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The numerical discretization of problems with stochastic data or stochastic parameters generally involves
the introduction of coordinates that describe the stochastic behaviour, such as coefficients in a series
expansion or values at discrete points. The series expansion of a Gaussian field with respect to any or-
thonormal basis of its Cameron—Martin space has independent standard normal coefficients. A standard
choice for numerical simulations is the Karhuneneize series, which is based on eigenfunctions of the
covariance operator. We suggest an alternative, the hierarchic discrete spectral expansion, which can be
constructed directly from the covariance kernel. The resulting basis functions are often well localized,
and the convergence of the series expansion seems to be comparable to that of the Karlaween—Lo
series. We provide explicit formulas for particular cases and general numerical methods for computing
exact representations of such bases. Finally, we relate our approach to numerical discretizations based on
replacing a random field by its values on a finite set.

Keywords Gaussian random fields; simulation; Karhuneréy® series; Cameron—Martin space;
reproducing kernel Hilbert space; covariance kernel; representation of random fields.

1. Introduction

The numerical discretization of problems with stochastic data or stochastic parameters requires that
the random inputs are approximated by finite quantities. This is generally done in one of two ways.
Either the random data are expanded in a series, which can be truncated for numerical computations
(see, e.gBabuskaet al, 2004 Frauenfeldeet al, 2005 Todor & Schwah2007 Nobile et al,, 2008

Bieri et al,, 2009 Wan & Karniadakis2009, or it is replaced by a finite-dimensional random variable,
describing, for example, the value of a random field on a discrete set of points, or a projection of the
field onto a finite-dimensional function space (see, Bigtrich & Newsam 1997 Matthies & Keesg

2005 Grahamet al,, 2010.

A standard approach, falling strictly into the first category, is to expand a random field into its
Karhunen-Leve series (see, e.§chwab & Todor2006. For Gaussian fields, the coefficients in this
series are independent standard normal random variables.

The independence of these coefficients is crucial to many numerical methods. For example, in Monte
Carlo simulation coefficient sequences can be generated by independent draws of pseudorandom num-
bers. The construction of polynomial chaos bases as tensor products of orthonormal bases with respect
to the distributions of the coefficients also requires that these are independent. Similarly, in collocation
and quasi-Monte Carlo methods constructions of collocation points make use of the product structure of
the joint distribution of the coefficients.

Nevertheless, the Karhunen-&x® series is often ill suited for numerical computations, as it
requires eigenfunctions of the covariance operator. These are usually not known exactly and
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are expensive to approximate numerically. Furthermore, the eigenfunctions generally have global
supports.

We suggest an alternative to the Karhuneredsmseries for general continuous Gaussian fields on
bounded domains, which we call theerarchic discrete spectral expansiof\ssuming that the covari-
ance kernel is given, the basis functions in our series expansion can be constructed exactly. As these
form an orthonormal basis of the Cameron—Martin space, independence of the coefficients in the series
expansion is preserved.

Our method does not assume any particular structure of the covariance kernel or of the underly-
ing domain. Alternative methods based on the fast Fourier transform and wavelet expansions exist for
stationary Gaussian fieldRipley, 1987 Elliott & Majda, 1994 Elliott et al,, 1997 Lang & Potthoff
2009 sometimes with further restrictions on the domain and the covariance.

In Section2 we provide a brief overview of the theory of Gaussian measures on Banach spaces and
lay the theoretical foundation for our basis in Proposi2ah We refer toVakhaniaet al. (1987, Chapter
I1l) and Bogachey1998 Chapters 2, 3) for further details.

We consider the case of an exponential covariance in one dimension in Sgdionthis setting,
we derive explicit formulas for a sequence of basis functions. In Se8twe apply our approach to
the Wiener measure, giving an alternative derivation of the well-known piecewise linear construction of
Brownian motion.

The numerical construction of a hierarchic sequence of basis functions is discussed in £&ton
consider in particular two special cases of our general algorithm. Gram—-Schmidt orthogonalization in
the Cameron—Martin space is closely related to the Cholesky decomposition of the covariance matrix.
Hierarchic spectral decomposition of the covariance matrix can also be used to exactly construct an
orthonormal basis of the Cameron—Martin space, providing an alternative interpretation of the naive
approximation of the Karhunen—Ewe series given by eigenvectors and eigenvalues of the covariance
matrix.

Finally, in Sectiorb we provide numerical examples of hierarchic discrete spectral bases computed
by the two aforementioned special cases of our algorithm for several covariance kernels. We study in
particular the decay of these basis functions.

2. The Cameron—Martin space of a Gaussian distribution
2.1 Gaussian measures on Banach spaces

Let X be a real separable Banach space with Beralgebraz(X) and lety be a Gaussian measure
on (X, (X)), i.e. for allp € X*, the image measurg(y) on R is Gaussian. ByBogachev(1998
Theorem 3.2.3) there is a unique elemante X, called themeanof y, such that

o@) = [ otyar ) vpex. 2.1)
Thecovariance operator Ris given formally by
Ryo.v) = [ oh=a)uh—a)dr ) Vo,yeX 2.2)

Again by Bogachew(1998 Theorem 3.2.3)4.2) defines a unique linear operatBy: X* — X. We
define

o(p) = (Rp,p), ¢eX. (2.3)
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LEMMA 2.1 The assignmenih| := o (p) if h = R, ¢ for ¢ € X* defines a norm on rangg, ) c X.

Proof. Lety, y € X* with R, 9 = R, w. Using the symmetry ofR, -, -),

(Ryg,0) =(Rw,0) =(Ryp, ) =(R,yw, w) .

Therefore, |R, ¢l is well defined on rangd®,). It is a norm since it coincides with

llo(: —ay)llL2)- U
We define theCameron—Martin space () as the completion of rangR, ) with respect to the
norm from Lemm&.1 By Bogache1998 Theorem 3.2.7H (y ) is a separable Hilbert space, and due
to Bogacheu1998 Proposition 2.4.6H (y ) embeds continuously int¥. Furthermore, byBogachev

(1998 Lemma 3.2.2H (y ) is independent of the spaéeon whichy is considered.

LEMMA 2.2 Forallp € X*and allf € H(y),
(£, Ryo)ng) = o(h). (2.4)
Proof. Let f = R, y for y € X*. Then using the parallelogram identity,

(f, Ry(”)H(y) = (Ry v, Ry¢)H(y) = (Ry W, p) = (0(f) .
This extends to alf € H(y) by density. O

LEMMA 2.3 Letp € X* and let(pn)neny C X* be bounded witlp,(h) — ¢(h) for all h € X. Then
Ryon = R,pin H(y).

