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The numerical discretization of problems with stochastic data or stochastic parameters generally involves
the introduction of coordinates that describe the stochastic behaviour, such as coefficients in a series
expansion or values at discrete points. The series expansion of a Gaussian field with respect to any or-
thonormal basis of its Cameron–Martin space has independent standard normal coefficients. A standard
choice for numerical simulations is the Karhunen–Loève series, which is based on eigenfunctions of the
covariance operator. We suggest an alternative, the hierarchic discrete spectral expansion, which can be
constructed directly from the covariance kernel. The resulting basis functions are often well localized,
and the convergence of the series expansion seems to be comparable to that of the Karhunen–Loève
series. We provide explicit formulas for particular cases and general numerical methods for computing
exact representations of such bases. Finally, we relate our approach to numerical discretizations based on
replacing a random field by its values on a finite set.

Keywords: Gaussian random fields; simulation; Karhunen–Loève series; Cameron–Martin space;
reproducing kernel Hilbert space; covariance kernel; representation of random fields.

1. Introduction

The numerical discretization of problems with stochastic data or stochastic parameters requires that
the random inputs are approximated by finite quantities. This is generally done in one of two ways.
Either the random data are expanded in a series, which can be truncated for numerical computations
(see, e.g.Babǔskaet al., 2004; Frauenfelderet al., 2005; Todor & Schwab, 2007; Nobile et al., 2008;
Bieri et al., 2009; Wan & Karniadakis, 2009), or it is replaced by a finite-dimensional random variable,
describing, for example, the value of a random field on a discrete set of points, or a projection of the
field onto a finite-dimensional function space (see, e.g.Dietrich & Newsam, 1997; Matthies & Keese,
2005; Grahamet al., 2010).

A standard approach, falling strictly into the first category, is to expand a random field into its
Karhunen–Lòeve series (see, e.g.Schwab & Todor, 2006). For Gaussian fields, the coefficients in this
series are independent standard normal random variables.

The independence of these coefficients is crucial to many numerical methods. For example, in Monte
Carlo simulation coefficient sequences can be generated by independent draws of pseudorandom num-
bers. The construction of polynomial chaos bases as tensor products of orthonormal bases with respect
to the distributions of the coefficients also requires that these are independent. Similarly, in collocation
and quasi-Monte Carlo methods constructions of collocation points make use of the product structure of
the joint distribution of the coefficients.

Nevertheless, the Karhunen–Loève series is often ill suited for numerical computations, as it
requires eigenfunctions of the covariance operator. These are usually not known exactly and
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are expensive to approximate numerically. Furthermore, the eigenfunctions generally have global
supports.

We suggest an alternative to the Karhunen–Loève series for general continuous Gaussian fields on
bounded domains, which we call thehierarchic discrete spectral expansion. Assuming that the covari-
ance kernel is given, the basis functions in our series expansion can be constructed exactly. As these
form an orthonormal basis of the Cameron–Martin space, independence of the coefficients in the series
expansion is preserved.

Our method does not assume any particular structure of the covariance kernel or of the underly-
ing domain. Alternative methods based on the fast Fourier transform and wavelet expansions exist for
stationary Gaussian fields (Ripley, 1987; Elliott & Majda, 1994; Elliott et al., 1997; Lang & Potthoff,
2009) sometimes with further restrictions on the domain and the covariance.

In Section2 we provide a brief overview of the theory of Gaussian measures on Banach spaces and
lay the theoretical foundation for our basis in Proposition2.9. We refer toVakhaniaet al.(1987, Chapter
III) and Bogachev(1998, Chapters 2, 3) for further details.

We consider the case of an exponential covariance in one dimension in Section3. For this setting,
we derive explicit formulas for a sequence of basis functions. In Section3.3 we apply our approach to
the Wiener measure, giving an alternative derivation of the well-known piecewise linear construction of
Brownian motion.

The numerical construction of a hierarchic sequence of basis functions is discussed in Section4. We
consider in particular two special cases of our general algorithm. Gram–Schmidt orthogonalization in
the Cameron–Martin space is closely related to the Cholesky decomposition of the covariance matrix.
Hierarchic spectral decomposition of the covariance matrix can also be used to exactly construct an
orthonormal basis of the Cameron–Martin space, providing an alternative interpretation of the naive
approximation of the Karhunen–Loève series given by eigenvectors and eigenvalues of the covariance
matrix.

Finally, in Section5 we provide numerical examples of hierarchic discrete spectral bases computed
by the two aforementioned special cases of our algorithm for several covariance kernels. We study in
particular the decay of these basis functions.

2. The Cameron–Martin space of a Gaussian distribution

2.1 Gaussian measures on Banach spaces

Let X be a real separable Banach space with Borelσ -algebraB(X) and letγ be a Gaussian measure
on (X,B(X)), i.e. for all ϕ ∈ X∗, the image measureϕ(γ ) on R is Gaussian. ByBogachev(1998,
Theorem 3.2.3) there is a unique elementaγ ∈ X, called themeanof γ , such that

ϕ(aγ ) =
∫

X
ϕ(h) dγ (h) ∀ϕ ∈ X∗ . (2.1)

Thecovariance operator Rγ is given formally by

〈Rγ ϕ, ψ〉 =
∫

X
ϕ(h− aγ )ψ(h− aγ ) dγ (h) ∀ϕ,ψ ∈ X∗. (2.2)

Again by Bogachev(1998, Theorem 3.2.3) (2.2) defines a unique linear operatorRγ : X∗ → X. We
define

σ(ϕ) :=
√
〈Rγ ϕ, ϕ〉, ϕ ∈ X∗ . (2.3)
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LEMMA 2.1 The assignment‖h‖ := σ(ϕ) if h = Rγ ϕ for ϕ ∈ X∗ defines a norm on range(Rγ ) ⊂ X.

Proof. Let ϕ,ψ ∈ X∗ with Rγ ϕ = Rγ ψ . Using the symmetry of〈Rγ ∙, ∙〉,

〈Rγ ϕ, ϕ〉 = 〈Rγ ψ, ϕ〉 = 〈Rγ ϕ, ψ〉 = 〈Rγ ψ,ψ〉 .

Therefore, ‖Rγ ϕ‖ is well defined on range(Rγ ). It is a norm since it coincides with
‖ϕ(∙ − aγ )‖L2(γ ). �

We define theCameron–Martin space H(γ ) as the completion of range(Rγ ) with respect to the
norm from Lemma2.1. By Bogachev(1998, Theorem 3.2.7)H(γ ) is a separable Hilbert space, and due
to Bogachev(1998, Proposition 2.4.6)H(γ ) embeds continuously intoX. Furthermore, byBogachev
(1998, Lemma 3.2.2)H(γ ) is independent of the spaceX on whichγ is considered.

LEMMA 2.2 For allϕ ∈ X∗ and all f ∈ H(γ ),

( f, Rγ ϕ)H(γ ) = ϕ( f ). (2.4)

Proof. Let f = Rγ ψ for ψ ∈ X∗. Then using the parallelogram identity,

( f, Rγ ϕ)H(γ ) = (Rγ ψ, Rγ ϕ)H(γ ) = 〈Rγ ψ, ϕ〉 = ϕ( f ) .

This extends to allf ∈ H(γ ) by density. �

LEMMA 2.3 Letϕ ∈ X∗ and let(ϕn)n∈N ⊂ X∗ be bounded withϕn(h) → ϕ(h) for all h ∈ X. Then
Rγ ϕn→ Rγ ϕ in H(γ ).

