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Some applications of the isoperimetric inequality

for integral varifolds
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Abstract. In this work the isoperimetric inequality for integral varifolds of locally bounded

first variation is used to obtain sharp estimates for the size of the set where the density quotient

is small and to generalise Calderón’s and Zygmund’s theory of first order differentiability for

functions in Lebesgue spaces from Lebesgue measure to integral varifolds.
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Introduction

This work contributes to the study of weak notions of regularity for integral varifolds in

an open subset of Euclidean space whose distributional first variation is given by either

a Radon measure or by a function locally in Lp. As it is well known, see e.g. Allard

[1, 8.1 (2)], the set where the support does not locally correspond to a submanifold

of class C
1 may have positive measure even if p D 1. Therefore the notions of

regularity studied here, and subsequently in [10] and [11], are decay rates of height-

excess and tilt-excess near almost every point which provide a way to quantify the

amount of flatness entailed by the conditions on the mean curvature. The main focus of

the present paper is to investigate the effects of large mean curvature on the decay rates

of the afore-mentioned excess quantities and also on the availability of an analogue for

integral varifolds of Calderón’s and Zygmund’s theory of first order differentiability for

functions in Lebesgue spaces. In both cases the results are accompanied by examples

demonstrating the sharpness of the conditions on the mean curvature involved. The

differentiability theory will turn out to be useful in the analysis of the decay rates.

Next, in order to precisely state the problem and the related results, some defini-

tions are recalled mainly from Simon’s book on geometric measure theory [17] which

includes a list of basic notation on page (vii).
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Basic definitions and notation. To introduce the terminology, suppose n;m 2 N

and U is an open subset of R
nCm. Using [17, Theorem 11.8] as a definition, � is an

integral n-varifold in U if and only if � is a Radon measure on U and for � almost all

x 2 U there exists an approximate tangent plane Tx� 2 G.nCm; n/with multiplicity

�n.�; x/ 2 N of � at x, G.nCm; n/ denoting the set of n-dimensional, unoriented

planes in R
nCm. The distributional first variation of mass of � equals

.ı�/.�/ D

Z

div� � d� whenever � 2 C 1
c .U;R

nCm/

where div� �.x/ is the trace of D�.x/ with respect to Tx�. kı�k denotes the total

variation measure associated to ı� and � is said to be of locally bounded first variation

if and only if kı�k is a Radon measure, in this case the generalised mean curvature

vector EH�.x/ 2 R
nCm can be defined by the requirement

EH�.x/ � v D � lim
%#0

.ı�/.�B%.x/v/

�.B%.x//
for v 2 R

nCm

whenever these limits exist for x 2 U ; here � denotes the usual inner product on

R
nCm. Moreover, � is said to satisfy condition (Hp), 1 � p � 1, if and only if it is

of locally bounded first variation, EH� 2 Lp
loc.�;R

nCm/, and, in case p > 1, satisfies

.ı�/.�/ D �

Z

EH� � � d� whenever � 2 C 1
c .U;R

nCm/: (Hp)

Also, adapting Anzellotti’s and Serapioni’s definition in [3], � is called countably

rectifiable of class C
2, or for short C

2-rectifiable, if and only if � almost all of U can

be covered by a countable collection of n-dimensional submanifolds of class C
2.

The problem. The following questions arise.

(i) Suppose n;m 2 N, 1 � p � 1, 0 < ˛ � 1, and 1 � q � 1. Does the

condition (Hp) on an integral n-varifold � in U , U a nonempty, open subset of

R
nCm, imply

lim sup
%#0

%�1�˛�n=qk dist.� � x; Tx�/kLq.� x B%.x// < 1

for � almost all x 2 U ?

(ii) Suppose n;m 2 N, 1 � p � 1, 0 < ˛ � 1, and 1 � q � 1. Does the

condition (Hp) on an integral n-varifold � in U , U a nonempty, open subset of

R
nCm, imply

lim sup
%#0

%�˛�n=qkT�� � Tx�kLq.� x B%.x// < 1

for � almost all x 2 U ? Here S 2 G.nCm; n/ is identified with the element

of Hom.RnCm;RnCm/ given by the orthogonal projection of R
nCm onto S .
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Clearly, the two questions are related by Caccioppoli type inequalities, see e.g. Brakke

[4, 5.5], at least in the case q D 2 where the quantities considered agree with the

classical height-excess and tilt-excess. Also note that an affirmative answer to one of

the questions with ˛, q implies an affirmative answer to the same question for any

0 < ˛0 � 1, q < q0 < 1 such that ˛q D ˛0q0 by use of the trivial L1 bounds

of the functions involved. The case ˛ D 1 is of particular interest in both questions.

A varifold satisfying the decay estimate in the first question with ˛ D 1 and q D 1 is

C
2-rectifiable, see Schätzle [16, Appendix A]. In the second question the case ˛ D 1

is related to the local computability of the mean curvature vector from the geometry

of ¹x 2 U : �n.�; x/ � 1º, see Schätzle in [14, Lemma 6.3] or [15, Proposition 6.1]

or [16, Theorem 4.1]. On the other hand the quantity ˛q to some extend determines

how well � can be approximated by multivalued graphs near generic points, see the

forthcoming paper [10]. Such kind of approximation of integral varifolds has been

fundamental for regularity investigations, for example, in the work of Almgren in [2],

Brakke in [4] and Schätzle in [15, 16]. It was introduced by Almgren in [2, 3.1–3.12]

and extended by Brakke in [4, 5.4].

Known results. Brakke answers both questions in the affirmative for any n andm in

case

either p D 1, ˛ D 1=2, q D 2 or p D 2, ˛ < 1, q D 2

in [4, 5.7]. Schätzle provides a positive answer in the case

m D 1, p > n, p � 2, ˛ D 1, q D 1

for the first question and in the case

m D 1, p > n, p � 2, ˛ D 1, q D 2

for the second question, see [15, Proposition 4.1, Theorem 5.1]. Moreover, in subse-

quent work Schätzle showed for arbitrary dimensions that the decay rates occurring in

the two questions hold if

p D 2, ˛ D 1, q D 2

provided � is additionally assumed to be C
2-rectifiable. Also note that Brakke’s ex-

ample in [4, 6.1] shows that the answer to the second question is in the negative for

any m, p and ˛ if n � 2 and q D 1.

