
[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1245 1245–1279

Labelled Tableaux for Distributed
Temporal Logic
DAVID BASIN, Department of Computer Science, ETH Zurich, Switzerland.
E-mail: basin@inf.ethz.ch

CARLOS CALEIRO and JAIME RAMOS, SQIG — Instituto de
Telecomunicações, Department of Mathematics, IST, TU Lisbon, Portugal.
E-mail: ccal@math.ist.utl.pt; jabr@math.ist.utl.pt

LUCA VIGANÒ, Department of Computer Science, University of Verona, Italy.
E-mail: luca.vigano@univr.it

Abstract
The distributed temporal logic DTL is a logic for reasoning about temporal properties of discrete distributed systems from the
local point of view of the system’s agents, which are assumed to execute sequentially and to interact by means of synchronous
event sharing. We present a sound and complete labelled tableaux system for full DTL. To achieve this, we first formalize a
labelled tableaux system for reasoning locally at each agent and afterwards we combine the local systems into a global one
by adding rules that capture the distributed nature of DTL. We also provide examples illustrating the use of DTL and our
tableaux system.

Keywords: Distributed temporal logic, discrete time, until and since, labelled tableaux system, soundness and completeness.

1 Introduction

The distributed temporal logic DTL [11] is a logic for reasoning about temporal properties of discrete
distributed systems from the local point of view of the system’s agents, which are assumed to execute
sequentially and to interact by means of synchronous event sharing. Distribution is implicit and
properties of entire systems are formulated in terms of the local properties of the system’s agents and
their interaction. DTL is closely related to the family of temporal logics whose semantics are based on
the models of true concurrency, introduced and developed in [21, 22, 28]. In particular, the semantics
of these logics are based on a conflict-free version of Winskel’s event structures [36], enriched with
information about sequential agents. Several different versions have been given, reflecting different
perspectives on how non-local information can be accessed by each agent.

DTL was first proposed in [11] as a logic for specifying and reasoning about distributed information
systems. The logic has also been used in the context of security protocol analysis to reason about the
interplay between protocol models and security properties [5, 6]. However, all of the previous results
have been obtained directly by semantic arguments. It would be reassuring and generally useful to
have a deductive system for DTL for carrying out such proofs. There are several possibilities for
deduction in temporal logics, including Hilbert calculi, resolution, sequent and tableaux systems

Vol. 19 No. 6, © The Author, 2009. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org
Published online 7 July 2008 doi:10.1093/logcom/exp022

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/85221949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1246 1245–1279

1246 Labelled Tableaux for DTL

and model checking [3, 7, 8, 14–20, 23, 24, 29–32, 35, 37] (P.H. Schmitt and J. Goubault-Larrecq,
Unpublished data). We explore in this article two options for deduction in DTL.

First, we give a decision procedure for DTL entailment by reducing it to entailment in LTL
using a polynomial-time syntactic translation. Furthermore, we show that, under this translation,
DTL is well-suited for efficient model checking. In this way, existing decision procedures for LTL,
as well as other automated tools for LTL, such as [3, 8], may be used for DTL. However, while
decision procedures are fine for machines, they are often ill-suited for humans. In particular, our
translation-based procedure does not reflect the arguments used in natural reasoning in DTL. This
is also the case for Hilbert calculi, resolution and model-checking-based approaches, as well as for
unlabelled tableaux procedures based on a Fischer–Ladner style construction [13, 27, 37], even if
built specifically for DTL.

In contrast, an attractive possibility is a labelled tableaux system as deductions will then naturally
follow semantic arguments. This is the second option we pursue, which is the main focus and
contribution of this article. We present a sound and complete labelled tableaux system for DTL. To
this end, we first introduce a labelled tableaux system for LTL, where reasoning is local. Afterwards,
we take one such local tableaux system for each agent and combine them with rules that capture
the distributed nature of DTL, via communication. The tableaux systems for local reasoning (in
LTL) are, as expected, built from formulas labelled with local state information and relations
between these labels (order and equality). We integrate these systems into a system for global
reasoning, where we introduce an additional relation expressing synchronization. We prove the
soundness and completeness of the system with respect to DTL entailment and provide examples of
its use.

The tableaux system thus obtained is natural in that it closely formalizes proofs made using
semantic arguments. For example, an eventuality simply leads to a future time point. This is in
contrast to a Fischer–Ladner style construction, based on the fixedpoint characterizations of the
temporal operators, where an eventuality becomes a condition that must be verified over the structure
of a graph. We do not address the question of efficient proof search and we include an infinite closure
rule that captures eventualities that are always delayed. Building a decision procedure by including
loop checking directly on top of our tableaux system does not appear to be possible. Modifying our
rules for the temporal operators to introduce ‘control points’ needed to check for loops, by following
more closely the fixedpoint properties of the operators, should be possible, but would lead to an
unnatural result. We choose not to go to this route as we already have decidability and our emphasis
is on naturality. To our knowledge, this is the first labelled system given for full, discrete-time LTL
with the until and since operators.1

1.1 Organization

In Section 2, we introduce DTL. In Section 3, we present our tableaux system for local reasoning
and establish its soundness and completeness with respect to entailment. In Section 4, we extend the
local system into a system for global reasoning by including a new synchronization relation between
local labels and we also prove soundness and completeness with respect to entailment. Afterwards,
in Section 5, we present examples that illustrate the use of our tableaux system. We conclude, in
Section 6, by comparing with related work and discussing future work. For examples of applications
of the logic, we refer the reader to [5, 6, 11, 12].

1In [1], we gave a labelled system for the future-only fragment of DTL.