Proof. We assume without loss of generality tiyat= 0. By definition

o (9n)? = (R, 9, on) =/X¢n(h—ay)2dy(h) < ||¢n||2x*/x||h—ay 12 dy (h) .

The last integral is finite as a consequence of Fernique’s thedfemifue 1970; see alsBogachev

(1998 Theorem 2.8.5). Therefore, by dominated convergen@s,) — o (¢) = 0 and thusR, o — 0

in H(y). O
The conditions of Lemma.3 are satisfied, e.g. if, — ¢, since weakly convergent sequences are

bounded. Furthermore, the statement of Leni@mplies in particular thaR, pn = R, ¢ in X.

2.2 Orthonormal bases of the Cameron—Martin space

The Gaussian measuyeon X is uniquely characterized by its mean and its covariance operat&; .
The covariance operator, in turn, is determined by the Cameron—Martin klqagelt can be expressed
in terms of an orthonormal basis bff(y ).

PROPOSITION2.4 Let(em)meo be an orthonormal basis &f (y). Then,
Rip =D olemen Vo e X' (2.5)
me@®
with unconditional convergence i (y ) and in X. Furthermore,
(Ryp,w) =D pEmy(em) Vo,yeX (2.6)
me®

with unconditional convergence .
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Proof. Letp € X*. By Lemma2.2,

(Ryp,emu) =¢(Em) Yme 6 .

ExpandingR, ¢ in the orthonormal basi®n)mee of H(y ) we have

Rip= D (Ryp.emH()8n= D ¢(emem

me® me®

with convergence i (y ), and thus also iiX sinceH (y ) embeds continuously int&. The convergence
is unconditional since all the above is independent of any ordering of the (ea3isco - In particular,
foranyy e X*,

(Ryg, w) =w(Ryp) = W(Z (p(em)an) = > plemy(em) .

me@® me@

again with unconditional convergence. a
An orthonormal basigéem)mee 0f H(y ) is useful not only for computing the covarianBg but also
for sampling the distributiop on X.
We define the product Gaussian meastien (R, Z(R?)),

T = ® m, (2.7)

me@®

where eachry, is a standard Gaussian measurgBnZ(R)). In principle,z can be sampled numer-

ically by independent standard Gaussian draws for each imdex®. If, in some sense, these values

are of decreasing importance, then the sequence can be truncated to finitely many random values. Using
an orthonormal basi®m)mee Of H(y ) we parameterizg by =, allowingy to be sampled by mapping

a sample ofr from R to X. Also, series expansions of the fori2.§) are a prerequisite for many
stochastic Galerkin and collocation methods.

THEOREM2.5 Let(em)meo be an orthonormal basis &f(y ). Then the series in

T:R? > X, ¢&=(nmeo = & + D &mém (2.8)

me®

converges unconditionally iX for z-a.e.& = (ém)mee in R?, and the distribution oT is T(z) = y.

For a proof of Theorer2.5we refer toBogachey(1998 Theorem 3.5.1) (see aldain & Kallianpug
1970 Kuelbs 1971, Page 1972 Vakhaniaet al,, 1987, Section V.5.5). Due to the product structure of
7,¢ = (m)meo are independent standard Gaussian random variables.

REMARK 2.6 Theoren?.5applies directly tdR, -Wiener processes. For any orthonormal bésigmeo
of H(y) let (5")meo be independent scalar Wiener processes. TheR,awiener proces®\ in X is
given by

W= > f"em., (2.9)

me®
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with unconditional convergence X a.s. for allt > 0. Convergence of this series follows by applying
Theorem2.5for everyt > 0. Equation 2.9) defines arH (y )-Wiener process since for dlt> s,

We—Ws = > (A" = pem = VI=5 D ¢mem (2.10)
me® me®

with independent standard norm@h)meo, and the last sum representsésvalued centred Gaussian
random variable with covariandg, . In particular, ift, — t, then .10 with s = t, implies that\W
defined by 2.9) has continuous paths.

REMARK 2.7 The series representatidh) also allows conditional simulation of the distributipn
For a finite se®, C O the distribution of the series

a,+ > Ymem+ D Emem (2.11)

me®y me®\6Oy

serves as a conditional probability pf conditioned oy, = ym for m € @n, where(ém)meo\o, are
independent standard normal random variables Bsgmchey 1998 Corollary 3.5.2). In particular, if

y describes a prior model for a random elemenkKaindym, are measurements &f for m € @y, then

(2.1)) is the resulting posterior model. This is the foundation for the interpolation techniques known in
geostatistics as kriging (see, eSjein 1999 Diggle & Ribeirg, 2007).

2.3 Continuous Gaussian fields

We consider the casé = C(D) for a compact seD c RY. Theny describes a Gaussian field &n
that is as above continuous.
For allx € D the Dirac functionaby(f) := f(x) isin X*. We define

ke := R,dx, x e D. (2.12)
Then thecovariance kernedf y is
K(X,y) :=kx(y) = (R, ox,dy), X,yeD. (2.13)
The functionk(-, -) is symmetric since
K(x,y) = (R, dx, dy) = (R, dy, dx) =Kk(y,x) VX,ye D. (2.14)

By the Riesz representation theorem %r= C (D), X* can be identified with the space of signed
measureg on the Boreb -algebra ofD with the total variation norm. Accordingly, we will use the same
symbol, e.gu, for the signed measure @, #(D)) and for the element oK* given by integration
against this measure.

PROPOSITION2.8 Letu andv be signed measures 6D, #4(D)). Then

(Ry 1) (X) =/ kxdu VxeD (2.15)
D
and

Ry = [ [ ko) ey v, (2.16)
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Proof. Forallx € D, by symmetry ofR, -, -),

(R, 1)(X) = (Ry 11, ) = {Ry b, 1) =/Dkx du.

Consequently,
Ry ) = [ R0 = [ [ Koy duy avo. O

In particular, if du(x) = f(x)dx and d(x) = g(x) dx for functions f andg in L1(D) we recover
the well-known formula describing the covariance oper&tpias integration again&{, -),

(R 1,g) = /D /D k(x, y) T (¥)g(x) dy dx. (2.17)

Here f andg are interpreted as the elementXdf given by integration againgt andg, respectively.

PROPOSITION2.9 Let(pj)ics be a dense subset @f. Then the linear span dakp, )ic4 is dense in
H().

