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The celebrated truncated T-matrix method for wave propagation models belongs to a class of the reduced
basis methods (RBMs), with the parameters being incident waves and incident directions. The T-matrix
characterizes the scattering properties of the obstacles independent of the incident and receiver direc-
tions. In the T-matrix method the reduced set of basis functions for representation of the scattered field
is constructed analytically, and hence, unlike other classes of the RBM, the T-matrix RBM avoids com-
putationally intensive empirical construction of a reduced set of parameters and the associated basis set.
However, establishing a convergence analysis and providing practical a priori estimates for reducing the
number of basis functions in the T-matrix method has remained an open problem for several decades.
In this work we solve this open problem for time-harmonic acoustic scattering in two and three dimen-
sions. We numerically demonstrate the convergence analysis and the a priori parameter estimates for both
point-source and plane-wave incident waves. Our approach can be used in conjunction with any numeri-
cal method for solving the forward wave propagation problem.

Keywords: wave propagation; acoustic scattering; T-matrix.

1. Introduction

The fast simulation of wave propagation induced by various types of incident waves impinging on
a fixed bounded three-dimensional configuration (scatterer) from several directions is fundamental to
several applications. In modern applications, the type of incident wave and associated incident and re-
ceiver directions are chosen by the end user, who requires certain online information quickly, while
the shape of the configuration remains fixed (or based on a few prototype shapes). That is, the end
users are given an infinite number of parameter options. The online requirements are typically func-
tional outputs (such as the intensity or radar cross section) of mathematical models describing the wave
propagation.
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In such cases, independent of the user input, it is efficient to a priori construct and store certain infor-
mation that completely characterizes (up to certain a certain accuracy) the essential scattering properties
of the prototype configurations (using offline computations of appropriately discretized mathematical
models) so that the online information can be simulated very quickly by the end users, for example,
using simple matrix–vector multiplications, for any parameter choice. Here, the matrix describes the
essential properties of the configuration and the vector is the input chosen by the end user.

In general, full mathematical models of physical processes contain some user input parameters. A
framework that provides the end user with an infinite (online) choice of input parameters by first solving
(offline) the full model for only a reduced, finite number of parameters is known as the reduced basis
method (RBM) (see Afonso et al., 2010; Pomplun & Schmidt, 2010; Chen et al., 2010, 2011; Fares
et al., 2011; Patera & Rozza, 2011; Pomplun et al., 2011; and extensive references therein for various
applications). We refer to the methods discussed in these articles as the standard class of RBM and in
this work we propose and analyse a new T-matrix class of RBM.

For a chosen application/model, the fundamental questions in the RBM are: (i) which choice of basis
sets should be used to represent the functional outputs of the full models and the input functions (so that
the output and input functions can be represented by vectors); (ii) how should a robust and practical a
priori (or a posteriori) estimate of the cardinality of the reduced basis sets be provided; and (iii) how
should a full convergence analysis of the associated RBM be established.

For the single-obstacle scattering wave propagation model considered in this work, the full set of
parameters governing the model is the wavenumber, the type of incident wave and the incident and
receiver directions. In this work we propose a new T-matrix class of exponentially converging RBM for
time-harmonic acoustic scattering in two and three dimensions, with the user input parameters being the
practically important types of incident wave:

(i) a plane wave with arbitrary incident direction;

(ii) the field generated by a point-source with arbitrary location;

and arbitrary receiver direction. The main aim of this work is to prove exponential convergence of the
T-matrix RBM (with analytical representation of the reduced basis functions) and to establish a robust
a priori analytical estimate for the reduced basis set.

The standard class of RBM has the advantage of allowing the wavenumber in the model to be a
parameter as well. In this work we sacrifice this to gain the several advantages of the T-matrix class
of RBM that are discussed below. In a future work, we shall consider a hybrid of the T-matrix class
of RBM and a standard class of the RBM to include the wavenumber as a parameter and also allow
configurations with multiple particles, following the recent work (Ganesh et al., 2011) on the standard
class of RBM.

The standard class of RBM requires an optimization method to select a reduced set of parameters and
a computationally intensive construction of the reduced basis functions by solving the full model for all
the selected offline parameters. The offline optimization procedure typically requires a fine discretization
of the entire parameter domain and applies a greedy-type algorithm to select each offline snapshot
parameter. The quality of the reduced basis set in the standard class of RBM depends strongly on the
snapshot parameters chosen during the offline procedure. The choice of online parameters is restricted
to the parameter domain used in the offline optimization procedure. For each choice of online parameter,
the online procedure in the standard class of RBM requires simulation of the original model, but using
the reduced basis. Efficient offline and fast online computations in the standard classes of the RBM
require decomposition of the parameter and nonparameter variables in all the parameter-dependent input
and output forms and functionals using approaches such as the empirical interpolation method (EIM) or
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correlation matrix approaches such as the proper orthogonal decomposition (POD) or Karhunen–Loeve
(KL) expansion methods.

We refer to recent literature (Pomplun & Schmidt, 2010; Chen et al., 2010, 2011; Fares et al., 2011;
Ganesh et al., 2011; Pomplun et al., 2011) and references therein for some of the standard class of
RBM for wave propagation models. Some of these articles also include error analysis and a posteriori
estimates to choose the number of snapshot parameters, and hence the basis functions, empirically.
Establishing robust analysis based a posteriori estimates and convergence analysis of the standard class
of RBM still remains an active research area.

The T-matrix class of RBM in this work has several advantages compared to the standard class of
RBM: firstly, an optimization-based procedure is not required to choose a reduced set of parameters.
Arbitrary parameters can be chosen for online computation because the offline procedure does not use,
or have any restriction on, the parameter domain. This is because the T-matrix is independent of the inci-
dent and receiver directions parameter set. Secondly, the offline reduced basis functions in the T-matrix
class of RBM are constructed analytically. The offline procedure does not require a fine discretization of
the parameter set and the use of greedy algorithms. Neither the offline nor the online procedures involve
the use of decomposition approximations based on methods such as EIM/POD/KL. In our method, fast
online computations can be carried out for any choice of input incident direction and output receiver di-
rection without the need to solve the original model. The final online procedure requires only vector mul-
tiplication with the a priori-estimate-based truncated T-matrix to construct the required output signals.

In addition to proposing a new T-matrix class of RBM for practical types of incident waves, the
fundamental strength of this work is in solving the several-decade-old problem of rigorously establishing
exponential convergence of the method, with a concrete analytical a priori estimate on the number of
reduced basis functions needed to achieve a desired accuracy. Our analysis also concretely shows that
the number of reduced basis functions required for the truncated T-matrix approach is independent of the
shape of the scatterer, which has been folklore in the T-matrix community but until now never proven.
Our robust exponential convergence analysis and analytical representation of the a priori estimates are
substantially different from those established for the standard class of RBM and may facilitate a new
tool for future research in this active research area.

The T-matrix was first introduced for wave propagation over half a century ago in Waterman (1965)
and the standard truncated T-matrix method has been widely used since then (see Doicu et al., 2006);
Martin, 2006; Mishchenko et al., 1996, 2006; and the extensive references therein). The basis sets for
the standard T-matrix method consist of the classical wave functions.

