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ABSTRACT

A linear projection R on a Jordan*-triple A is said to be structural provided that, for all elements
a, b and c in A, the equality {Rab Re} = R{a Rbc} holds. A subtriple B of A is said to be complemented if
A = B + Ker(B), where Ker(B) = {aeA: {BaB} = 0}. It is shown that a subtriple of a JBW*-triple is
complemented if and only if it is the range of a structural projection.

A weak* closed subspace B of the dual E* of a Banach space E is said to be an N*-ideal if every weak*
continuous linear functional on B has a norm preserving extension to a weak* continuous linear functional
on E* and the set of elements in E which attain their norm on the unit ball in B is a subspace of E. It is
shown that a subtriple of a JBW*-triple A is complemented if and only if it is an N*-ideal, from which it
follows that complemented subtriples of A are weak* closed, and structural projections on A are weak*
continuous and norm non-increasing. It is also shown that every N*-ideal in A possesses a triple product
with respect to which it is a JBW*-triple which is isomorphic to a complemented subtriple of A.

1. Introduction

In a recent paper Loos and Neher [18] introduced the notion of complementation
in Jordan pairs and Jordan*-triples. For each element a in a Jordan*-triple A the
quadratic mapping Q(a) is defined, for all b in A, by

Q{a)b = {aba).

The kernel Ker(2?) of a subset B of a Jordan*-triple A is the subspace of A consisting
of elements which are annihilated by the quadratic mappings Q(b) as b runs through
B. A subtriple B of A is said to be complemented if A is the sum of B and its kernel.
Such a subtriple is an inner ideal. Provided that A is anisotropic, that is, for an
element a in A, the vanishing of {a a a} implies that of a, the sum is necessarily direct.
Moreover, it can be shown that the linear projection R on A having B as its range
subtriple has the property that, for all elements a in A, we have

Q(Ra) = RQ(a)R.

That is to say that the mapping R is structural in the sense of Loos [17]. Conversely,
the image of a structural projection on an anisotropic Jordan*-triple is a
complemented subtriple.

Recently the authors [9] studied the normed vector space properties of subtriples
of JB*-triples which are, of course, anisotropic Jordan*-triples. They showed that a
norm closed subtriple of a JB*-triple is an inner ideal if and only if it has the unique
Hahn-Banach extension property. In this paper the techniques used there are
extended to the study of complementation of subtriples of JBW*-triples. For a subset
B of a Banach space A, Taylor [21] introduced the homogeneous subset B* of the dual
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space A* of A which is the set of elements of A* the restrictions of which to B suffer
no reduction in norm. A weak* closed subspace B of a dual Banach space E* is said
to be an N*-idealif it has the properties that every weak* continuous linear functional
on B has a norm-preserving weak* continuous linear extension to E* and the
intersection of B* with the canonical image of E in E** is a subspace. The first main
result of the paper is that a subtriple of a JBW*-triple is complemented if and only
if it is an N*-ideal. This result can be considered as a generalization of results of Horn
[14], Barton and Timoney [2], which imply that the weak* closed M-ideals in a JBW*-
triple are precisely its weak* closed ideals. In fact these authors showed that the M-
ideals in a JB*-triple coincide with its norm closed ideals. This result is also open to
generalization. A closed subspace B in a JB*-triple A is said to be an N-ideal provided
that B* is a subspace of the dual space A* of A. It is shown that a subtriple B of a
JB*-triple A is an N-ideal if and only if B is an inner ideal in A, the second dual B**
of which, when identified with the second annihilator B°° in A**, is a complemented
subtriple of the JBW*-triple A**.

It follows from the pathfinding work of W. Kaup [16] that an N*-ideal B in a
JBW*-triple A is always a JBW*-triple with respect to the triple product {...}B

defined, for elements a, b and c in B by

{abc}B = R{abc},

where R is the structural linear projection from A onto B. It is shown that this JBW*-
triple is isomorphic to a weak* closed subtriple of A which, of course, coincides with
B when B is itself a subtriple of A.

The paper is organized as follows. In §2 definitions are given, notation is
established and certain preliminary results are described. In §3 the concepts of
N-ideals and N*-ideals are introduced and their properties, many of which are of
independent interest, are investigated. In §4 the main result is stated and proved and
§5 is devoted to a discussion of some further results on N*-ideals in JBW*-triples.

2. Preliminaries

A Jordan*-algebra A which is also a complex Banach space such that, for all
elements a and b in A, we have ||a*|| = ||a||, \\aob\\ ^ ||a|| \\b\\ and ||{aaa}|| = ||a||3,
where

{abc} = ao(b*oc) + (aob*)oc — b*o(aoc)

is the Jordan triple product on A, is said to be a Jordan C*-algebra [22] or JB*-algebra
[23]. A Jordan C*-algebra which is the dual of a Banach space is said to be a Jordan
W*-algebra [7] or a JEW*-algebra [23]. For the algebraic properties of Jordan
algebras the reader is referred to [15, 19, 20].