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1247 1245–1279

Labelled Tableaux for DTL 1247

2 DTL

2.1 The syntax and semantics of DTL

The syntax of DTL is defined over a distributed signature �=〈Id,{Propi}i∈Id〉 of a system, where
Id is a finite set of agents and, for each i∈ Id, Propi is a set of local state propositions. The global
language LDTL is defined by the grammar

LDTL ::=@i1 [Li1] | ··· |@in [Lin],
for Id ={i1,...,in}. The Li, for each i∈ Id, are local languages, defined by

Li ::=Propi |¬Li |Li ⇒Li |Li ULi |Li SLi |©j[Lj],
with j∈ Id. A global formula @i[ϕ] means that ϕ holds for agent i. Local formulas, as the name
indicates, hold locally for the different agents. For instance, locally for an agent i, the operators U
and S are the usual (strong) until and since temporal operators, respectively, while the communication
formula ©j[ψ] means that agent i has just communicated (synchronized) with agent j, for whom ψ

held.2 We will use L�©
i to denote the set of all purely temporal formulas of Li, that is, excluding

communication formulas.
Other logical connectives (⊥, �, conjunction, disjunction, etc.) and temporal operators can be

defined as abbreviations. For example:

Xϕ ≡ ⊥Uϕ tomorrow (next)
Fϕ ≡ �Uϕ sometime in the future
F◦ϕ ≡ ϕ∨Fϕ now or sometime in the future
Gϕ ≡ ¬F¬ϕ always in the future
G◦ϕ ≡ ϕ∧Gϕ now and always in the future
ϕWψ ≡ (Gϕ)∨(ϕUψ) weak until (unless)
Yϕ ≡ ⊥Sϕ yesterday (previous)
Pϕ ≡ �Sϕ sometime in the past
P◦ϕ ≡ ϕ∨Pϕ now or sometime in the past
Hϕ ≡ ¬P¬ϕ always in the past
H◦ϕ ≡ ϕ∧Hϕ now and always in the past
ϕBψ ≡ (Hϕ)∨(ϕSψ) weak since (back to)
∗ ≡ H⊥ in the beginning
ϕjψ ≡ ϕ⇒©j[ψ] calling

Here we use the subscript ◦ to denote the reflexive versions of the operators. Note also that calling
is specific to DTL as it involves communication: @i[ϕjψ] means that if ϕ holds for agent i then
he calls (synchronizes with) agent j, for whom ψ must hold.

A local life-cycle of agent i is a countable (finite or infinite), discrete, well-founded total order
λi =〈Ei,≤i〉, where Ei is the set of local events and ≤i the local order of causality. We define the
corresponding local successor relation →i ⊆Ei ×Ei to be the relation such that e→i e′ if e<i e′ and
there is no e′′ such that e<i e′′<i e′. As a consequence, we have that ≤i =→∗

i , i.e. ≤i is the reflexive
and transitive closure of →i.

2Note that the DTL syntax here differs slightly from the original presentation in [11]. Previously, the operator ©i was
overloaded with @i and its interpretation was therefore context dependent.

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1248 1245–1279

1248 Labelled Tableaux for DTL

Adistributed life-cycle is a familyλ={λi}i∈Id of local life-cycles such that ≤= (
⋃

i∈Id ≤i)∗ defines
a partial order of global causality on the set of all events E =⋃

i∈Id Ei. Note that communication is
modelled by event sharing and thus for some event e we may have e∈Ei ∩Ej, for i �= j. In that case,
requiring ≤ to be a partial order amounts to requiring that the local orders are globally compatible.
This excludes the existence of another e′ ∈Ei ∩Ej, where both e<i e′ and e′<j e.

A local state of agent i is a finite set ξ⊆Ei that is downward closed for local causality, that is,
if e≤i e′ and e′ ∈ξ then also e∈ξ. The set �i of all local states of an agent i is totally ordered by
inclusion and has ∅ as the minimal element. In general, each non-empty local state ξ of agent i is
reached, by the occurrence of an event that we call last i(ξ), from the local state ξ\{last i(ξ)}. The local
states of each agent are totally ordered as a consequence of the total order on local events. Since they
are discrete and well-founded, we enumerate them as follows: ∅ is the 0-th state; {e}, where e is the
minimum of 〈Ei,≤i〉, is the first state; and, in general, if ξ is the k-th state of agent i and last i(ξ)→i e′,
then ξ∪{e′} is the (k+1)-th state of agent i. We denote by ξk

i the k-th state of agent i. Note that ξ0
i =∅

is the initial state and ξk
i is the state reached from the initial state after the occurrence of the first

k events. In fact, ξk
i is the only state of agent i that contains k elements, i.e. where |ξk

i |=k. Given
e∈Ei, observe that (e↓i)={e′ ∈Ei |e′ ≤i e} is always a local state. Furthermore, if ξ is non-empty,
then (last i(ξ)↓i)=ξ.

An interpretation structureµ=〈λ,σ〉 consists of a distributed life-cycle λ and a family σ={σi}i∈Id
of labelling functions. For each i∈ Id, σi :�i →℘(Propi) associates a set of local state propositions
to each local state. We denote 〈λi,σi〉 by µi and define the global satisfaction relation by

• µ�DTL @i[ϕ] iff µi �i ϕ iff µi,ξ�i ϕ for every ξ∈�i,

where the local satisfaction relations at local states are defined by

• µi,ξ�i p if p∈σi(ξ);
• µi,ξ�i ¬ϕ if µi,ξ ��i ϕ;
• µi,ξ�i ϕ⇒ψ if µi,ξ ��i ϕ or µi,ξ�iψ;
• µi,ξ�i ϕUψ if |ξ|=k and there exists ξn

i ∈�i such that k<n with µi,ξ
n
i �iψ, and µi,ξ

m
i �i ϕ

for every k<m<n;
• µi,ξ�i ϕSψ if |ξ|=k and there exists ξn

i ∈�i such that n<k with µi,ξ
n
i �iψ, and µi,ξ

m
i �i ϕ

for every n<m<k;
• µi,ξ�i ©j[ϕ] if |ξ|>0, last i(ξ)∈Ej, and µj,(last i(ξ)↓j)�j ϕ.

We say that µ is a model of 	⊆LDTL if µ globally satisfies every formula in 	, and given δ∈LDTL
we say that 	 entails δ, written 	�DTL δ, if every global model of 	 is also a model of δ. Given
�∪{ψ}⊆Li, we write��iψ to denote the fact that every local model of� is also a model of ψ, or
equivalently, that {@i[ϕ] |ϕ∈�}�DTL @i[ψ].3

Figure 1 illustrates the notion of a distributed life-cycle, where each row comprises the local
life-cycle of one agent. In particular, Ei ={e1,e4,e5,e8,...} and →i corresponds to the arrows in
i’s row. We can think of the occurrence of the event e1 as leading agent i from its initial state ∅ to
the state {e1}, and then of the occurrence of the event e4 as leading to state {e1,e4}, and so on; the
state-transition sequence of agent i is displayed in Figure 2. Shared events at communication points
are highlighted by the dotted vertical lines. Note that the numbers annotating the events are there
only for convenience since no global total order on events is in general imposed.