It is well known that the standard T-matrix method, which uses the null-field method, is numerically
unstable and for large obstacles can become divergent (Mishchenko et al., 1996, p. 543). There are sev-
eral approaches to tackle this problem (Mishchenko et al., 1996, 2006; Doicu et al., 2006; Martin, 2006),
such as using slow extended precision arithmetic to minimize the effect of round-off errors. The numeri-
cal instability arises mainly due to the use of near fields to compute entries in the reduced basis T-matrix
and the fast growth of Hankel functions in the basis sets. In a recent work on acoustic scattering (Martin,
2006, Section 7.9.4), it was suggested that the instability could be avoided by using far fields, and the
instability was computationally avoided in a robust way in Ganesh & Hawkins (2008, 2009) using the
far fields of the Hankel functions. In these works convergence analysis was not addressed.

The standard T-matrix method has been investigated in the literature mainly for plane-wave inci-
dence, with the end user supplied parameter being the arbitrary incident direction. Despite being widely
used over the last five decades, it has been an open problem to establish a robust convergence analysis
of any T-matrix method and to provide precise a priori parameter estimates to efficiently truncate the
T-matrix, even for plane-wave incidence. While there have been several advances in the convergence
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analysis and parameter estimates for several optimization-based RBMs (Afonso et al., 2010; Patera
& Rozza, 2011), the lack of a convergence analysis and parameter estimates for the optimization-free
reduced basis T-matrix method has been considered a major disadvantage.

The main aim of this work is to avoid this major disadvantage by answering all three fundamen-
tal questions, for an optimization-free RBM with practically important point-source and plane-wave
incidence with their source locations or wave directions as free user input parameters. In addition to
providing a priori estimates for the truncation parameters and proving exponential convergence of the
reduced basis T-matrix method, we demonstrate the theory and estimates using several numerical exper-
iments for two- and three-dimensional acoustic scattering.

2. Acoustic obstacle scattering

In this section we describe in detail the model for acoustic obstacle scattering and the far-field pattern
of the scattered field. We introduce index sets and various special functions from which we will, in
Section 2.1, assemble a new class of regular and radiating functions.

We consider the model problem of time-harmonic exterior acoustic obstacle scattering in Rd for
d = 2, 3. Let D ⊂ R

d be a bounded sound-soft, sound-hard or absorbing scatterer in a homogeneous
medium. The coordinate system is chosen so that the origin 000 is inside D. Let ρD > 0 be the radius of
the scatterer with respect to the origin, so that D ⊂ BρD , where BρD ⊂ R

d denotes the ball with centre
000 and radius ρD .

Let uinc be an incident wave with wavelength λ = 2π/k, where k is the wavenumber, impinging on
the scatterer D. The resulting time-harmonic radiating acoustic scattered-field us scattered by D satisfies
the Helmholtz equation (Colton & Kress, 1998, Section 2.1),

Δu(xxx) + k2u(xxx) = 0 , xxx ∈ Rd \ D , (2.1)

and one of the following boundary conditions (properties of the scatterer):

us(xxx) = −uinc(xxx) , (sound-soft) (2.2)

∂us

∂nnn
(xxx) = −∂uinc

∂nnn
(xxx) , (sound-hard) (2.3)

us(xxx) + λ
∂us

∂nnn
(xxx) = −uinc(xxx) − λ

∂uinc

dnnn
(xxx) , Im(λ) > 0, (absorbing) (2.4)

for xxx ∈ ∂ D, and the Sommerfeld radiation condition

lim|xxx |→∞ |xxx |(d−1)/2
(

∂u

∂|xxx | − iku

)
= 0, (2.5)

where the limit holds uniformly in all directions x̂xx = xxx/|xxx | ∈ S
d−1, and Sd−1 is the unit sphere in

R
d for d = 2, 3. Furthermore, the radiating solution us has the asymptotic behaviour of an outgoing

spherical wave (Colton & Kress, 1998, Theorem 2.5):

us(xxx) = eik|xxx |

|xxx |(d−1)/2

{
u∞(̂xxx) +O

(
1

|xxx |
)}

, (2.6)
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as |xxx | → ∞ uniformly in all directions x̂xx = xxx/|xxx |. The function u∞ defined on Sd−1 in (2.6) is known
as the far-field pattern of u. Thus, the far-field u∞ ∈ L2(Sd−1) has the representation

u∞(̂xxx) = lim|xxx |→∞ |xxx |(d−1)/2e−ik|xxx |us(xxx), x̂xx = xxx/|xxx |. (2.7)

Computation of the far-field pattern plays an important role in inverse scattering to identify the shape of
the scatterer (Colton & Kress, 1998, Chapter 5).

For expansion of the incident, scattered and far fields using a new class of elementary regular and ra-
diating functions and to unify notations in two and three dimensions, we introduce the infinite index sets

Id =
⎧⎨⎩

{��� = � : � ∈ Z} for d = 2,

{��� = (�, j) : � ∈ N0, | j | � �} for d = 3,

and the finite subsets

Id,N =
⎧⎨⎩

{��� = � : |�| � N } for d = 2,

{��� = (�, j) : 0 � � � N , | j | � �} for d = 3,

where N0 = N ∪ {0}. For ��� ∈ Id , with ��� = � or ��� = (�, j), we use the notation |���| = |�|.
Let Nd denote the cardinality of Id,N . We have

Nd =
⎧⎨⎩

2N + 1, d = 2,

(N + 1)2, d = 3.
(2.8)

Throughout the paper, for ��� ∈ Id , the functions J|���|, j|���|, H (1)
|���| and h(1)

|���| are, respectively, the Bessel,
spherical Bessel, Hankel and spherical Hankel functions of degree |���|. For ��� = (�, j) ∈ I3, we denote
by Yl, j the spherical harmonic of degree l, given by

Y�, j (̂xxx) = (−1)( j+| j |)/2

√
2l + 1

4π

(l − | j |)!
(l + | j |)! P | j |

� (cos θ)ei jφ , x̂xx ∈ S2, (2.9)

where P | j |
� is the associated Legendre function of degree � and index j . Here we have used the spherical

polar coordinate representation of the unit vector x̂xx with polar angle θ and azimuth φ. Formally, for
xxx ∈ R2 we write

xxx = xxx(θ) = |xxx |̂xxx = |xxx |(cos θ, sin θ)T,

and for xxx ∈ R3 we write

xxx = xxx(θ, φ) = |xxx |̂xxx = |xxx |(sin θ cos φ, sin θ sin φ, cos θ)T.

We consider the orthonormal basis functions in L2(Sd−1) given by

Y���(̂xxx) =
⎧⎨⎩

1√
2π

exp(i�θ), d = 2,

Y�, j (̂xxx), d = 3,

x̂xx ∈ Sd−1, ��� ∈ Id . (2.10)
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In applications, the incident field uinc is frequently an incident plane wave with propagation direction
d̂dd ∈ S

d−1, and the far-field pattern u∞ is the functional output of interest. In particular, one might
like to know the acoustic cross section (ACS) of the scatterer at any user chosen direction x̂xx ∈ Sd−1,
defined by

σ (̂xxx ; d̂dd) = 4π |u∞(̂xxx)|2. (2.11)

A derived quantity of interest is the monostatic ACS, which is computed with d̂dd = −x̂xx . For the monos-
tatic ACS , especially for nonconvex configurations, the full wave propagation model needs to be solved
for thousands of incident directions d̂dd (representing the ACS from all directions). This requires a fast im-
plementation of the far-field mapping d̂dd 
→ u∞. Another practically important class of incident waves is
that of the circular and spherical waves generated by a point-source (located outside, but possibly close
to, the configuration).