Recall that a complex vector space A equipped with a triple product

(a,b,c)\ >{abc}

from Ax Ax A to A which is symmetric and linear in the first and third variables,
conjugate linear in the second variable and satisfies the identity

[D(a, b), D(c, d)} = D({a bc},d)- D{c, {da b}) = D(a, {b c d}) - D({c da], b),

where [, ] denotes the commutator and D is the mapping from Ax A to A defined by
D(a, b)c = {ab c), is said to be a Jordan*-triple. When A is also a Banach space such
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that D is continuous from A x A to the Banach space B(A) of bounded linear
operators on A and, for each element a in A, we have that D(a,a) is hermitian with
non-negative spectrum and satisfies ||£)(a, a)|| = ||a||2, then A is said to be a JB*-
triple. It can be shown that, ifa,b and care elements in a 3B*-trip\eA, then ||{a6c}|| ^
||fl|| \\b\\ \\c\\ [11] and \\{aaa}\\ = \\af [16]. A JB*-triple which is the dual of a
Banach space is said to be a JBW*-triple. Examples of JB*-triples are JB*-algebras
and examples of JBW*-triples are JBW*-algebras. Isomorphisms of JB*-triples are
automatically isometric and isomorphisms of JBW*-triples are automatically weak*
continuous. For details see [6, 2]. The second dual A** of a JB*-triple A possesses a
triple product with respect to which it is a JBW*-triple, the canonical mapping from
A into A** being an isomorphism. For details the reader is referred to [5, 6].

A subspace / o f a Jordan*-triple A is said to be an inner ideal\i{J A J) is contained
in J and is said to be an ideal if {A A J} + {A J A) is contained in J.

An element u in a JBW*-triple A is said to be a tripotent if {u u u) is equal to u. The
set of tripotents in A is denoted by %(A). For each tripotent u in the JBW*-triple A
the weak* continuous conjugate linear operator Q{u) and the weak* continuous
linear operators Pj(u), fory = 0, 1,2, are defined by

Q{u)a = {uau}, P2(u) = Q(u)\

/>(•/) = 2(D(u, u) - Q{u)% P0(u) = / - 2D(u, u) + Q(uf.

The linear operators P^u) forj = 0,1,2, are projections onto the eigenspaces A}(u) of
D(u, u) corresponding to eigenvalues \j and

A = A0(u) © AA(u) © A.2(u)

is the Peirce decomposition of A relative to u. For ij, k = 0,1,2 we have that A{(u) is
a sub-JBW*-triple such that {Af(u)A}(u)Ak(u)} c A^^iu) when i-j+k = 0, 1, or 2,
and {0} otherwise, and

Moreover, A0(u) and A2(u) are inner ideals in A and A2{u) is a JBW*-algebra with
respect to the product (a,b)h->{aub}, unit u and involution av-+{uau}. A pair w,v of
elements of <̂ (y4) is said to be orthogonal if v is contained in AQ(u). For two elements
M and v of ^(^4), write u ^v if {uvu} = u or, equivalently, if v — u is a tripotent
orthogonal to u. This defines a partial ordering on ^(^4) with respect to which tf/(A)
with a greatest element adjoined forms a complete lattice. For each element a in the
JBW*-triple A there exists a unique tripotent r(a) in /I called the support of a, being
the smallest element of ^{A) such that a is a positive element in the JBW*-algebra
Alr{a)\

Let E be a complex Banach space. Recall that a linear projection P on £ is said
to be an L-projection if

||A-|| = HPxII + llx-PxIl
for each element x in E. A closed subspace which is the range of an L-projection is
said to be an L-summand of E. Let A be a complex Banach space. Recall that a linear
projection R on ,4 is said to be an M-projection if

||a|| = sup{||/to||, ||a — Ra\\}

for each element a in A. A closed subspace which is the range of an M-projection is
said to be an M-summand of A. A closed subspace B of A is said to be an M-ideal
if its annihilator B° in the dual space A* of A is an L-summand in A*. Clearly, every
M-summand is an M-ideal. For details the reader is referred to [1, 4].
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Let B be a weak* closed subtriple of the JBW*-triple A and let

Then B1 is a weak* closed inner ideal in A, the sum B + B1 is a weak* closed subtriple
of y4 and is an M-sum of B and B1 which are weak* closed ideals in B ©M Bx. If / is
a weak* closed ideal in A then so also is I1 and

In fact the weak* closed ideals in A coincide with its M-summands. Moreover the set
of M-ideals in a JB*-triple A coincides with the set of norm closed ideals in A
[2, 3, 14, 20].