3Note that we employ a floating temporal semantics, as opposed to a semantics anchored at the initial state. This is not a
restriction since we can express the local initial states using ∗.

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1249 1245–1279

Labelled Tableaux for DTL 1249

i e1 �� e4 �� e5 �� e8 �� ...

j e2 �� e4 �� e7 �� e8 �� ...

k e3 �� e4 �� e6 �� e7 �� e9 �� ...

Figure 1. A distributed life-cycle for agents i, j and k

σi(∅) �� σi({e1}) �� σi({e1,e4}) �� σi({e1,e4,e5}) �� ...

Figure 2. The progress of agent i

ξ

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

i e1
ϕ

�� e4
¬ϕ

�� e5
ϕ

�� e8
ϕ

�� ...

j e2
ψ

�� e4
ψ

�� e7
ψ

�� e8
©i[ϕ]

�� ...

Figure 3. Satisfaction of formulas

Figure 3 illustrates the satisfaction relation with respect to communication formulas. Clearly,
µj,∅�jψU©i[ϕ], because µj,{e2,e4,e7,e8}�j ©i[ϕ] and all intermediate states of j satisfy ψ.
However, µj,{e2,e4} ��j ©i[ϕ], although µi,{e1,e4,e5}�i ϕ and ξ={e1,e2,e4,e5} constitutes a
‘global state’ compatible with the local state {e1,e4,e5} of i and {e2,e4} of j. Note that global states
are not necessary in this article; for more details about them see, for instance, [11].

As expected, one can extend the satisfaction relation to derived operators by using their
corresponding abbreviations. In particular, the following are the satisfaction conditions for the most
common temporal operators:

• µi,ξ�i Fϕ if |ξ|=k and there exists ξn
i ∈�i such that k<n with µi,ξ

n
i �i ϕ;

• µi,ξ�i Pϕ if |ξ|=k and there exists ξn
i ∈�i such that n<k with µi,ξ

n
i �i ϕ;

• µi,ξ�i Gϕ if |ξ|=k and µi,ξ
n
i �i ϕ for every ξn

i ∈�i such that k<n;
• µi,ξ�i Hϕ if |ξ|=k and µi,ξ

n
i �i ϕ for every ξn

i ∈�i such that n<k;

• µi,ξ�i Xϕ if |ξ|=k, ξk+1
i ∈�i exists and µi,ξ

k+1
i �i ϕ;

• µi,ξ�iYϕ if |ξ|=k>0 and µi,ξ
k−1
i �i ϕ;

• µi,ξ�i ϕWψ if |ξ|=k and µi,ξ
n
i �i ϕ for every ξn

i ∈�i with k<n; or there exists ξn
i ∈�i such

that k<n with µi,ξ
n
i �iψ, and µi,ξ

m
i �i ϕ for every k<m<n;

• µi,ξ�i ϕBψ if |ξ|=k and µi,ξ
n
i �i ϕ for every ξn

i ∈�i with n<k; or there exists ξn
i ∈�i such

that n<k with µi,ξ
n
i �iψ, and µi,ξ

m
i �i ϕ for every n<m<k.

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1250 1245–1279

1250 Labelled Tableaux for DTL

For instance, the formula @i[p⇒F©j[Xq]] holds in a model if whenever the proposition p holds
locally at a state of agent i then there must be a future state of agent i where he has just synchronized
with agent j, for whom q will hold in the next state.

Note that, as is well-known, the expressive power of the set of operators {U,S} is identical to the
set {F,P,X,Y,G,H,W,B} since

ϕUψ ≡ (Fψ)∧(ϕWψ) and ϕSψ ≡ (Pψ)∧(ϕBψ).

2.2 Decidability and trace consistency of DTL via LTL

It is not difficult to show, as suggested in [11], that DTL is decidable by a translation to LTL. An
LTL signature is simply a set Prop of propositional symbols and the language LLTL is defined by the
grammar

LLTL ::=Prop |¬LLTL |LLTL⇒LLTL |LLTLULLTL |LLTLSLLTL.

Note that, excluding communication formulas, local DTL formulas coincide with LTL formulas. That
is, LLTL=L�©

i provided that Prop=Propi. The usual interpretation structure for LTLis a map τ :N0 →
℘(Prop), where we write N0 to denote the natural numbers with 0. We also use N to denote N0 \{0}.
The satisfaction of LTL formulas by τ is defined as for local DTL formulas. That is, if we define
λi =〈Ei,≤i〉=〈N,≤〉 then we have as local states�i ={ξ0

i ,ξ
1
i ,ξ

2
i ,ξ

3
i ,...}={∅,{1},{1,2},{1,2,3},...}.

Letting σi(ξk
i)=τ(k), we define τ,k �LTLϕ if µi,ξ

k
i �i ϕ, and τ�LTLϕ if µi �i ϕ. The entailment

relation �LTL is defined similarly.
Given a DTL signature�=〈Id,Prop〉, we define the corresponding LTL signature Prop={@i|i∈

Id}∪⊎
i∈Id Propi. In the following, we assume that the element p∈Propi is represented in Prop by

pi. The translation of global formulas is then given by the function α :LDTL→LLTL such that

• α(@i[ϕ])=@i⇒αi(ϕ),

and for each i∈ Id, the function αi :Li →LLTL translates local formulas to LTL formulas as follows:

• αi(p)=pi;
• αi(¬ϕ)=¬αi(ϕ);
• αi(ϕ⇒ψ)=αi(ϕ)⇒αi(ψ);
• αi(ϕUψ)= (@i⇒αi(ϕ))U(@i∧αi(ψ));
• αi(ϕSψ)= (@i⇒αi(ϕ))S(@i∧αi(ψ));
• αi(©j[ϕ])=@j∧αj(ϕ).

We first observe that entailment in DTL is preserved by this translation.

