
11/1/2006-574–JFQA #41:4 Demchuk and Gibson Page 863

JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS VOL. 41, NO. 4, DECEMBER 2006
COPYRIGHT 2006, SCHOOL OF BUSINESS ADMINISTRATION, UNIVERSITY OF WASHINGTON, SEATTLE, WA 98195

Stock Market Performance and the Term
Structure of Credit Spreads

Andriy Demchuk and Rajna Gibson∗

Abstract

We build a structural two-factor model of default where the stock market index is one of
the stochastic factors. We allow the firm to adjust its leverage ratio in response to changes
in the business climate for which the past performance of the stock market index acts as a
proxy. We assume that the firm’s log-leverage ratio follows a mean-reverting process and
that the past performance of the stock index negatively affects the firm’s target leverage
ratio. We show that for most credit ratings our model may explain actual yield spreads
better than other well-known structural credit risk models. Also, our model shows that the
past performance of the stock index returns and the firm’s assets beta have a significant
impact on credit spreads. Hence, our model can explain why credit spreads may be dif-
ferent within the same credit rating groups and why spreads are lower during economic
expansions and higher during recessions.

I. Introduction

Theoretical models of default can be classified as either structural or reduced
form models. In structural models (see, for instance, Merton (1974), Longstaff
and Schwartz (1995), Leland (1994), Leland and Toft (1996), and Collin-Dufresne
and Goldstein (2001)), default occurs when the value of a latent variable, usu-
ally the firm value, hits the default boundary. In the Merton (1974), Longstaff
and Schwartz (1995), and Collin-Dufresne and Goldstein (2001) models, the de-
fault boundary is set exogenously. For example, in the Merton model, the default
boundary is equal to the promised principal payment at maturity, and default oc-
curs if the value of the firm at maturity is below the principal bond value. In
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Leland (1994) and Leland and Toft (1996), the firm’s default boundary is endoge-
nously defined. Given the fact that the firm value is modeled as a continuous
diffusion process, default is a fully predictable event in structural models. To the
contrary, reduced form models (see, for instance, Jarrow, Lando, and Turnbull
(1997), Duffie and Singleton (1999)) abstract from the firm value process. In this
class of models, default is treated as an unpredictable event and is driven by a
jump process. Reduced form models are primarily designed to fit the observed
credit spreads, while structural models look at the fundamentals of default.

Structural models of credit risk pricing have been extended to allow for a sec-
ond state variable. In most cases, this second state variable is the short-term inter-
est rate (see, for instance, Longstaff and Schwartz (1995) and Collin-Dufresne
and Goldstein (2001)). However, the empirical evidence on these two-factor
bond pricing models’ performance remains rather mixed (see Huang and Huang
(2002)).

Our study is inspired by the empirical evidence that corporate bond prices
and credit spreads significantly depend on the overall business climate. For ex-
ample, Chen (1991), Fama and French (1989), Friedman and Kuttner (1992),
and Guha and Hiris (2002) find that credit spreads behave counter-cyclically, i.e.,
credit spreads tend to increase during recessions and narrow during expansions.
Collin-Dufresne, Goldstein, and Martin (2001) include the S&P 500 return to
proxy for the overall state of the economy and find a highly statistically signifi-
cant and negative relation between credit spreads’ changes and the index returns.
Landschoot (2003) studies the determinants of the Euro term structure of credit
spreads and also finds that the Dow Jones Euro Stoxx returns significantly and
negatively affect credit spreads.

Based on these stylized facts, we propose a two-factor structural model of
default that incorporates both the firm’s specific risk and systematic, e.g., overall
business climate, risk. In our model, the first factor is the stochastic value of
the firm’s assets and the second factor is the value of the stock market index.
Our model aims to explain how the performance of the stock market index (which
proxies for the business climate) and the firm’s assets beta directly affect corporate
bond prices and credit spreads.1

In this paper, we allow the firm to adjust its capital structure and, hence,
its leverage ratio, dynamically. Our model is consistent with the fact that firms
have target leverage ratios and time their equity and debt issues according to the
business climate. Indeed, we model the dynamics of the firm’s log-leverage ratio
as a mean-reverting process, where the target (or long-term) leverage ratio is as-
sumed to be negatively affected by the stock market performance. In Appendix
A, we formally show that modeling the firm’s book value of debt and its equity
as weighted averages of past firm values and of the performance of the stock mar-
ket leads to debt and equity issuance policies that are consistent with the mean
reversion of the log-leverage ratio. Even though the proposed modeling is similar
to the modeling in Collin-Dufresne and Goldstein (2001), our assumption about
the mean-reverting log-leverage ratio is based on the market timing and trade-off
theories of corporate debt-equity issuance policies, whereas Collin-Dufresne and

1There is also an indirect effect: from the CAPM, it follows that firms’ asset returns depend on
their covariance with the stock market returns.
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Goldstein derive the log-leverage dynamics endogenously by assuming that the
default threshold follows a mean-reverting process and is further influenced by
changes in the short-term interest rate.

A comparison of the performance of our model with the Merton (1974),
Longstaff and Schwartz (1995), and Collin-Dufresne and Goldstein (2001) mod-
els suggests that our model yields credit spreads that are generally closer to actual
credit spreads, especially when we look at the credit spreads of Aa, A, Baa, and
Ba investment grade bonds. Our model shows that credit spreads tend to widen
when the performance of the stock market index is weak, and vice versa. This
pattern is consistent with the empirical evidence that credit spreads tend to be
lower during economic expansions and higher during recessions. Our model also
predicts that credit spreads are higher for firms with higher beta coefficients. This
may explain why bonds with similar credit ratings but in different industries can
have significantly different credit spreads. Finally, our model can also explain
how the different term structure of credit spreads distinguishes distressed firms
from “fallen angels.”

The rest of the paper is organized as follows. In Section II, we make a brief
review of theoretical and empirical studies on firms’ capital structure choices that
support our modeling of the dynamics of the leverage ratio. In Section III, we
present the model and its assumptions. We describe the bond pricing methodology
in Section IV. In Section V, we compare the credit spreads generated by our
model with the average market yield spreads and with the spreads resulting from
the Longstaff and Schwartz (1995), Collin-Dufresne and Goldstein (2001), and
Merton (1974) models. We also discuss the main numerical results of our study,
and conduct a sensitivity analysis. Section VI concludes the paper.

II. Capital Structure Choices: Theory and Empirical
Evidence

Our theoretical model of corporate default is based on the assumption that
firms continuously adjust their capital structure in response to changes in the busi-
ness climate and also to changes in their assets’ value. Namely, we assume that
the firm’s log-leverage ratio follows a mean-reverting process where the long-
term mean leverage is negatively related to the performance of the stock market
index (see equation (6)). In fact, the latter assumption rests on two hypotheses.
The first one is that firms tend to decrease their leverage (for example, by issu-
ing new equity) if their current leverage ratio is above the target value, and to
increase their leverage (for example, by issuing new debt) if their current leverage
ratio is below that target. This implies mean reversion in the dynamics of firms’
leverage ratios. The second hypothesis about a negative relation between firms’
instantaneous target leverage ratios and the stock index performance implies that
firms adjust their target leverage ratios over time: they set their target leverage
ratios at lower levels during periods of economic expansion and raise them during
recessions. To see whether our assumption is consistent with the capital structure
theory and empirical facts, we now examine the existing theoretical and empirical
literature on firms’ capital structure choices.
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The first hypothesis is in line with the so-called capital structure trade-off
theory that is based on the view that firms trade off the tax benefits of debt fi-
nancing and the costs of financial distress. Such a trade-off leads to an “optimal”
capital structure choice. A number of empirical studies show that firms tend to
make financing choices based on target leverage ratios (see, for example, Hov-
akimian, Opler, and Titman (2001), Marsh (1982)).