3. Structure in complex Banach spaces

Throughout this section the convention of identifying a Banach space with its
canonical image in its second dual space will be adopted. In particular, the second
dual B** of a subspace B of a Banach space E will be identified with the second
annihilator B°° of B in the second dual E** of E.

Let E be a complex Banach space. A linear projection P on E is said to be neutral
[13] if || PA: || ^ ||A:|| for all elements x in E, and if x is an element of E for which
||.PA:|| = ||A:|| then Px = x. Notice that L-projections are neutral.

Let £ be a complex Banach space and let B be a subspace of E. Define the subset
B* of the dual space E* of E by

where B1 denotes the unit ball in B [21]. Notice that B* is a homogeneous though, in
general, non-linear subset of E*. Moreover, if Bn denotes the norm closure of B then
(Bn)* coincides with B*. Suppose that A is the dual space of the complex Banach space
E, let B be a subspace of A, and let iT denote the weak* closure of B. Observe that
the subsets (/T*)* n E and BP D E of E coincide.

LEMMA 3.1. Let P be a neutral projection on a Banach space E. Then

im P = (im P*f n E.

Proof. First notice that since P is norm non-increasing it follows that the sets
(imP*)j and P*(E*) coincide. Since imP coincides with the annihilator (kerP*)0 of
the kernel kerP* of P*, for each element A: in imP we have

||x|| = sup |jc(a)| = sup \x{P*a) + x(a-P*a)\ = sup |x(P*a)| = sup |*(a)|.
aeE* aeE* aeE* ae(imP*),

Consequently im P* is contained in (im P*)# 0 E. Conversely, if x is an element in
(imP*)*n£, then

|| A:|| = sup |x(fl)| = sup \x(P*a)\ = || Px ||.
ae(imP*), oefif

Since P is neutral it follows that Px and A: are equal and this implies that A: is
contained in im P.
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LEMMA 3.2. Let P be a neutral projection on a Banach space E. Then

E* = im P* © ((im P*f n Ef, E= ((im P*f n E) © (im P*)o.

Proof. Since kerP* coincides with (im?)° and since kerP coincides with
(imP*)0 the result follows from Lemma 3.1.

LEMMA 3.3. Let P and Q be neutral projections on a Banach space E. Then
P=Q if and only if im P* = im Q*.

Proof. Let im P* = im Q*. Since ker P = (im P*)o = (im Q*)o = ker Q and, by
Lemma 3.1, imP = (imP*)* n E = (imQ*)* n E = imQ it follows that P and 0
coincide (cf. [13, Lemma 2.2]).

LEMMA 3.4. Let E be a Banach space and let B be a subspace of the dual space E*
of E having the property that every weak* continuous linear functional on B has a norm
preserving extension to a weak* continuous linear functional on E*. Then

E = {B*[\E) + B0, (B* n E) fl Bo = {0}.

Proof. Let x be an element in E. By hypothesis there exists an element y in E
such that the restriction y \B of y to B and the restriction x\B of x to B coincide and
||j>|| = | | *U- Then \\y\\ = supaeBJx|B(a)| = sup06BJ^(a)| and y is contained in
B* n E. Clearly the element x—y lies in Bo and the first part of the lemma follows.
Finally, if x is an element in (B* ft E) n Bo then ||x|| = supaeB \x{a)\ = 0 as required.

A weak* closed subspace B of the dual space E* of the Banach space E is said to
be an N*-ideal if every weak* continuous linear functional on B has a norm
preserving extension to a weak* continuous linear functional on E* and the subset
B* n E of E is a subspace. The next results show that there is an intimate connection
between neutral projections on E and N*-ideals in E*.

LEMMA 3.5. Let P be a neutral projection on a Banach space E. Then the range
imP* of the adjoint P* of P is an *N*-ideal.

Proof. By Lemma 3.1, the subset (imP*)s n E is a subspace of E. Suppose that
y is a weak* continuous linear functional on \mP*. Define the weak* continuous
linear functional x on E*, for each element a in E*, by x{a) = y{P*a). Then x is an
extension of y to E* and, since (im/>*)1 and P*(E*) coincide,

||x|| = sup \x(a)\ = sup \y(P*a)\ = sup \y(a)\ = \\y\\.
aeE* aeE* ae(imP*),

LEMMA 3.6. Let B be an N*-ideal in the dual space E* of a Banach space E.
(i) Every weak* continuous linear functional on B has a unique norm preserving

extension to a weak* continuous linear functional on E*.
(ii) There exists a unique neutral projection P on E such that the kernel ofP is equal

to the annihilator Bo of B in E. In this case imP* coincides with B and imP coincides
with B*()E.
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Proof. By hypothesis, every weak* continuous linear functional on B possesses
a norm preserving weak* continuous linear extension to E*. Suppose that x and y are
elements of E the restrictions of which to B are equal and such that

I I * U = 11*11, \\y\a\\ = \\y\\-
Then x and y lie in the set B* 0 E and therefore, by hypothesis, so does x—y. But x—y
lies in BQ and it follows from Lemma 3.4 that JC and y are equal, thereby completing
the proof of (i).