Lemma 1

Let 	∪{δ}⊆LDTL. If 	�DTL δ then α()∪{∗⇒(
∧

i∈Id @i)}�LTLα(δ).

Proof. We translate into DTL all the LTL interpretations τ that satisfy the property (∗⇒(
∧

i∈Id @i)),
that is, τ must be such that {@i | i∈ Id}⊆τ(0). Consider the map β from LTL interpretation structures
to DTL interpretation structures such that β(τ)=〈λ,σ〉, with λi =〈Ei,≤i〉, where:

• Ei ={n∈N|@i∈τ(n)};
• ≤i is the restriction of the usual order on N, with n→i m if n,m∈Ei and there is no k ∈Ei such

that n<k<m;
• σi(∅)={p∈Propi |pi ∈τ(0)} and σi({m∈Ei |m≤n})={p∈Propi |pi ∈τ(n)}, for each n∈Ei.

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1251 1245–1279

Labelled Tableaux for DTL 1251

λj :

λi :

τ : 0
@i

@j

1

1

1
@i

@j

2

2
@i

3

3

@j

4

5

5
@i

6

6

6
@i
@j

···

···

···�� �� �� �� �� �� ��

�� �� �� ��

�� �� ��

β

��

Figure 4. Translating τ to λi and λj

In this proof, we will assume that last i(∅)=0. We start by showing that for ϕ∈Li, β(τ)i,ξ
k
i �i ϕ if

and only if τ,last i(ξk
i)�LTLαi(ϕ), for every ξk

i ∈�i. The proof follows by induction on ϕ. If ϕ is a
propositional symbol p, then β(τ)i,ξ

k
i �i p iff p∈σi(ξk

i) iff pi ∈τ(last i(ξk
i)) iff τ,last i(ξk

i)�LTLαi(p).
The propositional connectives are also straightforward.Assume that τ,last i(ξk

i)�LTLαi(ϕUψ). Then,
there exists n′> last i(ξk

i) such that τ,n′ �LTL @i∧αi(ψ). Hence n′ ∈Ei, (n′ ↓ i)=ξn
i for some n>k,

and so last i(ξn
i)=n′. Therefore, by the induction hypothesis, β(τ)i,ξ

n
i �iψ. Moreover, τ,m′ �LTL

@i⇒αi(ϕ) for every m′ such that last i(ξk
i)<m′<n′. Given k<m<n, we have that last i(ξk

i)<
last i(ξm

i)< last i(ξn
i)=n′. Moreover, since last i(ξm

i)∈Ei, it follows that τ,last i(ξm
i)�LTL @i. Since we

have τ,last i(ξm
i)�LTLαi(ϕ), using the induction hypothesis, we then also have that β(τ)i,ξ

m
i �i ϕ. We

can conclude that β(τ)i,ξ
k
i �i ϕUψ. The converse is similar, and so is the proof for S. Finally, assume

that β(τ)i,ξ
k
i �i ©j[ϕ]. Then last i(ξk

i)∈Ej and β(τ)i,last (ξk
i)↓ j�j ϕ. By the induction hypothesis,

τ,last j(last i(ξk
i)↓ j)�LTLαj(ϕ). Furthermore, last j(last i(ξk

i)↓ j)= last i(ξk
i)∈Ej so @j∈τ(last i(ξk

i)),
that is, τ,last i(ξk

i)�LTL @j. Hence τ,last i(ξk
i)�LTL @j∧αj(ϕ), i.e, τ,last i(ξk

i)�αi(©j[ϕ]). Once
again, the converse is similar.

Now it is straightforward to conclude that, for every γ ∈LDTL, β(τ)�DTLγ if and only if τ�LTL
α(γ). Assume that β(τ) ��DTL @i[ϕ]. Then there is a ξk

i such that β(τ)i,ξ
k
i ��i ϕ. By the previous result,

it follows that τ,last (ξk
i) ��LTLαi(ϕ). We also know that τ,last (ξk

i)�LTL @i. Hence τ,last (ξk
i) ��LTL

@i⇒αi(ϕ), i.e. τ,last (ξk
i) ��LTLα(@i[ϕ]). Hence τ ��LTLα(@i[ϕ]). Conversely, assume that τ ��LTL

α(@i[ϕ]). Then there is an n∈N0 such that τ,n ��LTL @i⇒αi(ϕ), i.e. τ,n�LTL @i and τ,n ��LTLαi(ϕ).
From the first condition, it follows that either n=0, in which case we postulate that (0↓ i)=∅, or
n∈Ei and so last i(n↓ i)=n. Once again, by the previous result, it follows that β(τ)i,n↓i ��i ϕ. Hence
β(τ) ��DTL @i[ϕ].

The result now follows. Assume that 	�DTL δ and let τ be an LTL model satisfying α()∪{∗⇒
(
∧

i∈Id @i)}. Then we know that β(τ)�DTL	 and thus also β(τ)�DTL δ. Therefore, τ�LTLα(δ) and
we can conclude that α()∪{∗⇒(

∧
i∈Id @i)}�LTLα(δ). �

In Figure 4, we illustrate this translation with a simple example where the LTL interpretation τ is
translated into the life-cycles λi and λj.

We now show that entailment in DTL is also reflected by the translation.

Lemma 2

Let 	∪{δ}⊆LDTL. If α()∪{∗⇒(
∧

i∈Id @i)}�LTLα(δ) then 	�DTL δ.

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1252 1245–1279

1252 Labelled Tableaux for DTL

Proof. We now translate interpretation structures in the opposite direction. Given a DTL
interpretation structure µ it is always possible to linearize its underlying global order on events
〈E,≤〉. That is, one can define an injective function f :E →N that preserves the global causality
relation, i.e. if e<e′ then f (e)< f (e′). We follow [2], for instance.

For each DTL interpretation structure µ and linearization f of 〈E,≤〉, we define an associated LTL
interpretation structure τµ,f by

τµ,f (n)=

⎧⎪⎨
⎪⎩

{@i,pi | i∈ Id,p∈σi(∅)} if n=0,

{@i,pi |e∈Ei,p∈σi(e↓i)} if f (e)=n,

∅ if 0<n �∈ f (E).

