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The cingulate and retrosplenial regions are major components of
the dorsomedial (dm) limbic cortex and have been implicated in
a range of cognitive functions such as emotion, attention, and
spatial memory. While the structure and connectivity of these
cortices are well characterized, little is known about their
development. Notably, the timing and mode of migration that
govern the appropriate positioning of late-born neurons remain
unknown. Here, we analyzed migratory events during the early
postnatal period from ventricular/subventricular zone (VZ/SVZ) to
the cerebral cortex by transducing neuronal precursors in the VZ/
SVZ of newborn rats/mice with Tomato/green fluorescent protein--
encoding lentivectors. We have identified a pool of postmitotic
pyramidal precursors in the dm part of the neonatal VZ/SVZ that
migrate into the medial limbic cortex during the first postnatal
week. Time-lapse imaging demonstrates that these cells migrate on
radial glial fibers by locomotion and display morphological and
behavioral changes as they travel through the white matter and
enter into the cortical gray matter. In the granular retrosplenial
cortex, these cells give rise to a Satb21 pyramidal subtype and
develop dendritic bundles in layer I. Our observations provide the
first insight into the patterns and dynamics of cell migration into the
medial limbic cortex.
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Introduction

Linking the hippocampal formation and the amygdaloid

complex to neocortical areas is central for sensory processing,

memory, and motor responses. The cingulate cortex (CGC) and

retrosplenial cortex (RSC) occupy a critical position in this

communication. These regions have reciprocal connections

with the anterior and dorsomedial (dm) thalamic nuclei, the

hippocampal formation, the amygdaloid complex, and wide-

spread neocortical areas (see review in Vogt 2005; Vogt and

Laureys 2005; Vann et al. 2009). In primates, the cingulate

gyrus can be subdivided into perigenual anterior CGC,

midcingulate cortex, posterior CGC, and RSC (Vogt and

Laureys 2005). Human functional neuroimaging studies, elec-

trical stimulation, and stroke analyses provided evidence for

a role of the anterior and midcingulate area in motivation,

autonomic regulation, emotional regulation, and motor

responses, while the RSC was shown to play a central role in

spatial memory and navigation (Vann et al. 2009). Similar

observations were made in animal experiments using rodents

(Vann et al. 2009). In rodents, the medial limbic cortex has

been subdivided into anterior cingulate, posterior cingulate,

and retrosplenial regions (Zilles et al. 1985). Interestingly, the

RSC cortex represents one of the largest cortical areas in the

rat. Similar to the primate RSC, the rat RSC can be subdivided

into a dysgranular (area 30) and granular (area 29) regions (Van

Groen and Wyss 1990a). The RSC is considered as an

intermediate cortex since it displays a transitional pattern of

lamination compared with the 6-layered neocortex and the

3-layered archicortex (Van Groen and Wyss 1990a).

Although much has been learned about the adult structure

and functions of the CGC and RSC, little is known about their

development. Early studies in the rat using injections of

[3H]thymidine described the embryonic morphogenesis of

the medial limbic cortex (Bayer 1990a, 1990b). Similar to

neocortex, the medial limbic region develops in an ‘‘inside-out’’

fashion; infragranular deep cells are generated earlier than

supragranular superficial cells (Bayer 1990a, 1990b). Interest-

ingly, these studies also revealed important differences in the

neurogenic pattern between the neocortex and the limbic

areas. While in the neocortex, neurons in medial regions are

generated later than those in more lateral subdivision, in the

limbic cortex more ventral medial parts contain the older,

early-generated neurons. It appears therefore that the medial

limbic cortex is not a continuation of the adjacent somatic

neocortex, at least in terms of ontogenetic pattern. More

recent studies have characterized the postnatal dendritic

development of supragranular pyramidal cells in the RSC

(Ichinohe, Yoshihara, et al. 2003; Miro-Bernie et al. 2006;

Miyashita et al. 2010) as well as the temporal pattern of

formation of callosal connections from deep layer neurons (see

review in Fame et al. 2011). While together these studies

provide a wealth of information on the general pattern of

neurogenesis and developmental events with regard to

dendritic and axonal growth, the precise timing and dynamics

of migration and positioning of neuronal precursors in the

medial limbic cortex remain unexplored. This question is

particularly relevant not only for the coordinated events that

regulate cortical network formation under normal conditions

but also for understanding neurodevelopmental disorders. The

CGC and RSC have been implicated in major psychiatric

pathologies such as schizophrenia (Bluhm et al. 2009) that are

associated with developmental disturbances. In addition,

neurons in these cortices appear particularly vulnerable to

perinatal adverse effects of stress (Rivarola and Suarez 2009)

and hypoxia (Li et al. 1998).

Here we focused on the sequential events of migration and

positioning of late-born pyramidal cells in the medial limbic
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cortex. These neurons are critically important for intracortical

network formation, and their migration is of particular interest

since they have a relatively long and complicated trajectory

through pools of previously established neurons. We have

started our investigations by using in vivo injections of

lentivectors coding fluorescent proteins to label ventricular/

subventricular zones (VZ/SVZ) precursors in newborn rat

pups. Our results revealed a prominent pool of postmitotic

cortical glutamatergic precursors localized in the dm corner of

the VZ/SVZ underlying the medial limbic cortex. We demon-

strate that these cells exit the SVZ and migrate radially toward

the layer II (LII) during the first postnatal week, constituting

the last-formed pyramidal subpopulation of the medial limbic

cortex. In the retrosplenial granular cortex (RSGC), the

majority of these cells gave rise to well-described dendritic-

bundling cells. These studies extend previous work and

provide the first insight into the pattern and dynamics of late-

born neuron migration into the medial limbic cortex.

Materials and Methods

Animals
The experimental procedures described here were conducted in

accordance with the Swiss laws, previously approved by the Geneva

Cantonal Veterinary Authority. In these studies, embryonic day (E)

0 was established as the day of vaginal plug and the day of birth is

designated as postnatal day (P) 0. Wistar rats were provided by Charles

River Laboratories. The generation and characterization of transgenic

mice expressing green fluorescent protein (GFP) under the control of

the GAD65 promoter were described elsewhere (Lopez-Bendito

et al. 2004).

Nomenclature
The RSC is divided into 2 parts, retrosplenial dysgranular cortex (or

agranular) and RSGC (Wyss and Sripanidkulchai 1984; Van Groen and

Wyss 1990a, 1990b, 2003) Along the rostrocaudal axis, the RSC is

subdivided into the rostral RSC, which is found before the splenium of

the corpus callosum, and the caudal RSC, which is found at the level of

the splenium of the corpus callosum (Vogt and Peters 1981). Cortical

layers were defined using Nissl stain, histochemical, and immunohis-

tochemical markers. Layer I (LI) was further divided into 3 sublayers:

1a, 1b, and 1c (Vogt et al. 1981; Van Groen and Wyss 1990a; Wyss

et al. 1990).

In Vivo Lentivector Injections
Wistar pups at P0/P1 were anesthetized with Isofluran (Foren 2%) in

a mixture of 30% O2 and 70% of air and placed in a stereotaxic

apparatus. A short skin midline incision was carried out on the head at

the level of the bregma, and a burr hole was placed at the surface of the

skull on the right hemisphere with a thin needle (0.3 3 13 mm). The

coordinates from the bregma were as follows: 0.8 mm anterior, 0.5 mm

lateral, for medial injections, and from 0 to 0.8 mm anterior, from 1 to

1.5 mm lateral, for lateral injections. One microliter of concentrated

lentivector suspension was injected with a Hamilton syringe (a 10-ll
Hamilton (Reno, NV) syringe with a 28-gauge needle) at a depth of 1.3

mm from the surface of the brain. The same surgical protocol was

applied in P0 GAD65 transgenic mice. These experiments were

performed in a level-2 animal facility (AKA AniP2).

Design and Production of Lentivectors
The lentivectors used in this study (pFUGW or RIX) contain the

ubiquitin promoter controlling the expression of GFP (pFUGW)

(http://tronolab.epfl.ch/) or tdTomato (Tom) (RIX) (Shaner et al.

2004). Ubiquitin is ubiquitous and active in neural cells. The lentiviral

vectors were produced, concentrated, and titrated (titers ranging from

108 to 109 transducing units [TU]/mL) according to standard protocols

(Salmon and Trono 2006). Details on procedures can be obtained at

http://medweb2.unige.ch/salmon/lentilab/protocols.html). Prior to in

vivo injections, all lentivectors were tested in vitro in SVZ-derived

neural progenitor cell (NPC) cultures as previously described (Dayer

et al. 2007). Transduction was done at day in vitro 3 using doses ranging

from 5 3 104 to 5 3 105 TU per 50 000--75 000 cells in a 35-mm culture

dish, and no toxic effects on NPCs were detected (Dayer et al. 2007).

Tissue Processing and Immunohistochemistry
For post hoc in vivo studies, rats were anesthetized by pentobarbital

and sacrificed by intracardial perfusion of 0.9% saline followed by 4%

paraformaldehyde (PFA). Brains were postfixed overnight in 4% PFA at

4 �C. For rats younger than P2, the brains were directly fixed in 4% PFA

without perfusion. For histological analyses of the postnatal VZ/SVZ,

brains were embedded in paraffin, serially cut at 10 lm thickness on

a coronal or horizontal plane with a Leica microtome (Germany), and

stained with cresyl violet. Immunostaining of cryostat or vibratome

sections was performed as described previously (Dayer et al. 2007).