In this work, using a new class of basis functions, we first design an efficient offline computation
to construct a matrix that is independent of the user input uinc and that characterizes the scattering
properties of the configuration pair (∂ D, k) so that, given a user input uinc, an approximate functional-
output, the ACS, can be quickly computed online using cheap matrix–vector multiplication.

2.1 Basis functions for expansion of fields

In this section we introduce the new class of regular and radiating basis functions and derive L2 norm
bounds which we will use for the expansion and analysis of the incident and scattered fields in the
obstacle scattering model.

The unknown quantity in the ACS formula (2.11) is the far-field u∞. Using (2.6) and the orthonormal
basis in (2.10), since the far-field u∞ ∈ L2(Sd−1), there exists a sequence aaa = (a���′)���′∈Id such that

u∞(̂xxx) =
∑
���′∈Id

a���′Y���′ (̂xxx), x̂xx ∈ Sd−1. (2.12)

An approximate far-field pattern can be obtained by truncating the expansion (2.12) to N ′
d terms; that is,

reducing the basis to N ′
d functions. A priori error bounds may guide the choice of N ′

d and to establish
such bounds is the goal of this paper.

Hereafter, let R > ρD be a fixed positive number to be read as the radius of a ball strictly containing
D (see Figs 1, 11 and 12). The incident field uinc satisfies the Helmholtz equation (2.1) everywhere
inside BR .

To motivate our approach, we first consider the incident field uinc induced by a point-source lo-
cated at xxx0 ∈ R

3, with |xxx0| > R. Using Colton & Kress (1998, Theorem 2.10), we have the series
representation

uinc(xxx) = exp(ik|xxx − xxx0|)
k|xxx − xxx0| =

∑
���∈Id

p��� j|���|(k|xxx |) Y���(̂xxx), (2.13)

with expansion coefficients

p��� = 4π ik h(1)
|���| (k|xxx0|) Y���(̂xxx0). (2.14)

A similar expansion holds for any point-source radiation in two dimensions, using Graf’s addition theo-
rem (Abramowitz & Stegun, 1970, Equation (9.1.79)). Also, truncation to Nd terms, that is, those terms
satisfying |�| � N , may be employed in (2.13).
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FIG. 1. Geometric arrangement for the acoustic scattering problem (d = 2).

In this article we provide a precise a priori bound for the error caused by the simultaneous truncation
of (2.12) and (2.13). We establish exponential convergence of the resulting approximation error as both
N ′ and N tend to ∞. Throughout the paper C stands for a generic positive constant, whose value may
differ between different occurrences. The constant may depend only on the shape of D, the boundary
conditions, the separation distance R and the wavenumber k. The constant does not depend on the
truncation indices N and N ′ nor on the excitation uinc.

After fixing N ′ and N , the offline task in this work is to compute an N ′
d × Nd matrix so that the

unknown reduced N ′
d coefficients a���′ of the far field in (2.12) can be computed online using any Nd

input incident field coefficients p��� via a matrix–vector product, which is typically cheap compared with
the cost of solving the full model.

Motivated by (2.13), we introduce a new class of scaled elementary wave functions:

Ẽ���(xxx) =

⎧⎪⎨⎪⎩
H (1)

|���| (k R)J|���|(k|xxx |)Y���(̂xxx), d = 2,

h(1)
|���| (k R) j|���|(k|xxx |)Y���(̂xxx), d = 3,

��� ∈ Id . (2.15)

The scaled wave functions are unbounded entire solutions of the Helmholtz equation (2.1) and can be
regarded as ‘incident circular/spherical waves’. The scaling factors applied to the usual regular wave
functions are introduced in (2.15) to ensure boundedness of the coefficients in the incident field expan-
sion for incident point-source waves. The waves (2.15) decay algebraically towards the origin.

LEMMA 2.1 With constants C depending only on D and k R,∥∥Ẽ����∂ D
∥∥

L2(∂ D)
�C

(ρD

R

)|���| ∀��� ∈ Id , (2.16)

∥∥∇ Ẽ����∂ D
∥∥

L2(∂ D)
�C

(ρD

R

)|���|−1 |���|d/2−1 ∀��� ∈ Id , |���| > 0. (2.17)

Proof. We make use of the fact (Colton & Kress, 1998, Sections 2.4 and 3.4) that, with C > 0 depending
on k R ,

max
{∣∣H (1)

|���| (k R)J|���|+σ (k R)
∣∣, ∣∣h(1)

|���| (k R) j|���|+σ (k R)
∣∣} � C |���|σ−1 ∀��� ∈ Id ,

σ ∈ {−1, 0, 1}, σ + |���| � 0, (2.18)
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and of the estimate (see Colton & Kress, 1998, p. 31, for d = 3, and Equations (3.57) and (3.58), for
d = 2) ∣∣∣∣ J|���|(k|xxx |)

J|���|(k R)

∣∣∣∣ , ∣∣∣∣ j|���|(k|xxx |)
j|���|(k R)

∣∣∣∣ � C

( |xxx |
R

)|���|
∀��� ∈ Id , |xxx | � R. (2.19)

We combine this with (2.18) and the bound (see Freeden et al., 1998, Lemma 3.1.5, for d = 3)

|Y���(̂xxx)| � C |���|d/2−1, x̂xx ∈ Sd−1, (2.20)

in (2.15) to obtain

|Ẽ���(xxx)| � C

( |xxx |
R

)|���|
∀��� ∈ Id , |xxx | < R, (2.21)

which immediately yields the estimate for
∥∥Ẽ����∂ D

∥∥
L2(∂ D)

in (2.16).
The proof of the second estimate starts from

∥∥∇ Ẽ����∂ D
∥∥

L2(∂ D)
� |∂ D|1/2

∥∥∇ Ẽ����∂ D
∥∥

L∞(∂ D)
, (2.22)

where |∂ D| denotes the surface area of ∂ D, and the polar/spherical coordinate representation for
|���| > 0,

∇ Ẽ���(xxx) =

⎧⎪⎨⎪⎩
H (1)

|���| (k R)
(
k J ′

|���|(k|xxx |)Y���(̂xxx )̂xxx + 1
|xxx | J|���|(k|xxx |)∇∗Y���(̂xxx)

)
, d = 2,

h(1)
|���|

(
k R)(k j ′|���|(k|xxx |)Y���(̂xxx )̂xxx + 1

|xxx | j|���|(k|xxx |)∇∗Y���(̂xxx)
)
, d = 3,

(2.23)

where ∇∗ is the surface gradient on Sd−1. For |���| > 0, using the formulas (Abramowitz & Stegun, 1970)

2J ′
|���| = J|���|−1 − J|���|+1, j|���|(t) =

√
π

2t
J|���|+1/2(t), t � 0, (2.24)

we get the surface gradient bound (see Freeden et al., 1998, Lemma 12.6.7, for d = 3, and note the
scaling term in Freeden et al., 1998, Equation (12.2.1))

|∇∗Y���(̂xxx)| � C |���|d/2, x̂xx ∈ Sd−1. (2.25)

Substituting (2.18) and (2.19) in (2.23) yields the estimate

|∇ Ẽ���(xxx)| � C
(ρD

R

)|���|−1 |���|d/2−1 ∀��� ∈ Id , |���| > 0, |xxx | < R. (2.26)

�
Using (2.15), we represent the incident wave uinc as

uinc =
∑
���∈Id

p��� Ẽ���. (2.27)

The details of such expansions and weights p��� for the physically important plane-wave and point-source
incidence are discussed in Sections 3.1 and 3.2.