Observe that, by construction, τµ,f is a model of (∗⇒(
∧

i∈Id @i)).
By a simple inductive argument, similar to the one in the previous lemma, we also have that,

for every ϕ∈Li, τµ,f ,f (last i(ξi))�LTLαi(ϕ) if and only if µi,ξi �i ϕ. This implies that, for every
γ ∈LDTL, τµ,f �LTLα(γ) if and only if µ�DTLγ .

Assume now that α()∪{∗⇒(
∧

i∈Id @i)}�LTLα(δ) and let µ be a DTL model of 	. Then, we
have that τµ,f �LTLα()∪{∗⇒(

∧
i∈Id @i)} and therefore τµ,f �LTLα(δ). Hence, µ�DTL δ and we

can conclude that 	�DTL δ. �
Putting the two previous lemmas together, we have:

Corollary 3

Let 	∪{δ}⊆LDTL. Then

	�DTL δ if and only if α()∪{∗⇒(
∧

i∈Id @i)}�LTLα(δ).

As a consequence, since LTLis decidable (see [3], for instance), any decision procedure for LTLcan
also be used for DTL. The asymptotic complexity is identical since our syntactic translation functionα
is polynomial. The result is actually independent of the chosen linearization function f and in general
there may be many such functions. This means that DTL is trace-consistent in the precise sense
of [34]. Namely, DTL properties can be checked by considering one arbitrary linearization of the
distributed model, as opposed to checking all possible linearizations. This fact makes DTL properties
particularly well suited for efficient model checking using partial-order reduction techniques [25],
which has been explored in [12].

3 Tableaux for local reasoning

3.1 The local tableaux system

We first present a labelled tableaux system for reasoning locally at each agent. This essentially
amounts to a labelled tableaux system for full discrete LTL with the until and since operators, which
is, to our knowledge, a novelty. As defined in the previous section, we can use the set {U,S} as
a complete set of operators for our logic. However, for simplicity and readability of the tableaux
rules of our system, we will instead take the operators F,P,G,H,X,Y,W and B as primitive. In this
context, as noted above, the strong versions of until and since can be seen as derived operators.

From now on, we consider fixed a distributed signature �. Our tableaux for local reasoning
will handle four kinds of local judgements for each agent i∈ Id: labelled local formulas (excluding
communication), equality between labels, inequality between labels, and a special judgement

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1253 1245–1279

Labelled Tableaux for DTL 1253

indicating absurdity. Labels will denote the local states of agents. To define the language of labels,
for the given signature �, we assume fixed a family V ={V i}i∈Id of sets of label variables and also
use a family F ={Fi}i∈Id of sets of Skolem function symbols defined as follows:

Fi = {fϕWψ |ϕ,ψ∈L�©
i }∪{f¬(ϕWψ) |ϕ,ψ∈L�©

i }∪

{fϕBψ |ϕ,ψ∈L�©
i }∪{f¬(ϕBψ) |ϕ,ψ∈L�©

i }.

The syntax of local labels of agent i∈ Id is defined by

Ti ::=N0 |V i +Z |Fi(Ti)+Z,

Si ::= (i,Ti).

Labels involving the Skolem function symbols will be used in the tableaux to guarantee the
existence of certain local states associated with the satisfaction of formulas involving the weak until
and since operators. Although the use of fresh variables suffices in some cases, until and since, as
well as their negations, may all require the existence of states in the model with specific properties.
This fact makes the use of the Skolem functions an essential ingredient of our system. We write
v to denote an arbitrary label variable, x, y and z to denote arbitrary label terms, and si to denote
an arbitrary element of Si. We abbreviate x+0 as x. Moreover, for c∈N, we write x−c instead of
x+(−c), as usual.

The syntax of local judgments for each agent i can now be defined by

Ji ::=Si :L�©
i |Si =Si |Si<Si |closed.

When convenient, we write si<s′
i<s′′

i instead of si<s′
i and s′

i<s′′
i . The intended meaning of a

labelled formula (i,x) :ϕ is that ϕ holds at the local state (denoted by) x of agent i. Equalities and
inequalities of local labels of agent i are interpreted directly over the causality ordering. To make
this formal, we extend our notion of interpretation structure with information concerning labels. We
will interpret labels as natural numbers in such a way that the interpretation of a given local label
identifies, by its value, the local state of the corresponding agent. An assignment on label variables
is a family ρ={ρi}i∈Id of functions ρi :V i →N0. We also need to consider a fixed interpretation
structure µ. The denotation of labels over µ and ρ, for each agent i∈ I , in symbols [[·]]µ,ρ :Si →N0,
is then defined as the following partial function

• [[(i,k)]]µ,ρ=k;
• [[(i,v)]]µ,ρ=ρi(v);
• [[(i,fϕWψ(x))]]µ,ρ=n provided that

– [[(i,x)]]µ,ρ is defined;
– n> [[(i,x)]]µ,ρ is the least number, if it exists, such that

* ξn
i ∈�i and µi,ξ

n
i �iψ;

* µi,ξ
k
i �i ϕ, for every k such that [[(i,x)]]µ,ρ<k<n;

• [[(i,f¬(ϕWψ)(x))]]µ,ρ=n, provided that
– [[(i,x)]]µ,ρ is defined;
– n> [[(i,x)]]µ,ρ is the least number, if it exists, such that

* ξn
i ∈�i, µi,ξ

n
i ��i ϕ and µi,ξ

n
i ��iψ;

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1254 1245–1279

1254 Labelled Tableaux for DTL

* µi,ξ
k
i ��iψ, for every k such that [[(i,x)]]µ,ρ<k<n;

• [[(i,fϕBψ(x))]]µ,ρ=n, provided that
– [[(i,x)]]µ,ρ is defined;
– n< [[(i,x)]]µ,ρ is the greatest number, if it exists, such that

* ξn
i ∈�i and µi,ξ

n
i �iψ;

* µi,ξ
k
i �i ϕ, for every k such that n<k< [[(i,x)]]µ,ρ;

• [[(i,f¬(ϕBψ)(x))]]µ,ρ=n, provided that
– [[(i,x)]]µ,ρ is defined;
– n< [[(i,x)]]µ,ρ is the greatest number, if it exists, such that

* ξn
i ∈�i, µi,ξ

n
i ��i ϕ and µi,ξ

n
i ��iψ;

* µi,ξ
k
i ��iψ, for every k such that n<k< [[(i,x)]]µ,ρ.