Proof. We assume without loss of generality thatϕ = 0. By definition

σ(ϕn)
2 = 〈Rγ ϕn, ϕn〉 =

∫

X
ϕn(h− aγ )

2 dγ (h) 6 ‖ϕn‖
2
X∗

∫

X
‖h− aγ ‖

2
X dγ (h) .

The last integral is finite as a consequence of Fernique’s theorem (Fernique, 1970); see alsoBogachev
(1998, Theorem 2.8.5). Therefore, by dominated convergence,σ(ϕn)→ σ(ϕ) = 0 and thusRγ ϕn→ 0
in H(γ ). �

The conditions of Lemma2.3 are satisfied, e.g. ifϕn ⇀ ϕ, since weakly convergent sequences are
bounded. Furthermore, the statement of Lemma2.3 implies in particular thatRγ ϕn→ Rγ ϕ in X.

2.2 Orthonormal bases of the Cameron–Martin space

The Gaussian measureγ on X is uniquely characterized by its meanaγ and its covariance operatorRγ .
The covariance operator, in turn, is determined by the Cameron–Martin spaceH(γ ). It can be expressed
in terms of an orthonormal basis ofH(γ ).

PROPOSITION2.4 Let(em)m∈Θ be an orthonormal basis ofH(γ ). Then,

Rγ ϕ =
∑

m∈Θ

ϕ(em)em ∀ϕ ∈ X∗ (2.5)

with unconditional convergence inH(γ ) and inX. Furthermore,

〈Rγ ϕ, ψ〉 =
∑

m∈Θ

ϕ(em)ψ(em) ∀ϕ,ψ ∈ X∗ (2.6)

with unconditional convergence inR.
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Proof. Let ϕ ∈ X∗. By Lemma2.2,

(Rγ ϕ, em)H(γ ) = ϕ(em) ∀m ∈ Θ .

ExpandingRγ ϕ in the orthonormal basis(em)m∈Θ of H(γ ) we have

Rγ ϕ =
∑

m∈Θ

(Rγ ϕ, em)H(γ )em =
∑

m∈Θ

ϕ(em)em

with convergence inH(γ ), and thus also inX sinceH(γ ) embeds continuously intoX. The convergence
is unconditional since all the above is independent of any ordering of the basis(em)m∈Θ . In particular,
for anyψ ∈ X∗,

〈Rγ ϕ, ψ〉 = ψ(Rγ ϕ) = ψ

(
∑

m∈Θ

ϕ(em)em

)

=
∑

m∈Θ

ϕ(em)ψ(em) ,

again with unconditional convergence. �
An orthonormal basis(em)m∈Θ of H(γ ) is useful not only for computing the covarianceRγ but also

for sampling the distributionγ on X.
We define the product Gaussian measureπ on (RΘ,B(RΘ)),

π :=
⊗

m∈Θ

πm , (2.7)

where eachπm is a standard Gaussian measure on(R,B(R)). In principle,π can be sampled numer-
ically by independent standard Gaussian draws for each indexm ∈ Θ. If, in some sense, these values
are of decreasing importance, then the sequence can be truncated to finitely many random values. Using
an orthonormal basis(em)m∈Θ of H(γ ) we parameterizeγ byπ , allowingγ to be sampled by mapping
a sample ofπ from RΘ to X. Also, series expansions of the form (2.8) are a prerequisite for many
stochastic Galerkin and collocation methods.

THEOREM 2.5 Let(em)m∈Θ be an orthonormal basis ofH(γ ). Then the series in

T : RΘ → X, ξ = (ξm)m∈Θ 7→ aγ +
∑

m∈Θ

ξmem (2.8)

converges unconditionally inX for π -a.e.ξ = (ξm)m∈Θ in RΘ , and the distribution ofT is T(π) = γ .

For a proof of Theorem2.5we refer toBogachev(1998, Theorem 3.5.1) (see alsoJain & Kallianpur,
1970; Kuelbs, 1971; Page, 1972; Vakhaniaet al., 1987, Section V.5.5). Due to the product structure of
π , ξ = (ξm)m∈Θ are independent standard Gaussian random variables.

REMARK 2.6 Theorem2.5applies directly toRγ -Wiener processes. For any orthonormal basis(em)m∈Θ
of H(γ ) let (βm

t )m∈Θ be independent scalar Wiener processes. Then anRγ -Wiener processWt in X is
given by

Wt =
∑

m∈Θ

βm
t em , (2.9)
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with unconditional convergence inX a.s. for allt > 0. Convergence of this series follows by applying
Theorem2.5for everyt > 0. Equation (2.9) defines anH(γ )-Wiener process since for allt > s,

Wt −Ws =
∑

m∈Θ

(βm
t − β

m
s )em =

√
t − s

∑

m∈Θ

ξmem (2.10)

with independent standard normal(ξm)m∈Θ , and the last sum represents anX-valued centred Gaussian
random variable with covarianceRγ . In particular, iftn → t , then (2.10) with s = tn implies thatWt

defined by (2.9) has continuous paths.

REMARK 2.7 The series representation (2.8) also allows conditional simulation of the distributionγ .
For a finite setΘn ⊂ Θ the distribution of the series

aγ +
∑

m∈Θn

ymem+
∑

m∈Θ\Θn

ξmem (2.11)

serves as a conditional probability ofγ , conditioned onξm = ym for m ∈ Θn, where(ξm)m∈Θ\Θn are
independent standard normal random variables (seeBogachev, 1998, Corollary 3.5.2). In particular, if
γ describes a prior model for a random element ofX andym are measurements ofξm for m ∈ Θn, then
(2.11) is the resulting posterior model. This is the foundation for the interpolation techniques known in
geostatistics as kriging (see, e.g.Stein, 1999; Diggle & Ribeiro, 2007).

2.3 Continuous Gaussian fields

We consider the caseX = C(D) for a compact setD ⊂ Rd. Thenγ describes a Gaussian field onD
that is as above continuous.

For all x ∈ D the Dirac functionalδx( f ) := f (x) is in X∗. We define

kx := Rγ δx, x ∈ D. (2.12)

Then thecovariance kernelof γ is

k(x, y) := kx(y) = 〈Rγ δx, δy〉, x, y ∈ D. (2.13)

The functionk(∙, ∙) is symmetric since

k(x, y) = 〈Rγ δx, δy〉 = 〈Rγ δy, δx〉 = k(y, x) ∀x, y ∈ D. (2.14)

By the Riesz representation theorem forX = C(D), X∗ can be identified with the space of signed
measuresμ on the Borelσ -algebra ofD with the total variation norm. Accordingly, we will use the same
symbol, e.g.μ, for the signed measure on(D,B(D)) and for the element ofX∗ given by integration
against this measure.

PROPOSITION2.8 Letμ andν be signed measures on(D,B(D)). Then

(Rγ μ)(x) =
∫

D
kx dμ ∀ x ∈ D (2.15)

and

〈Rγ μ, ν〉 =
∫

D

∫

D
k(x, y) dμ(y) dν(x). (2.16)
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Proof. For all x ∈ D, by symmetry of〈Rγ ∙, ∙〉,

(Rγ μ)(x) = 〈Rγ μ, δx〉 = 〈Rγ δx, μ〉 =
∫

D
kx dμ.

Consequently,

〈Rγ μ, ν〉 =
∫

D
(Rγ μ)(x) dν(x) =

∫

D

∫

D
k(x, y) dμ(y) dν(x). �

In particular, if dμ(x) = f (x) dx and dν(x) = g(x) dx for functions f andg in L1(D) we recover
the well-known formula describing the covariance operatorRγ as integration againstk(∙, ∙),

〈Rγ f, g〉 =
∫

D

∫

D
k(x, y) f (y)g(x) dy dx. (2.17)

Here f andg are interpreted as the elements ofX∗ given by integration againstf andg, respectively.

PROPOSITION2.9 Let (pi )i∈Λ be a dense subset ofD. Then the linear span of(kpi )i∈Λ is dense in
H(γ ).