T-MATRIX CONVERGENCE ANALYSIS WITH A PRIORI PARAMETER ESTIMATES 1355



As with most error estimates, our truncation error bounds will depend on a measure of the ‘smooth-
ness’ of the data, which is expressed through the requirement that suitable norms be bounded. Here, we
assume that the incident wave uinc with uinc�∂ D ∈ L2(∂ D) is such that there exists a weight sequence
www = (w���)���∈Id with

0 < w � w��� ∀��� ∈ Id and some w > 0, (2.28)

such that uinc ∈ Xwww, where

Xwww =
⎧⎨⎩ψ =

∑
���∈Id

q��� Ẽ��� : ‖ψ‖2
Xwww

:=
∑
���∈Id

w���|q���|2 < ∞
⎫⎬⎭ . (2.29)

REMARK 2.2 Lemma 2.1 implies that for uinc ∈ Xwww, suitable restrictions of the expansion (2.27)
converge in both L2(∂ D) and L2(BR). From the estimates in the proof of Lemma 2.1 we also infer

Xwww�BR ⊂ L2(BR) with continuous embedding. (2.30)

We also introduce a new class of scaled radiating waves

E���(xxx) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
πk

(−i)|���|(1 − i)
H (1)

|���| (k|xxx |)Y���(̂xxx), d = 2,

k

(−i)|�|+1
h(1)

|���| (k|xxx |)Y���(̂xxx), d = 3,

��� ∈ Id . (2.31)

The scaling factors in (2.31) are applied to the usual outgoing wave functions so that their associated
far fields

{
E∞

��� : ��� ∈ Id
}

form an orthonormal basis for L2(Sd−1). In particular, using the asymptotics
of the Hankel and spherical Hankel functions as |xxx | → ∞ (see Colton & Kress, 1998, Equations (3.59)
and (2.41)) in (2.31), we get

E∞
��� (̂xxx) = Y���(̂xxx), ��� ∈ Id , x̂xx ∈ Sd−1, d = 2, 3. (2.32)

Hence, using (2.12),

u∞(̂xxx) =
∑
���′∈Id

a���′ E∞
���′ (̂xxx), x̂xx ∈ Sd−1. (2.33)

In view of the above, it is natural to represent the radiating scattered-field us outside the ball BR as

us(xxx) =
∑
���′∈Id

a���′ E���′(xxx), xxx ∈ Rd \ B R . (2.34)

2.2 Infinite basis: scattering matrix, far field, scattered field

In this section we introduce the T-matrix, which connects the expansion coefficients of the incident
and scattered fields. We briefly review a stable method for computing the T-matrix introduced by the
authors in Ganesh & Hawkins (2008, 2009). This method avoids the numerical instability observed in
the null-field method by using the far field rather than the near field for the T-matrix assembly.
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We introduce bounded linear operators S∞
∂ : Z(∂ D) → L2(Sd−1), where

Z(∂ D) :=
⎧⎨⎩H1/2(∂ D) for a sound-soft scatterer (2.2),

L2(∂ D) for boundary conditions (2.3), (2.4).

These operators map boundary data g ∈ Z(∂ D) to the far-field pattern u∞ of the solutions
u ∈ H1

loc(R
d \ D) of the exterior boundary value problems1

Δu + k2u = 0 in Rd \ D,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = g, (2.35)

or

∂u

∂n
= g, on ∂ D, (2.36)

or

u + λ
∂u

∂n
= g, (2.37)

and the Sommerfeld radiation condition (2.5) at infinity. Continuity of S∞
∂ follows from the estimates

in Colton & Kress (1998, Section 2.5) and the fact that u ∈ H1
loc(R

d \ B R). Using S∞
∂ we define the

scattered-field operators S∞ : C∞(BR) 
→ L2(Sd−1) as

S∞ := S∞
∂ ◦ B, Bψ :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ψ�∂ D for (2.35),

∂ψ

∂nnn
�∂ D for (2.36),

ψ + λ
∂ψ

∂nnn
�∂ D for (2.37).

(2.38)

Using (2.28) and the estimates of Lemma 2.1, we obtain that for uinc the B-restrictions on the terms of
the expansion (2.27) form sequences that converge in Z(∂ D), which implies

S∞uinc =
∑
���∈Id

p���

(
S∞ Ẽ���

)
in L2(Sd−1). (2.39)

For each ��� ∈ Id , since S∞ Ẽ��� ∈ L2(Sd−1), there exists coefficients t���′,��� such that(
S∞ Ẽ���

)
(̂xxx) =

∑
���′∈Id

t���′,���E∞
���′ (̂xxx) =

∑
���′∈Id

t���′,���Y���′ (̂xxx), x̂xx ∈ Sd−1. (2.40)

Using the orthonormality of the basis function in (2.10) with respect to the inner product 〈·, ·〉 in
L2(Sd−1), we get

t���′,��� = 〈S∞ Ẽ���, Y���′ 〉, ���′, ��� ∈ Id . (2.41)

1Of course, S∞
∂ will be different for each boundary condition. For the sake of lean notation this dependence will be suppressed.
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Using (2.40) in (2.39), we obtain

u∞(̂xxx) = S∞uinc(̂xxx) =
∑
���′∈Id

⎡⎣∑
���∈Id

t���′,��� p���

⎤⎦ E∞
���′ (̂xxx), x̂xx ∈ Sd−1. (2.42)

Comparing (2.42) with (2.33) shows that the incident field and the scattered/far-field coefficient
sequences ppp = (p���)���∈Id and aaa = (a���)���∈Id are connected via the (infinite) T-matrix T = [

t���′,���
]
���′,���∈Id

according to

aaa = T ppp. (2.43)

2.3 Reduced basis: scattering matrix, far field, scattered field

Having described the infinite T-matrix in the previous section, we now discuss truncation of the
T-matrix to obtain an algorithm that can be realized in practice. For a fixed pair of truncation parameters
N ′, N ∈ N, using the representation (2.41), we define the truncated N ′

d × Nd reduced basis acoustic
scattering T-matrix as

TN ′,N = [
t���′,���

]
���′∈Id,N ′ ,���∈Id,N

. (2.44)

The N ′
d × Nd truncated T-matrix can be precomputed and stored for any chosen scatterer, independent

of the incident wave. Using the representation of uinc in (2.27) and the associated truncated vector
ppp(N ) = (p���)���∈Id,N

(which is known analytically for the physically important plane-wave and point-

source incident waves), we can compute the vector aaa(N ′,N ) = (
a(N ′,N )

���′
)
���′∈I′d,N

using

aaa(N ′,N ) = TN ′,N ppp(N ). (2.45)

In particular, using (2.33)–(2.42), for an incident field uinc with representation (2.27), our approximation
to the induced far field is

u∞
(N ′,N ) =

∑
���′∈Id,N ′

⎡⎣ ∑
���∈Id,N

t���′,��� p���

⎤⎦ E∞
���′ =

∑
���′∈Id,N ′

⎡⎣ ∑
���∈Id,N

t���′,��� p���

⎤⎦ Y���′ . (2.46)

Our approximation to the scattered field in (2.34) is us
(N ′,N ), which is computed similarly, using the

T-matrix with E∞
���′ in (2.46) replaced with E���′ .