Results of the present paper. First, it is shown by an example of a unit density, C
2-

rectifiable n-varifold in R
nC1 that the answers to both questions are in the negative if

p < n and ˛q > np=.n � p/, see 1.2. In particular, in case 1 � p < 2n=.n C 2/

proving appropriate decay for the classical height-excess or tilt-excess, i.e. answering

the first or second question in the affirmative for ˛ D 1, q D 2, cannot serve as
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an intermediate step in studying C
2-rectifiability or local computability of the mean

curvature vector. This was the original motivation to consider exponents q ¤ 2.

Second, in order to provide new cases where the questions are answered in the

affirmative, it will turn out to be useful in [11] to have a theory of first order differen-

tiability for functions in Lq.�/, � an integral n-varifold, similar to the one developed

by Calderón and Zygmund in [5] for Lq.Ln/, at one’s disposal. Also, whenever the

decay condition occurring in the second question with ˛ D 1, q < 1 holds for some

� satisfying condition (Hp) for some p with q � np=.n � p/ if p < n, one may

apply the Rademacher type result 3.9 to obtain a differential of T�� in an Lq.�/ sense

� almost everywhere on U . In particular, this covers all cases for which the answer to

the second question with ˛ D 1 might be in the affirmative.

The key to carry over the theory from the Lebesgue measure case to the case of in-

tegral varifolds is the following differentiation theorem which corresponds to [5, The-

orem 10 (ii)] by Calderón and Zygmund but whose proof uses techniques employed by

Mickle and Radó in [12, Theorem 1] and [13, Section 5], see also Federer [6, 2.9.17].

Theorem 3.1. Suppose m 2 N0, n 2 N, 1 � p � n, U is an open subset of

R
nCm, � is an integral n-varifold in U satisfying condition (Hp), � measures U with

�.U � spt�/ D 0, A is �-measurable with �.A/ D 0, and 1 � q < 1. In case

p < n additionally suppose for some 1 � r � 1 and some nonnegative function

f 2 Lr
loc.�/ that

� D f� and q � 1 C .1 � 1=r/
p

n � p
:

Then for H
n almost all a 2 A

lim sup
s#0

�. NBs.a//
ı

snq equals either 0 or 1:

The bound on q is sharp as demonstrated in 3.3, 3.4. Its occurrence is due to the

fact that in case p < n the number n2=.n � p/ in the following proposition cannot be

replaced by any larger number, see 1.2: Suppose m 2 N0, n 2 N, 1 � p < n, � is an

integral n-varifold in R
nCm satisfying condition (Hp), then for � almost all a 2 U

there exists " > 0 such that

lim
r#0

�
�

NBr.a/�¹x :�. NB%.x// � cn%
n for 0 < % < "º

�

rn2=.n�p/
D 0

where cn is a positive, finite number depending only on n, see 2.9, 2.10. Similar

propositions with n2=.n�p/ replaced by any slightly smaller number can be obtained

by use of [17, Theorem 17.6], an inequality derived via integration of the monotonicity

formula. The optimal exponent is derived using the isoperimetric inequality. All these

results will be proven under the weaker condition �n.�; x/ � 1 for � almost every

x 2 U replacing the integrality condition on �.
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Organisation of the paper. In the first section the example is constructed. In the

second section the isoperimetric inequality is used to derive some sharp bounds on the

size of the set where the n-density ratio is small and in the last section a theory of first

order differentiation in Lebesgue spaces defined with respect to a varifold is presented.

Note that with the exception of 3.6–3.10 the work was part of the author’s PhD

thesis, see [9].

1 An example concerning height and tilt decays of integral varifolds

In this section a family of integral n-varifolds with prescribed decay rates of height

and tilt quantities is constructed. In fact, the decay rate for tilt can be arranged to be

slightly larger than the one of the height with the same exponent. However, this feature

will only become relevant in [10].

Definition 1.1. Suppose k 2 N, x 2 R
k and 0 < % < 1.

Then Q%.x/ WD ¹y 2 R
k : jyi � xi j < % for i D 1; : : : ; kº. To avoid ambiguity,

Qk
%.0/ will be written instead of Q%.0/.

Example 1.2. Suppose n 2 N, 1 � p < n, 0 < ˛i � 1, 1 � qi < 1 for i 2 ¹1; 2º,

such that

˛2q2 � ˛1q1;
1

p
> 1 C

˛2q2

˛1q1

� 1

n
C

1

˛2q2

� 1
�

:

In case ˛1q1 D ˛2q2 the last condition reads ˛2q2 > np=.n � p/.
Then there exists an integral n-varifold� in R

nC1, T 2 G.nC1; n/ and 0 < � < 1
with the following properties:

(i) The support of � equals the disjoint union of T and an n-dimensional submani-

fold of R
nC1 of class C

1.

(ii) There holds �n.�; x/ D 1 for x 2 spt� and Tx� D T for x 2 T .

(iii) There holds EH� 2 L
p
loc.�;R

nC1/ and .ı�/.�/ D �
R

EH� � � d� whenever

� 2 C 1
c .R

nC1;RnC1/.

(iv) Whenever x 2 T and 0 < % � 1

��1%˛2q2 � %�n�.¹� 2 NB%.x/ : dist.� � x; T / � %=�º/;

%�n�. NB%.x/�T / � �%˛2q2 ;

%�1�n=q2

�

Z

NB%.x/

dist.� � x; Tx�/
q2 d�.�/

�1=q2

� %˛2 ;

%�n=q1

�

Z

NB%.x/

jT�� � Tx�jq1 d�.�/
�1=q1

� %˛1 ;
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here a � b means that a � �1b and b � �1a for some positive, finite number

�1 depending only on n, and ˛i , qi for i 2 ¹1; 2º.