Briefly, sections were incubated with a primary antibody diluted in

phosphate-buffered saline (PBS)/0.5% bovine serum albumin/0.3%

Triton X-100, incubated with the appropriate secondary antibodies,

and mounted on microscope glass slides. A list of primary and

secondary antibodies used is available in Supplementary materials. For

bromodeoxyuridine (BrdU) immunolabeling, 60- to 80-lm floating

sections were first acid treated with 2 N HCl for 60 min at 37 �C, then
carefully washed in PBS, and stained as above to detect Tom/GFP

expression and to detect BrdU with a monoclonal rat anti-BrdU (1:250,

Lucerna Chem AG).

Birthdating Experiments
To identify the birthdates of postnatally migrating cells, pregnant rats

received a single intraperitoneal (IP) dose of 50 mg/kg body weight of

BrdU at a given day of gestation (E17--E21). To assess the postnatal

generation, rat pups received 3 daily IP injections of 20 mg/kg body

weight from P0 to P3. Injections of lentivectors at P0 were carried out

as described above. Animals were killed at P15, and the proportion of

Tom-labeled BrdU-positive cells in LII was examined in the rostral RSC

on the total amount of Tom-labeled cells.

Cortical Slice Preparation and Time-Lapse Imaging
For slice cultures, Tom-lentivector--injected pups were sacrificed by

rapid decapitation at P1--P3; brains were removed, and coronal/sagittal

slices (200--300 lm thick) were cut on a Vibratome (Vibratome

Company, St Louis) and then placed on porous nitrocellulose inserts

(Millicell-CM, Millipore). Slices were cultured in a 35-mm culture dish

containing 2 mL of serum-complemented medium at 37 �C with 5%

CO2. After 6 h, serum-complemented medium was washed and

replaced by serum-free medium. Images of brain slices were acquired

with a digital camera (Retiga EX; Qimaging, Burnaby, Canada)

connected to a 30.6 lens (Nikon) linked to a fluorescent microscope

(Eclipse TE2000-U; Nikon Corp., Zurich, Switzerland) equipped with

a chamber maintained at 37 �C with 5% CO2. Time-lapse recordings

were acquired on slices containing the rostral RSC with Openlab

software for a time window of 30 h (1 image each 10 min).

Image and Data Analysis
For analyses on post hoc tissue, immunostained slices were examined

with a Nikon Eclipse TE2000-U microscope using Nikon objectives and

photographed with a digital camera (Retiga EX; Qimaging) controlled

by the Openlab software (version 3.1.2; Improvision, Coventry, UK). For

analyses at high-power magnifications, Zeiss LSM 510 and LSM 510

Meta confocal microscopes with a Plan-Neofluar 340/1.3 Oil objective

were used. Image processing and cell quantification were performed

with the program LSM Image Browser version 4,2,0,121. For analyses of

migrating cells on radial glial fibers, images were processed by IMARIS

4.3 software (Bitplane). Distribution of lentivector-labeled migrating

cells along the migratory way at P2, P4, and P7 was quantified by using

Adobe Photoshop (Adobe Systems Incorporated, San Jose, CA) on

epifluorescent images taken with a 310 objective.
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For quantification of immunostained cells (multiple fluorochromes)

in the VZ/SVZ/white matter (WM)/LII and for quantification of cell

distribution on the migratory path, analyses were performed at the level

of the rostral RSC and cell counts were carried out on at least 3 coronal

sections per brain from a minimum of 2 independent experiments for

a given immunostaining and for a given time point. Except when

indicated, results are expressed as mean 6 standard error of the mean

(SEM) and are presented as percentage on the total amount of counted

lentivector-labeled cells in a given region (VZ/SVZ, WM, LII, and

migratory path); n = number of analyzed brains.

For video time-lapse analyses, single-cell tracking was performed

with MetaMorph Software (Molecular Devices, version 7.4). Results for

speed and persistence are presented as percentage (mean6 SEM) from

4 independent experiments, and n = number of analyzed cells. The

persistence rate was calculated as the ratio of the most direct distance

the cell progressed along the total path length. Statistical Student’s t-

test (bilateral) was performed on population samples, and statistical

significance was defined at P < 0.05 (*) and P < 0.01 (**). For measures

of the length of cell processes, results are shown as absolute values

(mean 6 SEM) from at least 3 independent experiments, and n =
number of slices. For categorization of migrating cells in the WM,

results are presented as percentage (mean 6 SEM) from 4 independent

experiments, and n = number of slices.

Details of experimental manipulations and analyses can be found in

Supplementary material.

Results

Postnatal Radial Migration into the Medial Limbic Cortex

In order to identify cortex-directed cell movement from the

VZ/SVZ to the medial limbic cortex during the early postnatal

period, lentiviral vectors carrying either the GFP or the red

fluorescent Tom protein under an ubiquitous promoter were

injected stereotactically into the right lateral ventricle of P0/P1

rat pups. This approach allowed to label a wide range of cells in

the VZ/SVZ, including nonproliferative cells. Two to 3 days

after the injection, we studied the distribution of fluorescent

cells in sagittal and coronal brain sections. When we used

standard intraventricular injections, we observed a large

number of labeled cells in the wall of ipsilateral ventricular

system as well as radial glial fibers spanning the cortex

(Supplementary Fig. 1). Moreover, a massive labeling was

observed in the lateral SVZ, the rostral migratory stream, and

granular layer of the olfactory bulb in sagittal slices (Supple-

mentary Fig. 1). However, in general, and in agreement with

previous reports (Levison and Goldman 1993; Zerlin et al. 1995;

Kakita and Goldman 1999), no labeled neuroblasts appeared

migrating radially out of the dorsal VZ/SVZ to the cortex.

Therefore, we changed the coordinates of injections to

specifically target the dm aspect of the lateral ventricle lying

below the medial limbic cortex. We found that, under these

conditions (0.5 mm lateral to the bregma) (Fig. 1A), the labeling

of the dmVZ/SVZ was much more pronounced, and a sub-

stantial number of labeled, radially oriented cells seemed to

migrate out of the dmVZ/SVZ into the medial limbic cortex

(Fig. 1B--F). These cells could be seen remote from the

injection site, more rostrally (CGC) and more caudally (RSC),

and resembled migrating neuroblasts. Remarkably, in a number

of cases, labeled migrating cells even occurred in the

contralateral hemisphere (Fig. 1D--F). This latter correlated

with a strong bilateral labeling of the dmVZ/SVZ. Importantly,

labeled migrating cells in the cortex were detected only when

the lentivectors were delivered between P0 and P1 but not in

the following days. Identical results were obtained after medial

lentivector injections in P0/P1 mice (not shown). Taken

together, these data suggest that the dm subdomain of the

VZ/SVZ in neonatal rodents is the source of a neuronal

population, which postnatally migrates into the medial limbic

cortex.

A Premigratory Pyramidal Precursor Pool in the
Neonatal dmVZ/SVZ

To investigate the precise origin of radially migrating cells into

the medial limbic cortex, we explored the dmVZ/SVZ on Nissl-

stained coronal sections between P0 and P7. We observed that

a large pool of immature, irregularly oriented, and darkly stained

cells was located in the dmVZ/SVZ at P0 (red arrowhead,

Fig. 2A,B). This cell pool significantly diminished by P3 (Fig. 2A),

suggesting that a transient population of premigratory and

immature cells homes in the dmVZ/SVZ at birth. We also

observed that the dmVZ/SVZ is located in close anatomical

relationship with the cavum septum pellucidum (CSP) (Fig. 2B).

The CSP is a transitory structure during the early postnatal

development that is located at the corticoseptal boundary (Dart

1925; Tseng et al. 1983). Its extremities extend dorsally and

rostrocaudally and sometimes appear as lacunae (black arrow-

heads, Fig. 2B right panel). Because the dmVZ/SVZ extends

quite far from the lateral ventricle toward the midline, it

occupies the lateral sector of the CSP (red arrowheads, Fig. 2B).

A closer inspection of fluorescent cells in the vicinity of CSP

revealed labeled cells not only in the dmVZ/SVZ but also in

neighboring midline cell populations. As illustrated in Figure

2C, these cell groups include the glial wedge (red arrowheads)

located at the frontier between the lateral ventricle and the

CSP, the sling (yellow arrowheads), lining the lateral septal

nuclei on the floor of the CSP, and the midline glial zipper

(white arrowhead), which is positioned at the midline below

the corpus callosum (see review in Lindwall et al. 2007).

Quantitative data confirmed that medial injections labeling

these midline cell populations were systematically associated

with fluorescent radially migrating cells in the medial limbic

cortex (81.9%, 50 out of a total of 61 brains analyzed). From

these observations, we inferred that by performing medial

injections reaching the frontier between the lateral ventricle

and the CSP, we were able to produce widespread lentivector

diffusion in the CSP allowing an efficient labeling of the

surrounding regions including the dmVZ/SVZ (uni- or

bilaterally) (schematic drawing, Fig. 2D).

To characterize the phenotype of postnatally migrating cells,

we performed immunocytochemistry for transcription factors

that are expressed in different types of neural precursor cells

during development. When we analyzed the P2 dmVZ/SVZ, we

found that about 37% of GFP+ cells expressed paired box 6

(Pax6) immunoreactivity (Fig. 2F,G), a homeodomain transcrip-

tion factor that is mainly expressed by radial glia and different

subtypes of progenitors (see review in Hevner et al. 2006).