For an element x in E, let Px denote the unique norm preserving weak* continuous
linear extension to E* of the restriction x\B of x to B. Then, clearly P(Px) and Px are
equal, Px lies in B* 0 E, and ||JPJC|| = ||JC|B|| < ||JC||. For elements x and y in E, since
Px + Py lies in B* n E, we have

\\Px + Py\\ = sup\(Px + Py)(a)\ = sup\(P(x+y))(a)\ = \\P(x+y)\\.
agfl,

Therefore, the elements Px + Py and P(x+>0 of E have the same norm. But they also
have the same restrictions to B and it follows from (i) that they coincide. Similarly,
for each complex number t, the elements t{Px) and P{tx) are equal. Therefore P is a
norm non-increasing linear projection on E.

Let JC be an element of E such that \\Px\\ is equal to ||JC||. Since Px and x have the
same restrictions to B it follows from (i) that Px and JC are equal and hence that P
is neutral.

Suppose now that JC lies in Bo. Then, since \\Px\\ = \\x\B\\ = 0, it follows that JC is
contained in the kernel ker P of P. On the other hand if x is contained in ker P, then
x\B = (Px)\B = 0 and JC lies in Bo. Therefore the kernel of P and Bo coincide.
Uniqueness of the neutral projection follows from Lemma 3.3.

Finally, observe that, since B is weak* closed, imP* coincides with B and
therefore, by Lemma 3.1, imP coincides with B* 0E.

It is now possible to make precise the connection between neutral projections and
N*-ideals.

THEOREM 3.7. Let E be a complex Banach space. Then the mapping Py-*im P* is
a bijection from the set of neutral projections on E onto the set ofN*-ideals in the dual
space E* of E.

Proof. This follows from Lemma 3.5, Lemma 3.6(ii) and Lemma 3.3.

This result reveals a certain duality between neutral projections on a Banach space
and N*-ideals in its dual. Attention is now turned to a similar duality which exists
between certain subspaces of a Banach space and neutral projections on its dual.

LEMMA 3.8. Let B be a subspace of a Banach space E. Then

Proof. By the Hahn-Banach theorem, for each element x in E*, there exists
an element y in E* such that both x and y have the same restrictions to B and
\\y\\ — \\X\B\\- Clearly y is contained in 5* and x—y is contained in B°. Finally, if x
lies in B* n B°, then, as in the proof of Lemma 3.4, necessarily x is zero.
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A norm closed subspace B of a Banach space E is said to be an N-ideal if the
subset B* of the dual space E* of E is a subspace.

LEMMA 3.9. Let B be an ~N-ideal in the complex Banach space E.
(i) Every bounded linear functional on B has a unique norm preserving extension to

a bounded linear functional on E.
(ii) There exists a unique neutral projection P on the dual space E* of E such that

the kernel ker P of P coincides with the annihilator B° of B in E*. In this case im P* 0 E
coincides with B and im P coincides with B*.

Proof By the Hahn-Banach theorem a bounded linear functional on B possesses
a norm preserving extension to a bounded linear functional on E. As in the proof of
Lemma 3.6(i), using Lemma 3.8 in place of Lemma 3.4, it follows that the extension
is unique.

For each element x in E* define Px to be the unique norm preserving linear
extension to E of the restriction of x to B. Then, as in the proof of Lemma 3.6(ii), it
can be seen that P is a neutral projection on E*, that ker P coincides with B° and that
imP is contained in W1. Uniqueness of the neutral projection follows, by Lemma 3.3.

Suppose that x is an element in B*. Then, since Px and x have the same restriction
to B, it follows that ||.PA'|| = ||x|B|| = ||A'|| which implies that Px equals x. Therefore,
the range im P of P is B*. By Theorem 3.7 it can be seen that the range im P* of P*
is an N*-ideal in E**. Moreover, imP* n E = (ker/')0 n E = B°° n E = B and the
uniqueness of P follows from Theorem 3.7.

The proof above immediately verifies the following result.

COROLLARY 3.10. Let B be an N-ideal in the complex Banach space E. Then B°°
is an N*-ideal in E**.

4. Structure in JB*-triples and JBW*-triples

Let A be a Jordan*-triple. Let B be a linear subspace of A and define the kernel
of B [18] to be the linear subspace

A subtriple B of the Jordan*-triple A is said to be complemented if

A = B + Ker (B).

Let u be a tripotent in A. Then Ker(A2(u)) = ker Q(u) = A^^ + A^u) and therefore
A2(u) is a complemented subtriple of A.