(v) Whenever 1 < r < 1, nC .1 � 1=r/˛2q2 < s < 1 there exists a nonnegative

function f 2 Lr
loc.�/ such that f .x/ D 0 for x 2 T , and

%s �

Z

NB%.x/

f d� whenever x 2 T , 0 < % � 1;

here a � b means a � �2b and b � �2a for some positive, finite number �2

depending only on n and s.

Construction of example. Let a WD ˛2q2=n C 1, b WD .˛1q1 � ˛2q2/=a C 1 � 1.

Define for i 2 N0

Wi WD
®

Q
2�i�2.x/ : 2iC1x 2 Z

n
¯

:

Clearly,
S

Q2Wi
Q D R

n and Wi are pairwise disjoint. Let

Fi WD
®

�2�i�1; 2�i Œ�W :W 2 Wi

¯

for i 2 N0; F WD
[

i2N0

Fi :

Clearly,
S

S2F S D�0; 1� � R
n and F is pairwise disjoint. Let T WD ¹0º � R

n.

Next, it will be indicated how to construct for every 0 < � � % < 1 a compact

n-dimensional submanifold M of R
nC1 of class C

1 such that

M � QnC1
% .0/; .�0/

�1%n � H
n.M/ � �0%

n; j EHM j � �0�
�1;

H
n.¹x 2 M : jTxM � T j � 1º/ � .�0/

�1�%n�1;

H
n.¹x 2 M : EHM .x/ ¤ 0 or TxM ¤ T º/ � �0�%

n�1

where EHM denotes the mean curvature vector ofM and �0 is a positive, finite number

depending only on n. To construct M , one may assume % D 1. Choose a concave

function f W Œ�1=2; 1=2� ! Œ0; 1� and 0 < �1 < 1 such that

f .�1=2/ D �=4 D f .1=2/;

f .s/ D �=2 whenever s 2 Œ�1=2 C �=4; 1=2 � �=4�

and such that

N WD ¹.s; t/ 2 Œ�1=2; 1=2� � R : jt j D f .s/º [ .¹�1=2; 1=2º � Œ��=4; �=4�/
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is a one-dimensional submanifold of class C
1 with j EHN j � �1�

�1. Noting

H
1.graph f jŒ�1=2;�1=2 C �=4� [ Œ1=2 � �=4; 1=2�/ � �

by [6, 3.2.27], one can take

M WD ¹.y; z/ 2 R � R
n : .jzj; y/ 2 N º:

For each i 2 N0 andQ 2 Fi choose an n-dimensional submanifoldMQ of the type

just constructed corresponding to %i WD 2�ia�2, �i WD 2�iba�2 contained inQ and let

M be the union of those submanifolds. Take � WD H
n

x.T [M/. (i) is now evident.

To prove the estimates, fix x 2 T and define for i; j 2 N0

bi;j WD #
®

Q 2 Fj :Q \Q
2�i .x/ ¤ ;

¯

; ci;j WD #
®

Q 2 Fj :Q � Q
2�i .x/

¯

:

Clearly, bi;j D ci;j D 0 if j < i . If j � i , one estimates

bi;j �
�

2j �iC2 C 1
�n

�
�

5 � 2j �i
�n
; ci;j �

�

2j �iC2 � 1/n �
�

3 � 2j �i
�n
:

One calculates

�.Q
2�i .x/�T / �

1
X

j D0

bi;j�0.%j /
n � .5=4/n�0.2

�i /an.1 � 2n.1�a//�1;

n � ba.1 � p/C .1 � n/a D �˛1q1 C p.˛1q1 � ˛2q2 C ˛2q2=nC 1/ < 0;

Z

Q
2�i

.x/ � T

j EHM jp d�

�

1
X

j D0

bi;j .�0/
pC1.�j /

1�p.%j /
n�1

� 5n.�0/
pC1.2�i /ba.1�p/C.n�1/a.1 � 2n�ba.1�p/C.1�n/a/�1 < 1;

Z

Q
2�i

.x/

dist.� � x; T /q2 d�.�/ � 2�iq2�.Q
2�i .x/�T /;

Z

Q
2�i

.x/

jT�� � T jq1 d�.�/

� .2n/q1

1
X

j D0

bi;j�0�j .%j /
n�1

� .2n/q1.5=4/n�0.2
�i /baCa.n�1/.1 � 2n�ba�a.n�1//�1;
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2.iC1/q2

Z

Q
2�i

.x/

dist.� � x; T /q2 d�.�/

� �.¹� 2 Q
2�i .x/ : dist.� � x; T / � 2�i�1º/

� .�0/
�1.%i /

n D .4n�0/
�12�ian;

Z

Q
2�i

.x/

jT�� � T jq1�.�/ � .�0/
�1�i .%i /

n�1 D .4n�0/
�1.2�i /abCa.n�1/:

Therefore (iii) and (iv) are proven and the second estimate of (iv) implies (ii).

To prove (v), define f by f .y/ WD 2.na�s/i if y 2
S

S2Fi
S for some i 2 N0 and

f .y/ D 0 else. Then for i 2 N0

Z

Q
2�i

.x/

jf j d� �

1
X

j D0

bi;j 2.na�s/j�0.%j /
n � .5=4/n�0.2

�i /s.1 � 2n�s/�1;

Z

Q
2�i

.x/

jf jr d� �

1
X

j D0

bi;j 2.na�s/rj�0.%j /
n

� .5=4/n�0.2
�i /.s�na/rCna.1 � 2nC.na�s/r�na/�1 < 1

because

nC .na � s/r � an D ˛2q2.r � 1/C r.n � s/ < 0:

The estimate from below is similar to the one from above.

Remark 1.3. The integral n-varifold� constructed depends only on n and the products

˛iqi for i 2 ¹1; 2º. Moreover, the assumption ˛i � 1 for i 2 ¹1; 2º could be replaced

by ˛i < 1 for i 2 ¹1; 2º.