3. Convergence analysis with parameter estimates

In this section we prove exponential convergence of the approximate online output far field computed
using the offline-based T-matrix, truncated using an a priori bound on its size. The a priori bound
depends only on the wavenumber and diameter of the scatterer and is independent of the shape of the
scatterer. The main result is Theorem 3.5 which establishes an error bound for the approximate far field
induced by an incident field in the space Xwww. This error bound can be computed explicitly in the case
of incident plane waves or point-source incidence by analysing the regularity of each of these classes of
incident field. Such specific error bounds are given in Sections 3.1 and 3.2, respectively.

In more detail, in this section we prove that u∞
(N ′,N ) converges exponentially to u∞ in L2(Sd−1) with

respect to the truncation parameters N , N ′.
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LEMMA 3.1 Let uinc ∈ Xwww. Then

∥∥∥u∞ − u∞
(N ′,N )

∥∥∥2

L2(Sd−1)

�
∥∥∥uinc

∥∥∥2

Xwww

⎧⎨⎩∑
���∈Id

1

w���

∥∥S∞ Ẽ��� − S∞
N ′ Ẽ���

∥∥2
L2(Sd−1)

+
∑

���∈Id\Id,N

1

w���

∥∥S∞ Ẽ���

∥∥2
L2(Sd−1)

⎫⎬⎭ , (3.1)

where S∞
N ′ Ẽ��� is the L2(Sd−1) orthogonal projection of S∞ Ẽ��� onto span

{
Y���′ : ���′ ∈ Id,N ′

}
.

Proof. Using (2.42) and (2.46),

u∞ − u∞
(N ′,N ) =

∑
���′∈Id\Id,N ′

⎡⎣∑
���∈Id

t���′,��� p���

⎤⎦ Y���′ +
∑

���′∈Id,N ′

⎡⎣ ∑
���∈Id\Id,N

t���′,��� p���

⎤⎦ Y���′ . (3.2)

Hence, by the orthonormality of the basis functions Y���′ of L2(Sd−1),

∥∥∥u∞ − u∞
(N ′,N )

∥∥∥2

L2(Sd−1)
=

∑
���′∈Id\Id,N ′

∣∣∣∣∣∣
∑
���∈Id

t���′,���√
w���

√
w��� p���

∣∣∣∣∣∣
2

+
∑

���′∈Id,N ′

∣∣∣∣∣∣
∑

���∈Id\Id,N

t���′,���√
w���

√
w��� p���

∣∣∣∣∣∣
2

. (3.3)

Hence, the Cauchy–Schwarz inequality and (2.27) yield

∥∥∥u∞ − u∞
(N ′,N )

∥∥∥2

L2(Sd−1)
�

∥∥∥uinc
∥∥∥2

Xwww

⎡⎢⎣ ∑
���′∈Id\Id,N ′

∑
���∈Id

|t���′,���|2
w���

+
∑

���′∈Id,N ′

∑
���∈Id\Id,N

|t���′,���|2
w���

⎤⎥⎦

=
∥∥∥uinc

∥∥∥2

Xwww

⎡⎢⎣∑
���∈Id

1

w���

∑
���′∈Id\Id,N ′

|t���′,���|2 +
∑

���∈Id\Id,N

1

w���

∑
���′∈Id

|t���′,���|2
⎤⎥⎦

=
∥∥∥uinc

∥∥∥2

Xwww

⎡⎢⎣∑
���∈Id

1

w���

∑
���′∈Id\Id,N ′

|t���′,���|2 +
∑

���∈Id\Id,N

1

w���

∥∥S∞ Ẽ���

∥∥2
L2(Sd−1)

⎤⎥⎦ ,

where in the last line we used (2.40). Now the result (3.1) follows from using

(S∞
N ′ Ẽ���)(̂xxx) =

∑
���′∈Id,N ′

t���′,���Y���′ (̂xxx), x̂xx ∈ Sd−1, (3.4)

and the identity ∥∥S∞ Ẽ��� − S∞
N ′ Ẽ���

∥∥2
L2(Sd−1)

=
∑

���′∈Id\Id,N ′

|t���′,���|2. (3.5)

�
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Next we estimate the first term in (3.1). We recall that ρD is the radius of the scatterer D, that
R > ρD is fixed and that k is the wavenumber of the obstacle scattering problem.

LEMMA 3.2 The restrictions of the incident base fields from (2.15) satisfy

∥∥Ẽ����∂ D
∥∥

Z(∂ D)
� C

(ρD

R

)|���| ·
⎧⎨⎩|���|d/4−1/2 for a sound-soft scatterer,

1 for boundary conditions (2.3) and (2.4).

Proof. The estimate is an immediate consequence of the bounds (2.16) and (2.17) from Lemma 2.1 and
the standard interpolation estimate ‖u‖H1/2(∂ D) � C ‖u‖1/2

H1(∂ D)
‖u‖1/2

L2(∂ D)
. �

LEMMA 3.3 For all ��� ∈ Id , and assuming the threshold condition N ′ > Rk/2, we have the estimate

∥∥S∞ Ẽ��� − S∞
N ′ Ẽ���

∥∥2
L2(Sd−1)

=
∑

���′∈Id\Id,N ′

|t���′,���|2 � C

(
Rke

2N ′

)2N ′ (ρD

R

)2|���| |���|d/2−1. (3.6)

Proof. We introduce the operators SR : Z(∂ D) 
→ L2(∂ BR), SRg := u�∂ BR , where u ∈ H1
loc(R

d \ Ω)
is the solution of one of the exterior boundary value problems from (2.35) to (2.37). Obviously, SR is a
bounded linear operator. We denote by ‖SR‖ the norm of SR as a mapping Z(∂ D) 
→ L2(∂ BR). This
norm may be incorporated into constants, whenever appropriate.

Following the considerations in Colton & Kress (1998, Section 2.5) for d = 3 and in Kirsch (1986,
Section 4) for d = 2, we find that the coefficients a���′ of the expansion (2.12) of u∞, which is the far-field
pattern of the solution u induced by the boundary data g, satisfy

∑
���′∈Id

(
2|���′|
Rke

)2|���′|
|a���′ |2 � C(Rk)1−d ‖u‖2

L2(∂ BR)
� C(Rk)1−d ‖SR‖ ‖g‖Z(∂ D) . (3.7)

Thus, defining the Hilbert space

YR =
⎧⎨⎩ψ =

∑
���′∈Id

g���′Y���′ :
∑
���′∈Id

(
2|���′|
Rke

)2|���′|
|g���′ |2 < ∞

⎫⎬⎭ ⊂ L2(Sd−1), (3.8)

equipped with norm ‖ψ‖2
YR

= ∑
���′∈Id

(
2|���′|
Rke

)2|���′| |g���|2, we find that S∞
∂ : Z(∂ D) → YR is a bounded

linear operator. Note that the t���′,��� are the expansion coefficients of S∞ Ẽ���. Consequently, using (3.5),∥∥S∞ Ẽ��� − S∞
N ′ Ẽ���

∥∥2
L2(Sd−1)

=
∑

���′∈Id\Id,N ′

|t���′,���|2

=
∑

���′∈Id\Id,N ′

(
Rke

2|���′|
)2|���′| (2|���′|

Rke

)2|���′|
|t���′,���|2

=
∑

���′∈Id\Id,N ′

fRke(2|���′|)
(

2|���′|
Rke

)2|���′|
|t���′,���|2, (3.9)

M. GANESH ET AL.1360



where for a fixed a > 0,

fa(x) = (a/x)x , x > 0. (3.10)

It is easy to check that limx→0 fa(x) = 1, that limx→∞ fa(x) = 0, that fa(x) attains its maximum
at x∗ = a/e and that fa(x) is a decreasing function for x > x∗. Using these properties in (3.9), for
N ′ > Rk/2,