The second hypothesis is in line with timing models of corporate capital
structure. These models are based on the evidence that firms tend to time their
issuance of corporate securities. For example, Moore (1980), Marsh (1982), and
Taggart (1977) document that firms prefer to issue equity when the value of eq-
uity is relatively high (which are typically periods of economic expansion), and to
issue debt when interest rates are relatively low (which are periods of economic
contraction). Similarly, Choe, Masulis, and Nanda (1993) show that firms tend to
issue more equity than debt in expansionary periods of the business cycle. They
explain these financing patterns by changes in adverse selection costs. That is,
during periods of economic upturns, i.e., when the relative value of the firm’s eq-
uity is typically high, the negative price reaction associated with an equity offering
announcement is smaller.

In addition to theoretical and empirical studies on capital structure, we would
also like to cite the study by Bancel and Mittoo (2002) who surveyed managers of
firms in 16 European countries to examine the link between theory and practice
of capital structure choices. The results of this survey (see Table 1) are also in
favor of our modeling of the dynamics of the leverage ratio. Namely, nearly 60%
of the respondents admitted that they consider a target debt ratio when issuing
equity, and that they prefer to issue equity when the stock price has recently risen.
Nearly 45% of the surveyed managers said that they would rather issue debt when
interest rates are low or when their equity is undervalued. In another study, nearly
two-thirds of the surveyed CFOs in the U.S. admitted to pursuing a market timing
strategy (Graham and Harvey (2001)).2

TABLE 1

The Determinants of Securities’ Issuance Policies

Table 1 presents the results of a survey of European firms on the determinants of capital structure choice: the three most
frequent answers regarding equity and debt issuances.

Important or
Very Important (%)

Most Important Factors Influencing Common Stock Issuance
a) Earning per share 66.04
b) Maintaining a target debt-to-equity ratio 59.26
c) If the stock price has recently risen, the price at which we can issue is “high” 59.26

Most Important Factors Influencing Debt Issuance
a) With the use of debt, we try to minimize the weighted average cost of capital 69.77
b) We issue debt when interest rates are low 44.83
c) We issue debt when our equity is undervalued by the market 43.68

Source: Bancel and Mittoo (2002), tables IV and VI.

2Note that in the same study Graham and Harvey find that cash management considerations essen-
tially affect the choice of the maturity of the debt instruments issued. They claim that “for instance,
many companies issue long-term debt so that they do not have to refinance in bad times” (p. 18).
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III. The Model

We derive a structural two-factor model of default where the value of the
firm’s assets and the stock market index are the underlying stochastic factors. In
the model, we assume that the firm continuously adjusts its capital structure, i.e.,
issues either equity or debt, in response to the observed past returns of the stock
market index and to changes in its leverage ratio. Our modeling approach is sim-
ilar to Collin-Dufresne and Goldstein’s (2001) model, which in turn extends and
corrects the paper by Longstaff and Schwartz (1995). In the above two studies, a
stochastic risk-free interest rate, along with the stochastic firm’s value, determine
the pricing of risky bonds and corresponding credit (yield) spreads. In our model,
the risk-free rate is assumed to be constant. We introduce a stochastic stock mar-
ket index with the goal to study the impact of the business climate (as measured
by the index performance) and the firm assets’ beta on corporate bond prices. Our
main assumptions are discussed below.

Assumption 1. The risk-free rate r is constant for all maturities.

Assumption 1 is made solely for the purpose of keeping the model tractable.
It is possible, however, to make it stochastic, but since the impact of stochastic
interest rates on risky bond prices is well documented (see, for instance, Collin-
Dufresne and Goldstein (2001) or Longstaff and Schwartz (1995)), we prefer not
to do so.

Assumption 2. The uncertainty in the model is characterized by the probability
space (Ω,F ,P), where Ω is the state space, F is the filtration, and P is the
historical (true) probability measure.

Assumption 3. The total value of the firm’s assets V follows the diffusion process,

dVt

Vt
= (μV − δV)dt + σdWt,(1)

where μV is the instantaneous expected return and δV is the rate of all the firm’s
cash outflows per unit of time, σ is the volatility of assets’ returns, μV , δV , and σ
are all assumed to be positive constants, and dWt is the increment of a standard
Wiener process under the true probability measure P .

Assumption 4. There is a stock market index, and its value I evolves as

dIt
It

= (μI − δI)dt + γdZt,

where μI is the expected drift, δI is the dividend yield, γ is the volatility of the
index returns, μI , δI , and γ are all positive constants, and dZt is the increment of
a standard Wiener process under P such that dWtdZt = ρdt, where ρ denotes the
instantaneous correlation between the two Wiener processes.

One can think about the stock market index as a broadly diversified stock
index (like the S&P 500) or a sector- (industry-) specific index, depending upon
whether the firm adjusts its leverage based on the market or the industry-specific
business climate.
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Since the main goal of our paper is to derive risky bond prices and the cor-
responding credit spreads, we work with the risk-neutral probability measure in-
stead of the historical one. Hence, we assume that:

Assumption 5. The financial market is frictionless and complete. Therefore, there
exists a unique martingale probability measure Q equivalent to P .

Under the risk-neutral probability measure, the dynamics of the firm’s value
and the stock market index become

dVt

Vt
= (r − δV)dt + σdWQ

t ,

dIt
It

= (r − δI)dt + γdZQ
t ,

where WQ
t = Wt + ρΛt, ZQ

t = Zt + Λt, and Λ is the market price of risk.3

As in Collin-Dufresne and Goldstein (2001), it is convenient to define the
log-firm value and log-index value variables: yt = logVt and xt = log It. Applying
Ito’s lemma, we obtain

dyt =
(

r − δV − 1
2
σ2

)
dt + σdWQ

t ,(2)

and

dxt =
(

r − δI − 1
2
γ2

)
dt + γdZQ

t .(3)

As already mentioned, the performance of the stock market index is assumed
to affect the firm’s leverage ratio in our model. Therefore, we introduce the vari-
able ψt, which refers to the “recent” performance of the stock market index,

ψt = log It − log Īt = xt − x̄t,

where x̄t = log Īt is the logarithm of the “historical average” value of the index.
In our model, the variable ψt aims to reflect the business climate: high values of
ψ (i.e., strong performance of the stock index) would imply economic improve-
ments, and low values of ψ (i.e., weak index performance) would imply economic
slowdowns. We show below that the initial value of the stock index performance
ψ0 has an important impact on credit spreads.

The historical average value of the stock index is defined as

Īt = exp

(
θ

∫ t

−∞
e−θ(t−s)xsds

)
.(4)

The above specification of the average historical index value implies that the
latter is a geometric average of the past index values.4 The parameter θ represents

3Λ is equal to Λ= (μI − r)/γ. Notice that despite the fact that we have two Wiener processes in
the model, we have only one market price of risk defined above. The reason is that due to the assumed
correlation between Wt and Zt , the Wiener process Wt governing the uncertainty of the firm value
can be decomposed into the market risk and the firm’s idiosyncratic risk, which is not priced by the
market.

4Formula (4) is a continuous-time analog to the definition of the geometric average,

Ī0 = Iαn
−n · I

α−n+1
−n+1 · . . . · Iα0

0 ,
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the weight with which the average is calculated: the higher the value of θ, the
more weight is put on the most recent history of the index.5 Also, notice that
the setting of the lower integration limit in (4) to minus infinity grants us the
Markovian property of the recent index performance variable ψt.6

Using (4), we derive the dynamics of the market index performance,

dψt = dxt − θψtdt.