Immunocytochemistry for Tbr2, a transcription factor

expressed in intermediate progenitors (basal precursors) of

the pyramidal cell lineage (Kowalczyk et al. 2009), revealed

that 33% of GFP+ cells in the VZ/SVZ expressed Tbr2 (Fig. 2E,F,

Supplementary Fig. 2A). More than 50% of GFP+ cells in the VZ/

SVZ were immunoreactive for NeuroD (Fig. 2F, Supplementary

Fig. 2A), a marker of late intermediate progenitors committed

to glutamatergic neurons (Hevner et al. 2006). We also

examined the expression of Satb2, a transcription factor
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predominantly expressed in cortical pyramidal neurons with

callosal projections (Britanova et al. 2005). We found that

a subset, about 20%, of GFP+ cells in the dmVZ/SVZ were

Satb2+ (Fig. 2E,F). Interestingly, Satb2+ cells were distributed in

the outer zone of dmSVZ showing minimal overlapping with

the Tbr2+ cell population (Fig. 2E). We also observed that about

10% of GFP-labeled cells within the VZ/SVZ expressed the

chondroitin sulfate proteoglycan NG2 (Fig. 2F), a marker for

oligodendrocyte precursors (see review in Karram et al. 2005),

and 19% of the GFP-labeled cells expressed immunoreactivity

for S100b (Fig. 2F), a marker for astrocytes and ependymal cells

(Raponi et al. 2007).

When we investigated the phenotype of GFP+ cells migrating

through the WM overlying the dmVZ/SVZ, we found that most

GFP-labeled cells exiting from the SVZ had lost Tbr2 and Pax6

immunoreactivity (Fig. 2E--G, Supplementary Fig. 2A), whereas

many cells were seen positive for NeuroD (Fig. 2F,H, supple-

mentary Fig. 2A). Most importantly, we found that strong

immunostaining for Satb2 was present in about 77% of GFP+
cells traversing the WM (Fig. 2E,F,H). A similar percentage of

GFP-labeled cells (79%) (Fig. 2F,I, Supplementary Fig. 2B)

expressed doublecortin (DCX) immunoreactivity, a common

marker for migrating c-aminobutyric acidergic (GABAergic) and

glutamatergic neurons (Gleeson et al. 1999). Finally, about 6% of

GFP-labeled cells in theWMwere positive for S100b and 20% for

NG2 (Fig. 2F). These data indicate that the vast majority of

fluorescent migrating cells have a neuronal phenotype. More-

over, the fact that approximately the same percentage of

migrating GFP+ cells expressed DCX and Satb2 strongly

suggested that postnatally migrating cells from the SVZ were

glutamatergic cells. To confirm this hypothesis, we took

advantage of GAD65-GFP transgenic mice, in which GABAergic

interneurons express GFP fluorescence. As shown in Supple-

mentary Figure 3A--D, GFP fluorescence in those mice did not

cover the most medial aspect of VZ/SVZ labeled by Tom

fluorescence after medial Tom-lentivector injections; moreover,

the Tom+ migratory cell population did rarely overlap with the

GFP+ population of GABAergic interneurons (4.96 0.4%, n = 3).

Together, these observations revealed that a significant pool

of premigratory, glutamatergic precursor cells is located in the

early postnatal dmSVZ and that this region represents

a reservoir for a subset of Satb2-expressing glutamatergic

neurons, which migrate early after birth.

Postnatally Migrating Cells toward the Medial Limbic
Cortex Display a Pyramidal Phenotype and Position in LII

Labeled migrating cells toward the medial limbic cortex were

arranged radially in paralleled arrays (Fig. 3A) and often lined up

forming continuous cell chains (Fig. 3D,E). Most of the

fluorescent cells presented the structural characteristics of

radially migrating pyramidal cells (Fig. 3A--C) including the

bipolar-shaped, elongated somawith a constriction in the center,

the unbranched leading process, and the thin trailing process

(Rakic 1972;O’Rourke et al. 1992;Hatanaka andMurakami 2002).

Figure 1. Intraventricular medial lentivector injections at P0 reveal a large pool of labeled radially oriented cells in the medial limbic cortex 2 days after injection. (A) Schematic
drawing of a coronal brain section depicting the site of medial lentivector injection at P0. (B, D--F) Epifluorescent images of sagittal (B) and coronal (D--F) vibratome sections
illustrating the pattern of fluorescence 2 days after a medial injection of Tom-lentivector. Images reveal a massive labeling of the dmVZ/SVZ and a large number of labeled cells
spanning the medial cortex outside the injection track (arrowhead in B); (B) is a higher magnification of the boxed area in (B#), which shows the same section by Hoechst nuclear
staining. (B$) Higher magnification of the boxed area in (B) evidencing columns of radially oriented cells starting from the SVZ and oriented to the cortex. Sagittal plane of (B--B$)
is indicated by dotted line in (A). (C) Schematic drawing of a sagittal section indicates rostrocaudal levels of coronal images in (D--F). cc, Corpus callosum; cx, cortex. Scale bar5 1000 lm
for (B#), 500 lm for (B, D--F), 50 lm for (B$).
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In line with these observations, we found that the orientation of

labeledmigrating cells always parallels thoseof nestin+ radial glial
fibers and that precursor cells appear to migrate in close

apposition with radially oriented glial fibers (Fig. 3A,D,E).

While many fluorescent migrating cells were scattered in

different layers during the first 3 postnatal days, at P4, the

majority of cells had reached the marginal zone (Fig. 3F) and at

P7 almost all cells were accumulated in LII (Fig. 3G,I).

Quantitative analyses confirmed that postnatal cortex-directed

migration takes place during the first 5--7 days (Fig. 3H). At P2,

roughly 60% of fluorescent cells were distributed over LV--VI,

while less than 40% were located in the cortical plate. By P7,

about 98% of the total population of pyramidal-like cells were

in LII (Fig. 3H). It is important to note that from P5, an

increasing number of fluorescent cells with multipolar glial

morphology were also detected in LV--VI. The appearance of

these cells is consistent with the notion of postnatal gliogenesis

from the SVZ (Kakita and Goldman 1999). Cells with glial

morphology were not included in cell counts.

We also observed that at P7, labeled cells positioned in LII (Fig.

3I) appeared as a homogenous neuronal population: they were

pyramidal shaped and they showed a thin beaded axon-like

process extending toward the inner cortex and a thick dendrite-

like process invading LI with multiple branching (Fig. 3I).

Moreover, about 90% (88.70 6 1.25%, n = 4) of them were

positive for the pyramidal cell marker Satb2 (Fig. 3I), whereas

Figure 2. Medial lentivector injections reach the cavum septum pellucidum and label a glutamatergic cell pool in the dmVZ/SVZ. (A) Nissl-stained coronal sections showing that
the size of the caudal dmVZ/SVZ (red arrowheads) decreases from P0 (left) to P3 (right). Images are higher magnifications of red squares in the insets. (B) Nissl-stained horizontal
sections showing the dmSVZ/VZ (red arrowheads) at P0 and its location in relationship to the CSP (black arrowheads) from dorsal (left panel) to ventral (right panel) levels.
(C) Epifluorescent image from a coronal section illustrating pattern of lentivector labeling in the CSP at P2. Additional labeled cell populations include the glial wedge (red
arrowheads), the sling (yellow arrowheads), and the midline glial zipper (white arrowhead). (D) Schematic drawing illustrating that medial lentivector injections target the dm
corner of lateral ventricle allowing lentivector diffusion (red dotted lines) in the CSP and labeling of the dmVZ/SVZ bilaterally. (E, G--I) Confocal images showing immunostaining of
GFP-labeled cells (green) for different phenotypic markers in the dmVZ/SVZ and WM at P2. Image location for (E, G) is indicated by the square in the top left inset. (E) Merge
image of Tbr2 (purple) and Satb2 (red) immunostaining. Single-channel images of the same section are shown on the bottom and compared with Hoechst staining (blue). Higher
magnifications of the 2 boxed areas are shown on the right and illustrate colocalization of Satb2 and GFP (upper panel, yellow) in migrating cells and of Tbr2 and GFP (bottom
panel, white) in VZ/SVZ progenitors. (F) Quantification of the colocalization of GFP labeling with different phenotypic markers in the VZ/SVZ (gray) and WM (light gray). Bars
represent mean6 SEM of at least 2 independent experiments. (G) Pax6 (purple) immunoreactivity in the dmVZ/SVZ and WM; right panels are higher magnifications of the boxed
area in the left panel and show colocalization of Pax6 and GFP (white) in VZ/SVZ progenitors. (H) Expression of NeuD (purple, H), Satb2 (red, H), and (I) DCX (red) in GFPþ
migrating cells in the WM. Note that most of them are Satb2þ (yellow, H) and DCXþ (I) and that some Satbþ/GFPþ coexpress NeuD (light yellow, H). cc, Corpus callosum; Spt,
septum; LV, lateral ventricle; Hp, hippocampus; NeuD, NeuroD. Scale bar 5 500 lm for (B), 200 lm for (A, C), 50 lm for (E, G), 10 lm for high-power images in (E, G), and 20
lm for (H, I).
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only 5% expressed GAD67 (4.74 6 0.82%, n = 3) immunoreac-

tivity, a marker for GABAergic interneurons. Satb2+ cells in layer

II but not during migration were also lightly positive for Tbr1

(Supplementary Fig. 3E), an additional transcription factor

which is known to be expressed downstream of Pax6 in

glutamatergic neurogenesis (Hevner et al. 2001).