Proof. Let f € H(y) be orthogonal t&y, foralli € 4. Lemma2.2implies
f(pi) :5p.(f) = (f, Ryépi)H(y) = (f, kpi)H(y) =0 Vied.

Since(pj)ic4 is dense inD by assumption and is continuous due téd (y) ¢ X = C(D) it follows
that f = 0. O

REMARK 2.10 Propositior2.9suggests a construction for an orthonormal basld @f). Given a dense
sequencep)ien in D we can apply Gram—Schmidt orthogonalizatior(kg )i cn. This is explored in
Sectiord.2 Note that by Lemma@.2, f € H(y) is orthogonal tk, for anx e D ifand only if f (x) =0
since

(f,k)HG) = (F, Ry o) H() = ox(f) = F(X).

Therefore, constructing an orthonormal basistbfy) can reduce to finding functions in the span
of (kp ), with certain zeros.

For any sequencp = (pj)ic in D let K denote the covariance matrix of the function@s i< 4,
i.e.

K =[(R, g, dpj)]i.jea = [K(pi, Pj)]ijes- (2.18)

For a finitely supported vectar = (a)ic4 € R“ we define the functional

adp := »_aidp € C(D)* (2.19)
ied
and the function
akp := R,adp = »_aiky € H(y) c C(D). (2.20)

ied
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Note that no convergence issues emerge since by assumggtien( for all but finitely manyi € 4.
Then, using Lemma.2, for all finitely supportedx andb in R4,

(akp, bkp)H () = (R, adp, bdp) =a' Kb . (2.21)

Therefore, orthogonality of the functiomdp andbkp in H(y), which is equivalent to the functionals
adp andbdp being uncorrelated, is characterized by orthogonality of the veatarsib with respect to
K.

COROLLARY 2.11 Letp = (pi)ies be asequence iD, and let(@™)mee © R4 such thag™ is finitely
supported for alm € ©® and

@MTKa™ =6mm VM, M € O . (2.22)
Then(a™kp)meo is an orthonormal system i (y). If pis dense inD and for alli € 4, kp, is in the
span of(@™kp)meo in H(y), then(@™kp)mee is an orthonormal basis ¢ (y ).

Proof. Orthonormality of(a™kp)meo follows from (2.22) due to @.21). Density is a consequence of
Proposition?2.9. O

REMARK 2.12 The assumption that coefficient vectors are finitely supported can be weakened to a
more general summability condition. In the interest of a concise presentation, and since all numerically
representable coefficient vectors are finitely supported, we consider only this setting.

3. Examples
3.1 Exponential covariance in one dimension

Let | c R be a compact interval. We consider a Gaussian meagsune C (1) with an exponential
covariance kernel

k(x,y) =c2e W4 xyel, (3.1)

for constantg > 0 and > 0.
We define a hierarchic sequence of gridslorfFor all¢ € N, let 4, c | be a finite set with
AN Ap = @if € # €. We define the unions

t 00 00
Ap:=||4; and pi=4a:=]||4,={] 4. (3.2)
=1 (=1 =1

Thenn, ;= #4, < oo. For all¢ € N, we enumerate the elements .6f in increasing order/, =
{p{, ce, pﬁl} with pf < pf+1. We assume that elements 04§ are never adjacent in this ordering.
AssuMPTION3.1 Forallf € N, if pf, p{ € 4¢andi # j, then|i — j| > 2.

Assumption3.1implies in particular

n<1 and nppp<2n,+1 VEeN. (3.3)

It is always satisfied if #, = 1 for all £ € N.
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To eachp e A we associate a functicaPkp in H(y) with aP e R4 finitely supported. Let € N
andp € 4, such thatp = pf in the above ordering. We define the coefficient veet®iby allowing
aé’ to be different from zero only iff is adjacent top in 4., and requiring thaaPkp is zero at all such
adjacent nodeg. Finally, we normalize the coefficients such ta&kp has unit norm irH (y ).

If i is different from 1 andh, i.e. if p is an interior point of4,, this results in a & 3 linear system
with the following solution. Foh,. := (pf,; — p{)/4 andh_ := (p{ — p{_,)/4 let
e2h-+2hy _1 _eh- ) P

=@ ey TS T e 34
and defineP = (a})qe 1 by
a® = AT i Liit (3.5)
pJ 0—%’ & bl b

anda§ := 0 for all otherq € 4.
If pis a boundary point off; andn, > 2 the above conditions lead to ax22 linear system. If

i =1, thenh := (p5 — p{)/4 and

aj_1

=1 &:=-e" and a® = —2—=——_. (3.6)
P sVl
Similarly, if i = n;, we seth := (pf, — pj,_;)/4 and
=1, a,:=—€" and a” = _ & (3.7)
’ P o/l—ed

In both casesaé’ := 0 for all otherq € 4. Finally, if p is the only element of1,, then&y := 1,
ab = 1/0, andad := 0 for allq # p. Some basis functions are plotted in Fig.

0 0.25 0.5 0.75 “I 0 0.25 0.5 0.75 1
(a) A=1/2 (b) A=1/8

FiG. 1. The first few functionapkp onl| = [0, 1] constructed on dyadic grids (circles).
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PROPOSITION3.2 Letf € N with n, > 2. Then for allp = pI € 4, the support o&Pkp in | is
suppaPkp = [p/_y. p{y1]. (38)
where we sepj := min(l) andpf, ,; := max(l).

Proof. We first consider an interior poirg = pI of A;. Any X > pIJrl is of the formx = pI + tA for
somet > hy = (pIJrl b )/ . Then using the notation fron3(), for somec > 0,

— e—t e—t (e2h7+2h+ _1) — e—t eZh+
& 1t @ @1 T @1

t(— @M 14 N2 1 @n-+2 g g2h)
(- -1 (e -1) B

C(apkp)(x) = é_l e_(t"rh—) +é~0 e—t +é1 e—(t_h+) _

This impliesaPkp(x) = 0 for all x > pI 1- By symmetry, als@Pkp(x) = 0 for all x < pI 1- Similar,
but shorter, computations lead to the same result for boundary points. 0

LEMMA 3.3 Forallpe 4 andallx € I,
1
0< @Pkp)(X) < (@Pkp)(P) = . (3.9)
p

In particular, the maximal value @Pkp has the following form. Ifp € 4, is an interior node of1,,
then

eh- —1)(e+ —1
(@Pkp)(p) = o'\/( eZh_+)2(h+ — ) (3.10)

with h_ andh, as above. Ifp is a boundary node afl, with n, > 2, then(aPkp)(p) = o v1— e2h
with h as above, and ifiy = 1, then(aPkp)(p) = 0.