∥∥S∞ Ẽ��� − S∞
N ′ Ẽ���

∥∥2
L2(Sd−1)

�
(

Rke

2N ′

)2N ′ ∑
���′∈Id\Id,N ′

(
2|���′|
Rke

)2|���′|
|t���′,���|2

�
(

Rke

2N ′

)2N ′ ∥∥S∞ Ẽ���

∥∥2
YR

�C

(
Rke

2N ′

)2N ′

C ‖SR‖ ∥∥Ẽ���

∥∥2
Z(∂ D)

�C ‖SR‖
(

Rke

2N ′

)2N ′ (ρD

R

)2|���| |���|d/2−1,

where in the last step we invoked the estimates of Lemma 3.2 and used a common upper bound. �
LEMMA 3.4 For all R > ρD and ��� ∈ Id ,

∥∥S∞ Ẽ���

∥∥2
L2(Sd−1)

� C
(ρD

R

)2|���| |���|d/2−1. (3.11)

Proof. Appealing to the continuity of S∞
∂ : Z(∂ D) 
→ L2(Sd−1), the estimate is immediate from

Lemma 3.2. �
Using (3.6) and (3.11) in (3.1), we get the following result.

THEOREM 3.5 Let uinc ∈ Xwww. Assuming the threshold condition N ′ > Rk/2, there holds∥∥∥u∞ − u∞
(N ′,N )

∥∥∥2

L2(Sd−1)

� C
∥∥∥uinc

∥∥∥2

Xwww

⎧⎨⎩
(

Rke

2N ′

)2N ′ ∑
���∈Id

|���|d/2−1

w���

(ρD

R

)2|���| +
∑

���∈Id\Id,N

|���|d/2−1

w���

(ρD

R

)2|���|
⎫⎬⎭ . (3.12)

3.1 Convergence analysis for plane-wave incidence

In this section we extend the error bound in Theorem 3.5 to the case of plane-wave incidence by
analysing the regularity of the plane-wave incident field.

Let uinc(xxx) = exp(ikxxx · d̂dd) be the plane wave with fixed incident direction d̂dd impinging on the
obstacle D ⊆ R

d for d = 2, 3. The expansion coefficients of the incident wave in the expansion (2.27)
are (Colton & Kress, 1998, Equation (3.66) for d = 2, Equation (2.45) for d = 3)
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p��� =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√
2π

i|���|

H (1)
|���| (k R)

Y���(̂ddd) for d = 2,

4π
i|���|

h(1)
|���| (k R)

Y���(̂ddd) for d = 3.

(3.13)

From (2.20), it is easy to see that the coefficients p��� satisfy the decay bound

|p���| � C ·

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

H (1)
|���| (k R)

, for d = 2

|���|1/2

h(1)
|���| (k R)

, for d = 3

��� ∈ Id . (3.14)

Hence, using the asymptotics of the Hankel and spherical Hankel functions for |���| → ∞ (Colton &
Kress, 1998, Equations (3.58) and (2.39)), if we choose (see Fig. 2)

w��� = |���|−d
(

2|���|
Rke

)2|���|
, (3.15)

it is easy to see that uinc ∈ Xwww. Also

|���|d/2−1

w���

(ρD

R

)2|���| = |���|3d/2−1
(

ρDke

2|���|
)2|���|

= g
3d/2−1
Rke (2|���|)

(ρD

R

)2|���|
(3.16)

with

g p
a (x) =

( x

2

)p (a

x

)x
, a, p > 0. (3.17)

If we write g p
a (x) = exp(ϕ(x)), we see that the derivative ϕ′(x) is a strictly decreasing function with

ϕ′( a
e ) = ap

e > 0 and ϕ′( a
e + p) < 0. Hence, g p

a (x) has a single global maximum at x∗(a, p) with
x∗(a, p) � a

e + p (see Fig. 3). Thus, we obtain for N > Rk/2 + 3d
4 − 1

2 ,∑
���∈Id\Id,N

|���|d/2−1

w���

(ρD

R

)2|���|
� g

3d/2−1
Rke (2N )

∑
���∈Id\Id,N

(ρD

R

)2|���|
� C N 3d/2−1

(
Rke

2N

)2N (ρD

R

)2N
.

(3.18)
The function ϕ(x) introduced above is concave, increasing for x � a

e and decreasing for x � a
e + p.

It can be bounded by the minimum of the tangent lines at these two sites, which leads to the estimate
g p

a (x) � (a/2)p exp( a
e ); cf. Fig. 3. From this we conclude that

∑
���∈Id

|���|d/2−1

w���

(ρD

R

)2|���| =
∑
���∈Id

g
3d/2−1
Rke (2|���|)

(ρD

R

)2|���|

� eRk(Rke/2)
3d/2−1

∑
���∈Id

(ρD

R

)2|���|
� CeRk(Rke/2)

3d/2−1. (3.19)
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FIG. 2. The weights w��� from (3.15).

FIG. 3. x∗(p, a) (left) and g p
a (x∗) (right) as functions of a for the relevant cases p = 2, 3.5.

Using (3.16), (3.18) and (3.19) in (3.12), we get the following exponential convergence of the far field
obtained using the truncated T-matrix TN ′,N .

THEOREM 3.6 Let uinc(xxx) = exp(ikxxx · d̂dd), d̂dd ∈ Sd−1 for d = 2, 3. If the threshold conditions N ′ >
Rk/2 and N > Rk/2 + 3d

4 − 1
2 are satisfied, there holds the estimate

∥∥∥u∞ − u∞
(N ′,N )

∥∥∥2

L2(Sd−1)
� C

{
eRk(Rke/2)

3d/2−1
(

Rke

2N ′

)2N ′

+ N 3d/2−1
(

ρDke

2N

)2N
}

. (3.20)

3.2 Convergence analysis for point-source incidence

In this section we extend the error bound in Theorem 3.5 to the case of point-source incidence by
analysing the regularity of the point-source induced incident field.
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Let xxx0 ∈ R
d for d = 2, 3 with |xxx0| > R. Consider the incident field created by a point-source

located at xxx0; that is,

uinc(xxx) =

⎧⎪⎪⎨⎪⎪⎩
H (1)

0 (k|xxx − xxx0|), d = 2,

exp(ik|xxx − xxx0|)
k|xxx − xxx0| , d = 3.

(3.21)

The expansion coefficients of the incident wave in the expansion (2.27) are (Colton & Kress, 1998,
Equation (3.65) for d = 2 and Equation (2.42) for d = 3)

p��� =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√
2π

H (1)
|���| (k|xxx0|)

H (1)
|���| (k R)

Y���(̂xxx0) for d = 2,

4π ik
h(1)

|�| (k|xxx0|)
h(1)

|���| (k R)
Y���(̂xxx0) for d = 3,

��� ∈ Id . (3.22)

By (2.20) it is easy to see that the coefficients p��� satisfy the decay bounds

|p���| � C ·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∣∣
H (1)

|���| (k|xxx0|)
H (1)

|���| (k R)

∣∣∣∣∣∣ for d = 2,

|���|1/2

∣∣∣∣∣∣
h(1)

|���| (k|xxx0|)
h(1)

|���| (k R)

∣∣∣∣∣∣ for d = 3,

��� ∈ Id . (3.23)

Hence, using the asymptotics of the Hankel and spherical Hankel functions for |���| → ∞, we arrive at
the bound

|p���| � C |���|d/2−1
(

R

|xxx0|
)|���|

, ��� ∈ Id . (3.24)

Thus, if we choose w0 := 1 and

w��� := 1

|���|d
( |xxx0|

R

)2|���|
, ��� ∈ Id , |���| > 0, (3.25)

it is easy to see that uinc ∈ Xwww with
∥∥uinc

∥∥
Xwww

bounded uniformly in xxx0 and k. In addition,

1

w���

(ρD

R

)2|���| |���|d/2−1 = |���|3d/2−1
(

ρD

|xxx0|
)2|���|

, (3.26)

which, using bounds for sums of the form
∞∑

k=N
k pqk , |q| < 1, provides the estimates (N > 1)

∑
���∈Id\Id,N

1

w���

(ρD

R

)2|���| |���|d/2−1 � C

(
ρD

|xxx0|
)2N

·

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N 2

(1 − (ρD/|xxx0|)2)3
for d = 2,

N 4.5

(1 − (ρD/|xxx0|)2)5.5
for d = 3.