Postnatally Migrating Cells Are Generated at Embryonic
Ages

To investigate the time window in which postnatally migrating

neurons are generated, rats were exposed to BrdU at E17, E18,

E19, E20, E21, or from P0 to P3. These animals were subjected

to P0 medial lentivector injections and killed at P15. Post hoc

immunohistochemistry on coronal brain sections allowed

evaluating the colocalizations of BrdU (green) and Tom (red)

immunolabeling in neurons deployed in LII of the rostral RSGC

(Fig. 4A,B). Our analysis indicated that less than 15% of

lentivector-labeled cells were born after E20, whereas about

70% (70.75%) of them arise from cell division between 18th

and 19th days of gestation (Fig. 4B). We also found that after

BrdU labeling at E18/E19, BrdU-immunostained cells accumu-

late in the dmVZ/SVZ at P0 and decrease at P3 (Fig. 4C). Thus,

pyramidal precursors, which migrate out of the VZ/SVZ

postnatally, are already postmitotic at P0.

Dynamics of Cell Migration into the Medial Limbic Cortex

Next, we analyzed the migratory behavior of lentivector-labeled

postnatally migrating cells. For this purpose, animals received

a medial injection of Tom-lentivector at P0 and time-lapse

imaging was carried out for more than 24 h in fresh cortical slice

preparation at the level of the RSC from P1 to P3 animals. We

focused on the rostral regions of the RSC and distinguished

between 2 phases of migration. During the first phase of

migration (‘‘i’’, Fig. 5A), radially oriented fluorescent cells detach

from SVZ and migrate toward the dorsal edge of the cingulum

through the WM (‘‘i’’, Supplementary movie 1). Within the WM,

the great majority of migrating cells adopted an elongated shape

with a unipolar or bipolar morphology (blue arrows, Supplemen-

tary movie 2). Cells displayed a leading process (arrowheads, Fig.

5B--E) in a dorsal direction and a less visible trailing process

(arrows, Fig. 5B,D). The average lengthof the leadingprocesswas

54.78 6 1.19 lm (n = 3, 35 cells). Time-lapse analysis indicated

that cells moved by locomotion in a discontinuous, saltatory

manner (‘‘i’’, Fig. 5I) with a mean speed of 17 lm/h (n = 168,

Figure 3. Lentivector-labeled migrating cells are associated with the radial glial fibers and gradually populate LII. (A) Epifluorescent image of a P2 coronal section showing that
Tom-labeled migrating cells (red) are regularly aligned and follow the general orientation of radial glial fibers (nestin immunostaining, green). The image is an enlargement of the
boxed region in the top left inset. (B, C) Higher power images illustrating the general morphology of Tom-labeled cells traversing the WM (B) and cortex (Cx), (C). In the late
phase of migration through the Cx, the leading process is longer (arrows) and the trailing process is more visible (arrowheads in C) than in the early phase through the WM. (D, E)
The 3D Z-stack reconstruction of confocal images illustrating that Tomþ migrating cells (red) are closely associated with Nestinþ radial glial fibers (green) (arrows in D) and that
their leading processes can be found coiled around them (arrowheads in E) and/or held on the trailing process/cell body of the preceding cell (asterisks in D, E). Note that labeled
cells often seem to attach one to each other, thus forming chains of migrating cells (asterisks in B, D, E). (F, G) Pattern of Tom fluorescence from animals sacrificed, respectively,
4 days (F) and 7 days (G) after lentivector injection; at P4, most of lentivector-labeled cells have reached their final destination close to pial surface, whereas migration seems
completed at P7. Image location is the same than (A). (H) Graphs indicating the percentage of labeled cells in cortical LV/VI (black) and LI--IV (gray) at P2, P4, and P7. The medial
cortical region crossed by labeled migrating cells has been divided in 2 sectors according to the main anatomical landmarks present: LV/VI and LI--IV (white dashed line in A). Bars
represent mean 6 SEM of at least 2 independent experiments. (I) Single-channel (left panels) and double merge (right panels) confocal images at the level of LII showing that
Tom-labeled cells (red) position in LII (blue, Hoechst nuclear staining) and express the Satb2 marker (green). cc, Corpus callosum; cg, cingulum. Romanic numbers indicate layers.
Scale bar 5 100 lm for (A, F, G), 50 lm for (I), and 20 lm for (B--E).
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6 slices; Fig. 5J). Interestingly, at least 20% (20.966 5.56%, n = 6,

168 cells) of the tracked cell population extended a leading

process with branches. In these cases, the soma moved toward

the branching point of the leading process and then cells

retracted branches and moved in the direction of the remaining

branch (Fig. 5E; red arrows, Supplementary movie 2). This

process of alternating formation and retraction of branches was

accompanied by frequent changes in the direction ofmovement.

Nevertheless, as a population, cellsmoved toward thedorsal edge

of the cingulum (Fig. 5F).

During the second phase of migration (‘‘ii’’, Fig. 5A), labeled

cells leave the WM and migrate toward the pial surface of the

cortex. Similar to the migration during the first phase, the

movement of the cells in the graymatter (GM)was saltatory (‘‘ii’’,

Fig. 5I; Supplementarymovie 3) and themean speed approached

17 lm/h (n = 85, 4 slices; Fig. 5J). However, in the GM, cells

showed less frequent directional changes (Fig. 5H), resulting in

a significantly higher (4.3%) persistence ratio compared with

that calculated for the first migratory phase (Fig. 5J). Cells also

became progressively more elongated (Fig. 5G) compared with

thosemigratingwithin theWM; the average length of the leading

process reached roughly 100 lm (102.6 6 1.51 lm, n = 4, 35

cells), and cells often developed a prominent trailing process

(23.72 6 7.89 lm, n = 4, 19 cells) (arrows at 100 min, Fig. 5G).

This later could even reach the length of 300 lm (arrows at 590

min, Fig. 5G; Supplementary movie 4) and grow in the opposite

direction of the cell body, thus becoming a prospective axon

(Supplementary movie 4). On the contrary, the leading process

maintained a relatively constant length and remained un-

branched (arrowheads, Fig. 5G; Supplementary movie 4). As

the cells approached the pial surface, their leading process

became thicker and progressively shorter, the soma stopped

migrating, and thecells changed their bipolar formtoamultipolar

morphology (image not shown).

These results demonstrate that postnatally migrating cells

present typical dynamic characteristics of radially migrating

pyramidal cells described previously. Moreover, they display

important morphological and behavioral changes as they

progressed through the WM and the GM.

Postnatally Migrating Cells Differentiate into Dendritic
Bundles Forming Pyramidal Neurons in the RSGC

To investigate the final fate of postnatally migrating cells,

morphology of labeled cells in LII was analyzed at progressive

postnatal time points. We first observed that labeled LII

extended paralleled axons that reached the cingular region

and curved to cross the midline through the upper corpus

callosum (Fig. 6A,E). Most interestingly, we found that in the

RSGC, the apical dendrite and the secondary branches of

neighboring cells converged together in LIb--c forming typical

dendritic bundles (DB) (Fig. 6A--E) intercalated with empty

regions, the interbundle spaces. The dendritic tree of these

cells spread out in the outer part of LI (1a), so that the

extremities of neighboring dendritic branches joined each

other. Characteristically, a group of LII pyramidal cells giving

rise to a DB displayed an hourglass shape. We did not observe

similar arrangement of neurons in neighboring cortex (Fig. 6A).

This pattern was similar to that reported by others (Wyss et al.

1990; Ichinohe and Rockland 2002; Ichinohe et al. 2003b) and

described ashoneycomb-likemosaic. By confocal imaging (Fig. 6I)

and the microtubule-associated protein 2 (MAP2), and the AMPA

(alpha-amino-3-hydroxy-5-methyl-4- isoxazole-propionic acid)-

type glutamate receptor subunits GluR2/3 immunohistochemis-

try (Supplementary Fig. 4), we confirmed the development of this

DB configuration over time. Moreover, immunocytochemical

characterization of labeled cells in the adult rostral RSGC

(Supplementary Fig. 5) showed that the large majority of LII

Figure 4. Lentivector-labeled cells populating LII of the RSC are generated between E17 and E21. (A) Single channel confocal images showing Tomato (top panel) and BrdU
(lower panel) immunoreactivity in LII of the RSC from coronal sections of P15 rats, which received BrdU injection at E18 and Tom-lentivector at P0. White arrowheads in both
images indicate double-labeled cells revealing that many LII Tomþ cells are born at E18. (B) Graph indicating that the majority of lentivector-labeled cells located in LII are
generated between E18 and E19, whereas virtually no labeled cells are generated postnatally. Bars represent mean 6 standard error. (C) Epifluorescent images showing BrdU
immunostaining on caudal coronal brain slices of 2 animals exposed to BrdU on E18 and sacrificed, respectively, at P0 (left panel) and P3 (right panel). At P0, the dmVZ/SVZ
(arrowheads) and the cingular region (asterisk) have a strong BrdU immunoreactivity, whereas few BrdUþ cells have reached the superficial cortical layers; in the same regions,
at P3, the BrdU immunoreactivity in the VZ/SVZ and cingular region is decreased and a large amount of BrdUþ cells appear in the superficial cortical layers. Scale bar 5 50 lm
for (A) and 500 lm for (C).
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lentivector-labeled cell population (75.11 6 2.54%, n = 4;

Supplementary Fig. 5B,C) was immunolabeled for GluR2/3 and

that the half of this population in addition expressed calbindin

(44.11 6 0.17%, n = 3; Supplementary Fig. 5B,C). Both of these

markers have been reported to characterize LII pyramidal cells

forming DB (Ichinohe, Fujiyama, et al. 2003).