If we substitute in the above equation expression (3) for dxt, we obtain

dψt = θ

(
r − δi − 1

2γ
2

θ
− ψt

)
dt + γdZQ

t , ψ0 = log
Io
Ī0
.(5)

Equation (5) implies that the performance of the stock market index follows a
mean-reverting process. Also, we can see that the longer the time horizon during
which the index performance is calculated, that is the smaller θ, the higher is the
long-run mean of the index performance and the lower is the speed of adjustment
of the above mean-reverting process.

In further analysis, the log-firm value, yt = logVt, and the stock market index
performance, ψt = log(It/Īt), both determine the assumed dynamics of the firm’s
leverage ratio and the probability of default. First, we describe and motivate the
specification of the leverage ratio process and second we present our modeling of
the default event.

Assumption 6. The firm’s log-leverage ratio lt = log(Lt) = log(Dt/Vt), where Lt

is the firm’s leverage ratio and Dt is the book value of the firm’s outstanding debt,
evolves as

dlt = λ
[̄
lQ − φψt − lt

]
dt − σdWQ

t .(6)

In Appendix A, we propose a book value of debt and a firm’s equity specifications
as well as debt and equity issuance policies that are consistent with the above
dynamics of the firm’s log-leverage ratio.

where
�
αi = 1.

5To explain the role of θ, assume that for a specific firm the relevant time horizon for the compu-
tation of the index performance is equal to one year. Then, by requiring values from the last one-year
index to enter the historical average (4) with the cumulative weight of, for instance, 0.99, we obtain

θ

� t

t−1
e−θ(t−s)ds = 1 − e−θ = 0.99.

Solving the above equation, we obtain that the value of parameter θ should be equal to 4.6.
6We can easily show that if in (4) one takes a finite lower boundary, for instance, t − t̄, instead

of −∞ (with the appropriate adjustment of the weights), then at each point of time t the innovations
in ψt will depend on the value of the index not only at time t, but also on its value at time t − t̄. In
that case, ψt is non-Markovian and the further analysis becomes much more complex. For formula
(4) to make sense, we have to define the “distant” history of the stock index. For example, we do not
know the value of the S&P 500 at time t = −∞, or 500 years ago. Without loss of generality, we
assume that at times prior to the appearance of the first data point of the index value, all the index
values are equal to the initial index value. However, the distant index history can be irrelevant if one
properly chooses the value of parameter θ. For example, if θ= 4.6 (i.e., the performance of the index
is calculated during the last one year), then the distant historical index values enter the average with a
cumulative weight of 0.01 (see footnote 5).
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Equation (6) suggests that the firm’s leverage ratio follows a mean-reverting
process and that there is a negative relation between the stock market performance
ψt and changes in the leverage ratio, i.e., φ > 0. Such a formulation corresponds
to the so-called trade-off theory of firms’ capital structure, which builds on the
notion of a target capital structure that balances costs and benefits of debt and
equity (see, for example, Hovakimian et al. (2001) or Marsh (1982). Also, see
the discussion in Section II). The above assumption also implies that the target,
or long-run mean leverage ratio is time-dependent, equal to l̄Q − φψt under the
risk-neutral probability measure, and is negatively related to the stock market
performance ψt.7

To summarize, our modeling of the dynamics of the log-leverage ratio (6)
is in line with the so-called trade-off theory of capital structure and is in line
with studies of debt versus equity choice that find firms prefer to issue equity
rather than debt, i.e., the leverage ratio tends to decline after periods of economic
expansion (when ψt is high) (see, for instance, Choe et al. (1993), Marsh (1982),
and Taggart (1977)), and vice versa.

In our risk-neutral specification of the dynamics of the log-leverage (6), l̄Q

stands for the long-run mean log-leverage ratio when the firm is not concerned
about timing of equity and debt issuances, i.e., when φ=0. The risk-neutral value
l̄Q and the true value l̄ of the long-run mean log-leverage ratio are related as

l̄Q = l̄ +
σ

λ
ρΛ,(7)

where Λ is the market price of risk, σ is the assets’ volatility, and λ is the speed
of adjustment of the process in (6). We will use this relation in our numerical
analysis to get an estimate of l̄Q from the historical (or true) values of the firm’s
target leverage ratios.

The diffusion term in (6) is derived from the definition of the leverage ratio
and is based on the natural assumption that the firm’s book value of debt evolves
deterministically.8

For the sake of completeness, we would like to point out that Collin-Dufresne
and Goldstein (2001), who have a stochastic short-term risk-free interest rate as
a second factor, derive similar dynamics of the log-leverage ratio endogenously.
Their derivation is based on the assumed negative relation between the firm’s
default threshold and the level of interest rates, where the default threshold is
implicitly associated with the firm’s book value of debt. Therefore, it follows from
their model that changes in the firm’s leverage are due to changes in the firm’s
assets value and in the firm’s debt issuance policy, where the latter is influenced
by changes in the interest rate. In contrast, our model explains changes in the
firm’s leverage ratio by the firm’s equity and debt issuance policies, which are in
turn affected by the stage of the business cycle.

7For example, Fama and French (2002) find a negative relation between target market and book
leverage and the firm’s asset returns, and this is in line with our assumption given a positive correlation
between assets and index returns.

8The market value of the risky debt may evolve stochastically, but the book value of debt, as
follows from its definition, evolves deterministically in our framework. Assuming that d log D t =
g(t, yt, ψt)dt, and then using the definition of the log-leverage, i.e., l t = log(Dt/Vt) = log Dt − yt , we
obtain that the diffusion term of dlt is equal to −σdWQ

t .
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Finally, we outline one important property of the variance of the log-leverage
ratio lt in Proposition 1. This property will help us explain the impact of the firm’s
assets beta on credit spreads in Section V.

Proposition 1. The variance of the log-leverage ratio, Var0[lt], increases with the
correlation between the asset and the stock index returns if 0 < λ < θ and the
parameters φ, σ, and γ are all positive.

Proof. See Appendix B.

Existing structural models define the event of default in two distinct ways.
For example, in Merton (1974) the firm defaults if, at the time of maturity of
the bond, the value of the firm’s assets is below the face value of the bond. In
Longstaff and Schwartz (1995) and Collin-Dufresne and Goldstein (2001), de-
fault occurs when the firm’s assets decline to an exogenously specified boundary
(threshold). On the other hand, Leland (1994) and Leland and Toft (1996) model
a firm that defaults strategically and, by maximizing the firm’s equity, they derive
the default boundary endogenously.

In this paper, we assume a very general firm’s debt structure consisting of
different bonds with different maturities. The total time-t book value of the firm’s
outstanding debt is denoted by Dt, and we specify the default event as:

Assumption 7. The firm defaults when the value of its assets V hits an endoge-
nously determined boundary (threshold) for the first time. This threshold is as-
sumed to be equal to the firm’s book value of total debt D. Equivalently, default
occurs when the firm’s log-leverage ratio lt reaches zero for the first time. The
corresponding stopping time is defined as

τ̃ = inf

{
t > 0, Vt = Dt ⇔ lt = log

Dt

Vt
= 0

}
.

The firm continues to service its debt as long as the value of its assets Vt is
greater than the book value of its debt Dt. If V hits D, the firm is assumed either
to be unable to meet some of its debt obligations or to violate minimum net worth
or working capital requirements. The firm is then assumed to default on all its
debt obligations because of, for instance, cross-default provisions. Although we
assume that the default boundary is equal to the book value of debt, we could
extend our analysis to allow the default threshold to be, for example, a linear
function of D.9 However, since it is the leverage ratio, rather than the actual
value of the default boundary, that plays a major role in our analysis, allowing a
linear specification of the default boundary will not add any new insights into the
valuation of the risky bond.