(3.27)
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Using (3.27) and ρD < R < |xxx0| in (3.12) of Theorem 3.5, we get the following exponential conver-
gence of the far-field approximation obtained using the truncated T-matrix TN ′,N .

THEOREM 3.7 Let uinc be as in (3.21) with |xxx0| > R. Under the threshold condition N ′ > Rk/2,

∥∥∥u∞ − u∞
(N ′,N )

∥∥∥2

L2(Sd−1)
� C

(1 − (ρD/|xxx0|)2)q+1

{(
Rke

2N ′

)2N ′

+ N q
(

ρD

|xxx0|
)2N

}
, (3.28)

with q = 2 for d = 2 and q = 4.5 for d = 3.

Note that the inevitable blow-up as the point-source approaches D is reflected in the estimate (3.28).

3.3 Convergence analysis with approximate far fields

The analysis above is based on the assumption that the far-field S∞ Ẽ��� required to construct the entries
t���′,��� for ���′ ∈ Id,N ′ and ��� ∈ Id,N in (2.41) for the reduced basis T-matrix can be computed exactly. In
practice, the computation of S∞ Ẽ��� requires numerical algorithms to solve (offline) the wave propagation
model (2.1)–(2.5) with uinc = Ẽ���. In our approach, any numerical method (such as the finite element,
boundary element, spectral or fundamental solution methods) can be used to solve the model. In this
section, we complete our analysis by establishing bounds on the error in the far field obtained using a
numerically computed T-matrix.

Let 0 < ε(���) < 1 be the relative approximation error in the numerically computed far field with
uinc = Ẽ���, ��� ∈ Id,N . That is, we assume that the numerical method is such that the numerical far-field
S∞

h Ẽ��� approximating S∞ Ẽ��� satisfies

∥∥S∞
h Ẽ��� − S∞ Ẽ���

∥∥
L2(Sd−1)

� ε(���) � ε, ��� ∈ Id,N . (3.29)

A different S∞
h may be employed for different incident fields Ẽ���, to obtain a fixed accuracy 0 < ε < 1

so that ε(���) � ε, ��� ∈ Id,N .
Let t���′,���,h and u∞

(N ′,N ,h) be the associated approximations to t���′,��� and u∞
(N ′,N ), respectively. That is,

based on (2.41) and (2.46), we have

t���′,��� = 〈S∞ Ẽ���, Y���′ 〉, t���′,���,h = 〈S∞
h Ẽ���, Y���′ 〉, ���′ ∈ Id,N ′ , ��� ∈ Id,N . (3.30)

u∞
(N ′,N ) =

∑
���′∈Id,N ′

⎡⎣ ∑
���∈Id,N

t���′,��� p���

⎤⎦ Y���′ , u∞
(N ′,N ,h) =

∑
���′∈Id,N ′

⎡⎣ ∑
���∈Id,N

t���′,���,h p���

⎤⎦ Y���′ . (3.31)

Using (3.30) and (3.29), we get

∑
���′∈Id,N ′

∣∣t���′,���,h − t���′,���
∣∣2 � ∑

���′∈Id,N ′

∣∣∣〈(S∞
h − S∞)

Ẽ���, Y���′
〉∣∣∣2 = ε(���)2. (3.32)
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Again using the L2(Sd−1) orthonormality of the Y���′ , (3.31) and (3.32), we get∥∥∥u∞
(N ′,N ,h) − u∞

(N ′,N )

∥∥∥2

L2(Sd−1)
�

∑
���∈Id,N

∑
���′∈Id,N ′

|t���′,���,h − t���′,���|2 |p���|2

�
∑

���∈Id,N

w��� |p���|2
∑

���′∈Id,N ′

1

w���

∣∣t���′,���,h − t���′,���
∣∣2 � C

∥∥∥uinc
∥∥∥2

Xwww

⎧⎨⎩ ∑
���∈Id,N

[ε(���)]2

w���

⎫⎬⎭ . (3.33)

Since ∥∥∥u∞ − u∞
(N ′,N ,h)

∥∥∥2

L2(Sd−1)
� 2

∥∥∥u∞ − u∞
(N ′,N )

∥∥∥2

L2(Sd−1)
+ 2

∥∥∥u∞
(N ′,N ,h) − u∞

(N ′,N )

∥∥∥2

L2(Sd−1)
,

Theorem 3.5 and (3.33) furnish the following result for the fully discrete reduced basis T-matrix method.

THEOREM 3.8 If uinc ∈ Xw(∂ D) and N ′ > Rk/2,∥∥∥u∞ − u∞
(N ′,N ,h)

∥∥∥2

L2(Sd−1)
� C

∥∥∥uinc
∥∥∥2

Xwww

×
⎧⎨⎩

(
Rke

2N ′

)2N ′ ∑
���∈Id

1

w���

(ρD

R

)2|���| |���|d/2−1 +
∑

���∈Id\Id,N

1

w���

(ρD

R

)2|���| |���|d/2−1 +
∑

���∈Id,N

[ε(���)]2

w���

⎫⎬⎭ .

(3.34)

For stable online computations, it is important to have a guaranteed accuracy for all offline compu-
tations; that is, ε(���) � ε for all ��� ∈ Id,N . Henceforth, we assume this. Then, in the case of plane-wave
incidence (see Section 3.1), by the definition (3.15) of the weights, we obtain analogously to (3.19)

∑
���∈Id,N

1

w���
�

∑
���∈Id

(
Rke

2|���|
)2|���|

|���|d �
∞∑
j=1

(
Rke

2 j

)2 j

(2 j)2d−2

�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(Rke)2

∞∑
j=0

(
Rke
2 j

)2 j
for d = 2,

4(Rke)2 + (Rke)4
∞∑
j=0

(
Rke
2 j

)2 j
for d = 3,

�C
(
(Rk)2 + eRk(Rk)2d−2

)
, (3.35)

where the bound on the infinite sum is derived from the integral of the function g0
a(x) = ( a

x )x . In Fig. 4
we demonstrate numerically that the bound (3.35) holds with C = 10. Estimates on the constant C could
be derived by investigation of the upper bound of an integral of the function g0

a(x), but the calculations
are lengthy and we skip such details.

Hence, from Theorem 3.8 in combination with Theorem 3.6, we get the following convergence result
for the far field computed using the fully discrete reduced basis T-matrix TN ′,N ,h .
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.