All together, these observations indicate that postnatally

migrating progenitor cells in the RSGC give rise to a specific

cell type: LII pyramidal neurons known to form DB in LI.

Discussion

Here, we identified and characterized delayed migratory events

that govern the positioning of the late-born pyramidal neurons in

the medial limbic cortex. We observed that a large pool of

postmitotic precursor cells is located in the early postnatal dmSVZ

representing a reservoir for Satb2-expressing glutamatergic

neurons (see Fig. 7). Cohorts of cells exit from this premigratory

pool andmigrate into the RSC and CGC during the first postnatal

week. This migration is robust and guided by the radial glial

scaffold. Time-lapse imaging demonstrates that this population

of postnatally migrating pyramidal cells displays important

morphological and behavioral changes as cells traverse the WM

and subsequently the cortical GM. In the granular RSC, the large

majority of these cells give rise to a specific cell type: Satb2+, LII
pyramidal cells with typical DB in LI.

Origin of Postnatally Migrating Cells

Recent studies using retroviral labeling of SVZ progenitors in

vivo aimed to directly observe cortex-directed migration in

Figure 5. Dynamics of postnatal cell migration from the dmVZ/SVZ into the medial limbic cortex. (A) Epifluorescent image of a P2 brain slice after P0 injection of Tom-lentivector
showing the migratory path of labeled cells from the dmVZ/SVZ, through the WM and the GM. Cell migration occurring in WM and GM was recorded continuously by time-lapse
frame grapping (10 min of interval) from day in vitro (DIV) 0 to DIV1, and the migration tracks were, respectively, plotted in a scatter diagram (F, H). (B) Time-lapse sequence
showing a labeled cell (asterisk) exiting the SVZ and displaying an unbranched leading process (arrowhead). (C) Labeled cell with an unbranched leading process (arrowhead)
makes contact with a radial glial process (arrows). (D) Representative cell with branched leading process (arrowheads) and a short trailing process (arrow). (E) Time-lapse
sequence showing unbranched and branched (arrowheads) configurations of a labeled migrating cell. (F) Migration tracks of labeled cells during migration through the WM. The
starting point for each cell is in the intersection between the X- and Y-axes (0;0). (G) Time-lapse sequence of labeled cells (asterisk) migrating in the GM. Note that migrating cells
display a long leading process (arrowhead) as well as a trailing process (arrows). (H) Migration tracks of labeled cells during GM migration. (I) Diagram representing the distance
traveled by 2 individual labeled cells during WM and GM migration. In both phases, cells migrate in a saltatory fashion, alternating between migratory and static phases, resulting
in a stair-like track. (J) Table showing the average speed and persistence of migrating cells during WM and GM migration. Results are shown as mean6 SEM. Bilateral Student’s
T-test was used for statistical analysis (n.s., P 5 0.5567; **, P 5 0.00081). Abbreviations as in previous figures. Scale bar 5 100 lm for (A) and 20 lm for (B, C, D, E, G).
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newborn animals (Levison et al. 1993; Suzuki and Goldman

2003). The results obtained led to the general conclusion that

cell migration from the SVZ during the early postnatal period is

characterized by glial cell migration (Cayre et al. 2009). Two

major differences distinguish the present investigation from

these earlier studies. First, we used lentiviral labeling of SVZ

that, in contrast to retroviral transduction, does not require

mitotically active cells and thus labels dividing as well as

nondividing cells. Second, we targeted lentivector at the dm

corner of the lateral ventricle that was not investigated in

earlier studies. We demonstrate that in order to visualize

postnatally migrating neurons, lentiviral injections must reach

the dm sector of the VZ/SVZ. This region is in close anatomical

relationship with the CSP, a transitory structure which is

present from E18 to P15 (Dart 1925; Tseng et al. 1983). It is

very likely that pressure injection in the dm corner of the

ventricle has generated small openings in the ventricular wall

allowing the access for viral particles into this space. This

hypothesis is consistent with our observation that medial

injections frequently lead to ipsi- as well as contralateral

labeling of migrating cells. Moreover, the CSP may allow for

distributing lentivector particles in the rostrocaudal direction

from the injection site, thus leading to labeling in regions

situated more caudally. Finally, we systematically observed

labeled cells in midline structures in relationship with the CSP,

including the glial wedge and the glial sling (Shu et al. 2003).

Thus, the CSP appears to play a pivotal role in distributing viral

particles in the dmSVZ bilaterally following medially directed

injections. The histological analysis confirmed that a large

contingent of irregularly oriented, immature cells is accumu-

lated in the dmVZ/SVZ in the vicinity of the CSP at P0. During

the first postnatal week, we observed radially oriented cells

exiting the dmSVZ and the size of the SVZ pool is considerably

decreased by P3. It appears therefore that our lentivector-

mediated labeling protocol at P0/P1 allows to visualize a pool of

cells in the lateral CSP/dmSVZ that give rise to postnatally

migrating pyramidal neurons.

Postnatally Migrating Cells Form a Homogenous Pyramidal
Cell Population in LII of the Medial Limbic Cortex

Our results indicate that the vast majority of postnatally

migrating cells from the dmSVZ integrate into the CGC and

Figure 6. Lentivector-labeled cells form characteristic DB in LII of the RSGC. (A--H) Epifluorescent images of lentivector fluorescence in brain sections at the level of rostral RSGC
10 days (A) and 15 days (B--H) after medial lentivector injection. (A) Coronal brain section illustrating that dendrites of labeled cells form DB in LI of RSGC cortex (arrowhead
indicate limit between subcortical regions). Note that these dendritic structures are not present in the retrosplenial dysgranular cortex. Note also fluorescent axons of LII cells
descending toward the cingular regions and traveling through the upper part of the corpus callosum. (B--E) Higher magnifications of LI-II from P15 coronal brain sections showing
cell morphologies of LII cells and DB shapes in LI. Labeled cells in LII present thin basal dendrites located in LII (asterisks in B, D) and a thick single apical dendrite (large
arrowheads in B--D) bifurcating in LIb (small arrowhead in B) or in LIc (small arrowhead in D) and arborizing extensively in the outer part of LI. (B--D) Dendritic arbors of multiple
neighboring LII cells join together at the level of LIb and overlap in LIa--b to form DB of various size and shape. (C--E) Apical dendritic branches extend straight to LI (large
arrowheads in B, D) or angle to reach lateral DB (large arrowhead in C) or even bifurcate and reach 2 neighboring DB by different second-order branches (small arrowheads in C).
The axonal processes of LII cells (B--D, arrows) travel on parallel rails directed to the inner part of RSGC (E). (F--H) Sagittal brain sections through LIb (F, G) and LII (H) illustrating,
respectively, the pattern and morphology of DB in LIb (F, G) and the distribution of LII cell bodies (H) in LII. Note the honeycomb-like mosaic formed by DB in LIb (F, G). (I) Z-stack
reconstruction of confocal images showing the progressive formation of DB (asterisks) from 4 to 21 days after medial lentivector injection. ML, midline. Scale bar 5 200 lm for
(A, E, H), 50 lm for (B--D, G, I), and 500 lm for (F).
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RSC. We found that while many fluorescent migrating

precursors were scattered in different cortical layers during

the first postnatal week, by P7, virtually all these cells were

accumulated in LII and displayed a pyramidal morphology.

Consistent with this observation, we demonstrate that more

than 50% of labeled cells in the dmSVZ expressed markers for

glutamatergic precursors such as Tbr2, NeuroD, and Satb2

(Britanova et al. 2005; Hevner et al. 2006). Satb2 is a DNA-

binding protein known to be expressed in postmitotic

pyramidal neurons with callosal projections (Britanova et al.

2005; Szemes et al. 2006; Alcamo et al. 2008). Knockout

experiments in mice have demonstrated that Satb2 plays

a crucial role in the specification of laminar cell-type identity

and in development of callosal projections (Alcamo et al. 2008;

Britanova et al. 2008). Strikingly, we found that about 80% of

labeled cells were immunolabeled for Satb2 after exiting the

SVZ, indicating that the majority of postnatally migrating

precursors differentiate into the pyramidal neurons of LII with

callosal projections. Our birthdating experiments demonstrate

that virtually all postnatally migrating cells are generated

between E17 and E21, indicating that the precursor pool in

the SVZ is already postmitotic in newborns. These data well

correlate with earlier studies demonstrating the course of

neurogenesis in the medial limbic cortex following [3H]thymi-

din labeling of the germinal layer (Bayer 1990b). The presence

of an important cohort of postmitotic precursor cells in the

newborn SVZ is in agreement with previous observations,

indicating that following the division of progenitor cells in the

VZ cells accumulate in the basal part of the SVZ and could stay

there for several days in rodents (Tabata et al. 2009). Our BrdU

labeling experiments suggest that lentivector-labeled post-

natally migrating precursors may stay up to 5 days (from E17 to

P0) in the SVZ. The longer sojourn in the SVZ appears to be

characteristic for late migrating pyramidal populations (Hicks

and D’amato 1968; Bayer and Altman 1991; Ignacio et al. 1995;

Tarabykin et al. 2001). It would be interesting to explore

whether this relatively long stopover period in the SVZ is

related to a putative synchronization process between thalamic

afferent ingrowth and the migration/positioning of neurons as

suggested by Bayer (1990b) and Altman and Bayer (2002).