Remark 1.4. Taking p D 1, ˛1 D ˛2, and q1 D q2 D 2 in the last two estimates of

(iv) shows that for every n 2 N, n > 1, 1=2 C .2.n � 1//�1 < ˛ � 1 there exists an

integral n-varifold � of R
nC1 of locally bounded first variation such that for some A

with �.A/ > 0

lim
%#0

%�2˛ heightex�.x; %; Tx�/ D 1; lim
%#0

%�2˛ tiltex�.x; %; Tx�/ D 1

for x 2 A. In [4, 5.7] Brakke showed in arbitrary codimension that the above limits

equal 0 almost everywhere with respect to � if ˛ D 1=2.
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Remark 1.5. Similarly to the preceding remark, taking ˛1 D ˛2 D 1, q1 D q2 D q

and noting (i), one obtains for every p� D np=.n � p/ < q < 1 an integral n-

varifold � satisfying condition (Hp) which is countably rectifiable of class C
2 such

that for some A with �.A/ > 0

lim
%#0

%�2�n=q
�

Z

B%.x/

dist.� � x; Tx�/
q d�.�/

�1=q
D 1;

lim
%#0

%�1�n=q
�

Z

B%.x/

jT�� � Tx�jq d�.�/
�1=q

D 1

for x 2 A. In particular, if p < 2n=.n C 2/ then countable rectifiability of class C
2

does not imply quadratic decay of neither tiltex� nor heightex�. If p D 2, countable

rectifiability of class C
2 is equivalent to quadratic decay of both quantities, see [16,

Theorem 3.1] by Schätzle.

2 The size of the set where the n-density quotient is small

In this section the isoperimetric inequality is used to derive basic facts on the size

of the set where the n-density quotient is small. Although the general procedure of

such estimates is clearly known, see 2.5, it appears to be rarely used in literature. The

sharpness of the results is necessary to determine the precise limiting exponent up to

which the differentiation theory in the next section can be developed. Similarly, the

accuracy of the bounds obtained in [10] depends on the results of this section.

2.1. The following situation will be studied:

Suppose m 2 N0, n 2 N, 1 � p � n, U is an open subset of R
nCm, � is a

rectifiable n-varifold1 in U of locally bounded first variation, �n.�; x/ � 1 for �

almost all x 2 U , and, in case p > 1,

.ı�/.�/ D �

Z

EH� � � d� whenever � 2 C 1
c .U;R

nCm/

and EH� 2 Lp
loc.�;R

nCm/. In doing so, the following abbreviation will be used:

 D kı�k if p D 1;  D j EH�jp� else:

Theorem 2.2 (Isoperimetric inequality for varifolds). Suppose m 2 N0, n 2 N, � is a

rectifiable n-varifold in R
nCm with �.RnCm/ < 1 and kı�k.RnCm/ < 1.

Then for some positive, finite number  depending only on n

�
�®

x 2 R
nCm : �n.�; x/ � 1

¯�

�  �.RnCm/1=nkı�k.RnCm/:

1Note that a definition of a rectifiable n-varifold results from the definition of an integral n-varifold

through replacement of the condition �n.�; x/ 2 N by 0 < �n.�; x/ < 1.
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Proof. This follows from [1, Theorem 7.1] by Allard with a constant  depending on

nCm (which would be sufficient for the purpose of this work). A slight modification

of [17, Lemma 18.7, Theorem 18.6] yields the stated result.

Definition 2.3. For n 2 N let n denote the best constant  in 2.2.

Remark 2.4. Taking m D 0, � D L
n

x
NBn

1 .0/ yields

n � !�1=n
n =n:

Does equality hold?

2.5. An important consequence of the isoperimetric inequality 2.2 and the starting

point for the estimates in the present section is the following fact which can be derived

by a variant of [6, 5.1.6] or Allard [1, 8.3], see Leonardi and Masnou [8, Proposition

3.1] or [9, A.8, A.9].

Suppose n, m, p D 1, U D Br.a/ for some a 2 R
nCm and 0 < r < 1, and � are

as in 2.1, a 2 spt�, 0 < " < �1
n , and

kı�k. NB%.a// � "�. NB%.a//
1�1=n whenever 0 < % < r;

then

�. NB%.a// � ..�1
n � "/=n/n%n whenever 0 < % < r:

Also note, if p D n > 1 or p D n D 1 and kı�k.¹aº/ < ", then

kı�k. NB%.x// � "�. NB%.x//
1�1=n

whenever 0 < % < r , x 2 spt� \ NBr.a/ is satisfied for all sufficiently small positive

radii r . In the present paper the preceding statements will only be applied with " D
.2n/

�1, hence .�1
n � "/=n D .2nn/

�1.

Lemma 2.6. Suppose m 2 N0, n 2 N, and ı > 0.

Then there exists a positive number " with the following property.

If a 2 R
nCm, 0 < r < 1,m, n, p, U , and � are related as in 2.1 with U D Br.a/,

p D 1, a 2 spt�, and

kı�k. NB%.a// � .2n/
�1�. NB%.a//

1�1=n for 0 < % < r;

kı�k.Br.a// � "�.Br.a//
1�1=n;

then

�.Br.a// � .1 � ı/!nr
n:
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Proof. A variant of the argument used in [1, 8.4] by Allard with 2.5 replacing [1, 8.3]

yields the stated result.

Remark 2.7. The following proposition is implied by 2.6.

If m, n, p, U , � and  are as in 2.1, p D n, then

�n
� .�; a/ � 1 whenever a 2 spt� and  .¹aº/ D 0:

Clearly, the condition  .¹aº/ D 0 is redundant in case kı�k is absolutely continuous

with respect to � (i.e. ı� has no singular part with respect to �). In case n D 2,

this was proven together with existence and upper semicontinuity of �2.�; �/ in [7,

Appendix A] by Kuwert and Schätzle. It is not known to the author whether or not the

latter two properties hold for general n.

Definition 2.8. For k 2 N denote by N.k/ the best constant in Besicovitch’s covering

theorem in R
k .