Proof. We first computdaPkp)(p). Let p € 4, be an interior node oft,. Then

1 h . . 2 h, (- —1)(e2h+ —1)
(@Pkp)(p) = m(a_lﬂze - a2+ a02e" ): \/ eh+2hy 1 :

If pe 4,isaboundary node of; with n, > 2,

1 gh
aPkp)(p) = 0% — cleh=gV1—e2,
( p) P) ov/1—e2h ocv1—e2h

Finally, if n, = 1, thenaPkp = o ~kp, and thereforéaPkp)(p) = o.
To prove B.9) we show that the derivative akp is monotonic between elements 4f. It suffices
to show this on the interve(lpf, pr) if p= pf. For interior nodes this is a consequence of

SalCatts
—(@ e ) 1apet 44 e_(th_t)) =-a1¢€ —age t4a e = ( ) <0
dt ehy —

forall 0 <t < hy. Similar estimates hold for boundary nodes. O

2 —t—h_
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THEOREM3.4 The functiongaPkp) pe 4 form an orthonormal system i (y). If 4 is dense irl, then
(@Pkp) pe is an orthonormal basis ¢ (7).

Proof. Let p = pf € 4, andq € 4.\ {p}. By Lemma2.2 and Propositior8.2, (aPkp, kg)H() =
(@Pkp)(q) = 0 sinceq is not in the interior of the support afPkp.

Letp = pf with j #i.If i — j| > 2, thenaP'kp is a linear combination d&, forq € 4.\ {p}, and
therefore(aPkp, ap’kp)H(},) = 0. By Assumptior8.1, if |i — j| = 1,thenp’ € A, \ 4¢,i.e.p’ € 4y
for somet’ < ¢ — 1. Consequentlyap'kp is a linear combination dky for g € 4, and thus again

(@Pkp, aP'kp)H(,) = 0. Therefore, the function@Pkp) pe 1 are mutually orthogonal it (y ).
Using LemmaB.3and the orthogonality adPkp to kq for all g € 4, \ {p},

1aPkplfi(,) = (@Pkp, abKp)H () = apdp(@Pkp) = 1.

This shows that the functior@Pkp) pe 1 are normalized irH (y ).

Proposition2.9implies that if 4 is dense il , then the linear span @Kp) pe 4 is dense irH (y ). For
everyt, (aPkp)pe 1, aren; linearly independent elements of the sparil@fqe 1,. Consequently, for all
q € 4¢, kg is a linear combination ofaPkp) pe 4, - O

3.2 Decay of basis elements

PrROPOSITION3.5 Forallp € 4, if p e 4, is an interior node ofl,, then

2h_h
laPkpllc() < o min(eh+h+ /ﬁ, 1) (3.11)

with h_ andh,. as above. Ifp is a boundary node antt > 2, then||aPkp|lc (1) < o+/min(2h, 1) with
h as above, and ify = 1, then||aPkplc() =o.

Proof. We use the elementary estimates- 2! <t < & —1 < té' fort > 0. By Lemma3.3 the
maximum ofaPkp, is attained ap and is equal to ﬂag. The first part of 8.117) follows from (3.10 and

(e?- —1) (e —1) _ (an- - )(2h ) 2o+, 2h-hy
eh-+2he 1 = 2h_ +2h, h_+h,

For boundary nodes and in the cage= 1, the claim is a consequence of Lem&ha
It remains to be shown tha8 (10 is bounded by . To this end we compute the derivative

d (- -1)(e-1) 2&M- (e -1)°
dho e+ 1 T (eh-+hy _1)2 >0,

and similarly withh; andh_ switched. Leth := h_ + hy and?¥ := h_/h. Then by monotonicity, for
any fixedd € (0, 1),

(e219h —l) ( e2(l—'l9)h _1)
hS—L>joF<)> eh—1

_ i _ g 2a-0h —9)(1—e2h) =
= lim 29(1—e )+21-9)(1—e2") =1,

which concludes the proof. O
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PROPOSITION3.6 Forallp € 4, if p e 4, is an interior node oft,, then

laPkpll 2y < o min (eh—+h+ J2h_hy, Jho + h+) (3.12)

with h_ and h; as above. Ifp is a boundary node and, > 2, then ||apkp||,_z(|) < o
+~/min(2h, 1)(h + hy) with h as above ant; := (p—min(l))/1if p= p{ andh; := (max(l) — p)/4
if p=pf,.Ifn, =1, then|laPkpll 2y < o /TT.

Proof. The claim follows from Proposition3.2 and3.5 using the estimate

llaPkpll 2(y < v/IsuppaPkp| [[aPkpllc ). O

For small correlation lengthk, i.e. large values df, h_, h; andh,, the estimate in Propositidh6
is quite crude but sufficient for our purposes.

EXAMPLE 3.7 Letl :=[0,1], 4o := {1/2} and 4, := {i27¢; i =0,1,..., 20} forall £ > 1, asin
Fig.1. Thenforallf e Nand allp € 4,,h =h_ =h, =27¢, andh, = 0. In particular, Propositions
3.5and3.6imply

1 1
aPk < Co — and |aPk <Co — V Ag. 3.13
llaPkpllc ) o NG lla"kpll 2()) i pede (3.13)

Thus, the convergence rate irf(1) of (2.8) and @.9 coincides with that of the Karhunen—&ee
series. At any given point € [0, 1], since only at most two basis functions per level are nonzero, the
convergence of the series is exponential if all other basis functions are disregarded.

3.3 The Wiener measure

The same approach as in Sectldi can be used to construct an orthonormal basis of the Cameron—
Martin space of the Wiener measure. lLet [0, 1] and

K(x,y) :=min(x,y), X,yel. (3.14)

Furthermore, let4, = {p!,..., p5,}, 4¢ 1 4 =: p, be a hierarchic sequence of grids satisfying
Assumption3.1, and not containing 0.

Proceeding as in the case of an exponential covariance kernel we construct fpreath function
aPkp that is a linear combination &, for at most threg € 4. Sincekq is piecewise linear for alj € 4,
the orthogonality conditions aaPkp imply thataPkp is a multiple of a hat function.