Noteworthy in this respect is that we found a subset of

lentivector-labeled cells expressing Satb2 immunoreactivity

within the outer layer of the early postnatal SVZ. Thus, the

specification of postnatally migrating pyramidal precursors in

terms of Satb2 expression seems to start within the SVZ during

the transformation of precursors into locomotion cells. Satb2

messenger RNA expression has been reported in the upper

part of embryonic SVZ at middle corticogenesis (Britanova

et al. 2005; Britanova et al. 2006); however, it has not been

found in this region at later stages, and Satb2 protein

expression in premigratory cells of SVZ remained controversial

(Britanova 2005; Alcamo et al. 2008). Although, knockout

experiments in mice and downregulation of Satb2 expression

have shown to impair pyramidal cell migration during cortico-

genesis (Britanova et al. 2008), the mechanisms of such effect

remain unclear. Demonstrating Satb2 protein expression in the

premigratory cell pool further highlights the potential role of

Satb2 in cell migration.

Although the majority of cortical interneurons are arising

from the medial ganglionic eminence (MGE) and reach the

cortex after tangential migration (Wonders and Anderson 2006;

Gelman and Marin 2010), the dorsal SVZ in mice may also be

the source of precursors for calretinin-positive GABAergic

interneurons that may be positioned in cortical layers after

Figure 7. Early postnatal migration and development of a dmSVZ pyramidal cell population to the medial limbic cortex. (A) Schematic representation of a coronal section of P0
brain illustrating the site of medial lentivector injection and the pattern of lentivector particles dispersion in the CSP and lateral ventricles (LV) (red arrows) as well as the
lentivector-labeled cell populations (black--gray cells). Strongly labeled cell populations include the dmVZ/SVZ, the glial sling (GS), the glial wedge (GW), and the midline zipper glia
(MZG). (B) Schematic representation of the midline region at the level of the RSC. Migratory glutamatergic progenitors exit from the dmSVZ region during the 3 first postnatal
days and follow curved radial glial paths. Labeled cells express Satb2 and settle in LII of the medial limbic cortex by the end of the first postnatal week. Satb2þ cells send
transcallosal axons through the upper corpus callosum (cc) to the contralateral cortex. In the RSGC, they also form DB in LI. Abbreviations as in previous figures.
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radial migration (Inta et al. 2008; Vucurovic et al. 2010). Of

particular interest in this respect is that in human and

nonhuman primate, the outer subventricular proliferative

zones also contribute to the generation of cortical interneurons

at late phases of cortical development (Letinic et al. 2002;

Petanjek et al. 2009). This population shows a significant

expansion from rodents to primates, and it is considered as

a primate-specific morphological feature (Jones 2009; Rakic

et al. 2009). In this study, we found that less than 5% of the

postnatally migrating neurons in LII displayed GABAergic

phenotype. The precise origin of these cells, whether they

arrive into the SVZ from the MGE or from the lateral/caudal

ganglionic eminence, remains to be determined. Future studies

should explore the relevance of this small pool of neurons for

the postnatal development of rodent limbic circuits and

whether this population shows a numerical expansion in the

human and primates compared with rodents.

Radial Migration in the Early Postnatal Period

The postnatal migration of pyramidal precursors into supra-

granular layers is of particular interest since these cells have

a relatively long and complicated trajectory through pools of

previously established neurons. Indeed, labeled neuronal

progenitors followed a curved path that corresponds to the

path drawn by radial glial fibers between the dm neuro-

epithelium and the pial surface of midline cortex. We

demonstrate that the principal migratory mode of late-

generated pyramidal precursor cells in the medial cortex, just

as in neocortical regions (Rakic 1972; Nadarajah et al. 2001;

Tamamaki et al. 2001; Tabata and Nakajima 2003), is

locomotion, characterized by the typical saltatory movement

on the radial glial scaffold. We did not observe somal

translocation that was described to occur during early cortico-

genesis (Miyata et al. 2001). The migration rate by locomotion

that we calculated in this study (17 lm/h) was comparable

with that observed by O’Rourke et al. (1992) (11 lm/h) but

much slower than that reported by Nadarajah et al. (2001)

(35 lm/h). This discrepancy may be due to the difference in

experimental conditions in the slice preparations and the age

of the tissue. We did not observe significant difference in

migration speed in the WM compared with that we measured

in the GM. In addition, we did not see multipolar migration of

SVZ progenitors as has been described in the SVZ (Tabata and

Nakajima 2003; Hatanaka et al. 2004; Ohshima et al. 2007;

Tabata et al. 2009). However, an intriguing observation of the

present study is that some of the radially migrating cells,

especially in the WM, display movement that is referred in the

literature as a distinct migratory mode: branched migration

(Gupta et al. 2003; Nadarajah et al. 2003). In these cases,

migrating cells that had an unbranched leading process at

a certain time point of migration may extend new branches on

the leading process. In view of the highly dynamic process of

formation and retraction of small branches, cells with this type

of movement have been considered as actively exploring their

environment for guidance cues. This type of morphology was

mainly described for interneurons migrating in the tangential

plane (Valiente and Martini 2009) without being a prerogative

of these cells (Ward et al. 2005; Lopez-Bendito et al. 2006).

Among others, we have seen a number of putative interneurons

in our slice preparations moving with this mode of migration

especially in the tangential plane. Indeed, branching migration

in cortical pyramidal cells has been rarely observed (Nadarajah

et al. 2003; Elias et al. 2007) and rather associated with defects

on cell contacts between migrating neurons and radial glial

fibers (Gupta et al. 2003; Elias et al. 2007). However, we believe

that our radially migrating cells with branched morphology are

pyramidal precursors and not just radially oriented interneur-

ons. First, while interneurons migrating by branching move

with a relatively high speed (40 lm/h) (Valiente and Martini

2009), the average speed of radially moving branched cells was

the same (about 17 lm/h) than those of unbranched radially

migrating cells. Second, unlike interneurons, radially moving

branched cells did not have prominent growth cones. It is

important to emphasize here that branched migration occurred

in a significant proportion of pyramidal cells migrating through

the WM but not in the GM. This is consistent with the

hypothesis that many of the pyramidal precursors after leaving

the SVZ are still in an exploratory mode and might not yet

establish firm adhesion with the radial scaffold. The conjecture

of a more ‘‘unstable’’ migration in the WM received support

from our observation that migration paths of individual cells in

the WM were more ‘‘zigzagged’’ and cells appeared switching

from one glial fiber to another. This phenomenon may be even

more pronounced in the context of the medial limbic cortex

where the radial glial path is particularly curved. In line with

these observations, the calculated persistence of migration was

significantly lower in the WM than that in the GM where cells

migrated in a far more directed fashion. Importantly, our results

of branched pyramidal precursors using video imaging were

confirmed by the presence of branched bipolar cells on the

glial scaffold in our post hoc materials.

The Final Fate of Postnatally Migrating Pyramidal
Precursors

The rodent RSC is a simplified ‘‘limbic’’ cortex that is positioned

within the transition zone between the 3-layered hippocampal

archicortex and the 6-layered neocortex (Vogt and Laureys

2005). It has reciprocal connections with neighboring hippo-

campal, parahippocampal, and neocortical regions and plays

a central role in spatial learning and memory (Gabriel and

Sparenborg 1987; Cooper et al. 2001; Vann and Aggleton 2002).

A distinctive feature of this cortical region is the presence of DB

formed by apical dendrites of LII pyramidal cells (Wyss et al.

1990; Ichinohe and Rockland 2002; Ichinohe et al. 2008;

Miyashita et al. 2010). The precise function of these neurons

remains to be elucidated. While these structures have been

documented in great detail, little is known about the origin and

the migration pattern of DB forming cells during development.

We describe here that postnatally migrating cells transform into

pyramidal cells with characteristic DB. Retrosplenial DB are

composed of glutamatergic neurons and GABA/parvalbumine-

positive inhibitory neurons (Wyss et al. 1990; Ichinohe and

Rockland 2002). In line with previous reports (Ichinohe et al.

2003b; Miro-Bernie et al. 2006), our immunohistochemical

analyses demonstrate that the majority of lentivector-labeled

cells expressed the GluR2/3 subunit of the AMPA receptor.

From this population, nearly 50% of the cells (45.41%) were also

weakly immunoreactive for calbindin (Supplementary Fig. 3C),

a marker already used to describe dendritic-bundling cells in rat

visual cortex (Ichinohe et al. 2003a). Because calbindin has been

shown to be transitory in some type of cells (Celio 1990;

Alcantara et al. 1993; Alcantara and Ferrer 1995), the differences
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in the expression of these markers between LII cells may

alternatively reflect the presence of variability in the functional

state of these cells. Our results describing the expression pattern

of MAP2 and GluR2/3 in the early and late (P4--P30) de-

velopment of the DB formation confirm earlier studies (Ichinohe

et al. 2003b). The fact that the large majority of migrating cells

and neurons settled in LII express Satb2 is consistent with the

notion that these cells are transcallosal-projecting neurons

(Wyss et al. 1990).