• [[(i,x+k)]]µ,ρ=[[(i,x)]]µ,ρ+k, provided that [[(i,x)]]µ,ρ is defined and [[(i,x)]]µ,ρ+k ≥0.

For simplicity, when [[(i,x)]]µ,ρ depends only on ρi, we write ρi(x).
One reason why the denotation of labels is partial is that we do not consider negative values.

This is unproblematic as the labels appearing in our tableaux will always denote non-negative
values. A second reason for the partiality is due to the interpretation of the Skolem functions. The
interpretation of the function symbols for negated until and since, that is f¬(ϕWψ) and f¬(ϕBψ), is
defined depending on the satisfaction of the corresponding formulas ¬(ϕWψ) and ¬(ϕBψ), in
which case the interpretations will have the value of the first state in the future, or respectively in the
past, where ϕ does not hold. The interpretation of the function symbols for until and since, that is
fϕWψ and fϕBψ, do not mimic the satisfaction of the corresponding formulas so closely. Actually, it is
enough for our purposes that they are only defined under the assumption that ϕ does not hold forever
(in the future or in the past, respectively). In this case, their interpretations will take the value of the
first state where ψ holds. In any case, the relevant labels of this form appearing in our tableaux will
always arise in contexts where their denotation is defined.

We can now define the satisfaction of local judgements of agent i at µ, given an assignment ρ:

• µ,ρ�si :ϕ if [[si]]µ,ρ is defined, ξ
[[si]]µ,ρ
i ∈�i, and µi,ξ

[[si]]µ,ρ
i �i ϕ;

• µ,ρ�si =s′
i if [[si]]µ,ρ and [[s′

i]]µ,ρ are both defined and [[si]]µ,ρ=[[s′
i]]µ,ρ;

• µ,ρ�si<s′
i if [[si]]µ,ρ and [[s′

i]]µ,ρ are both defined and [[si]]µ,ρ< [[s′
i]]µ,ρ;

• µ,ρ ��closed.

Recall that ξ
[[si]]µ,ρ
i denotes the [[si]]thµ,ρ local state of agent i in µ. We can finally define our tableaux

for local reasoning.

Definition 4

The local tableaux system Ti for agent i∈ Id, built over sets of local judgements in Ji, consists of the
rules shown in Figures 5–8.

We assume that the reader is familiar with standard terminology and notation for tableaux, for
example from [10]. As usual, a branch of a (possibly infinite) tableau is

• exhausted, if no more rules are applicable,
• closed, if it contains closed and
• open, if it is exhausted but not closed.

A tableau is closed if all of its branches are closed. Moreover, any tableau whose root is labelled by a
given set of judgements�will be called a tableau for�. Note that we will assume that� contains no

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1255 1245–1279

Labelled Tableaux for DTL 1255

Figure 5. Rules for the logical connectives

Figure 6. Rules for the temporal operators

Skolem function symbols, since these are meant to be used only as an internal device of the tableaux
system during proof construction.

The rules for the logical connectives in Figure 5 are straightforward. Figure 6 contains, in turn, the
rules for the temporal operators. Most of them are standard and simple to read. For instance, the rule
(F) guarantees that in order for Fϕ to hold at state x, there must exist a future state v where ϕ holds. In
contrast, the rule (¬F) concludes that if ¬Fϕ holds at state x, then ϕ cannot hold in any state y in the
future of x. The additional premise (i,y) :ψ is there to control the introduction of labelled formulas.
Mutatis mutandis, for the past, the same explanations apply to the rules (P) and (¬P). The rules
(G), (¬G), (H) and (¬H) are justified similarly. The rules (X) and (Y) simply require the existence

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1256 1245–1279

1256 Labelled Tableaux for DTL

Figure 7. Rules for the relations

of a suitable next or previous state, respectively. The rules (¬X) and (¬Y) follow a pattern similar
to the ones above. Note, however, that the rules for the past-directed operators are not completely
symmetric with respect to their future-directed counterparts. This is because our models always have
an initial state, but may or may not be infinite to the future.

The rules for weak until and weak since follow closely the operators’ semantics. However, some
explanation is needed in order to clarify the use of the Skolem function symbols. The rule (W1)
splits the satisfaction of ϕWψ at state x into two cases: either ϕ holds always in the future, or there
is a future state fϕWψ(x) where ψ holds. Of course this future state, which we have required to be
the earliest possible, defines together with x an interval where ϕ must hold. These requirements are
then imposed by the rule (W2), hence justifying the use of the Skolem function fϕWψ. The rules for
negated until (¬W1) and (¬W2) are similar. The same applies, symmetrically, to the rules (B1),
(B2), (¬B1) and (¬B2).

The rules in Figure 7 define the properties of the relations. Note that we use θ(i,x) to denote any
local judgement of agent i where x occurs as a subterm. The rule (Pos) states that the values of the
labels are either 0 or greater than 0. The rule (Cong) expresses the congruence of =, that is, if two
labels (i,x) and (i,y) denote the same local state, then we may replace some occurrences of x by
occurrences of y in any judgement. Similarly, the rule (Refl) asserts the reflexivity of equality. With
the rule (Fill), we ‘fill down’ the set of states: if (i,x) denotes a state and if (i,y) is smaller than (i,x),
then it should also denote a state (which we express by having truth hold there). With the rule (Dif),
we force the labels of judgements containing contradictory formulas to be distinct. The rule (Mon)
is a form of transitivity, given that y precedes y+c when c>0. (DTrans) is discrete transitivity: if
(i,x) is smaller than (i,y) and (i,y) is smaller than (i,z), then (i,x) is also smaller than (i,z). In fact,
our rule is more specific and formalizes that (i,x) is actually smaller than (i,z−1). The rules (Succ)

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1257 1245–1279

Labelled Tableaux for DTL 1257

Figure 8. Rules for trichotomy

and (Pred) order successive states, under appropriate conditions. (RShift) and (LShift) shift the
precedence order along with addition, taking care that no new states are introduced. The closure rule
(NLoop) states that x cannot precede x+c when c≤0. The rule (Inf) is an infinitary closure rule: if
in a branch there are infinitely many, distinct, non-negative constants that when added to (i,x) denote
a value smaller than (i,y), then that branch is closed. Finally, the closure rule (Arith) expresses the
fact that distinct arithmetic constants cannot be equal.