For eachp € 4 we define a hat functiog, as follows. Forp € 4,, {; is the piecewise linear
function onl subordinate to the nodes, U {0, 1} such thatp(q) = dpq forall g € 4, {p(0) =0 and

p(H) = Cp(pf;()-
PROPOSITION3.8 Forallp € 4, aPkp = ¢p/ap.

Proof. We consider the cage = pf e A, with2 <i < ng— 1. The case of boundary points is similar.
Then, sinceaPkp is piecewise linear, the condition & (aPkp, kq)r(y) = (@Pkp)(Q) for g = p’,,
implies thataPkp is a multiple ofzp. The third defining condition,

1= [[aPkpllfi(,) = (@Pkp, apkp)H(y) = ap(@Pkp)(p)

leads to the claim. O
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The values ohg can be determined by explicitly solving the linear system defimifigLet p =
pf e 4,.1fi =n; =1, thena = 1//p. If n; > 2 andi = 1, forh := p5 — p{,af = v/ (p +h)/ph,
whereas ifi = n, forh := pf, — pf _,, ab = 1/+/h. For interior points, i.e. if 2< i < n; — 1,
ap = /(h_+hy)/h_hyforh_ = p{ — p{_; andh, = p{,; — pf.

This method provides an alternative derivation of the well-known piecewise linear basis for Brown-
ian motion due to Evy and Ciesielski, which is more commonly derived by integratifg0, 1])-
orthonormal Haar wavelets (see, &Kgratzas & Shrevel991).

The statements of Propositi@?2 and Lemma3.3for the Wiener measure are a direct consequence
of Proposition3.8. In particular, Theoren3.4 applies, as the proof requires only these two statements
and is not specific to exponential covariances. Bounds similar to those given in S&etaso hold in
the case of the Wiener measure and follow from Propos8i8mand the above values aﬁ.

4. Numerical construction of hierarchic bases

4.1 A general algorithm

Let (em)meo, be an orthonormal system H(y ) for a finite, possible empty, s€lp. We wish to deter-
mine a finite sequeno@m)meo, iN H(y) such thatem)meo ue, is an orthonormal system id (y ).
Let p:= (pi)iecs be a sequence iD. We assume that, for a finite sgt C 4, ey, is in the span of
(Kp))ie, for allm e @9 and allowen, to be in the span ofky, )ie 1,u.1, for a second finite set; C 4.
The coefficients ofem)meo, With respect takp, )ic.1, can be stored as the columns of a matrix,

Ao i=[a"Imea,, &m= D &Ky, me Oo. (4.1)
iedg
We also consider the covariance matrix@h)meeo, and(Kp, )ic 4,
Fo = [(Kp, m)H()]meop.icto = [Em(P)]meayic o - (4.2)

wherem indexes the rows andthe columns ofFg. Although this matrix is not required in order to
augment the orthonormal systeem)meo, it is computed as a byproduct of oalgorithm.

AUGMENTBASISIK, p, Ao, 41, Ao, Fo] = [A, F]
Ko «— [k(pi, p])]ier,]EAl

K1 «— [K(pi, Pj)li.jesy

C «— AlKg

[V, D] «— eig (K1 —CTC)

B«— VD12

Ao —AcCB

0 B

Fo C
F o« (0 D1/2vT)

In AUGMENTBASIS, eig . with ¢ > 0 is a function that computes some nonzero eigenpairs of a
matrix. We assume that all eigenvalues not computeeli@py, have magnitude less than or equatto

A «—

REMARK 4.1 If ApN A1 # &, then the matriced andF constructed by the algorithmAGMENTBASIS
do not have the block structure indicated in the formulation of the algorithm. Rather, the rofvs of
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corresponding to the same indexe Ag N A7 are assumed to be summed.HAnthe new value of a
column corresponding tioe 4g N 47 overwrites the old value.

PROPOSITION4.2 LetAgandFg be asin4.1) and @.2) for an orthonormal systefi@m)meo, in H(y).
Let the se® index the columns oA generated by AGMENTBASIS, and@1 ;= @ \ Op. Forallm e @
let

emi= >  akp, (4.3)

iedgUAy

wherea™ := (a) is themth column of A. Then the sequend@m)mee is an orthonormal system in
H(y). For allm € Oy, (4.3 coincides with 4.1). Furthermore, for alin € @, themth row of F is the
vector(em(pi))iequ4,. IN particular, ifm e @1 andi € Ap \ 41, thenen(p;) = 0.

Proof. We can assume without loss of generality thgin 4, = @ sincep; = pj is possible foii # j.
Identifying such indices leads to the compression described in Refriark
By definition of A and @.1) the columns of

o (75

represeniém)mee With respect to(ém)meo, U (Kp ie4,. Furthermore, the covariance matrix of the
sequencéem)mea, U (Kp )ie, is

L I AlKoy (1 C
T \(AJKo)T K1 ) T \CTKyJ”

Thus, the covariance matrix 6&yn)meo IS

ETLE — | 0 I_C)(1-CB)_ (I 0
-B'c™BT)J\Cc"k./\0 B 0BT(K,—C'C)B)/ -

By definition of B,
BT(K,—C'C)B=1.

Therefore (em)mee is an orthonormal system i (y ); see Corollan2.11
Finally, we have

Ea_ (FoPo —FoACB+CB) _ |
“\ o DV2vTB -

sinceFgAp = | by orthonormality oflem)meo, in H(y ). Therefore F Aiis the matrix representation of

h= Z (h, én)H()em  Vh € spanem)meo

me®

in the basigky, )ie1,u.4,- This implies that thenth row of F is the vector((Kp,, €m)H(y))iesou4,, @aNd
the claim follows using Lemma.2 O
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REMARK 4.3 Let(pj)ic4 be afinite sequence D such thatkp, )ic 4 are linearly independent, and let
K= [<Ry 5pi > 5pj >]i,je/1 = [k(pl > Pj )]i,jeA = [(kpi s kpj)H(y)]i,jeA (4-4)

be the covariance matrix @6p, )i 4. ThenK is symmetric positive definite and thus allows a factoriza-
tion of the form

K=F'F (4.5)
with a regular matrixF. Defining A := F~1 we have
ATKA=ATFTFA=1,

and by Corollary2.11, the columns ofA are the coefficients with respect ey, )i 4 of an orthonormal
system inH (y). SinceA is square this orthonormal system is an orthonormal basis of the linear span
of (kp)ies in H(y). Generalizing to rank deficiedd we assumd to have full row rank, and define

A as the right inverse df. The routine AAGMENTBASIS with e = 0 hierarchically constructs sudh

and A. With positivee, it adds a compression of the covariance matrix ah#) (only holds approxi-
mately.