Conclusion

In conclusion, using lentivector-mediated fluorescent labeling

and video time-lapse analysis, we describe a pool of pyramidal

cell precursors in the dmSVZ that migrate into the medial

limbic cortex during the early postnatal period. We show that

in the RSGC, the majority of these cells give rise to LII DB

forming cells. To our knowledge, this is the first study that

describes the migratory dynamics and positioning of a specific

cell type in the postnatal limbic cortex. This new model may

permit to follow the development of an identified cell type over

several developmental stages from the premigratory cell pool

through the radially migrating neuroblast stage to the

positioning of LII pyramidal cells with the progressive

elaboration of DB, spine formation, and axonal growth. Future

studies could focus on the impact of afferent systems and

environmental factors including adverse effects on these

developmental events and to evaluate how alterations of these

processes contribute to neurodevelopmental disorders. This

question is particularly relevant to the human CGC and RSC

that has been implicated in psychiatric disorders with putative

neurodevelopmental basis.

Funding

Swiss National Foundation (31003-130781/1); Special Program

University Medicine (33CM30-124101); Von Meissner and

Novartis foundations to J.Z.K.

Supplementary Material

Supplementary material can be found at: http://www.cercor

.oxfordjournals.org/.

Notes

We wish to thank Beatrice King, Sylvie Chliate, and Cynthia Saadi for

technical assistance. Conflict of Interest: none declared.

References

Alcamo EA, Chirivella L, Dautzenberg M, Dobreva G, Farinas I,

Grosschedl R, Mcconnell SK. 2008. Satb2 regulates callosal pro-

jection neuron identity in the developing cerebral cortex. Neuron.

57:364--377.

Alcantara S, Ferrer I. 1995. Postnatal development of calbindin-D28k

immunoreactivity in the cerebral cortex of the cat. Anat Embryol

(Berl). 192:369--384.

Alcantara S, Ferrer I, Soriano E. 1993. Postnatal development of

parvalbumin and calbindin D28K immunoreactivities in the cerebral

cortex of the rat. Anat Embryol (Berl). 188:63--73.

Altman J, Bayer SA. 2002. Regional differences in the stratified

transitional field and the honeycomb matrix of the developing

human cerebral cortex. J Neurocytol. 31:613--632.

Bayer SA. 1990a. Development of the lateral and medial limbic cortices

in the rat in relation to cortical phylogeny. Exp Neurol.

107:118--131.

Bayer SA. 1990b. Neurogenetic patterns in the medial limbic cortex of

the rat related to anatomical connections with the thalamus and

striatum. Exp Neurol. 107:132--142.

Bayer SA, Altman J. 1991. Neocortical development. New York: Raven

Press.

Bluhm RL, Miller J, Lanius RA, Osuch EA, Boksman K, Neufeld RW,

Theberge J, Schaefer B, Williamson PC. 2009. Retrosplenial cortex

connectivity in schizophrenia. Psychiatry Res. 174:17--23.

Britanova O, Akopov S, Lukyanov S, Gruss P, Tarabykin V. 2005. Novel

transcription factor Satb2 interacts with matrix attachment region

DNA elements in a tissue-specific manner and demonstrates cell-

type-dependent expression in the developing mouse CNS. Eur

J Neurosci. 21:658--668.

Britanova O, Alifragis P, Junek S, Jones K, Gruss P, Tarabykin V. 2006. A

novel mode of tangential migration of cortical projection neurons.

Dev Biol. 298:299--311.

Britanova O, De Juan Romero C, Cheung A, Kwan KY, Schwark M,

Gyorgy A, Vogel T, Akopov S, Mitkovski M, Agoston D, et al. 2008.

Satb2 is a postmitotic determinant for upper-layer neuron specifi-

cation in the neocortex. Neuron. 57:378--392.

Cayre M, Canoll P, Goldman JE. 2009. Cell migration in the normal and

pathological postnatal mammalian brain. Prog Neurobiol. 88:41--63.

Celio MR. 1990. Calbindin D-28k and parvalbumin in the rat nervous

system. Neuroscience. 35:375--475.

Cooper BG, Manka TF, Mizumori SJ. 2001. Finding your way in the dark:

the retrosplenial cortex contributes to spatial memory and

navigation without visual cues. Behav Neurosci. 115:1012--1028.

Dart RA. 1925. The genesis of the cavum septi pellucidi. J Anat.

59:369--378.

Dayer AG, Jenny B, Sauvain MO, Potter G, Salmon P, Zgraggen E,

Kanemitsu M, Gascon E, Sizonenko S, Trono D, et al. 2007.

Expression of FGF-2 in neural progenitor cells enhances their

potential for cellular brain repair in the rodent cortex. Brain.

130:2962--2976.

Elias LA, Wang DD, Kriegstein AR. 2007. Gap junction adhesion is

necessary for radial migration in the neocortex. Nature.

448:901--907.

Fame RM, Macdonald JL, Macklis JD. 2011. Development, specification,

and diversity of callosal projection neurons. Trends Neurosci.

34:41--50.

Gabriel M, Sparenborg S. 1987. Posterior cingulate cortical lesions

eliminate learning-related unit activity in the anterior cingulate

cortex. Brain Res. 409:151--157.

Gelman DM, Marin O. 2010. Generation of interneuron diversity in the

mouse cerebral cortex. Eur J Neurosci. 31:2136--2141.

Gleeson JG, Lin PT, Flanagan LA, Walsh CA. 1999. Doublecortin is

a microtubule-associated protein and is expressed widely by

migrating neurons. Neuron. 23:257--271.

Gupta A, Sanada K, Miyamoto DT, Rovelstad S, Nadarajah B,

Pearlman AL, Brunstrom J, Tsai LH. 2003. Layering defect in p35

deficiency is linked to improper neuronal-glial interaction in radial

migration. Nat Neurosci. 6:1284--1291.

Hatanaka Y, Hisanaga S, Heizmann CW, Murakami F. 2004. Distinct

migratory behavior of early- and late-born neurons derived from the

cortical ventricular zone. J Comp Neurol. 479:1--14.

Hatanaka Y, Murakami F. 2002. In vitro analysis of the origin, migratory

behavior, and maturation of cortical pyramidal cells. J Comp Neurol.

454:1--14.

Hevner RF, Hodge RD, Daza RA, Englund C. 2006. Transcription factors

in glutamatergic neurogenesis: conserved programs in neocortex,

cerebellum, and adult hippocampus. Neurosci Res. 55:223--233.

Hevner RF, Shi L, Justice N, Hsueh Y, Sheng M, Smiga S, Bulfone A,

Goffinet AM, Campagnoni AT, Rubenstein JL. 2001. Tbr1 regulates

differentiation of the preplate and layer 6. Neuron. 29:

353--366.

Hicks SP, D’amato CJ. 1968. Cell migrations to the isocortex in the rat.

Anat Rec. 160:619--634.

Ichinohe N, Fujiyama F, Kaneko T, Rockland KS. 2003. Honeycomb-like

mosaic at the border of layers 1 and 2 in the cerebral cortex.

J Neurosci. 23:1372--1382.

Cerebral Cortex January 2012, V 22 N 1 155

http://cercor.oxfordjournals.org/cgi/content/full/bhr097/DC1
http://www.cercor.oxfordjournals.org/
http://www.cercor.oxfordjournals.org/


Ichinohe N, Knight A, Ogawa M, Ohshima T, Mikoshiba K, Yoshihara Y,

Terashima T, Rockland KS. 2008. Unusual patch-matrix organization

in the retrosplenial cortex of the reeler mouse and Shaking rat

Kawasaki. Cereb Cortex. 18:1125--1138.

Ichinohe N, Rockland KS. 2002. Parvalbumin positive dendrites co-

localize with apical dendritic bundles in rat retrosplenial cortex.

Neuroreport. 13:757--761.

Ichinohe N, Yoshihara Y, Hashikawa T, Rockland KS. 2003.

Developmental study of dendritic bundles in layer 1 of the rat granular

retrosplenial cortex with special reference to a cell adhesion

molecule, OCAM. Eur J Neurosci. 18:1764--1774.

Ignacio MP, Kimm EJ, Kageyama GH, Yu J, Robertson RT. 1995.

Postnatal migration of neurons and formation of laminae in rat

cerebral cortex. Anat Embryol (Berl). 191:89--100.

Inta D, Alfonso J, Von Engelhardt J, Kreuzberg MM, Meyer AH, Van

Hooft JA, Monyer H. 2008. Neurogenesis and widespread forebrain

migration of distinct GABAergic neurons from the postnatal

subventricular zone. Proc Natl Acad Sci U S A. 105:20994--20999.

Jones EG. 2009. The origins of cortical interneurons: mouse versus

monkey and human. Cereb Cortex. 19:1953--1956.

Kakita A, Goldman JE. 1999. Patterns and dynamics of SVZ cell

migration in the postnatal forebrain: monitoring living progenitors

in slice preparations. Neuron. 23:461--472.

Karram K, Chatterjee N, Trotter J. 2005. NG2-expressing cells in the

nervous system: role of the proteoglycan in migration and glial-

neuron interaction. J Anat. 207:735--744.

Kowalczyk T, Pontious A, Englund C, Daza RA, Bedogni F, Hodge R,

Attardo A, Bell C, Huttner WB, Hevner RF. 2009. Intermediate

neuronal progenitors (basal progenitors) produce pyramidal-pro-

jection neurons for all layers of cerebral cortex. Cereb Cortex.

19:2439--2450.