Theorem 2.9. Suppose m, n, p, U , �, and  are as in 2.1, p < n, 0 � s < 1,

0 < " � .2n/
�p=.n�p/, 4nn < � < 1,

A D
®

x 2 U : ��n�p. ; x/ < ."=�/n�p=!n�p

¯

;

denote by Bi for i 2 N the set of all x 2 U such that either NB
1=i
.x/ 6� U or

 . NB%.x// > "
n�p �. NB%.x//

1�p=n for some 0 < % < 1=i;

and denote by Xi for i 2 N the set of all a 2 U such that

lim
r#0

�
�

Bi \ NBr.a/
�ı

rsn=.n�p/ D 0:

Then
®

x 2 Bi : NB
1=i
.x/ � U

¯

are open sets, Xi are Borel sets and

H
s
�

A�
[

i2N

Xi

�

D 0:

Proof. Clearly, BiC1 � Bi , Xi � XiC1 and Xi is a Borel set for i 2 N. The sets

¹x 2 Bi : NB
1=i
.x/ � U º are open, as may be obtained by adapting [6, 2.9.14].

Define for i 2 N the set Ai of all x 2 U such that B
1=i
.x/ � U and

 . NB%.x// � ."=�/n�p%n�p whenever 0 < % < 1=i:

The sets Ai are closed (cp. [6, 2.9.14]) and satisfy A �
S

i2N
Ai . Let C denote the

set of all x 2 spt� such that

lim sup
%#0

 . NB%.x//

�. NB%.x//
1�p=n

< "n�p
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and note �.U �C/ D 0 by [6, 2.9.5]. By [6, 2.10.6, 2.10.19 (4)] it is enough to prove

a 2 X2i for a point a 2 Ai with �s. xU �Ai ; a/ D 0.

For this purpose the following assertion will be proven. For each x 2 B2i \
B

1=.2i/
.a/ \ C there exists 0 < % < 1 with

NB%.x/ � B2jx�aj.a/�Ai ; �. NB%.x// < "
�n . NB%.x//

n=.n�p/:

Choose y 2 Ai with jy � xj D dist.x; Ai / and let J be the set of all 0 < % < 1=.2i/

with

�. NB%.x// < "
�n . NB%.x//

n=.n�p/:

Then J ¤ ;, because x 2 B2i , NB
1=.2i/

.x/ � B
1=i
.a/ � U , and, since x 2 C ,

infJ > 0. Therefore t WD infJ satisfies

0 < t < 1=.2i/; �. NBt .x// � "�n . NBt .x//
n=.n�p/;

�. NB%.x// � "�n . NB%.x//
n=.n�p/ for 0 < % < t:

Noting

jy � xj D dist.x; Ai / � jx � aj � 1=.2i/; t C jy � xj < 1=i;

NBt .x/ � NBtCjy�xj.y/ � B1=i .y/ � U;

one estimates

 . NBt .x//
n=.n�p/ �  . NBtCjy�xj.y//

n=.n�p/

� ."=�/n.t C jy � xj/n < "n2�n.1 C jy � xj=t/n.2nn/
�ntn

and, using the inequalities derived from the definition of t and 2.5,

�. NBt .x// � "�n . NBt .x//
n=.n�p/ < 2�n.1 C jy � xj=t/n�. NBt .x//;

hence

.1 C jy � xj=t/n > 2n; jy � xj > t

and the assertion follows by taking % 2 J slightly larger than t .

Let 0 < r < 1=.2i/. Then the preceding assertion in conjunction with Besicovitch’s

covering theorem implies the existence of countable, pairwise disjoint collections of

closed balls F1; : : : ; FN.nCm/ satisfying

B2i \ NBr.a/ \ C �

N.nCm/
[

j D1

[

S2Fj

S � B2r.a/�Ai ;

�.S/ < "�n .S/n=.n�p/ for S 2

N.nCm/
[

j D1

Fj :
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Hence

�.B2i \ NBr.a// D �.B2i \ NBr.a/ \ C/

�

N.nCm/
X

j D1

X

S2Fj

�.S/ � "�n

N.nCm/
X

j D1

X

S2Fj

 .S/n=.n�p/

� "�n

N.nCm/
X

j D1

�

X

S2Fj

 .S/
�n=.n�p/

� "�nN.nCm/ .B2r .a/�Ai /
n=.n�p/

and the conclusion follows by taking the limit r # 0.

Remark 2.10. This theorem deserves some explanations.

First, note that if kı�k is absolutely continuous with respect to �, then

H
n�p.U �A/ D 0

and if p D 1, then

H
n�1.X �A/ � .�="/n�1!n�1kı�k.X �A/ for X � U

by [6, 2.10.6, 2.10.19 (3)]. These estimates for the size of U �A suggest that the

theorem is most useful if n � p � s � n.

Clearly, if a 2 .spt�/�Bi , then NB
1=i
.a/ � U and

.2nn/
�n%n � �. NB%.a// for 0 < % < 1=i

by 2.5. On the other hand, since the sets
®

x 2 Bi : NB
1=i
.x/ � U

¯

are open andBiC1 �

Bi , Xi � XiC1 for i 2 N, one infers that H
s almost all a 2 A \

T

i2N
Bi satisfy

lim
r#0

�. NBr.a//
ı

rsn=.n�p/ D 0:

Remark 2.11. Similar to the preceding remark one obtains using 2.6 instead of 2.5

that H
n almost all x 2 U satisfy

either �n
� .�; x/ � 1 or �n2=.n�p/.�; x/ D 0

and, in case kı�k is absolutely continuous with respect to �, that H
n�p almost all

x 2 U satisfy

either �n
� .�; x/ � 1 or �n.�; x/ D 0:
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Moreover, the exponent n2=.n � p/ cannot be replaced by any larger number as may

be seen by taking � x R
nC1 �T with � and T as in 1.2. Hence, the same holds for the

exponent sn=.n � p/ in the last equality of 2.10 if s D n.

Since n2=.n � 1/ � nC 1 if n > 1, this property of the n-densities seems to be the

underlying fact used in the proof of [8, Theorem 3.4] by Leonardi and Masnou.

Remark 2.12. It can happen that H
n
�

A \ .spt�/ \
T

i2N
Bi

�

> 0. In fact tak-

ing � x R
nC1 �T with � and T as in 1.2 one sees from 2.10 and 1.2 (iv) that T �

T

i2N
Bi .