To price a risky bond, we have to specify its payoff in case of default.
Namely, we must specify how much a bondholder recovers when the firm is in
distress. In order to keep our model simple, we assume that, in the case of de-

9For example, in Moody’s KMV model, the default boundary is equal to the sum of the face value
of the short-term debt and half of the face value of the long-term debt. In Huang and Huang (2002),
the default boundary is equal to 60% of the book value of a firm’s debt. However, they report that their
estimated credit spreads do not change significantly when they change the default boundary to 100%
of the book value of debt (table 12 in Huang and Huang (2002)).
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fault, a bondholder recovers a constant fraction of the face value of the risky
bond,10 and we set this fraction exogenously.11

Assumption 8. Following Longstaff and Schwartz (1995), we assume that in the
case of default each bondholder receives (1 − w) units of the identical risk-free
bond (i.e., with the same face value and maturity) in exchange for the defaulted
risky bond at the time of default.

Assumption 8 implies that at the time of maturity of a risky bond, an investor
will recover only a fraction (1− w) of the face value of his risky bond, where the
factor w represents a loss given default fraction of the face value of the defaulted
security.12

IV. Pricing Corporate Bonds

Based on Assumption 8 and given that the default-free interest rate r is con-
stant, we use risk-neutral valuation to price a zero-coupon corporate bond that
promises to pay one dollar at time T,

B(0, T) = e−rTEQ
0 [111τ̃>T + (1 − w)111τ̃≤T ] ,(8)

where (1 − w) is a constant recovery rate in case of default. The above pricing
formula can be rewritten in the form,

B(0, T) = e−rT(1 − wQ(l0, T)),(9)

where Q(l0, T) is the risk-neutral probability that default occurs before time T,
where the event of default is defined in Assumption 7. To define the probability
of default, we have to estimate the hitting time density function of the process
governing the dynamics of the log-leverage ratio lt. From (6), it follows that
lt = lt(ψt,Wt) is a two-factor Markov process, and there is no known closed-form
solution for the density of the hitting time for such a process. Therefore, we derive
the risk-neutral probability of default Q(l0, T) numerically by using the technique
proposed by Collin-Dufresne and Goldstein (2001) (see their proposition 2).

Proposition 2. Given the initial value of the firm’s log-leverage lQ0 and the ini-
tial distance between the current and the average index value ψ0, the risk-neutral
probability that default occurs before maturity of the bond T is equal to

Q
(
ψ0, l

Q
0 , T

)
=

Nψ∑
i=1

NT∑
j=1

q(ψi, tj),

10One could also assume a more complex structure of the recovery rate. For example, the recovery
rate can depend on the bond’s seniority, which would imply that the strict absolute priority rule (APR)
holds. However, empirical evidence shows that the APR is frequently violated. For example, Franks
and Torous (1989) and Weiss (1990) find that the APR is violated in about 75% of the bankruptcies
they study.

11Several studies model the recovery rate as the outcome of the bargaining between different cor-
porate claim holders. See, for example, Anderson and Sundaresan (1996).

12Following Merton (1974), we could extend our model to treat the recovery value as a constant
fraction of the value of the firm’s assets at the time of default. Also, one can make the recovery
rate time-dependent to reflect bonds’ seniority levels or to reflect the recovery rate’s dependence with
respect to the business cycle variable (see Altman, Brady, Resti, and Sironi (2002)).

terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0022109000002672
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 20:28:25, subject to the Cambridge Core

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0022109000002672
https:/www.cambridge.org/core


11/1/2006-574–JFQA #41:4 Demchuk and Gibson Page 873

Demchuk and Gibson 873

where

q(ψi, t1) = ΔψG(ψi, t1) i = 1, 2, . . . ,Nψ

q(ψi, tj) = Δψ

⎡
⎣G(ψi, tj) −

j−1∑
v=1

Nψ∑
u=1

q(ψu, tv)g(ψi, tj, ψu, tv)

⎤
⎦

i = 1, . . . ,Nψ and j = 2, . . . ,NT

G(ψ, t) ≡ π(ψt, ψ0)N

⎛
⎝ μ

(
ψt, t, l

Q
0 , ψ0

)
Σ
(
ψt, t, l

Q
0 , ψ0

)
⎞
⎠

g(ψt, t, ψs, s) ≡ π(ψt, t, ψs, s)N
(
μ(ψt, t, ls = 0, ψs, s)
Σ(ψt, t, ls = 0, ψs, s)

)
∀t > s,

where π(ψt, t, ψs, s) is the transition density of the process ψt, μ and Σ are the
conditional mean and the variance of the log-leverage, respectively, and Δψ and
Δt are discretization intervals.

Proof. See Appendix C.

Based on the theoretical bond prices defined in equation (9), we can compute
the term structure of credit spreads (ST) using the expression,

ST = − logB(0, T)
T

− r.(10)

In Section V, we present numerically simulated credit spreads and analyze their
sensitivities to the main parameters of the model. We also compare the credit
spreads generated by our model to actual credit spreads and to those derived from
other well-known structural corporate debt pricing models.

V. Numerical Results

In this section, we analyze the performance of our model numerically. First,
we compare term structures of credit spreads generated by our model to those
derived from the Longstaff and Schwartz (1995), Collin-Dufresne and Goldstein
(2001), and Merton (1974) models. For that purpose, we compute credit spreads
for representative firms from different investment grade groups (firms are grouped
using Moody’s credit ratings: Aaa, Aa, A, Baa, and Ba) and compare them with
observed market yield spreads. Next, we study the sensitivity of the credit spreads
to the initial leverage ratio, the stock index performance, the speed of adjustment
of the log-leverage ratio, and the firm’s assets beta.

We begin with the description of the model’s base case parameter values that
are based either on market data or on estimates reported in prior empirical studies.

A. The Base Case Parameters

Base Case Parameters. Assets’ return volatility, σ (0.30); Stock market index
return volatility, γ (0.20); Risk-free rate, r (0.03); Dividend yields, δV = δI (0.01);
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Unitary market price of risk, Λ (0.2); Firm’s assets beta, β (0.75); Speed of ad-
justment, λ (0.05); Recovery rate, (1 − w) (0.51); Parameter θ (see equation (4))
(2); Parameter φ (see equation (6)) (10).

We set the value of the assets’ volatility σ to 0.30. We take this value exoge-
nously, however, it is close to the implied volatility values obtained by Huang and
Huang (2002). They derive values for the assets’ volatility endogenously by cal-
ibrating the Longstaff and Schwartz (1995) and Collin-Dufresne and Goldstein
(2001) models. The S&P 500 index is taken as a proxy for the market index.
Using monthly time-series data for the S&P 500, collected from Datastream, we
estimate that the annualized standard deviation of the index returns during 1999–
2002 was close to 20%. Thus, we set γ = 0.20. The risk-free rate r is assumed
to be 3%, since this figure is close to the average of Treasury note yields during
the period 1999–2002. Both the assets’ payout ratio δV and the index dividend
yield δI are assumed to be equal to 1.0%. In our analysis, estimates of the ex-
pected assets and index returns, μV and μI , respectively, are not required. Instead,
we need an estimate of the unitary market price of risk Λ, which is equal to the
ratio of the market risk premium to the market returns volatility. In our base case,
we set Λ equal to 0.2. This value is within the range of the estimated market
price of risk in Lustig (2002), who studied the impact of liquidity shocks on the
market price of risk. The value of the firm’s beta is set to β= 0.75, which is
close to the estimated average of the credit rating groups’ betas by Barnhill and
Maxwell (2002).13 Thus, the correlation coefficient ρ is derived from the relation
β = (σ/γ)ρ and is equal to ρ= 0.5.

The base case value of parameter λ (see equation (6)), denoting the speed of
adjustment of the log-leverage ratio to its long-term mean value, is set to 0.05.14

However, we will study the sensitivity of credit spreads with respect to changes in
the speed of adjustment λ. Values of historical (true) target leverage ratios L̄ are
taken from Standard & Poor’s (2002) and displayed in Table 2. The risk-neutral
log-leverage ratios are then defined by using formula (7).