Letinic K, Zoncu R, Rakic P. 2002. Origin of GABAergic neurons in the

human neocortex. Nature. 417:645--649.

Levison SW, Chuang C, Abramson BJ, Goldman JE. 1993. The migrational

patterns and developmental fates of glial precursors in the rat

subventricular zone are temporally regulated. Development.

119:611--622.

Levison SW, Goldman JE. 1993. Both oligodendrocytes and astrocytes

develop from progenitors in the subventricular zone of postnatal rat

forebrain. Neuron. 10:201--212.

Li YB, Kaur C, Ling EA. 1998. Neuronal degeneration and microglial

reaction in the fetal and postnatal rat brain after transient maternal

hypoxia. Neurosci Res. 32:137--148.

Lindwall C, Fothergill T, Richards LJ. 2007. Commissure formation in

the mammalian forebrain. Curr Opin Neurobiol. 17:3--14.

Lopez-Bendito G, Cautinat A, Sanchez JA, Bielle F, Flames N, Garratt AN,

Talmage DA, Role LW, Charnay P, Marin O, et al. 2006. Tangential

neuronal migration controls axon guidance: a role for neuregulin-1

in thalamocortical axon navigation. Cell. 125:127--142.

Lopez-Bendito G, Sturgess K, Erdelyi F, Szabo G, Molnar Z, Paulsen O.

2004. Preferential origin and layer destination of GAD65-GFP

cortical interneurons. Cereb Cortex. 14:1122--1133.

Miro-Bernie N, Ichinohe N, Perez-Clausell J, Rockland KS. 2006. Zinc-

rich transient vertical modules in the rat retrosplenial cortex during

postnatal development. Neuroscience. 138:523--535.

Miyashita T, Wintzer M, Kurotani T, Konishi T, Ichinohe N,

Rockland KS. 2010. Neurotrophin-3 is involved in the formation of

apical dendritic bundles in cortical layer 2 of the rat. Cereb Cortex.

20:229--240.

Miyata T, Kawaguchi A, Okano H, Ogawa M. 2001. Asymmetric

inheritance of radial glial fibers by cortical neurons. Neuron.

31:727--741.

Nadarajah B, Alifragis P, Wong RO, Parnavelas JG. 2003. Neuronal

migration in the developing cerebral cortex: observations based on

real-time imaging. Cereb Cortex. 13:607--611.

Nadarajah B, Brunstrom JE, Grutzendler J, Wong RO, Pearlman AL. 2001.

Two modes of radial migration in early development of the cerebral

cortex. Nat Neurosci. 4:143--150.

O’Rourke NA, Dailey ME, Smith SJ, Mcconnell SK. 1992. Diverse

migratory pathways in the developing cerebral cortex. Science.

258:299--302.

Ohshima T, Hirasawa M, Tabata H, Mutoh T, Adachi T, Suzuki H,

Saruta K, Iwasato T, Itohara S, Hashimoto M, et al. 2007. Cdk5 is

required for multipolar-to-bipolar transition during radial neuronal

migration and proper dendrite development of pyramidal neurons

in the cerebral cortex. Development. 134:2273--2282.

Petanjek Z, Kostovic I, Esclapez M. 2009. Primate-specific origins and

migration of cortical GABAergic neurons. Front Neuroanat. 3:26.

Rakic P. 1972. Mode of cell migration to the superficial layers of fetal

monkey neocortex. J Comp Neurol. 145:61--83.

Rakic S, Yanagawa Y, Obata K, Faux C, Parnavelas JG, Nikolic M. 2009.

Cortical interneurons require p35/Cdk5 for their migration and

laminar organization. Cereb Cortex. 19:1857--1869.

Raponi E, Agenes F, Delphin C, Assard N, Baudier J, Legraverend C,

Deloulme JC. 2007. S100B expression defines a state in which GFAP-

expressing cells lose their neural stem cell potential and acquire

a more mature developmental stage. Glia. 55:165--177.

Rivarola MA, Suarez MM. 2009. Early maternal separation and chronic

variable stress in adulthood changes the neural activity and the

expression of glucocorticoid receptor in limbic structures. Int J Dev

Neurosci. 27:567--574.

Salmon P, Trono D. 2006. Production and titration of lentiviral vectors.

Curr Protoc Neurosci. Chapter 4:4.21.

Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE,

Tsien RY. 2004. Improved monomeric red, orange and yellow

fluorescent proteins derived from Discosoma sp. red fluorescent

protein. Nat Biotechnol. 22:1567--1572.

Shu T, Puche AC, Richards LJ. 2003. Development of midline glial

populations at the corticoseptal boundary. J Neurobiol. 57:81--94.

Suzuki SO, Goldman JE. 2003. Multiple cell populations in the early

postnatal subventricular zone take distinct migratory pathways:

a dynamic study of glial and neuronal progenitor migration.

J Neurosci. 23:4240--4250.

Szemes M, Gyorgy A, Paweletz C, Dobi A, Agoston DV. 2006. Isolation

and characterization of SATB2, a novel AT-rich DNA binding protein

expressed in development- and cell-specific manner in the rat brain.

Neurochem Res. 31:237--246.

Tabata H, Kanatani S, Nakajima K. 2009. Differences of migratory

behavior between direct progeny of apical progenitors and basal

progenitors in the developing cerebral cortex. Cereb Cortex.

19:2092--2105.

Tabata H, Nakajima K. 2003. Multipolar migration: the third mode of

radial neuronal migration in the developing cerebral cortex.

J Neurosci. 23:9996--10001.

Tamamaki N, Nakamura K, Okamoto K, Kaneko T. 2001. Radial glia is

a progenitor of neocortical neurons in the developing cerebral

cortex. Neurosci Res. 41:51--60.

Tarabykin V, Stoykova A, Usman N, Gruss P. 2001. Cortical upper layer

neurons derive from the subventricular zone as indicated by Svet1

gene expression. Development. 128:1983--1993.

Tseng CY, Ling EA, Wong WC. 1983. Scanning electron microscopy of

amoeboid microglial cells in the transient cavum septum pelluci-

dum in pre- and postnatal rats. J Anat. 136:251--263.

Valiente M, Martini FJ. 2009. Migration of cortical interneurons relies

on branched leading process dynamics. Cell Adh Migr. 3:

278--280.

Van Groen T, Wyss JM. 1990a. Connections of the retrosplenial granular

a cortex in the rat. J Comp Neurol. 300:593--606.

Van Groen T, Wyss JM. 1990b. The postsubicular cortex in the rat:

characterization of the fourth region of the subicular cortex and its

connections. Brain Res. 529:165--177.

Van Groen T, Wyss JM. 2003. Connections of the retrosplenial granular

b cortex in the rat. J Comp Neurol. 463:249--263.

Vann SD, Aggleton JP. 2002. Extensive cytotoxic lesions of the rat

retrosplenial cortex reveal consistent deficits on tasks that tax

allocentric spatial memory. Behav Neurosci. 116:85--94.

Vann SD, Aggleton JP, Maguire EA. 2009. What does the retrosplenial

cortex do? Nat Rev Neurosci. 10:792--802.

Vogt BA. 2005. Pain and emotion interactions in subregions of the

cingulate gyrus. Nat Rev Neurosci. 6:533--544.

156 Postnatal Migration into the Medial Limbic Cortex d Zgraggen et al.



Vogt BA, Laureys S. 2005. Posterior cingulate, precuneal and retro-

splenial cortices: cytology and components of the neural network

correlates of consciousness. Prog Brain Res. 150:205--217.

Vogt BA, Peters A. 1981. Form and distribution of neurons in rat

cingulate cortex: areas 32, 24, and 29.. J Comp Neurol. 195:

603--625.

Vogt BA, Rosene DL, Peters A. 1981. Synaptic termination of thalamic

and callosal afferents in cingulate cortex of the rat. J Comp Neurol.

201:265--283.

Vucurovic K, Gallopin T, Ferezou I, Rancillac A, Chameau P, Van

Hooft JA, Geoffroy H, Monyer H, Rossier J, Vitalis T. 2010. Serotonin

3A receptor subtype as an early and protracted marker of cortical

interneuron subpopulations. Cereb Cortex. 20:2333--2347.

Ward ME, Jiang H, Rao Y. 2005. Regulated formation and selection of

neuronal processes underlie directional guidance of neuronal

migration. Mol Cell Neurosci. 30:378--387.

Wonders CP, Anderson SA. 2006. The origin and specification of cortical

interneurons. Nat Rev Neurosci. 7:687--696.

Wyss JM, Sripanidkulchai K. 1984. The topography of the mesence-

phalic and pontine projections from the cingulate cortex of the rat.

Brain Res. 293:1--15.

Wyss JM, Van Groen T, Sripanidkulchai K. 1990. Dendritic bundling in

layer I of granular retrosplenial cortex: intracellular labeling and

selectivity of innervation. J Comp Neurol. 295:33--42.

Zerlin M, Levison SW, Goldman JE. 1995. Early patterns of migration,

morphogenesis, and intermediate filament expression of subven-

tricular zone cells in the postnatal rat forebrain. J Neurosci.

15:7238--7249.

Zilles K, Schleicher A, Glaser T, Traber J, Rath M. 1985. The ontogenetic

development of serotonin (5-HT1) receptors in various cortical

regions of the rat brain. Anat Embryol (Berl). 172:255--264.

Cerebral Cortex January 2012, V 22 N 1 157