Let A be a Jordan* triple. A linear projection R: A -* A is said to be a structural
projection if Q(Ra) = RQ(a)R for all elements a in A, or, equivalently, {RabRc} =
R{aRbc} for all elements a, b and c in ^4. It is easily verified that, for every tripotent
u in A, the Peirce projections P2(u) and P0(u) are a structural projections.

LEMMA 4.1. Let B be a complemented subtriple of a Jordan*-triple A. Then B is
an inner ideal in A and the subset {A B Ker (B)} of A is contained in Ker (/?).
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Proof. Notice that

{BAB} = {BB+Ker(B)B} £ B + {BKer(B)B) = B

from which it follows that B is an inner ideal in A. Now let a, b and c be elements of
B, let d be an element in A and let e be an element of Ker (B). Then, by the Jordan
triple identity,

{a {db e) c} = {{b ea}dc} + {a d{b e c}} -{be {a dc}}

It follows that the element {dbe} lies in Ker (B).

Attention is now turned to JBW*-triples. The first two results summarize
straightforward properties of the formation of the kernel of a subset.

LEMMA 4.2. Let A be a JBW*-triple and let B be a subspace of A.
(i) The kernel Ker (B) ofB coincides with the kernel Ker (B ) of the weak* closure

(ii) The kernel Ker (B) of B is a weak* closed subspace of A.
(iii) The intersection of B and Ker (B) is {0}.

Proof Statements (i) and (ii) follow from the separate weak* continuity of the
triple product on A and (iii) follows from the anisotropicity of JB*-triples.

LEMMA 4.3. Let B be a complemented subtriple of JBW*'-triple A. Then B is a
weak* closed inner ideal in A.

Proof. That B is an inner ideal follows from Lemma 4.1. Moreover, using
Lemma 4.2,

A = B 0 Ker (B) c g°* 0 Ker (B) c A.
—w*

It follows that B and B coincide.

LEMMA 4.4. Let R be a structural projection on a JBVJ*-triple A. Then the range
imK of R is a complemented subtriple of A and

Ker(im/>) = ker/).

Proof. Let R be a structural projection on A. Then im R is clearly an inner ideal
in A. Moreover, if b lies in the kernel ker/? of R then, for all elements a and c in
imi?, we have

{abc} = {RabRc} = R{aRbc} = 0

and it follows that ker/? is contained in Ker(imi^). Conversely, if a lies in
Ker(im^) then

{RaRaRa} = R{RaRaRa) = {RaaRa} = 0

and it follows that Ra is zero. Hence keri? and Ker(imi?) coincide. Since

A = im(i?) + keri? = im R + Ker (im R)

it follows that im/? is a complemented subtriple of A.
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THEOREM 4.5. Let Abe a JBW*-triple. The mapping R i—• im R is a bijection from
the set of structural projections on A onto the set of complemented subtriples of A.

Proof. Let B be a complemented subtriple of A. Let R be the linear projection
on A with range B and kernel Ker (B). Using Lemma 4.1, observe that, for elements
a and b in A, the elements {RaRb(a-Ra)} and {(a-Ra)Rb(a-Ra)} lie in Ker(B).
Therefore, using this and the hypothesis that B is a subtriple,

R{a Rb a} = R{(Ra + (a- Ra)) Rb (Ra + (a- Ra))} = R{Ra Rb Ra)

= {RaRbRa} = {Ra(b-(b-Rb))Ra} = {RabRa}.

It follows that R is a structural projection with range B. Suppose that Q
is a further structural projection with the same range. Then, by Lemma 4.4,
ker R = Ker(imi?) = K e r ( i m 0 = kerQ, and therefore Q is equal to R.

LEMMA 4.6. Let A be a ]BW*-triple, let A+ be the predual of A and let B be a
subtriple of A. Then

Ker (B) = ft ker P2(u) = f| ker P2(r(fc)),
ueV(Bw") beB

where r(b) denotes the support tripotent of an element b in A.

Proof. By [8, Lemma 3.1], for each element b in B, the support tripotent r{b) is
the weak* limit of a sequence of real odd polynomials in b. Therefore rib) is con-

ID*

tained in the JBW*-triple B . Let a be an element of A such that P2(r(b)) a is zero
for all elements b in B. It follows that {r(b) a r(b)} is zero for all b in B. Therefore,

{bab} = {{r(b) b r(b)} a {r(b) b r(b)}} = {r(b) {b {r(b) a r(b)} b] r(b)} = 0

—w*

and a is contained in Ker (B). It is clear that P2(u) a is zero for every tripotent u in B
and a in Ker (B ), which coincides with Ker (B). This completes the proof.

The next main result describes the connection between complemented subtriples
of a JBW*-triple and its N*-ideals.