The rules in Figure 8 introduce controlled forms of trichotomy for the local order relations. Note
that they could all be replaced with one single rule expressing (full) trichotomy between any two
existing labels, namely

θ(i,x) θ(i,y)

(i,x)< (i,y) | (i,x) = (i,y) | (i,y)< (i,x)
(TR).

However, as this would increase branching in the tableaux, we opted for more controlled forms,
where we only use trichotomy when it is strictly necessary.

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1258 1245–1279

1258 Labelled Tableaux for DTL

Note that the rules are not independent. For instance, one may obtain the rule (Abs) using (Dif)
and (NLoop). The rule (NLoop) can also be obtained from (Inf) by infinitely many applications of
(RShift) and (DTrans). The rules (Succ) and (Arith) are interderivable using the other rules of the
system. Also the rules for G and H can be obtained from their corresponding abbreviations, using F
and P, respectively.

We illustrate the use of the tableaux system with several examples.

Example 5

We prove that the following formula is a theorem:

((ϕWψ)∧X(¬ψ))⇒Xϕ.

A closed tableau for the negation of this formula is depicted in Figure 9.

Example 6

Globally, the formula ϕ⇒Xϕ states that whenever ϕ holds in a state, then it will also hold in the
next state. The usual induction schema for LTL guarantees that ϕ⇒Gϕ follows. This is confirmed
by the closed Ti-tableau for {(i,0) :G◦(ϕ⇒Xϕ),(i,v) :¬(ϕ⇒Gϕ)} depicted in Figure 10. Note that
we write ∧:G◦ to abbreviate the unfolding of the definition of G◦ and the split of the two conjuncts.
Note also the dotted line labelled with (Inf) in the rightmost branch of the tableau abbreviates an
infinite branch built systematically to obtain an infinite ascending chain (i,v),(i,v+1),(i,v+2),...
below (i,v′). Finally, note that we systematically use boxes to avoid repeating sub-tableaux in the
figures. For instance, the label T1 on the left stands for the sub-tableau enclosed in the box called T1
on the right.

3.2 Soundness

We now proceed to establish the soundness and completeness of our tableaux system Ti. We first
prove soundness where, as usual, a rule is sound if every structure and assignment that satisfies its
premises also satisfies at least one of its conclusions, modulo a free choice for fresh variables. Of
course, a closure rule, that is, a rule whose conclusion is closed, is sound if no model satisfies its
premises.

Proposition 7

The rules of Ti are sound.

Proof. Let µ be an arbitrary model and ρ an assignment. The rules for the logical connectives are
straightforward. For example:

(¬¬): If µ,ρ�si :¬¬ϕ, then µi,ξ
[[si]]µ,ρ
i �i ¬¬ϕ, which implies that µi,ξ

[[si]]µ,ρ
i �i ϕ and so µ,ρ�

si :ϕ.

The proofs for the rules for the other connectives are similar. Let us consider now the rules for the
temporal operators. Given the symmetry between past and future and the duality of some operators
(like F and G), we present only the proof for some of the rules.

(F): Assume that µ,ρ� (i,x) :Fϕ. Then µi,ξ
[[(i,x)]]µ,ρ
i �i Fϕ. This implies that there exists ξk

i ∈�i,
with [[(i,x)]]µ,ρ<k such that µi,ξ

k
i �i ϕ. As v is fresh, we can assume that ρi(v)=k. Hence we

have [[(i,v)]]µ,ρ=k, µ,ρ� (i,x)< (i,v) and µ,ρ� (i,v) :ϕ.

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1259 1245–1279

Labelled Tableaux for DTL 1259

(i,v) :¬(((ϕWψ)∧X(¬ψ))⇒Xϕ)

¬⇒
(i,v) : (ϕWψ)∧X(¬ψ)

(i,v) :¬Xϕ

∧
(i,v) : (ϕWψ)
(i,v) :X(¬ψ)

X

(i,v+1) :¬ψ
Succ

(i,v)< (i,v+1)

���������������
W1

���������������

(i,v) :Gϕ
G

(i,v)< (i,fϕWψ(v))
(i,fϕWψ(v)) :ψ

��������������
TrW2

������������

(i,v+1) :ϕ
¬X

(i,v+1)< (i,fϕWψ(v))

W2

(i,v+1)= (i,fϕWψ(v))

Cong

(i,fϕWψ(v))< (i,v+1)

DTrans

(i,v+1) :¬ϕ
Abs

(i,v+1) :ϕ
(i,v+1) :¬ψ

¬X

(i,v+1) :ψ
Abs

(i,v)< (i,v)

NLoop

Closed (i,v+1) :¬ϕ
Abs

Closed Closed

Closed

Figure 9. Tableau for ¬(((ϕWψ)∧X(¬ψ))⇒Xϕ)

(H): Assume that µ,ρ� (i,x) :Hϕ and µ,ρ� (i,y)< (i,x). Then µi,ξ
[[(i,x)]]µ,ρ
i �i Hϕ and, as

[[(i,y)]]µ,ρ< [[(i,x)]]µ,ρ, then µi,ξ
[[(i,y)]]µ,ρ
i �i ϕ. That is, µ,ρ� (i,y) :ϕ.

(X): Assume thatµ,ρ� (i,x) :Xϕ. Thenµi,ξ
[[(i,x)]]µ,ρ
i �i Xϕ, which implies thatµi,ξ

[[(i,x)]]µ,ρ+1
i �i ϕ.

But [[(i,x)]]µ,ρ+1=[[(i,x+1)]]µ,ρ and hence µ,ρ� (i,x+1) :ϕ.
(¬Y): If µ,ρ� (i,0)< (i,x), that is 0=[[(i,0)]]µ,ρ< [[(i,x)]]µ,ρ, then [[(i,x−1)]]µ,ρ=[[(i,x)]]µ,ρ−1

and the local state ξ
[[(i,x−1)]]µ,ρ
i exists. Furthermore, if µ,ρ� (i,x) :¬Yϕ, then it must be the

case that µ,ρ� (i,x−1) :¬ϕ.