Proof. Let f ∈ H(γ ) be orthogonal tokpi for all i ∈ Λ. Lemma2.2 implies

f (pi ) = δpi ( f ) = ( f, Rγ δpi )H(γ ) = ( f, kpi )H(γ ) = 0 ∀ i ∈ Λ.

Since(pi )i∈Λ is dense inD by assumption andf is continuous due toH(γ ) ⊂ X = C(D) it follows
that f = 0. �

REMARK 2.10 Proposition2.9suggests a construction for an orthonormal basis ofH(γ ). Given a dense
sequence(pi )i∈N in D we can apply Gram–Schmidt orthogonalization to(kpi )i∈N. This is explored in
Section4.2. Note that by Lemma2.2, f ∈ H(γ ) is orthogonal tokx for anx ∈ D if and only if f (x) = 0
since

( f, kx)H(γ ) = ( f, Rγ δx)H(γ ) = δx( f ) = f (x).

Therefore, constructing an orthonormal basis ofH(γ ) can reduce to finding functions in the span
of (kpi )

n
i=1 with certain zeros.

For any sequencep = (pi )i∈Λ in D let K denote the covariance matrix of the functionals(δpi )i∈Λ,
i.e.

K = [〈Rγ δpi , δpj 〉]i, j∈Λ = [k(pi , pj )] i, j∈Λ. (2.18)

For a finitely supported vectora = (ai )i∈Λ ∈ RΛ we define the functional

aδppp :=
∑

i∈Λ

ai δpi ∈ C(D)∗ (2.19)

and the function

akppp := Rγ aδppp =
∑

i∈Λ

ai kpi ∈ H(γ ) ⊂ C(D). (2.20)
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Note that no convergence issues emerge since by assumption,ai = 0 for all but finitely manyi ∈ Λ.
Then, using Lemma2.2, for all finitely supporteda andb in RΛ,

(akppp, bkppp)H(γ ) = 〈Rγ aδppp, bδppp〉 = aTKb . (2.21)

Therefore, orthogonality of the functionsakppp andbkppp in H(γ ), which is equivalent to the functionals
aδppp andbδppp being uncorrelated, is characterized by orthogonality of the vectorsa andb with respect to
K .

COROLLARY 2.11 Letp = (pi )i∈Λ be a sequence inD, and let(am)m∈Θ ⊂ RΛ such thatam is finitely
supported for allm ∈ Θ and

(am)TKam′ = δmm′ ∀m,m
′ ∈ Θ . (2.22)

Then(amkppp)m∈Θ is an orthonormal system inH(γ ). If p is dense inD and for alli ∈ Λ, kpi is in the
span of(amkppp)m∈Θ in H(γ ), then(amkppp)m∈Θ is an orthonormal basis ofH(γ ).

Proof. Orthonormality of(amkppp)m∈Θ follows from (2.22) due to (2.21). Density is a consequence of
Proposition2.9. �

REMARK 2.12 The assumption that coefficient vectors are finitely supported can be weakened to a
more general summability condition. In the interest of a concise presentation, and since all numerically
representable coefficient vectors are finitely supported, we consider only this setting.

3. Examples

3.1 Exponential covariance in one dimension

Let I ⊂ R be a compact interval. We consider a Gaussian measureγ on C(I ) with an exponential
covariance kernel

k(x, y) = σ 2 e−|x−y|/λ, x, y ∈ I , (3.1)

for constantsσ > 0 andλ > 0.
We define a hierarchic sequence of grids onI . For all ` ∈ N, let Δ` ⊂ I be a finite set with

Δ` ∩Δ`′ = ∅ if ` 6= `′. We define the unions

Λ` :=
⊔̀

j=1

Δ j and p := Λ :=
∞⊔

`=1

Δ` =
∞⋃

`=1

Λ`. (3.2)

Thenn` := #Λ` < ∞. For all ` ∈ N, we enumerate the elements ofΛ` in increasing order,Λ` =
{p`1, . . . , p`n`} with p`i < p`i+1. We assume that elements ofΔ` are never adjacent in this ordering.

ASSUMPTION3.1 For all` ∈ N, if p`i , p`j ∈ Δ` andi 6= j , then|i − j | > 2.

Assumption3.1 implies in particular

n1 6 1 and n`+1 6 2n` + 1 ∀ ` ∈ N . (3.3)

It is always satisfied if #Δ` = 1 for all ` ∈ N.
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To eachp ∈ Λ we associate a functionapkppp in H(γ ) with ap ∈ RΛ finitely supported. Let̀ ∈ N
and p ∈ Δ` such thatp = p`i in the above ordering. We define the coefficient vectorap by allowing
ap

q to be different from zero only ifq is adjacent top in Λ`, and requiring thatapkppp is zero at all such
adjacent nodesq. Finally, we normalize the coefficients such thatapkppp has unit norm inH(γ ).

If i is different from 1 andn`, i.e. if p is an interior point ofΛ`, this results in a 3× 3 linear system
with the following solution. Forh+ := (p`i+1− p`i )/λ andh− := (p`i − p`i−1)/λ let

ã0 :=
e2h−+2h+ −1

(e2h− −1)(e2h+ −1)
, ã−1 :=

− eh−

e2h− −1
, ã1 :=

− eh+

e2h+ −1
(3.4)

and defineap = (ap
q )q∈Λ by

ap
p`j

:=
ã j−i

σ
√

ã0
, j ∈ {i − 1, i, i + 1}, (3.5)

andap
q := 0 for all otherq ∈ Λ.

If p is a boundary point ofΛ` andn` > 2 the above conditions lead to a 2× 2 linear system. If
i = 1, thenh := (p`2 − p`1)/λ and

ã0 := 1, ã1 := − e−h and ap
p`j

:=
ã j−1

σ
√

1− e−2h
. (3.6)

Similarly, if i = n`, we seth := (p`n` − p`n`−1)/λ and

ã0 := 1 , ã−1 := − e−h and ap
p`j

:=
ã j−n`

σ
√

1− e−2h
. (3.7)

In both cases,ap
q := 0 for all otherq ∈ Λ. Finally, if p is the only element ofΛ`, then ã0 := 1,

ap
p := 1/σ , andap

q := 0 for all q 6= p. Some basis functions are plotted in Fig.1.

FIG. 1. The first few functionsapkppp on I = [0, 1] constructed on dyadic grids (circles).
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PROPOSITION3.2 Let` ∈ N with n` > 2. Then for allp = p`i ∈ Δ` the support ofapkppp in I is

suppapkppp =
[
p`i−1, p`i+1

]
, (3.8)

where we setp`0 := min(I ) and p`n`+1 := max(I ).

Proof. We first consider an interior pointp = p`i of Λ`. Any x > p`i+1 is of the formx = p`i + tλ for
somet > h+ = (p`i+1− p`i )/λ. Then using the notation from (3.4), for somec > 0,

c(apkppp)(x) = ã−1 e−(t+h−)+ã0 e−t +ã1 e−(t−h+) =
− e−t

e2h− −1
+

e−t
(

e2h−+2h+ −1
)

(e2h− −1)(e2h+ −1)
+
− e−t e2h+

e2h+ −1

=
e−t

(
− e2h+ +1+ e2h−+2h+ −1− e2h−+2h+ + e2h+

)

(e2h− −1)(e2h+ −1)
= 0 .

This impliesapkppp(x) = 0 for all x > p`i+1. By symmetry, alsoapkppp(x) = 0 for all x 6 p`i−1. Similar,
but shorter, computations lead to the same result for boundary points. �

LEMMA 3.3 For allp ∈ Λ and allx ∈ I ,

06 (apkppp)(x) 6 (a
pkppp)(p) =

1

ap
p
. (3.9)

In particular, the maximal value ofapkppp has the following form. Ifp ∈ Δ` is an interior node ofΛ`,
then

(apkppp)(p) = σ

√
(e2h− −1)(e2h+ −1)

e2h−+2h+ −1
(3.10)

with h− andh+ as above. Ifp is a boundary node ofΛ` with n` > 2, then(apkppp)(p) = σ
√

1− e−2h

with h as above, and ifn` = 1, then(apkppp)(p) = σ .