THEOREM 4.7. Let A be a JBW*-triple with predual A+.
(i) Let B be a subtriple of A. Then B is complemented if and only if B is an

N*-ideal in A.
(ii) Let P be a neutral projection on A+. If the range im P* of the adjoint P* of P

is a subtriple of A then P* is a structural projection on A.
(iii) The mapping P\—>P* is a bijection from the set of neutral projections on A+for

each of which imP* is a subtriple onto the collection of structural projections on A.

Proof. Suppose that B is a complemented subtriple in A. Then, by Lemma 4.3,
B is a weak* closed inner ideal in A and, by [9, Theorem 2.6], every weak* continuous
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linear functional on B has a norm preserving extension to a weak* continuous
linear functional on A. Now let JC be an element of B* n A+. Since the restriction x \B

of JC to B is a weak* continuous linear functional on the subtriple B of A, by [10,
Proposition 2], there exists a tripotent u in B such that ||JC|| = ||jc|i?|| = u(x). Then

||x|| = (P2(u)u)(x) = u(Pt(u)mx) ^ \\Pt(u)*x\\ < 11*11.

where P2(u)+ denotes the norm non-increasing projection on A* the adjoint of which
is P2(u). By [12, Proposition 1], the element x is contained in the range im P2(w)*. Since
this range coincides with the annihilator (ker P2(u))0 of the kernel kerP2(w) of P2(u), by
Lemma 4.6,

tfn^S U (ker/>2(W))o

Since y4 is the direct sum of B and Ker (B) it is clear that Bo 0 Ker(i?)0 is zero. By
Lemma 3.4,

<^ Ker (B)o

Therefore the set B* n ̂ 4* coincides with the subspace Ker (5)0. It follows that 5 is an
N*-ideal in A.

Conversely, suppose that B is a subtriple of A which is an N*-ideal. By Lemma
3.6 and [9, Theorem 2.6], B is a weak*-closed inner ideal in A. By the argument used
above it can be seen that Ker (B) is contained in the annihilator (B* n A+)° of the
subspace 5* n A+ of A+. Let w be a tripotent in 5 and let x be an element of im P2(w)*.
Since the unit ball A1'm Ais weak* compact there exists an element a in A1 at which
x attains its norm. Then

||x|| = a(x) = a(P2(u)*x) = (P2(u)a)(x).

But since B is an inner ideal, the element P2(u) a is contained in B and it follows that
x lies in the subspace B* n A+ of A+. Since im P2(u)+ coincides with ker P2(u)0 it follows
that ker P2(u)0 is contained in B* 0 A+. Therefore, since kerP2(w) is weak* closed,

^ ( k e r i » ) 0 s

By Theorem 3.7, there exists a neutral projection P on An such that 2? coincides with
imP*. By Lemma 3.2,

A = imP* 0 ((imP*)* n A*)0 = B0 (5» n ̂ *)° £ 5 0 Ker(5) c A.

It follows that 4̂ is the direct sum of B and Ker (B) and hence that B is complemented.
By the same token, it follows that

Ker(imP*) = ((imP*)* n ^*)° = (imP)0 = kerP*.

Therefore, by Lemma 4.4 and Theorem 4.5, P* is a structural projection on ^4.This
completes the proof of (i) and (ii).

Let R be a structural projection on A. By Lemma 4.4 and (i), imR is an N*-ideal
in A. Then there exists, by Corollary 3.7, a neutral projection P on A+ such that
im P* coincides with im R. By Lemma 4.4, im P* is a subtriple of ,4 and therefore, by
(ii), P* is a structural projection. It follows, by Theorem 4.5, that R is equal to P.
This proves (iii).
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This theorem has several important corollaries which stem from the properties of
N*-ideals and the fact that every complemented subtriple is the range of a unique
structural projection.

COROLLARY 4.8. Let A be a JBW*-triple and let R be a structural projection on
A. Then R is norm non-increasing and weak* continuous.

COROLLARY 4.9. Let B be a complemented subtriple of the JBW*-triple A and let
A+be the predual of A. Then B is weak* closed and has as its predual the space B* 0 A + .

Next we turn our attention to the study of N-ideals in JB*-triples.

THEOREM 4.10. Let A be a JB*-triple and let B be a norm closed subtriple of A.
Then B is an N-ideal in A if and only if the bi-annihilator B°° of B is a complemented
subtriple of the JBW*-triple A**.

Proof Let B be a norm closed subtriple of A such that B°° is a complemented
subtriple of A**. Then, there exists a unique neutral projection P on A* with range
(B00)s n E. Since the canonical image of B in A** is a weak* dense subspace of B°°
the remarks preceding Lemma 3.1 show that the range of P is the set B*. Therefore
B is an N-ideal in A.

Conversely, suppose that the subtriple B is an N-ideal in A. By Corollary 3.10 and
Theorem 4.7(i), the weak* closed subtriple B°° of A** is complemented.

COROLLARY 4.11. Let A be a JB*-triple. An N-ideal B in A which is also a subtriple
of A is an inner ideal in A.