TABLE 2

Target Leverage Ratios

Table 2 shows the base case values for the target leverage ratios. The data are from Standard & Poor’s (2002) and
correspond to the three-year (1998–2000) median U.S. industrial long-term debt to capital ratios.

Aaa Aa A Baa Ba

Target Leverage Ratio 0.133 0.282 0.399 0.425 0.572

The recovery rate (1−w) is taken from Huang and Huang (2002) and is equal
to 0.51. This value is consistent with observed recovery rates.15 The initial value
of the index performance ψ0 (see equation (5)) is assumed to be 0.2. Given that

13Barnhill and Maxwell (2002) assess the value-at-risk of a portfolio of fixed income securities
with correlated interest rate, credit, and exchange rate risk. For each credit rating group, they estimate
an average beta in order to derive the corresponding cost of equity.

14This value is close to Fama and French’s (2002) estimate, λ ≈ 0.1.
15For example, see Altman et al. (2002) who find that recovery rates of defaulted bonds vary be-

tween 25% and 65%.
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the influence of this parameter on estimated credit spreads is quite significant,
we will study the impact of the initial index performance on the level of credit
spreads. The initial true leverage ratio L0 is assumed to be equal to 80% of the
target leverage ratio, i.e., L0 = 0.8L̄. In the second part of our numerical study,
we will show that changes in the initial leverage ratio have a significant impact
on credit spreads. The value of parameter θ (see equation (4)), which models
the length of a time period during which the index performance is calculated, is
equal to 2. This value implies that the performance of the stock market index is
computed over the previous 2.5 years.

B. Comparison with Other Structural Models

In Table 3, we compare the explanatory power of our model with the Longstaff
and Schwartz (1995), Collin-Dufresne and Goldstein (2001), and Merton (1974)
structural models. To make this comparison, we run our model under the same pa-
rameter values (which are common to all models) as in Huang and Huang (2002).
Namely, we set the risk-free rate to r = 8%, the assets’ payout ratio δV and the
index dividend yield δI to 6%, and the recovery rate at default to 51.31%. In
each credit rating group, the initial leverage ratio in our model is equal to 80% of
the corresponding target leverage ratio, where the latter corresponds to the target
leverage value in Huang and Huang (2002).16 For each credit rating group, we
take the assets’ volatility value σ = 30%, which is close to the average of im-
plied volatilities from Huang and Huang (for the Longstaff and Schwartz (with
stochastic interest rate) and Collin-Dufresne and Goldstein models). The default
boundary equals 80% of the firm’s face value of total debt. The values of those
parameters that are not present or defined in Huang and Huang (2002) correspond
to our base case choice. We compare credit spreads generated by the four models
to the actual market yield spreads taken from Huang and Huang.

We can see that for the same subset of parameters, our model explains ac-
tual credit spreads better than the Longstaff and Schwartz, Collin-Dufresne and
Goldstein, and Merton models for most investment grade bonds with all maturi-
ties (except four-year Aaa and Aa bonds). For example, for four-year Baa and Ba
bonds, our model explains 60.5% and 62.1%, respectively, of the average market
corporate yield spreads, whereas the Collin-Dufresne and Goldstein model ex-
plains only 19.7% and 52.5%, respectively. The explanatory power of our model
is even higher for 10-year bonds. Indeed, for those bonds, our model significantly
outperforms the other credit risk models across all credit rating groups (except
Aaa bonds). For example, for 10-year A-rated bonds, we explain 53.9% of the
average market spread, and the best results of the other models are 26.3% (Mer-
ton model) and 18.3% (Collin-Dufresne and Goldstein model). The performance
of our model is even more pronounced for the lower credit rating groups. This
comparison suggests that when choosing among two-factor structural models to
price corporate bonds, the evolution of the business climate (as proxied by the
recent performance of a stock market index) is more important than the consider-
ation of stochastic interest rates.

16Notice that setting the initial leverage ratio to 80% sets our model at a disadvantage (relative to
the 100% level), since credit spreads increase with the initial leverage ratio (see Table 8).
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TABLE 3

The Comparison of the Performance of Structural Models

Table 3 compares how much (in %) of the actual credit spreads can be explained by the model in this paper, and the
Longstaff and Schwartz (1995), Collin-Dufresne and Goldstein (2001), and Merton (1974) models. The performance of
the Longstaff and Schwartz and Collin-Dufresne and Goldstein models is taken from Huang and Huang (2002). The
parameters in this paper’s model correspond to those in Huang and Huang: risk-free rate r = 8%, payout ratios δV =δI =
6%, and the recovery rate at default is 51.31%. For each credit rating group, the initial leverage ratio is equal to 80% of the
corresponding target leverage ratio, where the latter corresponds to the base case leverage value in Huang and Huang.
The default boundary equals 80% of the firms’ face value of total debt. The speed of adjustment of the log-leverage ratio
λ= 0.2. All models are compared to the same average market yield spreads, which are from Huang and Huang. All other
parameters are base case ones (see Subsection A of Section V).

Aaa Aa A Baa Ba

Time to Maturity: T = 4

Average Market Yield Spread 55 65 96 158 320

% of Spreads Due to Default

Demchuk and Gibson model 0.3% 5.3% 28.8% 60.5% 62.1%
Longstaff and Schwartz model 1.5% 7.0% 7.8% 16.1% 46.6%
Collin-Dufresne and Goldstein model 0.1% 9.7% 10.3% 19.7% 52.5%
Merton model 0.2% 1.1% 5.0% 21.0% 65.5%

Time to Maturity: T = 10

Average Market Yield Spread 63 91 123 194 320

% of Spreads Due to Default

Demchuk and Gibson model 3.0% 17.6% 53.9% 77.3% 74.5%
Longstaff and Schwartz model 9.6% 9.4% 11.8% 19.9% 48.1%
Collin-Dufresne and Goldstein model 18.2% 16.4% 18.3% 26.9% 57.1%
Merton model 11.9% 16.6% 26.3% 41.6% 73.6%

C. Sensitivity Analysis

In Table 4, we present credit spreads implied by our model under the base
case parameter values. The table shows that our model yields increasing term
structures of credit spreads for Aaa, Aa, A, and Ba bonds. For Baa bonds, we ob-
tain a humped term structure due to our parameters’ specification. It is worthwhile
to mention that every term structure of credit spreads derived from a diffusion-
based structural credit risk model becomes humped at a specific maturity date
due to the decreasing long-term marginal probability of default.

The continuity of the assets’ value dynamics yields negligible default prob-
abilities for short maturity bonds and for highly rated bonds of all maturities. For
example, in our case the long-term leverage ratio of Aaa-rated firms equals 0.13,
and these firms, according to our modeling of the leverage dynamics, balance
their leverage ratios around this value. Therefore, given the continuity of their
assets value, the probability of default (i.e., the probability that the leverage ra-
tio approaches unity) for Aaa firms is almost negligible and, hence, so are credit
spreads. We would like to mention that this underestimation is common to all
structural models of default that model the dynamics of the assets value as a con-
tinuous diffusion process. However, this effect can be corrected if, for instance,
one introduces jumps in the assets value process (see Zhou (2001)). Also, a non-
negligible part of actual yield spreads can be explained by liquidity risk, whereas
our model aims to study the sole contribution of default risk to yield spreads.
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TABLE 4

Credit Spreads under the Base Case Parameter Values

Table 4 shows credit spreads (in basis points) resulting from this paper’s model under the base case parameters choice
(see Subsection A of Section V). For each credit rating group, the initial leverage ratio L0 is equal to 0.8 times the
corresponding target leverage ratio (the target leverage ratios are defined in Table 2).