We consider the following hierarchically constructésh)meo C H(y). Let p = (pi)ies be a
sequence i, and let(em)meo, be an arbitrary finite orthonormal systemhi(y ) in the linear hull of
(Kp )ie, for a finite set4g ¢ 4. Forallt € Nlet 4, c 4 be a finite set, and lelem)meo, be the
sequence iH (y) constructed by applying BcMENTBASIS t0 (ém)mee,,.r/<¢—1 @s in Propositios.2
with € = e,. We define® = (e, Or-

For all¢ € Ny let P, be the orthonormal projection iH (y ) onto the span o, for m € @, with
¢’ < ¢. It has the form

¢
P/h = Z Z (h, em)Hp)em, he H(y). (4.6)
[/:Omegf/
For all¢ € Ng let
Ke = Klaxa, = [(Kp . Kpp)rolisjes, (4.7)

be the submatrix oK from (4.4) on the index set1,. Using P, we define the approximation

K¢ = [(Pekp;, Pekp i jes, (4.8)
to K,. Note that
) ¢
[Kelij = Ko kp)Droy = D D em(Pem(p)), (4.9)
[’:Ome@[/

soKis computable directly frorey, form e @4, ¢/ < £.

LEMMA 4.4 Using the notation from AGMENTBASIS,

Ki= (FTF)| x4, =CTC+VDV'. 4.10
1 1
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Proof. By Propositior4.2and @.6),

[FTF]ij:[ > (kpi’em)H(}’)(kpj’em)H()’):I = [(Pikp, Pikp))H()]ij»

i
me@oUO1 )

wherei, j € 49U 41. We compute

T T T
ETE _ FO 0 Fo C _ FOFO FOC
cT vb¥2J\ 0 DY2yT CTFo CTC+VDVT)
Therefore, for ali, j € A1, [K1]ij = [F'Flij = [CTC + VDVTJ;;. O

PROPOSITION4.5 For all¢ € N and allb, ¢c € R4¢ ¢ R4,
|(R, bdp, cp) — bTKc| < eclbl2licez - (4.11)

Proof. We assume without loss of generality tifat 1. By (2.20, (R, bdp, cip) = bTK 1c. Therefore,
using Lemmat.4 and the definition oé,,

|(R, bdp, cop) —b"K1c| = [bT (K1 —CTC =V DVT)c| < elbllzlicll 2. O
COROLLARY 4.6 Forallf e Nandalli, j € 4,
Ik(pi, Pj) — (Pekp;, Prkp ()l < e (4.12)

Proof. The claim follows from Propositiod.5and .13. d

COROLLARY 4.7 Forallf e Nand alli € 4,

Ikp — Pekp 1) < Vee, (4.13)

Proof. Using orthogonality of the projectioR, and Corollary.6with j =i,
kg, — Pekp IF () = IKp 16y — Pk I ) < € O

THEOREM4.8 If p = (pj)ic4 is dense irD, UkNO A¢ = A ande; — 0 ast — oo, then(em)meo IS
an orthonormal basis dfl (y ).

Proof. Orthonormality of(em)mee follows from Propositiort.2. To prove density it suffices by Propo-
sition 2.9to show thaky is in the span ofen)mee for all x € D.

Letx € D. Then there is a sequen@i@)nen in 4 such thatx, := pi, » x andip # iy if n # 0.
Since||dx, lc (py» = 1 for all n, Lemma2.3impliesky, — kx in H(y). For alln € N let £, € Ng with
in € A¢,. Thenéy — oo since 4, is finite for all¢ € Ng. Due to Corollaryd.7, Py kx, — kx by the
assumptiorg, — 0. O
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4.2 Gram-Schmidt orthogonalization in the Cameron—Martin space

We consider AGMENTBASIS with ¢ = 0 for 41 = {j}, where| is assumed to be an element of
A\ Aop. In this case, AGMENTBASIS reduces to Gram—Schmidt orthogonalization in the Cameron—
Martin space and can be found Rugache\ 1965 Chapter 9). An explicit formulation is given in
GRAMSCHMIDT STEP.

GRAMSCHMIDTSTERK, p, 40, j, Ao, Fo] — [A, F]

ko «— [K(pi, Pj)lic4o

¢ «— Alko Ili.e.ci = e (pj) = (&,Kp)H(y)

d «— k(pj, pj) —c'c llie.d=k(pj. Pj) — Xics,8(Pj)?
if d =0 then

Ag
A «— (0)
F «— (Fo C)
else /li.ed >0

s« J/d
1
Ae—(%o Ss_i%c)
Foc
Fe—(o s)

end

REMARK 4.9 Let(p)_; c D such that(ky){'_, are linearly independent, and Ie)'_, be con-
structed by recursive application oR&MSCHMIDTSTEP. Furthermore, leK be the covariance matrix
of (6p){_;, and letF be the last output of @AMSCHMIDTSTEP. By Propositiord.2,

n n
FTF = [Z(kpi,em)H(y)(kp,-,an)H(y)] = [Kp» KpH)lij=1 = K.
m=1 i,j=1

Furthermore, it follows by induction th&t is an upper triangular matrix with positive diagonal entries.
Therefore F is the right Cholesky factor df.

REMARK 4.10 The basis function®mn)men can be characterized independently of each other. For a
fixed sequencép;)icy in D, ey is in the span ofkp ), and orthogonal té, foralli < m— 1. This
definesen uniquely up to a scalar factor, which is determined by normalizatid (n).

REMARK 4.11 Assuming that the covariance kernel can be evaluated in unit time, the computational
cost of RAMSCHMIDTSTEPis dominated by the matrix—vector multiplication. Therefore,rttestep
requires®(n?) arithmetic operations, and the construction of the firgtasis functiongem)]t_, has

complexity©O(n3).

4.3 Hierarchic spectral decomposition of the covariance matrix

As a second particular case 0AMENTBASIS, we assume that the sets are nested,

AogCc A1 C---CAdgC Adgg1C---C A, (4.14)



310 C.J. GITTELSON

and, in view of Theorerd.8, 4 = ;2 4. For example(p)ic 4, could be the nodes of nested grids
of D. In this setting Propositiod.5applies to all nodeg; visited up to level for any¢ € N.