3 A differentiation theorem

In this section the theory of first order differentiation of functions in Lebesgue spaces

defined with respect to a rectifiable varifold, similar to the one of Calderón and Zyg-

mund in [5] for the special case of Lebesgue measure, is developed. First, an abstract

differentiation theorem for measures, 3.1, is proven which then allows to establish the

differentiation theorem for functions, 3.7. The first part of the latter theorem states

an approximability result by functions which are Hölder continuous with exponent ˛

which, in the particular case ˛ D 1 implies a Rademacher type theorem for differen-

tiability in Lebesgue spaces, see 3.9. The second part of 3.7 may in fact be regarded

as an application of this theory and is designed for use in [11].

Theorem 3.1. Supposem, n, p,U , and� are as in 2.1, � measuresU , �.U � spt�/ D
0, A is �-measurable with �.A/ D 0, and 1 � q < 1. In case p < n additionally

suppose for some 1 � r � 1 and some nonnegative function f 2 Lr
loc.�/ that

� D f� and q � 1 C .1 � 1=r/
p

n � p
:

Then for H
n almost all a 2 A

lim sup
s#0

�. NBs.a//
ı

snq equals either 0 or 1:

Proof. For i 2 N let Bi denote the set of all x 2 U such that either NB
1=i
.x/ 6� U or

kı�k. NB%.x// > .2n/
�1�. NB%.x//

1�1=n for some 0 < % < 1=i:

First, the case A � ¹x 2 U : ��n.�; x/ > 0º will be treated. In this case A is

measurable and � finite with respect to H
n by [6, 2.10.19 (1) (3)]. Hence one may

assume A to be compact. Define

Ai D ¹a 2 A : �. NBs.a//= � i snq for 0 < s < 1=iº
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whenever i 2 N, 1=i < dist.A;RnCm �U /. The setsAi are compact (cp. [6, 2.9.14])

and their union equals

®

a 2 A : lim sup
s#0

�. NBs.a//=s
nq < 1

¯

:

It therefore suffices to show for each i 2 N with 1=i < dist.A;RnCm �U /

lim
s#0

�. NBs.a//
ı

snq D 0 for H
n almost all a 2 Ai :

In fact, this equality will be proven for all a 2 Ai satisfying

kı�k.¹aº/ D 0; �n.� xU �Ai ; a/ D 0; �n.f r�; a/ D 0 if r < 1;

lim sup
s#0

�.Bj \ NBs.a//
ı

sn2=.n�p/ D 0 for some j 2 N, j � 2i , if p < n

as H
n almost all a 2 Ai do according to [6, 2.10.19 (3) (4)] and 2.9.

In case p D n one chooses j 2 N, j � 2i , using 2.5 such that

Bj \ NB1=j .a/ D ;:

Let 0 < s < 1=j . For x 2 NBs.a/ \ .spt�/�.Bj [ Ai / there exists y 2 Ai with

jx � yj D dist.x; Ai /, hence

t WD jx � yj � jx � aj � s < 1=j � 1=.2i/;

NBjx�yj=2.x/ � NB3jx�yj=2.y/ \ NB2s.a/�Ai ;

�. NBt=2
.x// � �. NB

3t=2
.y// � i3nq.t=2/nq � c �. NBt=2

.x//q

where c D i3nq.2nn/
nq . Therefore one infers from Besicovitch’s covering theorem

the existence of countable, pairwise disjoint collections F1; : : : ; FN.nCm/ of closed

balls such that

NBs.a/ \ .spt�/�.Bj [ Ai / �

N.nCm/
[

kD1

[

S2Fk

S � NB2s.a/�Ai ;

�.S/ � c �.S/q whenever S 2

N.nCm/
[

kD1

Fk;

hence

�. NBs.a/�Bj / D �. NBs.a/ \ .spt�/�.Bj [ Ai // � cN.nCm/�. NB2s.a/�Ai /
q;

lim
s#0

�. NBs.a/�Bj /
ı

snq D 0:
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To conclude the proof of the first case, one observes

�.Bj \ NBs.a// D 0 if p D n;

�.Bj \ NBs.a// � �.Bj \ NBs.a//
1�1=rkf kLr .� x

NBs.a// if p < n

implying

lim
s#0

�.Bj \ NBs.a//
ı

snq D 0

because .1 � 1=r/n=.n � p/C 1=r � q in case p < n.

It remains to treat the case A � ¹x 2 U : �n.�; x/ D 0º. Using 2.5 and 2.11 one

obtains

A \ spt� is countable if p D n;

�n2=.n�p/.�; a/ D 0 for H
n almost all a 2 A if p < n

and the claim follows by using Hölder’s inequality as in the preceding paragraph noting

by [6, 2.10.19 (4)]

�n.f r�; a/ D 0 for H
n almost all a 2 A if r < 1:

Remark 3.2. This theorem combines two lines of development. The first deals with

the case q D 1 and focuses on the possibility to allow for arbitrary measures �, see [12,

Theorem 1] and [13, Section 5] by Mickle and Radó. The second focuses on arbitrary

q while restricting � to be absolutely continuous with respect to Lebesgue measure,

see [5, Theorem 10 (ii)] by Calderón and Zygmund.

The current approach adapts the presentation of Mickle’s and Radó’s results by

Federer in [6, 2.9.17]. The condition on the mean curvature replaces, via the use of

2.9, a diametric regularity condition employed by Federer. A measure � on a metric

space X satisfies this condition if and only if for some R > 0 and � < 1 there holds

�. NB5r.x// < ��.
NBr.x// whenever x 2 X and 0 < r < R.

Remark 3.3. If q D 1, the condition �.U � spt�/ D 0 cannot be omitted as may be

seen from [6, 2.9.18 (2)].