Time to Maturity Aaa Aa A Baa Ba

T = 1 0.00 0.00 0.07 1.44 39.39
T = 4 0.32 21.94 48.99 116.92 305.42
T = 7 4.06 58.90 98.44 172.39 321.85
T = 10 10.33 81.21 120.75 186.13 300.84

The objective of the second part of our numerical analysis is to point out
through sensitivity analysis some non-standard features of our corporate bond
pricing model.

1. The Impact of the Stock Index Performance (ψ0) on Credit Spreads

In Table 5, we report resulting credit spreads under different values of the
performance of the stock market index ψ0. We see that credit spreads tend to
decrease with ψ0. This relation suggests that credit spreads are lower when the
recent performance of the stock index is high, and that they are higher when
the stock index performance is low. Thus, our two-factor model generates credit
spreads that are in line with the empirically observed tendency of credit spreads
to be lower during economic expansions and higher during recessions.

TABLE 5

The Impact of the Stock Index Performance (ψ0) on Credit Spreads

Table 5 shows credit spreads (in basis points) resulting from this paper’s model when the performance of the stock market
index equals 50%, 20% (base case), and −50%. The other parameters are base case ones (see Subsection A of Section
V).

Aaa Aa A Baa Ba

Time to Maturity: T = 1

ψ(0) = 0.5 0.0 0.0 0.0 0.6 21.4
ψ(0) = 0.2 (base) 0.0 0.0 0.1 1.4 39.4
ψ(0) = −0.5 0.0 0.0 0.5 7.9 140.2

Time to Maturity: T = 4

ψ(0) = 0.5 0.2 16.2 37.3 92.3 251.6
ψ(0) = 0.2 (base) 0.3 21.9 49.0 116.9 305.4
ψ(0) = −0.5 0.8 42.6 88.9 196.0 464.1

Time to Maturity: T = 7

ψ(0) = 0.5 3.2 49.6 84.2 150.1 286.5
ψ(0) = 0.2 (base) 4.1 58.9 98.4 172.4 321.8
ψ(0) = −0.5 7.0 86.5 139.6 234.8 416.0

Time to Maturity: T = 10

ψ(0) = 0.5 8.8 72.0 108.2 168.8 277.0
ψ(0) = 0.2 (base) 10.3 81.2 120.7 186.1 300.8
ψ(0) = −0.5 15.0 106.5 154.8 232.1 361.6
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2. The Impact of the Speed of Adjustment of the Log-Leverage Process λ on
Credit Spreads

In Table 6, we report credit spreads for different values of the parameter λ,
the speed of adjustment of the mean-reverting process (6) governing the dynamics
of the log-leverage ratio. Changes in the speed of adjustment may have a two-
sided effect on credit spreads. On the one side, when the speed of adjustment is
low, one would expect the firm’s leverage ratio to exhibit higher variation around
the target leverage ratio than when the speed is high. This implies that slower
mean reversion leads to higher volatility of the leverage ratio and, hence, to higher
credit spreads. On the other hand, when the initial leverage ratio is below the
target one, a lower speed of adjustment of the leverage ratio implies that the latter
will converge to its higher target level more slowly and, hence, credit spreads
should decrease. We can see that these two effects indeed take place when the
initial leverage ratio equals 80% of the target level (Panel A, Table 6). For most
bonds, credit spreads tend to widen when the speed of adjustment decreases from
0.15 to 0.015, and that means that the first effect dominates the second one. Only
for seven- and 10-year Ba bonds does the second effect dominate the first one.
However, when the initial leverage ratio is set equal to the target level (Panel B,
Table 6), then only the first effect is present and, hence, credit spreads widen when
the speed of adjustment decreases.

3. The Impact of the Assets Beta (β) on Credit Spreads

In our model, the firm’s assets beta (β) noticeably affects credit spreads. Ta-
ble 7 and Figure 1 show that credit spreads widen when the firm’s beta coefficient
increases, and that this effect is particularly strong (in relative terms) for short
maturity bonds. To explain the positive relation between credit spreads and the
firm’s assets beta, we refer to Proposition 1.17 Also, we would like to mention that
the beta effect on credit spreads is slightly stronger for lower credit rating groups
(Baa and Ba) and is weaker for higher credit rating groups (Aa and A) (see Figure
1). The dependence of credit spreads on the firm’s assets beta explains why bonds
with similar credit ratings but in different industries or sectors can yield different
credit spreads.

4. The Impact of the Firm’s Initial Leverage (L0) on Credit Spreads

The firm’s initial leverage ratio (L0) is one of the factors that plays a crucial
role in bond pricing and, hence, in the determination of initial credit spreads.18

This factor is a kind of “distance to default” measure. Intuitively, the higher is the
initial leverage, the smaller is the distance to default and, thus, the higher is the
probability that the firm will be in distress during a given time horizon. This, in
turn, induces higher credit spreads. Indeed, credit spreads of lower grade bonds,
which are characterized by high leverage ratios, are much higher than those of
high grade bonds, whose leverage ratios are low. Our model fully confirms this

17Our base case parameters satisfy the conditions of Proposition 1. Therefore, the correlation be-
tween the assets and index returns and, hence, the firm’s assets beta positively influences the volatility
of the log-leverage ratio and the level of the credit spreads.

18L0 enters the model through the relation l0 = log(L0) (see equation (6)).
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TABLE 6

The Impact of the Speed of Adjustment of the Log-Leverage Process (λ) on Credit Spreads

Table 6 shows credit spreads (in basis points) resulting from this paper’s model when the speed of adjustment of the
log-leverage process (6) equals λ = 0.15, λ = 0.05 (base case), and λ = 0.015. The other parameters are base case
ones (see Subsection A of Section V).

Aaa Aa A Baa Ba

Time to Maturity: T = 1

λ = 0.15 0.0 0.0 0.1 1.6 35.9
λ = 0.05 (base) 0.0 0.0 0.1 1.4 39.4
λ = 0.015 0.0 0.0 0.1 1.5 42.8

Time to Maturity: T = 4

λ = 0.15 0.3 23.2 51.6 122.2 314.3
λ = 0.05 (base) 0.3 21.9 49.0 116.9 305.4
λ = 0.015 0.4 23.4 51.3 120.7 311.3

Time to Maturity: T = 7

λ = 0.15 2.6 54.9 97.2 178.8 344.8
λ = 0.05 (base) 4.1 58.9 98.4 172.4 321.8
λ = 0.015 5.6 64.7 104.3 176.6 320.6

Time to Maturity: T = 10

λ = 0.15 5.3 73.2 118.1 195.6 331.5
λ = 0.05 (base) 10.3 81.2 120.7 186.1 300.8
λ = 0.015 15.0 89.4 127.3 188.4 294.7

Time to Maturity: T = 1

λ = 0.15 0.0 0.1 1.1 13.4 186.2
λ = 0.05 (base) 0.0 0.1 1.2 16.8 255.4
λ = 0.015 0.0 0.1 1.4 19.5 295.9

Time to Maturity: T = 4

λ = 0.15 0.8 42.1 88.5 196.5 467.6
λ = 0.05 (base) 1.1 49.8 102.3 221.9 517.5
λ = 0.015 1.4 57.4 115.0 242.7 551.0

Time to Maturity: T = 7

λ = 0.15 4.0 76.0 130.6 232.5 430.0
λ = 0.05 (base) 7.9 94.7 151.7 252.8 444.2
λ = 0.015 11.7 109.9 169.0 270.7 459.5

Time to Maturity: T = 10

λ = 0.15 7.2 90.9 143.9 233.0 382.9
λ = 0.05 (base) 16.4 113.6 164.2 244.8 379.1
λ = 0.015 25.2 130.9 180.6 257.7 384.7

Panel A. Initial Leverage Ratio is 80% of the Target Leverage Ratio

Panel B. Initial Leverage Ratio is Equal to the Target Leverage Ratio

intuition. In Table 8, we compare credit spreads when the initial leverage ratio is
set to 80% (the base case), 100%, and 120% of the target leverage ratio. We see
that this increase in the initial leverage induces credit spreads to become substan-
tially higher. Also, we see that short maturity bonds are much more sensitive to
changes in the initial leverage ratio than long maturity bonds. Namely, a given
increase in the initial leverage ratio induces credit spreads to at least double for
bonds with a maturity of up to four years. This difference in sensitivities of short
and long maturity bonds to the initial leverage is due to the mean reversion of the
leverage ratio and the independence of the long-run mean leverage from its initial
level (see equation (6)).
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TABLE 7

The Impact of the Assets Beta (β) on Credit Spreads

Table 7 shows credit spreads (in basis points) resulting from this paper’s model when the assets beta equals β = 1.25,
β = 0.75 (base case), and β = −0.75. The other parameters are base case ones (see Subsection A of Section V).