The routine AIGMENTBASIS is customized to 4.14) in AUGMENTSPECTRALBASIS, which
assumesip C A41. In particular, AIGMENTSPECTRALBASIS takes into account Remaskl

AUGMENTSPECTRALBASIS[K, p, 49, 41, Ag] = [A, F]
K «— [k(pi, P)li.jess
KO — K|on/11
C « AlKog
[V, D] «— eig (K —CTC)
B
B= (B‘;) «— VD2 /' Bo=Blagxs;, and B1 = B|(sp\sg)xa;
Ao Bo— ACB
A «— 0 B, )

C
F e\ przyT

REMARK 4.12 A common but seemingly naive approximation to the Karhuneévé.geries consists

of computing some or all eigenpairs of the covariance madrjxe.g. on the vertices of a finite element
mesh, in place of more precise representations of eigenfunctions of the covariance opergios Let
(p)iea be afinite sequence iD. Then this procedure is similar toUMENTSPECTRALBASIS with

Ao = @ and 41 = A. However, we provide a different interpretation. Instead of being approximations

to the eigenfunctions of the covariance operator the eigenvectors of the covariance matrix define an
orthonormal system i (y ) in their own right,

emi=2m"2 > ol'kp, (4.15)
ied
whereo™ = (Uim)ie/l is a normalized eigenvector &f with eigenvaluel,. Thus, the functionsy, are

defined on all ofD not just at the discrete pointg;)i< 4. This decouples their construction from any
other discretization oD, such as a finite element mesh.

REMARK 4.13 The computational cost o lsMENTSPECTRALBASIS depends on the number of nodes
pi, and the number of basis functiogg. Suppose we apply UGMENTSPECTRALBASIS recursively to
construct(em)meo , Usingn, nodes(p;)ic 4, to constructm, new basis functions in th&h call. Ignoring
for the moment the cost of computing eigenvalues and eigenvectors and abbrelvlatiﬁgzi[:l m;,
the ¢th call of AUGMENTSPECTRALBASIS uses(’)(n?me M¢) arithmetic operations.

For example, leh, = 29, If the eigenvalues oK — CTC in each call of the algorithm converge
exponentially it is sufficient to taken, ~ ¢, in which caseM; is of the order off2. The resulting
complexity of thefth step of the construction, disregarding the spectral decompositiGh(2&' ¢3),
and the cost of the first steps is dominated by that of thf¢gh step alone. We note that this is less
than 0(23%¢) required by GRAMSCHMIDTSTEP, see Remarld.11 Moreover, the evaluation of the
covariance kernel already us@$224) operations, so the complexity is almost optimal in this example.

To this we need to add the cost of computing eigenpairs of a symmetrit; x n, matrix in each
step. Since one sweep of a Jacobi iteration or one step of a Lanczos meth@i(n%)eeperations for
a dense covariance matrix, the cost of constructing spectral decompositions for generic covariances is
comparable to that of the rest of the algorithm.
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5. Numerical examples
5.1 Exponential kernels

We consider covariance kernels of the form
k(x,y) := e Y2 %y e [0, 1]9, (5.1)

with parameters. € [1,2) and4 > 0, on thed-dimensional unit hypercub® := [0, 1]9. We assume
throughout thatl = 1/4.

Figures2 and3 show a few basis functions generated by the Gram—-Schmidt method from Sk2tion
and the hierarchic spectral method from Sectb8 in one dimension, witth = 1 anda = 1.5,
respectively. The se{®i)ic 4, are hierarchic dyadic grids,

(Piea, = [izsi=0.1,..., 2} (5.2)

The new points on each level are marked in the plots by circles. The Gram—-Schmidt method adds the
points from left to right. The functions generated by Gram—-Schmidi fer 1, shown in Fig2, coincide

e N e i S~ 'z"‘."‘-.
”‘ “\ ', ‘\ 0 st \_.’l-/
0 . X s .
% L
—',‘ .."'.. 0 ST T s e e o TR,
0 e T
e Rty i O
0 fmommm =T P S —u
x—‘ —--‘_,—' I SE————— _4_.—1—""'""—‘-‘-’/;
N - s L
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
(a) Gram-Schmidt (b) hierarchic spectral
FIG. 2. The first few functions fos = 1.
Loy g L 0
0 o S
”." . 0 ;_-"_"‘_‘ """" e P Bl Tm
0 P S PGP I SO - B
------ - ""-..‘_‘“_ 0 e il e
0 ————— T
et [ S —
0 ; — : &  Leo--="" ; i i ‘
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
(a) Gram-Schmidt (b) hicrarchic spectral

FIG. 3. The first few functions fox = 1.5.



312 C.J. GITTELSON

with those derived in SectioB.1 In particular, by PropositioB.2, they have compact support. This is
not the case for the functions generated by the hierarchic spectral method; séefga = 1.5,
though the basis functions generated by both methods have global support, those generated by Gram—
Schmidt appear to be more localized in Fg.
In higher dimensions the dyadic grids are given by

(Pies, = {iz-f;i e {o, 1,...,2f}d}, (5.3)

and the Gram—-Schmidt method adds points in lexicographic order.

The decay of th& (D) andL2(D) norms of the basis functions generated by Gram—Schmidt and
the hierarchic spectral method far = 1 are plotted in Figgt and 5 for one and two dimensions,
respectively. Figuré shows the same far = 1.5 andd = 1. Both norms are approximated on uniform
grids in D containing 4096 points. The decay is compared to that of the spectral basis computed directly
on the finest level. For the hierarchic spectral method, toleraiices0 ande, = 5.2=%¢ are used. In
the latter case, the hierarchic spectral method generates fewer basis functions than the other methods.

€
=
.G:s.m; Hr,h‘mi‘(!t. = Gram Schmidt o
++-+ hierarchic spectral, ¢ =0 oo hierarchic spectral, ¢p =0
- = ~hierarchic speciral, e = 5. 27¢| = = ~hierarchic spectral, ey = 5.2~ oo 0L NG
1 - - spectral : : R - = spectral e isagdis : s_‘
10° 10' 10 10° 10° 10 10° 10°
m m
2
(a) ¢(D) (b) L5(D)
FIG. 4. Decay of the basis functions far= 1 andd = 1.
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FiG. 5. Decay of the basis functions far= 1 andd = 2.
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FiG. 6. Decay of the basis functions fer= 1.5 andd = 1.

