region in ApoE2/2 mice fed a Western diet for 18 weeks (compare
lacZ transgene staining in the upper panels in mice containing the wild-type SM22a lacZ transgene with that in the lower panels in mice with the G/C
repressor mutant SM22a lacZ transgene).58 The LacZ-positive cells within the intima in SM22a G/C mutant-lacZ mice in the lower panels represent
putative phenotypically modulated SMCs unidentifiable as being SMCs based on expression of their endogenous SMC marker genes such as SM
a-actin or SM22a.58 However, given that macrophages can activate expression of SMC markers including SM22a,37 we cannot unambiguously identify
the G/C repressor mutant SM22a lacZ-positive cells as being of SMC origin since they could possibly be of macrophage origin. Taken together, studies
illustrate why there is major ambiguity regarding identification of SMC-derived cells in lesions and their possible contributions to lesion development
and plaque stability.
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for activation of cell lineage upon appropriate environmental cues.85,86

Thus, acquisition of new epigenetic marks at specific genomic loci
permits the selective expression of protein repertoires, acquisition
of functional properties, and differentiation into particular cell
lineage. It is widely assumed that epigenetic modifications and subse-
quent chromatin remodelling are key processes in cell differentiation
and control cell-specific marker expression due to acquisition of a
unique epigenetic signature. In support of this idea, our laboratory
was one of the first to explore the role of epigenetic modifications
and regulation of the expression of SMC-specific marker genes.87

We provided evidence that chromatin remodelling is a key step in
control of the CArG-dependent genes in a retinoic acid-A404
model of early stages of SMC differentiation.88 A404 is an SMC pre-
cursor cell line established from multipotent cells (P19) which can
be induced to differentiate into SMC.89 In this SMC precursor cell
line (A404), none of the SMC marker genes including SM a-actin,
SM22a, or SM MHC were detectable, despite the expression of
SRF and myocardin.90 Treatment with retinoic acid induces A404 dif-
ferentiation into SMC with expression of all known SM marker genes.
Mechanistically, retinoic acid treatment was associated with hyperace-
tylation and H3K4 dimethylation (H3K4dime) of histones within the

CArG-containing regions of the SM marker genes, and an increase
in SRF binding and transcriptional activation. These results provide
evidence that coordinate expression of SRF and myocardin alone is
not sufficient to control the expression of the SM marker genes but
that the regulation of chromatin conformation and transcription
factor accessibility to cis-elements via regulation by histone modifica-
tions is crucial. However, it remains to be determined whether these
mechanisms are also involved in vivo in regulating SMC differentiation
and/or SMC phenotypic switching in the context of atherosclerosis or
vascular injury.

Of major interest, McDonald et al.76 went on to show that
H3K4dime of SMC CArG-containing promoter regions was specific
to SMCs and that this epigenetic mark persists even when cultured
SMCs are induced to undergo phenotypic switching (Figure 3).
Indeed, PDGF-BB-induced phenotypic switching was associated with
decreased SM marker gene expression, as well as decreased H4
acetylation, and SRF binding to chromatin. In contrast, PDGF-BB
treatment had no effect on H3K4dime of SMC promoter regions.
These results provide compelling evidence that H3K4dime of the
SM MHC CArG gene locus is an epigenetic histone mark that is a spe-
cific marker of SMC lineage identity, at least in cell culture model

Figure 3 Epigenetic mechanisms play a key role in SMC differentiation and phenotypic switching. During SMC differentiation, epigenetic modifica-
tions including histone acetylation and H3K4dime appear on promoters of SM marker genes such as SM a-actin and SM MHC.76,88 These modifica-
tions are thought to induce chromatin relaxation making CArG box regions accessible for binding of SRF/myocardin and other transcriptional
activators. SMC phenotypic switching, in response to treatment of cultured SMCs with PDGF-BB, was associated with profound repression of expres-
sion of SMC marker genes and loss of H4 acetylation. In contrast, phenotypically modulated SMCs did not show loss of H3K4dime at SMC gene loci,
suggesting that this particular epigenetic modification at SMC gene loci is a stable epigenetic signature of the SMC lineage. Although these mechanisms
have been well described in vitro, there is so far no definitive evidence that similar processes occur in vivo during phenotypic switching of SMC in the
context of atherosclerosis or vascular injury in which there are far more prolonged states of SMC phenotypic modulation when compared with
PDGF-BB treatment models in vitro.
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systems. The challenge is to develop a new methodology and tools
permitting the identification of cells bearing the H3K4dime modifica-
tion of the SM MHC gene in intact tissues and to determine whether
this marker is exclusive for SMCs and whether it persists even when
SMCs have undergone phenotypic switching.

5. Conclusions and future directions
We conclude that there are major ambiguities regarding identification
of the origins of many of the major cell types within atherosclerotic
lesions including which intimal lesion cells are derived from SMC vs.
monocytes–macrophages due to the lack of definitive lineage-tracing
studies and the fact that the markers routinely used to identify these
cell types are not exclusive to either cell type. Whereas BMT experi-
ments have clearly shown that many of the macrophage marker-
positive cells within lesions are of haematopoietic origin,20 there is
also compelling evidence that other cell types including SMC may
also give rise to at least a proportion of these macrophage-like
lesion cells. Likewise, there is also evidence that at least some
SMC-like cells in lesions are of macrophage and not SMC origin. Evi-
dence of SMC transition into alternative states raises major questions
related to the potential participation of SMC in several aspects of
human atherogenesis and atherosclerotic lesion progression, including
fibrous cap formation but also neovascularization and haemorrhagic
events within the advanced lesion.91,92

Finally, we ascertain that in the absence of definitive and rigorous
lineage tracing of both cell types, it will be impossible to clearly
define the mechanisms and factors that regulate phenotype transitions
of these cells within lesions, and their functional roles in plaque devel-
opment, progression, and end-stage events leading to plaque rupture
with possible myocardial infarction or stroke.
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