Proof. We first compute(apkppp)(p). Let p ∈ Δ` be an interior node ofΛ`. Then

(apkppp)(p) =
1

σ
√

ã0

(
ã−1σ

2 e−h− +ã0σ
2+ ã1σ

2 e−h+
)
= σ

√
(e2h− −1)(e2h+ −1)

e2h−+2h+ −1
.

If p ∈ Δ` is a boundary node ofΛ` with n` > 2,

(apkppp)(p) =
1

σ
√

1− e−2h
σ 2−

e−h

σ
√

1− e−2h
σ 2 e−h = σ

√
1− e−2h .

Finally, if n` = 1, thenapkppp = σ−1kp, and therefore(apkppp)(p) = σ .
To prove (3.9) we show that the derivative ofapkppp is monotonic between elements ofΛ`. It suffices

to show this on the interval(p`i , p`i+1) if p = p`i . For interior nodes this is a consequence of

d

dt

(
ã−1 e−(t+h−)+ã0 e−t +ã1 e−(h+−t))= −ã−1 e−t−h− −ã0 e−t +ã1 et−h+ =

− e−t
(

e2h+ + e2t
)

e2h+ −1
60

for all 0< t < h+. Similar estimates hold for boundary nodes. �
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THEOREM 3.4 The functions(apkppp)p∈Λ form an orthonormal system inH(γ ). If Λ is dense inI , then
(apkppp)p∈Λ is an orthonormal basis ofH(γ ).

Proof. Let p = p`i ∈ Δ` andq ∈ Λ` \ {p}. By Lemma2.2 and Proposition3.2, (apkppp, kq)H(γ ) =
(apkppp)(q) = 0 sinceq is not in the interior of the support ofapkppp.

Let p′ = p`j with j 6= i . If |i − j | > 2, thenap′kppp is a linear combination ofkq for q ∈ Λ` \{p}, and

therefore(apkppp,ap′kppp)H(γ ) = 0. By Assumption3.1, if |i − j | = 1, thenp′ ∈ Λ` \ Δ`, i.e. p′ ∈ Δ`′

for some`′ 6 ` − 1. Consequently,ap′kppp is a linear combination ofkq for q ∈ Λ`′ , and thus again
(apkppp,ap′kppp)H(γ ) = 0. Therefore, the functions(apkppp)p∈Λ are mutually orthogonal inH(γ ).

Using Lemma3.3and the orthogonality ofapkppp to kq for all q ∈ Λ` \ {p},

‖apkppp‖
2
H(γ ) = (a

pkppp,a
p
pkp)H(γ ) = ap

pδp(a
pkppp) = 1 .

This shows that the functions(apkppp)p∈Λ are normalized inH(γ ).
Proposition2.9implies that ifΛ is dense inI , then the linear span of(kp)p∈Λ is dense inH(γ ). For

every`, (apkppp)p∈Λ` aren` linearly independent elements of the span of(kq)q∈Λ` . Consequently, for all
q ∈ Λ`, kq is a linear combination of(apkppp)p∈Λ` . �

3.2 Decay of basis elements

PROPOSITION3.5 For allp ∈ Λ, if p ∈ Δ` is an interior node ofΛ`, then

‖apkppp‖C(I ) 6 σ min

(

eh−+h+

√
2h−h+

h− + h+
, 1

)

(3.11)

with h− andh+ as above. Ifp is a boundary node andn` > 2, then‖apkppp‖C(I ) 6 σ
√

min(2h, 1) with
h as above, and ifn` = 1, then‖apkppp‖C(I ) = σ .

Proof. We use the elementary estimates 1− e−t 6 t 6 et −1 6 t et for t > 0. By Lemma3.3, the
maximum ofapkppp is attained atp and is equal to 1/ap

p. The first part of (3.11) follows from (3.10) and

(
e2h− −1

)(
e2h+ −1

)

e2h−+2h+ −1
6

(
2h− e2h−

)(
2h+ e2h+

)

2h− + 2h+
= e2h−+2h+ 2h−h+

h− + h+
.

For boundary nodes and in the casen` = 1, the claim is a consequence of Lemma3.3.
It remains to be shown that (3.10) is bounded byσ . To this end we compute the derivative

d

dh−

(
e2h− −1

)(
e2h+ −1

)

e2h−+2h+ −1
=

2e2h−
(

e2h+ −1
)2

(e2h−+2h+ −1)2
> 0 ,

and similarly withh+ andh− switched. Leth := h− + h+ andϑ := h−/h. Then by monotonicity, for
any fixedϑ ∈ (0, 1),

sup
h→∞

(
e2ϑh−1

)(
e2(1−ϑ)h−1

)

e2h−1
= lim

h→∞
2ϑ
(
1− e−2(1−ϑ)h )+ 2(1− ϑ)

(
1− e−2ϑh ) = 1,

which concludes the proof. �
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PROPOSITION3.6 For allp ∈ Λ, if p ∈ Δ` is an interior node ofΛ`, then

‖apkppp‖L2(I ) 6 σ min
(
eh−+h+

√
2h−h+,

√
h− + h+

)
(3.12)

with h− and h+ as above. If p is a boundary node andn` > 2, then ‖apkppp‖L2(I ) 6 σ
√

min(2h, 1)(h+ h∂ ) with h as above andh∂ := (p−min(I ))/λ if p = p`1 andh∂ := (max(I )− p)/λ
if p = p`n` . If n` = 1, then‖apkppp‖L2(I ) 6 σ

√
|I |.

Proof. The claim follows from Propositions3.2and3.5using the estimate

‖apkppp‖L2(I ) 6
√
|suppapkppp| ‖a

pkppp‖C(I ). �

For small correlation lengthsλ, i.e. large values ofh, h−, h+ andh∂ , the estimate in Proposition3.6
is quite crude but sufficient for our purposes.

EXAMPLE 3.7 Let I := [0, 1], Λ0 := {1/2} andΔ` := {i 2−` ; i = 0, 1, . . . , 2`} for all ` > 1, as in
Fig. 1. Then for all` ∈ N and allp ∈ Δ`, h = h− = h+ = 2−`, andh∂ = 0. In particular, Propositions
3.5and3.6 imply

‖apkppp‖C(I ) 6 Cσ
1
√

n`
and ‖apkppp‖L2(I ) 6 Cσ

1

n`
∀p ∈ Δ`. (3.13)

Thus, the convergence rate inL2(I ) of (2.8) and (2.9) coincides with that of the Karhunen–Loève
series. At any given pointx ∈ [0, 1], since only at most two basis functions per level are nonzero, the
convergence of the series is exponential if all other basis functions are disregarded.

3.3 The Wiener measure

The same approach as in Section3.1 can be used to construct an orthonormal basis of the Cameron–
Martin space of the Wiener measure. LetI = [0, 1] and

k(x, y) := min(x, y), x, y ∈ I . (3.14)

Furthermore, letΛ` = {p`1, . . . , p`n`}, Λ` ↑ Λ =: p, be a hierarchic sequence of grids satisfying
Assumption3.1, and not containing 0.

Proceeding as in the case of an exponential covariance kernel we construct for eachp ∈ Λ a function
apkppp that is a linear combination ofkq for at most threeq ∈ Λ. Sincekq is piecewise linear for allq ∈ Λ,
the orthogonality conditions onapkppp imply thatapkppp is a multiple of a hat function.

For eachp ∈ Λ we define a hat functionζp as follows. Forp ∈ Δ`, ζp is the piecewise linear
function onI subordinate to the nodesΛ` ∪ {0, 1} such thatζp(q) = δpq for all q ∈ Λ`, ζp(0) = 0 and
ζp(1) = ζp(p`n` ).