Proof. By Lemma 3.9, every bounded linear functional on B has a unique norm
preserving extension to a linear functional on A. The result follows from [9, Theorem
2.6].

COROLLARY 4.12. Let A be a JBW*-triple and let B be a weak* closed subtriple
of A which is an N-ideal in A. Then B is a complemented subtriple of A.

Proof. By Corollary 4.11 it follows that B is a weak* closed inner ideal in A. By
[9, Theorem 2.5], every weak* continuous linear functional on B has a norm
preserving extension to a weak* continuous linear functional on A. Moreover, since
5* is a subspace of A* it follows that B* (1 A* is a subspace of A+. Therefore, B is an
N*-ideal in A as required.

5. N*-ideals in JBW*-triples

Recall that, for a JBW*-triple A and an element x in the predual A+ of A there
exists a unique tripotent eA(x) in A such that

x(eA(x)) = \\x\\
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and x is a faithful normal positive linear functional on the JBW*-algebra A2(e
A(x))

[10]. The tripotent eA(x) is said to be the support of x in A. Now let P be a norm non-
increasing projection on the predual A% of A and let P* be its adjoint. Then the work
of W. Kaup [16] shows that the range B of P* is a JBW*-triple with respect to the
triple product {...}B defined for elements a, b and c in B by {abc}B = /**{«&c}. Let
C be the smallest weak* closed subspace of A containing the set {eA(x): xePA*}
and let D be the weak* closed subtriple of A which is the intersection of the family
(A0(e

A(x)))xePAt of weak* closed subtriples of A.
The following lemma represents a JBW*-triple version of results due to Friedman

and Russo [12].

LEMMA 5.1. Let Abe a JBW *'-triple, let P be a norm non-increasing projection on
the predual A+ of A, let B be the range of the weak* continuous projection P* on A and
let the weak* closed subspace C and the weak* closed subtriple D of A be defined as
above.

(i) The spaces C and C+D are weak* closed subtriples of A and the JBW*-triple
C + D is the M-sum of C and D in which C and D are weak* closed ideals.

(ii) The set B is contained in C®MD and the restriction to B of the M-projection
Qfrom C®MD onto C is a weak* continuous isometric isomorphism from the JBW*-
triple B endowed with the triple product {.. .}B onto the JBW*-triple C.

(iii) The weak* closed subtriple D coincides with the intersection of the family
(A0(u))uett(C) of subtriples of A.

Proof. Notice that each tripotent u in D is contained in A0(e
A(x)), for all x in

PA*. Then, for each element x in PA*, the tripotent eA(x) is contained in A0(u).
Hence, for each tripotent u in D, the weak* closed subspace C is contained in A0(u).
Consequently, C is contained in D1. However, since the JBW*-triple D + D1 is an
M-sum of D and Dx it follows that C + D is an M-sum of weak* closed subspaces of
A. It follows, by the Theorem of Krein-Smulian, that C@MD is weak* closed.
Moreover, the M-projection Q of C@MD onto C is weak* continuous. It follows
from [12, Lemma 2.6] and its proof, that B is contained in C@MD and that Q is an
isometric isomorphism from the JBW*-triple B into the JBW*-triple A. By [12,
Proposition 2.2], P*eA(x) is equal to eB(x) for all elements JC in PA*. If JC is in PA*
then, by [12, Lemma 2.1], P*eA{x)-eA{x) belongs to D. Therefore, QeB{x) equals
eA(x) for all elements x in PA+. Since the range of the restriction of Q to B contains
{eA(x): xePA+} and since Q is weak* continuous, Q clearly maps onto C. There-
fore C is a JBW*-subtriple of A. Moreover, being an M-sum of JBW*-subtriples
C@MD is a JBW*-triple and both (i) and (ii) follow immediately using [2] and
[14, Lemma 4.4].

To prove (iii), observe that if v is a tripotent in A which is orthogonal to eA(x) for
every element x in PA* then, by the separate weak* continuity of the triple product, v is
orthogonal to each tripotent in C. Since D is a weak* closed subtriple in A it follows
that D is contained in the intersection of the family (A0(u))ue<%{C). The converse is
obvious.

Attention is now turned to the special situation in which the projection P
occurring in Lemma 5.1 is neutral.
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LEMMA 5.2. Let A be a JBW*-triple, let P be a neutral projection on the predual
A* of A, let B be the range of the weak* continuous projection P* on A and let the weak*
closed subtriple C and the weak* closed subtriple D of A be defined as above.

(i) Let u be a tripotent in A. Then u is an element in C if and only if the set
{xeA*: \\x\\ = u(x)} lies in the range PA* of P.