Remark 3.4. If p < n the condition q � 1C .1�1=r/p=.n�p/ cannot be omitted as

can be shown using 1.2. In fact given � and T as in 1.2 a counterexample is provided

by � WD � x R
nC1 �T in case r D 1 and if 1 < r < 1 applying 1.2 (v) with

s D nq and ˛1q1 D ˛2q2 slightly larger than np=.n�p/ yields a function f such that

� WD f� does not satisfy the conclusion of 3.1. Finally, if r D 1 the condition is also

violated for a slightly larger r , hence reducing this case to the previous one.
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Remark 3.5. Note that the preceding two remarks remain valid if H
n is replaced by

� in the conclusion of 3.1.

Definition 3.6. Whenever A is �-measurable set with 0 < �.A/ < 1 and f 2
L1.� xA/ one defines

ª

A f d� D �.A/�1
R

A f d�.

Theorem 3.7. Suppose n, m, p, U , and � are as in 2.1, Z is a separable Banach

space, f W U ! Z is �-measurable, 0 < ˛ � 1, 1 � q < 1, and A is the set of all

x 2 spt� such that

lim sup
%#0

%�˛q

«

NB%.x/

jf .�/ � zjq d�.�/ < 1 for some z 2 Z:

In case p < n additionally suppose that f 2 Lr
loc.�;Z/ for some 1 � r � 1

satisfying

˛q=n �
�

1 �
q

r

� p

n � p
:

Then A is a Borel set and the following two statements hold:

(i) For every " > 0 there exists a function g W U ! Z which locally satisfies a

Hölder condition with exponent ˛ such that

�.A \ ¹x :f .x/ ¤ g.x/º/ � ":

Moreover, for every function g which locally satisfies a Hölder condition with

exponent ˛ there holds

lim
%#0

%�˛q

«

NB%.x/

jf .�/ � g.�/jq d�.�/ D 0

for � almost all x 2 A with f .x/ D g.x/.

(ii) If " > 0, Di .a/ denotes for a 2 domain f , i 2 N the set of all x 2 U such that

either NB
1=i
.x/ 6� U or

Z

NB%.x/

jf .�/ � f .a/jq d�.�/ > "�. NB%.x// for some 0 < % < 1=i;

Yi denotes for i 2 N the set of all a 2 domainf such that

lim
r#0

�.Di .a/ \ NBr.a//=r
nC˛q D 0;

then the sets Yi are �-measurable and

�
�

A�
[

¹Yi : i 2 Nº
�

D 0:
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Proof of (i). Let � W R
nCm �Z ! R

nCm denote the projection and for i 2 N let Ei

denote the set of all .x; z/ 2 spt� �Z such that B
1=i
.x/ � U and

«

NB%.x/

jf .�/ � zjq d�.�/ � i%˛q whenever 0 < % < 1=i:

Then Ei is closed (cp. [6, 2.9.14]), �jEi is univalent, and both �.Ei / and A D
S

¹�.Ei / : i 2 Nº are Borel sets by [6, 2.2.10].

To prove the first part of (i), the problem is reduced to the case � D L
n

xK for

some compact set K (not necessarily satisfying a condition on ı�) via [6, 3.2.18].

This case can then be treated by adapting [6, 3.1.8, 3.1.14], see also [18, VI.2.2.2].

Concerning the second half of (i), one observes that every such function g satisfies

lim sup
%#0

%�˛q

«

NB%.x/

jf .�/ � g.�/jq d�.�/ < 1

for � almost all x 2 A with f .x/ D g.x/ by [6, 2.9.9] and 3.1 may be applied with �,

r , q, A replaced by jf � gjq�, r=q, 1 C ˛q=n, ¹x 2 A :f .x/ D g.x/º if p < n and

jf � gjq�, 1, 1 C ˛q=n, ¹x 2 A :f .x/ D g.x/º else.

Proof of (ii). For any 0 < % < 1, x 2 R
nCm denote by bx;% the characteristic

function of NB%.x/, define Ui D
®

x 2 U : dist.x;RnCm �U / > 1=i
¯

and observe that

the function mapping .a; x; �/ 2 .domain f / � U � .domain f / onto

bx;%.�/jf .�/ � f .a/jq � "bx;%.�/

is .� � � � �/-measurable for every 0 < % < 1. Applying Fubini’s theorem, one

infers that the function mapping .a; x/ 2 .domain f / � Ui onto

sup
°

Z

NB%.x/

jf .�/ � f .a/jq d�.�/ � "�. NB%.x// : 0 < % < 1=i
±

is .�� .� xUi //-measurable for each i 2 N, since the supremum may be restricted to

a countable, dense subset of ¹% : 0 < % < 1=iº. For the same reason

sup
®

r�n�˛q�.Di .a/ \ NBr.a// : 0 < r < 1=j
¯

depends�-measurably on a for each i; j 2 N. Therefore the sets Yi are�-measurable.

For i 2 N let Ai denote the set of all a 2 .domain f /\ .spt�/ such that B
1=i
.a/ �

U and whenever 0 < % < 1=i

�. NB%.a// � i%n;

«

NB%.a/

jf .�/ � f .a/jq d�.�/ � i%˛q:
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Since the last condition in the definition of the sets Ai could be replaced by the two

conditions

a 2 �.Ei /; lim
%#0

«

NB%.a/

f .�/ d�.�/ D f .a/;

the�-measurability of the setsAi may be verified using the first paragraph of the proof

of (i). Note �.A�
S

¹Ai : i 2 Nº/ D 0 by [6, 2.9.9]. For i 2 N let Ci denote the set

of all x 2 spt� such that either NB
1=i
.x/ 6� U or

kı�k NB%.x/ > .2n/
�1�. NB%.x//

1�1=n for some 0 < % < 1=i:

Moreover, define

Xi D
®

x 2 U : �nC˛q.� xCi ; x/ D 0
¯

for i 2 N;

note nC ˛q � n2=.n� p/ if p < n, and observe by 2.9 in case p < n, by 2.5 in case

p D n, that

�
�

U �
[

¹Xi : i 2 Nº
�

D 0:

Using (i), one constructs sequencesKi of compact subsets of U and gi W U ! Z such

that

Ki � Aj for some j 2 N; f jKi D gi jKi ;

gi locally satisfies a Hölder condition with exponent ˛;

�
�

A�
[

¹Ki : i 2 Nº
�

D 0:

Also note Ai � AiC1, Ci � CiC1, and Xi � XiC1 for i 2 N.