PROPOSITION3.8 For allp ∈ Λ, apkppp = ζp/a
p
p.

Proof. We consider the casep = p`i ∈ Δ` with 26 i 6 n` − 1. The case of boundary points is similar.
Then, sinceapkppp is piecewise linear, the condition 0= (apkppp, kq)H(γ ) = (apkppp)(q) for q = p`i±1
implies thatapkppp is a multiple ofζp. The third defining condition,

1= ‖apkppp‖
2
H(γ ) = (a

pkppp,a
p
pkp)H(γ ) = ap

p(a
pkppp)(p)

leads to the claim. �
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The values ofap
p can be determined by explicitly solving the linear system definingap. Let p =

p`i ∈ Δ`. If i = n` = 1, thenap
p = 1/

√
p. If n` > 2 andi = 1, for h := p`2− p`1, ap

p =
√
(p+ h)/ph,

whereas ifi = n`, for h := p`n` − p`n`−1, ap
p = 1/

√
h. For interior points, i.e. if 26 i 6 n` − 1,

ap
p =

√
(h− + h+)/h−h+ for h− := p`i − p`i−1 andh+ := p`i+1− p`i .

This method provides an alternative derivation of the well-known piecewise linear basis for Brown-
ian motion due to Ĺevy and Ciesielski, which is more commonly derived by integratingL2([0, 1])-
orthonormal Haar wavelets (see, e.g.Karatzas & Shreve, 1991).

The statements of Proposition3.2and Lemma3.3 for the Wiener measure are a direct consequence
of Proposition3.8. In particular, Theorem3.4 applies, as the proof requires only these two statements
and is not specific to exponential covariances. Bounds similar to those given in Section3.2also hold in
the case of the Wiener measure and follow from Proposition3.8and the above values ofap

p.

4. Numerical construction of hierarchic bases

4.1 A general algorithm

Let (em)m∈Θ0 be an orthonormal system inH(γ ) for a finite, possible empty, setΘ0. We wish to deter-
mine a finite sequence(em)m∈Θ1 in H(γ ) such that(em)m∈Θ0∪Θ1 is an orthonormal system inH(γ ).

Let p := (pi )i∈Λ be a sequence inD. We assume that, for a finite setΛ0 ⊂ Λ, em is in the span of
(kpi )i∈Λ0 for all m ∈ Θ0 and allowem to be in the span of(kpi )i∈Λ0∪Λ1 for a second finite setΛ1 ⊂ Λ.
The coefficients of(em)m∈Θ0 with respect to(kpi )i∈Λ0 can be stored as the columns of a matrix,

A0 := [am]m∈Θ0, em =
∑

i∈Λ0

am
i kpi , m ∈ Θ0. (4.1)

We also consider the covariance matrix of(em)m∈Θ0 and(kpi )i∈Λ0,

F0 := [(kpi , em)H(γ )]m∈Θ0,i∈Λ0 = [em(pi )]m∈Θ0,i∈Λ0
, (4.2)

wherem indexes the rows andi the columns ofF0. Although this matrix is not required in order to
augment the orthonormal system(em)m∈Θ0 it is computed as a byproduct of ouralgorithm.

AUGMENTBASIS[k, p,Λ0,Λ1, A0, F0] 7→ [ A, F ]
K 0←− [k(pi , pj )]i∈Λ0, j∈Λ1

K 1←− [k(pi , pj )]i, j∈Λ1

C←− AT
0 K 0

[V, D] ←− eig ε(K 1− CTC)
B←− V D−1/2

A←−
(

A0−A0C B
0 B

)

F ←−
(

F0 C
0 D1/2VT

)

In AUGMENTBASIS, eig ε with ε > 0 is a function that computes some nonzero eigenpairs of a
matrix. We assume that all eigenvalues not computed byeig ε have magnitude less than or equal toε.

REMARK 4.1 IfΛ0∩Λ1 6= ∅, then the matricesA andF constructed by the algorithm AUGMENTBASIS

do not have the block structure indicated in the formulation of the algorithm. Rather, the rows ofA
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corresponding to the same indexi ∈ Λ0 ∩ Λ1 are assumed to be summed. InF the new value of a
column corresponding toi ∈ Λ0 ∩Λ1 overwrites the old value.

PROPOSITION4.2 LetA0 andF0 be as in (4.1) and (4.2) for an orthonormal system(em)m∈Θ0 in H(γ ).
Let the setΘ index the columns ofA generated by AUGMENTBASIS, andΘ1 := Θ \Θ0. For allm ∈ Θ
let

em :=
∑

i∈Λ0∪Λ1

am
i kpi , (4.3)

wheream := (am
i ) is themth column ofA. Then the sequence(em)m∈Θ is an orthonormal system in

H(γ ). For allm ∈ Θ0, (4.3) coincides with (4.1). Furthermore, for allm ∈ Θ, themth row of F is the
vector(em(pi ))i∈Λ0∪Λ1. In particular, ifm ∈ Θ1 andi ∈ Λ0 \Λ1, thenem(pi ) = 0.

Proof. We can assume without loss of generality thatΛ0∩Λ1 = ∅ sincepi = pj is possible fori 6= j .
Identifying such indices leads to the compression described in Remark4.1.

By definition of A and (4.1) the columns of

E :=
(

I −C B
0 B

)

represent(em)m∈Θ with respect to(em)m∈Θ0 ∪ (kpi )i∈Λ1. Furthermore, the covariance matrix of the
sequence(em)m∈Θ0 ∪ (kpi )i∈Λ1 is

L :=
(

I AT
0 K 0

(AT
0 K 0)

T K 1

)
=
(

I C
CT K 1

)
.

Thus, the covariance matrix of(em)m∈Θ is

ETL E =
(

I 0
−BTCT BT

)(
I C

CT K 1

)(
I −C B
0 B

)
=
(

I 0
0 BT(K 1− CTC)B

)
.

By definition of B,

BT(K 1− CTC)B = I .

Therefore,(em)m∈Θ is an orthonormal system inH(γ ); see Corollary2.11.
Finally, we have

F A =
(

F0A0 −F0A0C B+ C B
0 D1/2VT B

)
= I

sinceF0A0 = I by orthonormality of(em)m∈Θ0 in H(γ ). Therefore,F A is the matrix representation of

h =
∑

m∈Θ

(h, em)H(γ )em ∀h ∈ span(em)m∈Θ

in the basis(kpi )i∈Λ0∪Λ1. This implies that themth row of F is the vector((kpi , em)H(γ ))i∈Λ0∪Λ1, and
the claim follows using Lemma2.2. �
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REMARK 4.3 Let(pi )i∈Λ be a finite sequence inD such that(kpi )i∈Λ are linearly independent, and let

K := [〈Rγ δpi , δpj 〉]i, j∈Λ = [k(pi , pj )]i, j∈Λ = [(kpi , kpj )H(γ )]i, j∈Λ (4.4)

be the covariance matrix of(δpi )i∈Λ. ThenK is symmetric positive definite and thus allows a factoriza-
tion of the form

K = FTF (4.5)

with a regular matrixF . Defining A := F−1 we have

ATK A = ATFTF A = I ,

and by Corollary2.11, the columns ofA are the coefficients with respect to(kpi )i∈Λ of an orthonormal
system inH(γ ). SinceA is square this orthonormal system is an orthonormal basis of the linear span
of (kpi )i∈Λ in H(γ ). Generalizing to rank deficientK we assumeF to have full row rank, and define
A as the right inverse ofF . The routine AUGMENTBASIS with ε = 0 hierarchically constructs suchF
and A. With positiveε, it adds a compression of the covariance matrix and (4.5) only holds approxi-
mately.