FIG. 4. Values of
∑

���∈Id
(

ae

2|���|
)2|���|

|���|d with a > 0 and bounds from (3.35) with C = 10. The figure on the left shows the sum

and bound for small a and is a magnification of the figure on the right.

THEOREM 3.9 Let uinc(xxx) = exp(ikxxx ·d̂dd), d = 2, 3, and assume that N ′ > Rk/2 and N > Rk/2+d−1.
Then∥∥∥u∞ − u∞

(N ′,N ,h)

∥∥∥2

L2(Sd−1)
�C

{
eRk(Rke/2)

3d/2−1
(

Rke

2N ′

)2N ′

+N 3d/2−1
(

ρDke

2N

)2N

+
(
(Rk)2 + eRk(Rk)2d−1

)
ε2

}
, (3.36)

with C > 0 depending only on D and Rk.

In the case of point-source incidence (see Section 3.2) one finds that (cf. (3.27)),∑
���∈Id,N

1

w���
�

∑
���∈Id

|���|d
(

R

|xxx0|
)2|���|

� C

(1 − (R/|xxx0|)2)2d−1
. (3.37)

Again using Theorem 3.8, for the point-source induced incident waves, we get the following conver-
gence result for the far field computed using the fully discrete reduced basis T-matrix TN ′,N ,h .

THEOREM 3.10 For d = 2, 3, let uinc be as in (3.21) with |xxx0| > R. For N ′ > Rk/2,∥∥∥u∞ − u∞
(N ′,N ,h)

∥∥∥2

L2(Sd−1)
� C

(1 − (R/|xxx0|)2)2d−1

{(
Rke

2N ′

)2N ′

+ N q
(

ρD

|xxx0|
)2N

+ ε2

}
, (3.38)

with q = 2 for d = 2, and q = 4.5 for d = 3.

4. Numerical results

In this section, we investigate numerically the estimates of Theorems 3.6 and 3.7 by showing exponential
convergence of the simulated far field for several two- and three-dimensional sound-soft scatterers. For
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each obstacle, we simulate scattering of incident plane waves and of waves originating from point-
sources outside a ball of radius ρD circumscribing the scatterer.

Our three-dimensional obstacles are a sphere and a nonconvex obstacle that models an erythrocyte
(a red blood cell, Wriedt et al., 2006). Our two-dimensional obstacles are their two-dimensional cross-
section or cross-sectional counterparts, namely, a circle and a peanut-shaped Cassini oval (Hellmers

FIG. 5. The error eN in (4.1) and theoretical bounds in (3.20) and (3.28) for plane-wave and point-source incidence (with k = 10)
on a circle (left) and a sphere (right).

FIG. 6. The error eN in (4.2) and theoretical bounds in (3.20) and (3.28) for plane-wave and point-source incidence (with k = 10)
on a peanut (left) and an erythrocyte (right).
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et al., 2006). All our scatterers are normalized so that they have unit diameter; that is, ρD = 0.5. In our
point-source experiments, we chose |xxx0| = 3 so that ρD/|xxx0| = 0.17.

In all our experiments, for various parameter values N ′ = N , we first compute entries in the reduced
basis truncated T-matrix TN ,N ,h using (3.30), with S∞ Ẽ���, ��� ∈ Id , computed with high accuracy using
the high-order algorithm in Ganesh & Graham (2004) for d = 3 and in Barnett & Betcke (2008) for
d = 2. In order to demonstrate the exponential convergence of our reduced basis T-matrix algorithm,

FIG. 7. The error eN in (4.1) and theoretical bounds in (3.20) and (3.28) for plane-wave and point-source incidence (with k = 100)
on a circle (left) and a sphere (right).

FIG. 8. The error eN in (4.2) and theoretical bounds in (3.20) and (3.28) for plane-wave and point-source incidence (with k = 100)
on a peanut (left) and an erythrocyte (right).
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FIG. 9. The monostatic ACS of the Cassini oval (2D) for plane-wave incidence with k = 100.

the discretization parameters in these high-order algorithms were chosen, based on various experiments,
so that ε in (3.29) is of the order 10−15 for the circle and sphere and 10−10 for the nonconvex obstacles.
This ensures that for our experiments, the terms with ε2 < 10−20 are much smaller than the other terms
in (3.36) and (3.38) and, hence, we omit the index h.

Using TN ,N , we computed the approximate far-field u∞
(N ,N ) via (3.31), and the scattered-field us

(N ′,N )

with E∞
���′ in (2.46) replaced with E���′ .

For the circle and sphere obstacles, the far field induced by the incident plane wave or point-source
is known analytically in (Mie) series form. Using the optimal truncation parameter given in Ganesh &
Hawkins (2006) and Wiscombe (1990) (which depends on kρD), we truncate the Mie series to very high
accuracy and obtain the true far-field u∞. Thus, for these obstacles we are able to compute the relative
error,

eN =
∥∥u∞ − u∞

(N ,N )

∥∥
L2(Sd−1)

‖u∞‖L2(Sd−1)

, (4.1)

in our approximation, u∞
(N ,N ,h), to the true far-field u∞.

The erythrocyte and Cassini oval scatterers are considered challenging obstacles for scattering sim-
ulations because they have nonconvex regions that give rise to multiple reflections. The scattered field
for these scatterers is not known analytically. For these scatterers we demonstrate the convergence of
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FIG. 10. The monostatic ACS of the erythrocyte (3D) for plane-wave incidence with k = 100.

the approximation, u∞
(N ,N ), with respect to N by tabulating

eN =

∥∥∥u∞
(M,M) − u∞

(N ,N )

∥∥∥
L2(Sd−1)∥∥∥u∞

(M,M)

∥∥∥
L2(Sd−1)

, (4.2)

where u∞
(M,M) is a reference solution, computed using the T-matrix with M fixed sufficiently large so

that the reference solution is a highly accurate approximation to the exact far field. We approximate the
L2(S

d−1) norms in (4.1) and (4.2) using Parseval’s inequality. Using (3.13) and (3.22), it is easy to see
that eN in (4.1) and (4.2) is independent of the choice of R used in the theoretical analysis for estimating
the errors in (3.20) and (3.28).

Values of eN in Figs 5–8 substantiate the exponential convergence established in Theorems 3.6
and 3.7 for the plane-wave and point-source incidence, respectively, on a circle, sphere, peanut and
erythrocyte with k = 10, 100. In addition, these figures demonstrate that the theoretical bounds are
optimal for some appropriate choice of C and R in (3.20) and (3.28). For each plot in Figs 5–8, the
constant C was obtained by fitting with the last data eN , leading to an appropriate value R closely
matching the experimental observation.
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FIG. 11. The total exterior field of the Cassini oval (2D) for plane-wave incidence with k = 100.

FIG. 12. The total exterior field of the erythrocyte (3D) for point-source incidence with k = 100.

M. GANESH ET AL.1372



One of the advantages of the offline computation and storage of the reduced basis T-matrix is the
quick online computation of the ACS for many different incident fields. In particular, this is very useful
to simulate the monostatic ACS, which requires thousands of incident directions. In Figs 9 and 10, we
visualize our reduced basis T-matrix based monostatic ACS simulations for k = 100.

In Figs 11 and 12, for k = 100, we visualize the reduced basis T-matrix based total field outside
the ball of radius R = ρD + 0.05 circumscribing the nonconvex obstacles of radius ρD for a plane
wave (with incident direction xxx(π/6)) impinging on the Cassini oval and a point-source (located at
−xxx(5π/6, 0)) induced incident wave impinging on the erythrocyte.
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