Aaa Aa A Baa Ba

Time to Maturity: T = 1

β = 1.25 0.0 0.0 0.1 2.5 55.7
β = 0.75 (base) 0.0 0.0 0.1 1.4 39.4
β = −0.75 0.0 0.0 0.0 0.2 10.4

Time to Maturity: T = 4

β = 1.25 0.8 35.9 73.5 159.7 375.5
β = 0.75 (base) 0.3 21.9 49.0 116.9 305.4
β = −0.75 0.0 2.5 8.1 29.5 123.7

Time to Maturity: T = 7

β = 1.25 8.4 87.8 137.4 223.7 384.1
β = 0.75 (base) 4.1 58.9 98.4 172.4 321.8
β = −0.75 0.1 9.3 21.0 51.6 141.9

Time to Maturity: T = 10

β = 1.25 19.6 116.2 163.1 235.7 352.9
β = 0.75 (base) 10.3 81.2 120.7 186.1 300.8
β = −0.75 0.5 14.6 28.4 59.5 137.6

FIGURE 1

The Impact of the Assets Beta (β) on Credit Spreads

Figure 1 shows four-year credit spreads (in basis points) resulting from this paper’s model as a function of the assets beta.
The other parameters are base case ones (see Subsection A of Section V).
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TABLE 8

The Impact of the Initial Leverage Ratio on Credit Spreads

Table 8 shows credit spreads (in basis points) resulting from this paper’s model when the initial leverage ratio equals 80%
(base case), 100%, and 120% of the target leverage ratio. The other parameters are base case ones (see Subsection A
of Section V). The target leverage ratios are defined in Table 2.

Initial Leverage of Target Aaa Aa A Baa Ba

Time to Maturity: T = 1

80% 0.0 0.0 0.1 1.4 39.4
100% 0.0 0.1 1.2 16.8 255.4
120% 0.0 1.1 9.6 91.8 884.9

Time to Maturity: T = 4

80% 0.3 21.9 49.0 116.9 305.4
100% 1.1 49.8 102.3 221.9 517.5
120% 2.6 91.8 176.8 356.4 764.9

Time to Maturity: T = 7

80% 4.1 58.9 98.4 172.4 321.8
100% 7.9 94.7 151.7 252.8 444.2
120% 13.3 136.3 211.2 338.8 568.6

Time to Maturity: T = 10

80% 10.3 81.2 120.7 186.1 300.8
100% 16.4 113.6 164.2 244.8 379.1
120% 23.6 147.7 208.8 303.2 453.9

5. Special Case: Distressed versus “Fallen Angel” Firms

In this subsection, we focus on two hypothetical firms.19 One is a distressed
or “junk” firm whose asset volatility is high (σ=0.4) while its current firm value is
low. The second firm is a so-called fallen angel, whose asset volatility is moderate
(σ = 0.2) while its firm value is low. More precisely, we assume that both firms’
initial leverage ratio is equal to 110% of their target leverage ratios. Also, both
firms are assumed to have the same beta equal to 0.75. In Figure 2, we plot both
firms’ term structure of credit spreads. We can see that the difference in the asset
volatility of these two firms and, hence, the difference between their correlations
with the stock market index, results in a dramatic difference in their credit spreads,
especially for short maturity bonds. The distressed firm has much higher credit
spreads and its term structure of credit spreads is more humped.

Following Acharya and Carpenter (2002), we next study the sensitivity (delta)
of these two firms’ bond prices to the firm value (Figure 3). It turns out that short
maturity bonds (up to one year) of the distressed firm are the most sensitive to
changes in the firm value. For the fallen angel firm, the sensitivity reaches its
peak for about four-year bonds. Thereafter, the delta of both firms’ bonds de-
creases as the time to maturity increases. These distinct sensitivities can have
valuable implications for the hedging of corporate bond portfolios. In particu-
lar, it follows that it is more expensive to hedge very short-term bonds issued by
distressed firms and long-term bonds issued by fallen angels.

19We are grateful to the referee for suggesting the comparison between a fallen angel and a dis-
tressed firm.
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FIGURE 2

The Impact of the Assets Volatility on Credit Spreads

Figure 2 shows Ba bond credit spreads for the distressed firm (σ= 0.4 and the initial leverage equals 110% of the target)
and the so-called fallen angel firm (σ = 0.2 and the initial leverage equals 110% of the target). The other parameters are
base case ones (see Subsection A of Section V).
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VI. Concluding Remarks

We build a structural two-factor model of default where the stock market
index is one of the stochastic factors. In our model, the performance of the stock
market index serves as a proxy for the business climate. We allow the firm to
adjust its capital structure and, hence, its leverage ratio, in response to changes
in the firm value and to changes in the business climate. Our modeling of the
dynamics of the firm’s leverage ratio is based on the theoretical and empirical
findings regarding the firm’s capital structure choices. In particular, our model
captures the fact that firms have mean-reverting leverage ratios and tend to issue
equity rather than debt during economic expansions.

We compare the explanatory power of our model with the Longstaff and
Schwartz (1995), Collin-Dufresne and Goldstein (2001), and Merton (1974) mod-
els. The comparison shows that our model yields higher credit spreads than these
three models for all investment grade bonds irrespective of their maturities (except
four-year Aaa and Aa bonds) and that it clearly dominates the structural models
in the case of long-term spreads. These results suggest that the stock market dy-
namics matter more for corporate bond pricing than the dynamics of interest rates.
Further empirical studies are needed to test the validity of this conjecture.
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FIGURE 3

The Bond Price Sensitivity (Delta) to the Firm Value

Figure 3 shows Ba bond price sensitivity to the firm value for the distressed firm (σ = 0.4 and the initial leverage equals
110% of the target) and the so-called fallen angel firm (σ = 0.2 and the initial leverage equals 110% of the target). The
other parameters are base case ones (see Subsection A of Section V).
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Our model also suggests that the assets beta and the correlation between
the firm asset and the performance of the stock market index positively influ-
ence credit spreads. Therefore, our model has the potential to explain why credit
spreads are different within the same credit rating groups. The model also shows
that distressed firms and so-called fallen angels display distinct term structure of
credit spreads, the latter being much more humped in the case of distressed firms.
Finally, our model suggests a negative impact of the stock market performance
on credit spreads that corroborates the stylized fact that credit spreads are lower
during economic expansions and higher during recessions.

One of the limitations of our model is that it relies on the estimation of a
large set of parameters. Thus, assuming that one is able to identify the appropri-
ate benchmark index, one must further estimate the parameters governing the firm
value and the benchmark index dynamics, the correlation coefficient between the
firm asset and the stock index returns, and all the parameters entering the log-
leverage dynamics (6). Thus, to apply our corporate bond pricing model mean-
ingfully, there is a need for more studies on the empirical properties of firms’
leverage ratios dynamics. Finally, this study relies on a constant recovery rate,
whereas empirical studies suggest that the recovery rate is time varying and that
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it also depends on the business climate (see, for example, Keenan (1999)). It is
possible to extend or model to capture the dependency of the recovery rate on the
business cycle. This extension is left for future research.