We consider the following hierarchically constructed(em)m∈Θ ⊂ H(γ ). Let p = (pi )i∈Λ be a
sequence inD, and let(em)m∈Θ0 be an arbitrary finite orthonormal system inH(γ ) in the linear hull of
(kpi )i∈Λ0 for a finite setΛ0 ⊂ Λ. For all ` ∈ N let Λ` ⊂ Λ be a finite set, and let(em)m∈Θ` be the
sequence inH(γ ) constructed by applying AUGMENTBASIS to (em)m∈Θ`′ ,`′6`−1 as in Proposition4.2
with ε = ε`. We defineΘ :=

⋃
`∈N0

Θ`.
For all ` ∈ N0 let P̀ be the orthonormal projection inH(γ ) onto the span ofem for m ∈ Θ`′ with

`′ 6 `. It has the form

P̀ h =
∑̀

`′=0

∑

m∈Θ`′

(h, em)H(γ )em, h ∈ H(γ ). (4.6)

For all` ∈ N0 let

K ` := K |Λ`×Λ` = [(kpi , kpj )H(γ )]i, j∈Λ` (4.7)

be the submatrix ofK from (4.4) on the index setΛ`. Using P̀ we define the approximation

K̃ ` := [(P̀ kpi , P̀ kpj )H(γ )]i, j∈Λ` (4.8)

to K `. Note that

[
K̃ `

]
i j = (kpi , kpj )H(γ ) =

∑̀

`′=0

∑

m∈Θ`′

em(pi )em(pj ), (4.9)

so K̃ ` is computable directly fromem for m ∈ Θ`′ , `′ 6 `.

LEMMA 4.4 Using the notation from AUGMENTBASIS,

K̃ 1 =
(
FTF

)
|Λ1×Λ1 = CTC + V DVT. (4.10)



308 C. J. GITTELSON

Proof. By Proposition4.2and (4.6),

[
FTF

]
i j =

[ ∑

m∈Θ0∪Θ1

(kpi , em)H(γ )(kpj , em)H(γ )

]

i j
= [(P1kpi , P1kpj )H(γ )]i j ,

wherei, j ∈ Λ0 ∪Λ1. We compute

FTF =

(
FT

0 0

CT V D1/2

)(
F0 C

0 D1/2VT

)

=

(
FT

0 F0 FT
0C

CTF0 CTC + V DVT

)

.

Therefore, for alli, j ∈ Λ1, [K̃ 1]i j = [FTF ]i j = [CTC + V DVT]i j . �

PROPOSITION4.5 For all` ∈ N and allb, c ∈ RΛ` ⊂ RΛ,

∣
∣〈Rγ bδppp, cδppp〉 − bT K̃ `c

∣
∣ 6 ε`‖b‖`2‖c‖`2 . (4.11)

Proof. We assume without loss of generality that` = 1. By (2.20), 〈Rγ bδppp, cδppp〉 = bTK 1c. Therefore,
using Lemma4.4and the definition ofε`,

∣
∣〈Rγ bδppp, cδppp〉 − bT K̃ 1c

∣
∣ =

∣
∣bT(K 1−CTC− V DVT)c

∣
∣ 6 ε`‖b‖`2‖c‖`2. �

COROLLARY 4.6 For all` ∈ N and alli, j ∈ Λ`,

|k(pi , pj )− (P̀ kpi , P̀ kpj )H(γ )| 6 ε`. (4.12)

Proof. The claim follows from Proposition4.5and (2.13). �

COROLLARY 4.7 For all` ∈ N and alli ∈ Λ`,

‖kpi − P̀ kpi ‖H(γ ) 6
√
ε`, (4.13)

Proof. Using orthogonality of the projectionP̀ and Corollary4.6with j = i ,

‖kpi − P̀ kpi ‖
2
H(γ ) = ‖kpi ‖

2
H(γ ) − ‖P̀ kpi ‖

2
H(γ ) 6 ε`. �

THEOREM 4.8 If p = (pi )i∈Λ is dense inD,
⋃
`∈N0

Λ` = Λ andε` → 0 as`→∞, then(em)m∈Θ is
an orthonormal basis ofH(γ ).

Proof. Orthonormality of(em)m∈Θ follows from Proposition4.2. To prove density it suffices by Propo-
sition2.9to show thatkx is in the span of(em)m∈Θ for all x ∈ D.

Let x ∈ D. Then there is a sequence(in)n∈N in Λ such thatxn := pin → x andin 6= in′ if n 6= n′.
Since‖δxn‖C(D)∗ = 1 for all n, Lemma2.3 implieskxn → kx in H(γ ). For alln ∈ N let `n ∈ N0 with
in ∈ Λ`n . Then`n → ∞ sinceΛ` is finite for all ` ∈ N0. Due to Corollary4.7, P̀ nkxn → kx by the
assumptionε`→ 0. �
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4.2 Gram–Schmidt orthogonalization in the Cameron–Martin space

We consider AUGMENTBASIS with ε = 0 for Λ1 = { j }, where j is assumed to be an element of
Λ \ Λ0. In this case, AUGMENTBASIS reduces to Gram–Schmidt orthogonalization in the Cameron–
Martin space and can be found inPugachev(1965, Chapter 9). An explicit formulation is given in
GRAMSCHMIDTSTEP.

GRAMSCHMIDTSTEP[k, p,Λ0, j, A0, F0] 7→ [ A, F ]
k0←− [k(pi , pj )]i∈Λ0

c←− AT
0k0 // i.e.ci = ei (pj ) = (ei , kpj )H(γ )

d←− k(pj , pj )− cTc // i.e.d = k(pj , pj )−
∑

i∈Λ0
ei (pj )

2

if d = 0 then

A←−
(

A0
0

)

F ←−
(
F0 c

)

else // i.e.d > 0
s←−

√
d

A←−
(

A0 −s−1A0c
0 s−1

)

F ←−
(

F0 c
0 s

)

end

REMARK 4.9 Let (pi )
n
i=1 ⊂ D such that(kpi )

n
i=1 are linearly independent, and let(ei )

n
i=1 be con-

structed by recursive application of GRAMSCHMIDTSTEP. Furthermore, letK be the covariance matrix
of (δpi )

n
i=1, and letF be the last output of GRAMSCHMIDTSTEP. By Proposition4.2,

FTF =

[
n∑

m=1

(kpi , em)H(γ )(kpj , em)H(γ )

]n

i, j=1

= [(kpi , kpj )H(γ )]
n
i, j=1 = K .

Furthermore, it follows by induction thatF is an upper triangular matrix with positive diagonal entries.
Therefore,F is the right Cholesky factor ofK .

REMARK 4.10 The basis functions(em)m∈N can be characterized independently of each other. For a
fixed sequence(pi )i∈N in D, em is in the span of(kpi )

m
i=1 and orthogonal tokpi for all i 6 m− 1. This

definesem uniquely up to a scalar factor, which is determined by normalization inH(γ ).

REMARK 4.11 Assuming that the covariance kernel can be evaluated in unit time, the computational
cost of GRAMSCHMIDTSTEP is dominated by the matrix–vector multiplication. Therefore, thenth step
requiresO(n2) arithmetic operations, and the construction of the firstn basis functions(em)

n
m=1 has

complexityO(n3).

4.3 Hierarchic spectral decomposition of the covariance matrix

As a second particular case of AUGMENTBASIS, we assume that the setsΛ` are nested,

Λ0 ⊂ Λ1 ⊂ ∙ ∙ ∙ ⊂ Λ` ⊂ Λ`+1 ⊂ ∙ ∙ ∙ ⊂ Λ, (4.14)
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and, in view of Theorem4.8,Λ =
⋃∞
`=0Λ`. For example,(pi )i∈Λ` could be the nodes of nested grids

of D. In this setting Proposition4.5applies to all nodespi visited up to level̀ for any` ∈ N.
The routine AUGMENTBASIS is customized to (4.14) in AUGMENTSPECTRALBASIS, which

assumesΛ0 ⊂ Λ1. In particular, AUGMENTSPECTRALBASIS takes into account Remark4.1.