(ii) Let p be a tripotent in the JBW*-triple B. Then the weak* limit u{p) of the
weak* convergent sequence (p2n+1) is a tripotent in the JBW*-subtriple C of A.
Moreover, for all elements x in PA*, we have

u{eB{x)) = e\x),

where eB(x) is the support ofx in the JBW *-triple B and eA{x) is the support of x in the
JBW*-triple A.

(iii) The weak* closed subtriple W{E) of A generated by B is contained in C®MD
and contains C as a weak* closed ideal. Moreover, the restriction to B of the
M-projection on W(B) onto C is an isometric isomorphism.

Proof. The same notation as that used in the proof of Lemma 5.1 is maintained.
Let u be a tripotent in A. If the set {xeA*: \\x\\ = u(x)} lies in PA* then, by [12,
Lemma 2.5] and its proof, the tripotent u is an element in C. Conversely, let u be a
tripotent in C. Let x be an element in A* of norm one such that u(x) is equal to one.
By Lemma 5.1 (iii),

P*u = QP*u + (I- Q) P*u = u + (I- Q)P*eu + AQ(u\.

Therefore (P*u)(x) is equal to one. Since P*u is an element in B it follows that x
belongs to 2?* n A* and Lemma 3.1 shows that x is an element in PA*.

Let/? be a tripotent in the JBW*-triple B. By [8, Lemma 3.5], u{p) is a tripotent
in A and p is an element in the set u(p) + A0(u(p))v If x is an element of norm one in
A* such that u(p)(x) is equal to one then it follows that/>(x) is also equal to one and
therefore, by an argument similar to the above, x belongs to PA*. By (i), u(p) is an
element in C. This proves the first part of (ii).

Let x be an element in PA*. Then

eB(x) = eA(x) + (I-Q)eB(x)eeA(x) + A0(e
A(x))l.

Let y be an element in A* of norm one. Clearly, if eA(x)(y) is equal to one, then so
also is eB{x){y). Conversely, if eB(x)(y) is equal to one then y belongs to B* (] A* and
y is an element in PA*. Consequently, y vanishes on D and therefore eA(x)(y) is equal
to one. It now follows, by [8, Lemma 3.4], that u(eB(x)) and eA(x) are equal, thereby
proving (ii).

Let W{B) be the smallest weak* closed subtriple of A containing B. Since B
is contained in C@MD, it can be seen that W(B) is contained in C®MD. There-
fore, C = Q(B) ^ Q{W{B)) c C. By (ii), C is a subset of W{B) and it follows that
W{B) = C®M{I-Q){W{B)). Using [14, Lemma 4.4], C is a weak* closed ideal in
W(B). The restriction to W(B) of the map Q is clearly an M-projection on W(B)
with range C.
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THEOREM 5.3. Let Abe a JBW *-triple with predual A+ and let B be an N*-ideal
in A.

(i) When endowed with the triple product {.. .}B defined, for elements a, b and c in
B,by

{abc}B = P*{abc},

where P is the unique neutral projection on A* such that B is the range ofP*, we have
that B is a JBW*-triple.

(ii) Let C(B) be the weak* closed subspace of A generated by the set

where u(p) is the weak* limit of the weak* convergent sequence (p2n+1) in A. Then C{B)
is a complemented sub triple of A.

(iii) The JBW*-triple C(B) is a weak* closed ideal in the weak* closed subtriple
W{B) of B generated by B.

(iv) The restriction R to B of the M-projection from W(B) onto C{B) is an isometric
isomorphism from the JBW*-triple B onto the complemented subtriple C(B) of A.

(v) The structural projection corresponding to C(E) is RP*.

Proof. By Lemma 5.1 and Lemma 5.2 it remains to prove (v) and that B is a
complemented subtriple of A. Since C(B) is the smallest weak* closed subspace of A
containing the set {eA(x): xePA*}, it follows that PA* is a subset of C(Bf 0A+.
Conversely, if x is an element in C(Bf n A* then there exists a tripotent u in the
JBW*-subtriple C{B) such that u(x) equals ||x||. By Lemma 5.2(i), x lies in PA*.
Therefore the sets PA+ and C{Bf n A* coincide and C(B)* n A+ is a subspace.

Let z be an element in the predual C(B)+ of C{B). The functional x defined, for
elements a in A, by

x(a) = ({RP*) a) (z)

is clearly a weak* continuous linear extension to A of z. From the proof of Lemma
5.2 it can be seen that R is the restriction to B of the M-projection Q. It follows that
R P* is a norm non-increasing projection with range C(B). This shows that C(B) is an
N*-ideal and therefore, by Theorem 4.7, a complemented subtriple.

Finally observe that, by Lemma 4.6,

Ker(C(£))= PI (^1(M)0V4O(M)) = ( |J A2(U)J°
ue<V(C)

= ((C* n AJ° = (B* n ̂ *)° = kerP* = ker (*/>*).

The range of the projection RP* is C(B) and (v) now follows from Theorem 4.5.
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