In each case, the rate of decay in tt& D)-norm is the same for all basis functions considered. It
is approximately

lemll 2py ~m™*. (5.4)

A staircase effect is apparent, in particular for the Gram—-Schmidt method. This is due to the uneven
spacing of points between levels of the hierarchic dyadic grids. Within each level, the position of a node
relative to all previous nodes is very similar for all nodes. Between levels the distances scale by a factor
of two. In two and three dimensions the functions constructed by the hierarchic spectral method display
jumps in the opposite direction between levels. At these points the covariance matrix is refined, and the
subsequent basis functions correspond to eigenvectors with large eigenvalues of the difference between
the coarse and fine covariance matrices.

The rate of decay i€ (D) coincides with that i.2(D) for the hierarchic spectral method. However,
the decay of the functions generated by the Gram—Schmidt method is slo@¢binthan inL2(D).

Foro = 1 andd = 1 this is shown in Exampl8.7.

The slower decay i€ (D) seems to be the cost for the better localization in space of the basis
functions generated by the Gram—Schmidt methodofer1 andd = 1 these functions have compact
support, and the size of the support decreases at thenrdteln other cases, though their supports are
not compact, the functions generated by Gram—-Schmidt are still almost local. Figlustrates the
decay of basis functions generated by the Gram—Schmidt methed$od.5 andd = 1. Figure7(a)
shows the measures of level sets

{x € D; lem(X)| > € Cl%’qem(y)” (5-5)

for four different values ot. At least for larger values of the measure of these level sets decreases
approximately asn—1. Figure7(b) plots some basis functions in logarithmic scale. Apparently, at higher
levels of the hierarchic dyadic grids there is a fast initial decay, followed by decay comparable to that of
the kernel but at a much lower level.
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FiG. 8. The first few functions for a Gaussian kernel.

5.2 Gaussian kernels

The Gaussian kernel db = [0, 1]¢ with correlation length > 0 is
k(x,y) :=e XY/ xyeD. (5.6)

The main difference between the Gaussian ke €) &nd the exponential kerneB.Q withl < a < 2

is that the eigenvalues of the covariance operator associated to the Gaussian kernel decay exponentially,
as opposed to algebraic decay for exponential kernels. Again, we teetl/4 in all computations.

Figure8 shows the first few basis functions generated by the Gram—-Schmidt method and the hierarchic
spectral method in one dimension.

The decay of the basis functions generated by both of the above methods for Gaussian kernels is
plotted in Figs9 and10in one and two dimensions, respectively. These are compared to the spectral
basis computed directly on the finest level. In all cases, the decay is exponential, with approximately the
same rate. However, the Gram—Schmidt method suffers from an instability, limiting its convergence. It
can be stabilized by replacing the Cholesky decomposition with a suitable generalization of a pivoted
Cholesky depcomposition, as was studietiarbrechtet al. (2010 for finite sets of points.
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FiG. 10. Decay of the basis functions for= 2.

The hierarchic spectral method is shown with toleranges: 0 ande; = 2%, In the latter case,

only very few basis functionsy, are constructed, and their norms are very close to those of the basis
constructed with no truncation. Figutd shows the number of new basis functions constructed on each
level, i.e. after each refinement of the covariance matrix. The Gram—Schmidt method and the hierarchic
spectral method witlh, = 0 construct one basis function for each point at which the covariance kernel is
evaluated. Accordingly, the number of new basis functions per level increases exponentially. Conversely,
the hierarchic spectral method with positive toleranges: 2-% constructs far fewer basis functions.

The number of new basis functions constructed on each level seems to be bounded independently of the

level.

5.3 Spherical covariance kernels
The spherical covariance kernel is given by

k(X. y) == 0203 (u)

- (5.7)
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FiG. 12. The first few functions for a spherical covariance.

in three dimensions or less, with positive parametessmd A, where

3 1
pa(@) :=1-3z+ Ez3, zeo,1], (5.8)

andp3(2) :=0if z> 1is, up to a scale factor, the volume of intersection of two spheres with diameter
1 and midpoints separated hySimilar constructions exist for balls of dimension different from three.

We consider the covariance kernélq) on [0,1]9, d € {1,2, 3}, witho = 1 = 1. We use the
hierarchic dyadic grid$p;)ic., defined in Sectiors.1 The first few basis functions generated by the
Gram—-Schmidt and hierarchic spectral methods are shown il Eig.

Figures13 and14 show the decay of the basis functions generated by Gram—-Schmidt and the hier-
archic spectral method in one and three dimensions, respectively. The behaviour is very similar to that
of the exponential covariance kernel with= 1, discussed in Sectidh 1
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FIG. 14. Decay of the basis functions for a spherical covariancelaa.

6. Conclusions

Orthonormal bases of the Cameron—Martin space of a Gaussian meastii®pian be constructed
explicitly, without resorting to eigenfunctions of the covariance operator. Their construction uses only
the covariance kernel, which is readily available in many stochastic models. No assumptions are made
on the structure of the kernel.

The covariance kernel is evaluated on an unstructured discrete set of points. Generally, one basis
function can be computed for every evaluation point. The general algorithm for constructing such bases
can be formulated on the level of numerical linear algebra involving the covariance matrix, and, as
such, is amenable to implementation. In exact arithmetic it constructs exact representations of the basis
functions.

The bases constructed in this manner are hierarchic. Elements computed on an initial coarse grid of
evaluation points are left unchanged when additional basis functions are computed on the same grid or
on a refined grid. This flexible construction of the basis elements may lend itself to adaptive or iterative
methods that require representations of a Gaussian field with various degrees of accuracy. The represen-
tation can be refined locally by selectively adding evaluation points of the covariance kernel. Also, the
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initial basis functions represent the most dominant components of the random field, and constructing
these on a coarse grid of evaluation points leads to simple representations of these functions in terms of
the covariance kernel at only a few points.

Numerical experiments indicate that the decay of the basis functidn® ) is comparable to that
of the square root of the eigenvalues of the covariance operator, which is known to be optimal. This
is confirmed by explicit computations in the case of an exponential covariance kernel in one dimen-
sion. The hierarchic spectral method for constructing basis functions is particularly close to optimal in
this respect, and stable in the case of ill-conditioned covariance matrices, e.g. resulting from Gaussian
covariance kernels.

Bases constructed by Gram—Schmidt orthogonalization in the Cameron—Martin space are often spa-
tially localized. In some settings, e.g. an exponential covariance kernel in one dimension or the Wiener
measure, the basis functions have compact supports with diameter tending to zero. Furthermore, the ba-
sis functions can be characterized independently of each other as functions in certain finite dimensional
spaces with given zeros. Thus, if the covariance kernel is modified the basis functions can be updated
independently of each other.
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