AUGMENTSPECTRALBASIS[k, p,Λ0,Λ1, A0] 7→ [ A, F ]
K ←− [k(pi , pj )]i, j∈Λ1

K 0←− K |Λ0×Λ1

C←− AT
0 K 0

[V, D] ←− eig ε(K − CTC)

B =
(

B0
B1

)
←− V D−1/2 // B0 = B|Λ0×Λ1 and B1 = B|(Λ1\Λ0)×Λ1

A←−
(

A0 B0− A0C B
0 B1

)

F ←−
(

C
D1/2VT

)

REMARK 4.12 A common but seemingly naive approximation to the Karhunen–Loève series consists
of computing some or all eigenpairs of the covariance matrixK , e.g. on the vertices of a finite element
mesh, in place of more precise representations of eigenfunctions of the covariance operator. Letp =
(pi )i∈Λ be a finite sequence inD. Then this procedure is similar to AUGMENTSPECTRALBASIS with
Λ0 = ∅ andΛ1 = Λ. However, we provide a different interpretation. Instead of being approximations
to the eigenfunctions of the covariance operator the eigenvectors of the covariance matrix define an
orthonormal system inH(γ ) in their own right,

em := λ−1/2
m

∑

i∈Λ

vm
i kpi , (4.15)

wherevm = (vm
i )i∈Λ is a normalized eigenvector ofK with eigenvalueλm. Thus, the functionsem are

defined on all ofD not just at the discrete points(pi )i∈Λ. This decouples their construction from any
other discretization ofD, such as a finite element mesh.

REMARK 4.13 The computational cost of AUGMENTSPECTRALBASIS depends on the number of nodes
pi , and the number of basis functionsem. Suppose we apply AUGMENTSPECTRALBASIS recursively to
construct(em)m∈Θ , usingn` nodes(pi )i∈Λ` to constructm` new basis functions in thèth call. Ignoring
for the moment the cost of computing eigenvalues and eigenvectors and abbreviatingM` =

∑`
i=1 mi ,

the`th call of AUGMENTSPECTRALBASIS usesO(n2
`m`M`) arithmetic operations.

For example, letn` = 2d`. If the eigenvalues ofK − CTC in each call of the algorithm converge
exponentially it is sufficient to takem` ∼ `, in which caseM` is of the order of̀ 2. The resulting
complexity of the`th step of the construction, disregarding the spectral decomposition, isO(22d``3),
and the cost of the first̀ steps is dominated by that of thèth step alone. We note that this is less
thanO(23d`) required by GRAMSCHMIDTSTEP; see Remark4.11. Moreover, the evaluation of the
covariance kernel already usesO(22d`) operations, so the complexity is almost optimal in this example.

To this we need to add the cost of computingm` eigenpairs of a symmetricn` × n` matrix in each
step. Since one sweep of a Jacobi iteration or one step of a Lanczos method usesO(n2

`) operations for
a dense covariance matrix, the cost of constructing spectral decompositions for generic covariances is
comparable to that of the rest of the algorithm.
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5. Numerical examples

5.1 Exponential kernels

We consider covariance kernels of the form

k(x, y) := e−|x−y|α/λα , x, y ∈ [0, 1]d, (5.1)

with parametersα ∈ [1, 2) andλ > 0, on thed-dimensional unit hypercubeD := [0, 1]d. We assume
throughout thatλ = 1/4.

Figures2 and3 show a few basis functions generated by the Gram–Schmidt method from Section4.2
and the hierarchic spectral method from Section4.3 in one dimension, withα = 1 andα = 1.5,
respectively. The sets(pi )i∈Λ` are hierarchic dyadic grids,

(pi )i∈Λ` =
{
i 2−`; i = 0, 1, . . . , 2`

}
. (5.2)

The new points on each level are marked in the plots by circles. The Gram–Schmidt method adds the
points from left to right. The functions generated by Gram–Schmidt forα = 1, shown in Fig.2, coincide

FIG. 2. The first few functions forα = 1.

FIG. 3. The first few functions forα = 1.5.
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with those derived in Section3.1. In particular, by Proposition3.2, they have compact support. This is
not the case for the functions generated by the hierarchic spectral method; see Fig.2. For α = 1.5,
though the basis functions generated by both methods have global support, those generated by Gram–
Schmidt appear to be more localized in Fig.3.

In higher dimensions the dyadic grids are given by

(pi )i∈Λ` =
{
i 2−`; i ∈

{
0, 1, . . . , 2`

}d
}
, (5.3)

and the Gram–Schmidt method adds points in lexicographic order.
The decay of theC(D) andL2(D) norms of the basis functions generated by Gram–Schmidt and

the hierarchic spectral method forα = 1 are plotted in Figs4 and 5 for one and two dimensions,
respectively. Figure6 shows the same forα = 1.5 andd = 1. Both norms are approximated on uniform
grids inD containing 4096 points. The decay is compared to that of the spectral basis computed directly
on the finest level. For the hierarchic spectral method, tolerancesε` = 0 andε` = 5.2−α` are used. In
the latter case, the hierarchic spectral method generates fewer basis functions than the other methods.

FIG. 4. Decay of the basis functions forα = 1 andd = 1.

FIG. 5. Decay of the basis functions forα = 1 andd = 2.
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FIG. 6. Decay of the basis functions forα = 1.5 andd = 1.

In each case, the rate of decay in theL2(D)-norm is the same for all basis functions considered. It
is approximately

‖em‖L2(D) ∼ m−α. (5.4)

A staircase effect is apparent, in particular for the Gram–Schmidt method. This is due to the uneven
spacing of points between levels of the hierarchic dyadic grids. Within each level, the position of a node
relative to all previous nodes is very similar for all nodes. Between levels the distances scale by a factor
of two. In two and three dimensions the functions constructed by the hierarchic spectral method display
jumps in the opposite direction between levels. At these points the covariance matrix is refined, and the
subsequent basis functions correspond to eigenvectors with large eigenvalues of the difference between
the coarse and fine covariance matrices.

The rate of decay inC(D) coincides with that inL2(D) for the hierarchic spectral method. However,
the decay of the functions generated by the Gram–Schmidt method is slower inC(D) than inL2(D).
Forα = 1 andd = 1 this is shown in Example3.7.

The slower decay inC(D) seems to be the cost for the better localization in space of the basis
functions generated by the Gram–Schmidt method. Forα = 1 andd = 1 these functions have compact
support, and the size of the support decreases at the ratem−1. In other cases, though their supports are
not compact, the functions generated by Gram–Schmidt are still almost local. Figure7 illustrates the
decay of basis functions generated by the Gram–Schmidt method forα = 1.5 andd = 1. Figure7(a)
shows the measures of level sets

{x ∈ D; |em(x)| > εmax
y∈D
|em(y)|} (5.5)

for four different values ofε. At least for larger values ofε the measure of these level sets decreases
approximately asm−1. Figure7(b) plots some basis functions in logarithmic scale. Apparently, at higher
levels of the hierarchic dyadic grids there is a fast initial decay, followed by decay comparable to that of
the kernel but at a much lower level.



314 C. J. GITTELSON

FIG. 7. Localization of functions generated by Gram–Schmidt forα = 1.5, d = 1.

FIG. 8. The first few functions for a Gaussian kernel.