From the observations of the preceding paragraph, [6, 2.10.6, 2.10.19 (4)] and (i) it

follows that it is enough to prove a 2
S

¹Yj : j 2 Nº whenever a 2 A satisfies for

some i 2 N, some compact set K, and some g W U ! Z

a 2 Xi ; a 2 K � Ai ; �n.� xU �K; a/ D 0; gjK D f jK;

g locally satisfies a Hölder condition with exponent ˛;

r�n�˛q

Z

NBr .a/

jf .�/ � g.�/jq d�.�/ ! 0 as r # 0:

For this purpose define h D sup¹jg.x/ � g.y/j=jx � yj˛ : x; y 2 K; x ¤ yº, choose

j 2 N, j � 2i , and 0 < R < 1=.2i/ satisfying

2q�1i2
�

.1=j CR/˛q C hq.2R/˛q
�

� "2�n.2nn/
�n:
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Next, it will be shown

Z

NB%.x/

jf .�/ � f .a/jq d�.�/ � "2�n.1 C j� � xj=%/n�. NB%.x//

whenever x 2 spt� \ NBr.a/�Ci , � 2 K, j� � xj D dist.x;K/, 0 < r � R, and

0 < % < 1=j . Noting

%C j� � xj < 1=j C jx � aj � 1=j CR < 1=i;

NB%.x/ � NB%Cj��xj.�/ � B
1=i .�/ � U;

j� � aj � j� � xj C jx � aj � 2jx � aj � 2R;

2q�1i2
�

.%C j� � xj/˛q C hqj� � aj˛q
�

� "2�n.2nn/
�n;

one estimates

Z

NB%.x/

jf .�/ � f .a/jq d�.�/

�

Z

NB
%Cj��xj

.�/

jf .�/ � f .a/jq d�.�/

� 2q�1
�

Z

NB
%Cj��xj

.�/

jf .�/ � f .�/jq d�.�/C jf .�/ � f .a/jq�. NB%Cj��xj.�//
�

� 2q�1i
�

.%C j� � xj/˛q C hqj� � aj˛q
�

�. NB%Cj��xj.�//

� "2�n.2nn/
�n.1 C j� � xj=%/n%n

and 2.5 implies the assertion. Therefore, if

Z

NB%.x/

jf .�/ � f .a/jq d�.�/ > "�. NB%.x//;

then

.1 C j� � xj=%/n > 2n; % < j� � xj � jx � aj � r; jx � aj C % < 2r;

NB%.x/ � B2r .a/�K � U:

This implies that for each x 2 spt� \ NBr.a/ \Dj .a/�Ci with 0 < r � R there

exists 0 < % < 1=j such that

NB%.x/ � B2r.a/�K � U;

Z

NB%.x/

jf .�/ � f .a/jq d�.�/ > "�. NB%.x//;
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because a 2 Ai , x 2 NBr.a/ implies NB
1=j
.x/ � U . Hence one infers from Besicov-

itch’s covering theorem

�. NBr.a/ \Dj .a/�Ci / � N.nCm/"�1

Z

B2r .a/ � K

jf .�/ � f .a/jq d�.�/

for 0 < r � R. Recalling a 2 Xi , the proof may be concluded by showing

r�n�˛q

Z

B2r .a/ � K

jf .�/ � f .a/jq d�.�/ ! 0 as r # 0

which is a consequence of

Z

B2r .a/ � K

jf .�/ � f .a/jq d�.�/ � 2q�1
�

Z

B2r .a/

jf .�/ � g.�/jq d�.�/

C

Z

B2r .a/ � K

jg.�/ � g.a/jq d�.�/
�

;

Z

B2r .a/ � K

jg.�/ � g.a/jq d�.�/ � �.B2r .a/�K/.h0/
q.2r/˛q

for 0 < r � R with h0 D sup¹jg.x/ � g.y/j=jx � yj˛ : x; y 2 NBR.a/; x ¤ yº.

Remark 3.8. If p < n the assumption ˛q=n � .1 �q=r/p=.n�p/ cannot be omitted

in order to obtain the second part of (i) as may be seen from the family of examples

constructed in 1.2; in fact one can take ˛1 D ˛2 D ˛, q1 D q2 D q, and f D
�RnC1 � T in case r D 1, and in case r < 1 one can assume q < r and apply 1.2 (v)

with r , s, ˛1 D ˛2, q1 D q2 replaced by r=q, ˛q C n, 1 and a number slightly larger

than np=.n � p/ to obtain a function f 2 Lr=q
loc .�/ such that the second statement of

(i) does not hold for f , g replaced by f 1=q , 0.

Remark 3.9. If dimZ < 1 and ˛ D 1, (i) in conjunction with [6, 3.2.18, 3.1.16]

implies, adapting the use of g in [6, 4.5.9 (26) (II)], that for � almost all a 2 A

lim
%#0

«

NB%.a/

.jf .�/ � f .a/ � h.Ta�/.� � a/; .�; n/ apDf.a/i j=j� � aj/q d�.�/ D 0

where the notion of approximate differentials, see [6, 3.2.16], is employed.

Remark 3.10. Part (ii) can be seen in two ways as a refinement of the simple fact that

��nC˛q.� x ¹x 2 U : jf .x/ � f .a/jq > "º ; a/

� "�1��nC˛q.jf .�/ � f .a/jq�; a/ < 1
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whenever a 2 A. Firstly, jf .x/� f .a/jq > " is replaced in the definition of Di .a/ by
ª

NB%.x/ jf .�/ � f .a/jq d�.�/ > " for some 0 < % < 1=i . Secondly, in the conclusion

�nC˛q.� xDi .a/; a/ D 0 occurs instead of ��nC˛q.� xDi .a/; a/ < 1. Whereas

the first improvement is vital for the applications in [11], the second one is only used

under the stronger assumption

lim
r#0

r�n�˛q

Z

NBr .x/

jf .�/ � zjq d�.�/ D 0 for some z 2 Z

for � almost all x 2 U .
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