Appendix A. Justification of the Log-Leverage Dynamics in
Assumption 6

In this Appendix, we show that an appropriate modeling of the firm’s debt issuance
policy, together with the given dynamics of the firm value process in equation (1), are
sufficient to obtain the dynamics of the firm log-leverage ratio as specified in equation (6).
For that purpose, we start by assuming that the book value of the firm’s debt is equal to the
weighted average of the past firm values and of the performance of the stock market index,

Dt = e−ν

�
� t�

s=−∞

�
Vs

�
Is
Īs

�−δ�e−λ(t−s)�
	
λ

,(A1)

where δ is a positive constant reflecting a negative relation between the firm’s debt issuance
policy and the stock market performance, ν is the adjustment factor, and the parameter λ
is supposed to be a positive constant. Such a modeling of the firm’s book value of debt
implies that the latter is a function of both the historic firm values and the performance of
the stock market index. Notice that the greater the value of the parameter λ, which is a
sort of “memory” parameter, the more weight is put on the most recent history. Also, this
modeling implies the following interpretation. First, there is a positive relation between
the firm’s face value of debt and the historic firm values. This implication is quite intuitive
since richer and larger firms can afford to have more nominal debt. Second, there is a
negative relation between the firm’s book value of debt and the performance of the stock
market index. This modeled implication is based on the empirical evidence of firm’s debt
issuance policies and the stock market performance (for details, see Section II). Namely,
firms tend to increase their debt levels during recession periods, i.e., when the performance
of the stock index is poor, and decrease debt levels during periods of economic expansion
when the performance of the stock market index is strong.

Translating equation (A1) into continuous-time and switching to log-variables we
obtain

Dt = e−ν+Ft ,

where

Ft = λ


 t

−∞

�
e−λ(t−s)ys − δe−λ(t−s)ψs

�
ds,

and ys = log Vs, ψs = log(Is/Īs).
Thus,

log(Dt) = −ν + λ

 t

−∞

�
e−λ(t−s)ys − δe−λ(t−s)ψs

�
ds.

d(log Dt) = λ(yt − ν − δψt − log Dt)dt.(A2)

The above equation represents the debt issuance policy that is positively related to the
log-firm value yt, negatively related to the stock index performance ψt, and to the log-
level of the book value of debt itself. The first two implications agree with our earlier
discussion, whereas a negative relation between changes in debt and the level of debt itself
is in agreement with the trade-off theory of firms’ capital structure.
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Similar to the modeling of the firm’s book value of debt, we can model the firm’s
equity as

Et = e−νe

�
� t�

s=−∞

�
Vs

�
Is
Īs

�δe
�e−λe(t−s)�

	
λe

,(A3)

where δe is a positive constant reflecting the positive relation between the firm’s level of
equity capital and the stock market performance. Equation (A3) implies that the firm’s
equity issuance policy can be written as

d(log Et) = λe(yt − νe + δeψt − log Et)dt.(A4)

Analyzing the impact of the stock market performance on the firm’s equity and debt
issuance policies (A4) and (A2), we see that after periods of high stock index performance
the firm tends to issue more equity and at the same time reduce its expensive debt at the
expense of the newly issued equity and possibly of the available cash slack. On the other
hand, after periods of poor stock index performance, the firm prefers to issue additional
debt, as follows from equation (A2) and at the same time buy back a part of its equity at
the expense of newly issued debt and possibly with available cash. Thus, we see that both
equity and debt issuance policies are interrelated to some extent, and both are affected by
the stock market performance.

Finally, to derive the dynamics of the log-leverage ratio, it is sufficient to consider
the debt issuance policy as stated in equation (A2). Indeed, recall that lt = log(Dt/Vt) =
log Dt − yt. Thus, using equations (A2) and (2) we obtain

dlt = d(log Dt) − d log Vt = λ(yt − ν − δψt − log Dt)dt − dyt

= − λ(ν + δψt + lt)dt −
�

r − δV − σ2

2

�
dt − σdWQ

t

= λ

l̄t − δψt − lt

�
dt − σdWQ

t ,

where l̄t =(1/λ)(δV + (σ2/2)− r)−ν. This ends the justification of our assumption about
the dynamics of the log-leverage ratio as stated in equation (6).

Appendix B. Proof of Proposition 1

For notational simplicity, we study the unconditional variance (i.e., s = 0). For the
conditional variance, all the derivations can be easily performed in the same way. Collect-
ing terms that stand for the correlation coefficient ρ in equation (C1) in Appendix C, we
obtain

Var0[lt] = {. . .} + Kσ

�
1
λ

�
e−2λt − 1

�
+

2
λ + θ

�
1 − e−(λ+θ)t

��
ρ.(B1)

If φ > 0, γ > 0, σ > 0, and 0 < λ < θ, then K = φγλ/(λ− θ) < 0, and it remains
to show that the expression in brackets on the right-hand side of the above expression is
negative. Consider the following function,

f (θ, λ) =
1
λ

�
e−2λt − 1

�
+

2
λ + θ

�
1 − e−(λ+θ)t

�
.(B2)

For any fixed λ, the above function decreases with θ. Indeed,

df (θ, λ)

dθ
= − 1

(λ + θ)2

�
1 − 1 + (λ + θ)t

e(λ+θ)t

�
< 0

because of the well-known result that ex > 1 + x ∀x > 0.
We show that function f is strictly decreasing in θ for each fixed λ. Also, for every

λ, f (θ=λ, λ) ≡ 0. Given the above results, we conclude that f (θ > λ, λ) < 0 and by this
we complete the proof.
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Appendix C. Proof of Proposition 2

See the proof of Proposition 2 in Collin-Dufresne and Goldstein (2001). We present
the expressions for the first two moments of lt and ψt.

Solving equations (6) and (5) we obtain

lt = e−λ(t−s)

�
ls + λ


 t

s
eλ(u−s) l̄(ψu)du − σ


 t

s
eλ(u−s)dWQ

u

�
s < t

ψt = e−θ(t−s)

�
ψs +

�
r − δi − 1

2
γ2

�
 t

s

eθ(u−s)du + γ

 t

s

eθ(u−s)dZQ
u

�
s < t.

Then,

Es[lt] = e−λ(t−s)

�
ls − (1 − eλ(t−s))

�
l̄Q − φ

r − δi − 0.5γ2

θ

�

+
λφ

λ− θ

�
r − δi − 0.5γ2

θ
− ψs

��
e(λ−θ)(t−s) − 1

��
,

Es[ψt] = e−θ(t−s)

�
ψs +

(r − δi − 1
2γ

2)

θ

�
eθ(t−s) − 1

��
.

Vars[lt] =

�
Kσρ
λ

− K2 + σ2

2λ

�
e−2λ(t−s) + 2

�
K2 − Kσρ
λ + θ

�
e−(λ+θ)(t−s)(C1)

− K2

2θ
e−2θ(t−s) + K2

�
1
2θ

− 2
λ + θ

+
1
2λ

�

+
σ2

2λ
+ 2Kσρ

�
1

λ + θ
− 1

2λ

�
,

Vars[ψt] =
γ2

2θ

�
1 − e−2θ(t−s)

�
,(C2)

Covs[lt, ψt] = γ

�
K
2θ

(e−2θ(t−s) − 1) +
K − σρ

λ + θ

�
1 − e−(λ+θ)(t−s)

��
,

where K = φγλ/(λ − θ).
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