5.2 Gaussian kernels

The Gaussian kernel onD = [0, 1]d with correlation lengthλ > 0 is

k(x, y) := e−|x−y|2/λ2
, x, y ∈ D . (5.6)

The main difference between the Gaussian kernel (5.6) and the exponential kernels (5.1) with 16 α < 2
is that the eigenvalues of the covariance operator associated to the Gaussian kernel decay exponentially,
as opposed to algebraic decay for exponential kernels. Again, we setλ to 1/4 in all computations.
Figure8 shows the first few basis functions generated by the Gram–Schmidt method and the hierarchic
spectral method in one dimension.

The decay of the basis functions generated by both of the above methods for Gaussian kernels is
plotted in Figs9 and10 in one and two dimensions, respectively. These are compared to the spectral
basis computed directly on the finest level. In all cases, the decay is exponential, with approximately the
same rate. However, the Gram–Schmidt method suffers from an instability, limiting its convergence. It
can be stabilized by replacing the Cholesky decomposition with a suitable generalization of a pivoted
Cholesky depcomposition, as was studied inHarbrechtet al. (2010) for finite sets of points.
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FIG. 9. Decay of the basis functions ford = 1.

FIG. 10. Decay of the basis functions ford = 2.

The hierarchic spectral method is shown with tolerancesε` = 0 andε` = 2−2`. In the latter case,
only very few basis functionsem are constructed, and their norms are very close to those of the basis
constructed with no truncation. Figure11shows the number of new basis functions constructed on each
level, i.e. after each refinement of the covariance matrix. The Gram–Schmidt method and the hierarchic
spectral method withε` = 0 construct one basis function for each point at which the covariance kernel is
evaluated. Accordingly, the number of new basis functions per level increases exponentially. Conversely,
the hierarchic spectral method with positive tolerancesε` = 2−2` constructs far fewer basis functions.
The number of new basis functions constructed on each level seems to be bounded independently of the
level.

5.3 Spherical covariance kernels

The spherical covariance kernel is given by

k(x, y) := σ 2ρ3

(
|x − y|

λ

)
(5.7)
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FIG. 11. Number of new basis functions per level.

FIG. 12. The first few functions for a spherical covariance.

in three dimensions or less, with positive parametersσ andλ, where

ρ3(z) := 1−
3

2
z+

1

2
z3, z ∈ [0, 1], (5.8)

andρ3(z) := 0 if z> 1 is, up to a scale factor, the volume of intersection of two spheres with diameter
1 and midpoints separated byz. Similar constructions exist for balls of dimension different from three.

We consider the covariance kernel (5.7) on [0, 1]d, d ∈ {1, 2, 3}, with σ = λ = 1. We use the
hierarchic dyadic grids(pi )i∈Λ` defined in Section5.1. The first few basis functions generated by the
Gram–Schmidt and hierarchic spectral methods are shown in Fig.12.

Figures13 and14 show the decay of the basis functions generated by Gram–Schmidt and the hier-
archic spectral method in one and three dimensions, respectively. The behaviour is very similar to that
of the exponential covariance kernel withα = 1, discussed in Section5.1.
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FIG. 13. Decay of the basis functions for a spherical covariance andd = 1.

FIG. 14. Decay of the basis functions for a spherical covariance andd = 3.

6. Conclusions

Orthonormal bases of the Cameron–Martin space of a Gaussian measure onC(D) can be constructed
explicitly, without resorting to eigenfunctions of the covariance operator. Their construction uses only
the covariance kernel, which is readily available in many stochastic models. No assumptions are made
on the structure of the kernel.

The covariance kernel is evaluated on an unstructured discrete set of points. Generally, one basis
function can be computed for every evaluation point. The general algorithm for constructing such bases
can be formulated on the level of numerical linear algebra involving the covariance matrix, and, as
such, is amenable to implementation. In exact arithmetic it constructs exact representations of the basis
functions.

The bases constructed in this manner are hierarchic. Elements computed on an initial coarse grid of
evaluation points are left unchanged when additional basis functions are computed on the same grid or
on a refined grid. This flexible construction of the basis elements may lend itself to adaptive or iterative
methods that require representations of a Gaussian field with various degrees of accuracy. The represen-
tation can be refined locally by selectively adding evaluation points of the covariance kernel. Also, the
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initial basis functions represent the most dominant components of the random field, and constructing
these on a coarse grid of evaluation points leads to simple representations of these functions in terms of
the covariance kernel at only a few points.

Numerical experiments indicate that the decay of the basis functions inL2(D) is comparable to that
of the square root of the eigenvalues of the covariance operator, which is known to be optimal. This
is confirmed by explicit computations in the case of an exponential covariance kernel in one dimen-
sion. The hierarchic spectral method for constructing basis functions is particularly close to optimal in
this respect, and stable in the case of ill-conditioned covariance matrices, e.g. resulting from Gaussian
covariance kernels.

Bases constructed by Gram–Schmidt orthogonalization in the Cameron–Martin space are often spa-
tially localized. In some settings, e.g. an exponential covariance kernel in one dimension or the Wiener
measure, the basis functions have compact supports with diameter tending to zero. Furthermore, the ba-
sis functions can be characterized independently of each other as functions in certain finite dimensional
spaces with given zeros. Thus, if the covariance kernel is modified the basis functions can be updated
independently of each other.
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FRAUENFELDER, P., SCHWAB, C. & TODOR, R. A. (2005) Finite elements for elliptic problems with stochastic

coefficients.Comput. Methods Appl. Mech. Eng., 194, 205–228.
GRAHAM , I. G., KUO, F. Y., NUYENS, D., SCHEICHL, R. & SLOAN, I. H. (2010) Quasi-Monte Carlo methods

for computing flow in random porous media.Technical Report 4/10. Department of Mathematical Sciences,
Bath Institute For Complex Systems, Bath.



INDEPENDENT COEFFICIENTS FOR GAUSSIAN FIELDS 319

HARBRECHT, H., PETERS, M. & SCHNEIDER, R. (2010) On the low-rank approximation by the pivoted Cholesky
decomposition.Technical Report 2010-32. SimTech Cluster of Excellence, Universität Stuttgart, Stuttgart.

JAIN , N. C. & KALLIANPUR , G. (1970) Norm convergent expansions for Gaussian processes in Banach spaces.
Proc. Am. Math. Soc., 25, 890–895.

KARATZAS, I. & SHREVE, S. E. (1991)Brownian Motion and Stochastic Calculus. Graduate Texts in Mathemat-
ics, vol. 113, 2nd edn. New York: Springer, p. xxiv, p. 470.

KUELBS, J. (1971) Expansions of vectors in a Banach space related to Gaussian measures.Proc. Am. Math. Soc.,
27, 364–370.

LANG, A. & POTTHOFF, J. (2009) Fast simulation of Gaussian random fields. Monte Carlo Methods Appl. (to
appear) arXiv:math.NA.1105.2737.

MATTHIES, H. G. & KEESE, A. (2005) Galerkin methods for linear and nonlinear elliptic stochastic partial differ-
ential equations.Comput. Methods Appl. Mech. Eng., 194, 1295–1331.

NOBILE, F., TEMPONE, R. & WEBSTER, C. G. (2008) A sparse grid stochastic collocation method for partial
differential equations with random input data.SIAM J. Numer. Anal., 46, 2309–2345.

PAGE, R. D. L. (1972) Note relating Bochner integrals and reproducing kernels to series expansions on a Gaussian
Banach space.Proc. Am. Math. Soc., 32, 285–288.

PUGACHEV, V. S. (1965)Theory of Random Functions and its Application to Control Problems. International
Series of Monographs on Automation and Automatic Control, vol. 5. Oxford: Pergamon Press, p. xvii, p. 833.
(Revised translation by O. M. Blunn. Translation edited by N. L. Johnson).

RIPLEY, B. D. (1987)Stochastic Simulation. Wiley Series in Probability and Mathematical Statistics: Applied
Probability and Statistics. New York: John Wiley, p. xiv, p. 237.
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