(W1): Assume that µ,ρ� (i,x) :ϕWψ. Then, µi,ξ
[[(i,x)]]µ,ρ
i �i ϕWψ and either (1) µi,ξ

n
i �i ϕ for

every ξn
i ∈�i such that [[(i,x)]]µ,ρ<n or (2) there exists ξn

i ∈�i such that [[(i,x)]]µ,ρ<n with

µi,ξ
n
i �iψ and µi,ξ

m
i �i ϕ for every [[(i,x)]]µ,ρ<m<n. In the first case, µi,ξ

[[(i,x)]]µ,ρ
i �i Gϕ

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1260 1245–1279

1260 Labelled Tableaux for DTL

(i,0) :G◦(ϕ⇒Xϕ)
(i,v) :¬(ϕ⇒Gϕ)

¬⇒
(i,v) :ϕ

(i,v) :¬Gϕ

¬G

(i,v)< (i,v′)
(i,v′) :¬ϕ

����������
Dif

����������

(i,v′)< (i,v)

DTrans

(i,v)< (i,v′)

∧:G◦

(i,v)< (i,v−1)

NLoop

(i,0) :ϕ⇒Xϕ
(i,0) :G(ϕ⇒Xϕ)

����������
Pos

����������

closed (i,v)= (i,0)

Cong

(i,0)< (i,v)

G

(i,v) :ϕ⇒Xϕ (i,v) :ϕ⇒Xϕ

										 ⇒

T1 (i,v) :¬ϕ
Abs

(i,v) :Xϕ
X

T1

closed (i,v+1) :ϕ

����������
Dif

����������

(i,v′)< (i,v+1)

DTrans

(i,v+1)< (i,v′)

Mon

(i,v)< (i,v)

NLoop

(i,0)< (i,v+1)

G

closed (i,v+1) :ϕ⇒Xϕ

���������� ⇒
����������

(i,v+1) :¬ϕ
Abs

(i,v+1) :Xϕ
Inf

closed closed

Figure 10. Tableau for the usual temporal induction schema

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1261 1245–1279

Labelled Tableaux for DTL 1261

and therefore µ,ρ� (i,x) :Gϕ. In the second case, we know that [[(i,fϕWψ(x))]]µ,ρ is defined

to be the least such n. In particular, [[(i,x)]]µ,ρ< [[(i,fϕWψ(x))]]µ,ρ and µi,ξ
[[(i,fϕWψ(x))]]µ,ρ
i �iψ.

That is, µ,ρ� (i,x)< (i,fϕWψ(x)) and µ,ρ� (i,fϕWψ(x)) :ψ.
(W2): Assume thatµ,ρ� (i,x)<si< (i,fϕWψ(x)). Then [[(i,fϕWψ(x))]]µ,ρ is defined and [[(i,x)]]µ,ρ<

[[si]]µ,ρ< [[(i,fϕWψ(x))]]µ,ρ. From the definition of the interpretation of the Skolem symbols, it
follows that µi,ξ

[[si]]µ,ρ �i ϕ, i.e. µ,ρ�si :ϕ. Furthermore, [[(i,fϕWψ(x))]]µ,ρ is the least value

greater than [[(i,x)]]µ,ρ such that µi,ξ
[[(i,f¬(ϕWψ)(x))]]µ,ρ
i �iψ. Hence, µi,ξ

[[si]]µ,ρ ��iψ, i.e. µ,ρ�
si :¬ψ.

(¬W1): Assume that µ,ρ� (i,x) :¬(ϕWψ). Then µi,ξ
[[(i,x)]]µ,ρ
i ��i ϕWψ. In particular, there exists

n> [[(i,x)]]µ,ρ such that µi,ξ
n
i ��i ϕ, and µi,ξ

m
i ��iψ for [[(i,x)]]µ,ρ<m≤n. We know that

[[(i,f¬(ϕWψ)(x))]]µ,ρ is defined to be the least such n. Hence, [[(i,x)]]µ,ρ< [[(i,f¬(ϕWψ)(x))]]µ,ρ,
i.e, µ,ρ� (i,x)< (i,f¬(ϕWψ)(x)). Furthermore, clearly, µ,ρ� (i,f¬(ϕWψ)(x)) :¬ϕ and µ,ρ�
(i,f¬(ϕWψ)(x)) :¬ψ.

(¬W2): Assume that µ,ρ� (i,x)<si< (i,f¬(ϕWψ)(x)). Then [[(i,f¬(ϕWψ)(x))]]µ,ρ is defined
and [[(i,x)]]µ,ρ< [[si]]µ,ρ< [[(i,f¬(ϕWψ)(x))]]µ,ρ. From the definition of the interpretation
of the Skolem symbols, it follows that µi,ξ

[[si]]µ,ρ ��iψ, i.e. µ,ρ�si :¬ψ. Furthermore,

[[(i,fϕWψ(x))]]µ,ρ is the least value greater than [[(i,x)]]µ,ρ such that µi,ξ
[[(i,f¬(ϕWψ)(x))]]µ,ρ
i ��i ϕ.

Hence, µi,ξ
[[si]]µ,ρ �i ϕ, i.e. µ,ρ�si :ϕ.

We now turn to the rules for judgements about the relations and prove the soundness of two of
them. The remaining ones are mostly trivial.

(Dif): Assume that µ,ρ�si :ϕ and µ,ρ�s′
i :¬ϕ. Then µi,ξ

[[si]]µ,ρ
i �i ϕ and µi,ξ

[[s′
i]]µ,ρ

i ��i ϕ. Hence

ξ
[[si]]µ,ρ
i �=ξ[[s′

i]]µ,ρ
i and, as �i is totally ordered, either [[si]]µ,ρ< [[s′

i]]µ,ρ or [[s′
i]]µ,ρ< [[si]]µ,ρ,

which implies that µ,ρ�si<s′
i or µ,ρ�s′

i<si.
(Inf): [[(i,x)]]µ,ρ and [[(i,y)]]µ,ρ are natural numbers. Hence, there cannot be infinitely many distinct

non-negative constants c such that [[(i,x)]]µ,ρ+c< [[(i,y)]]µ,ρ.

The soundness of the trichotomy rules is straightforward, given that the local orders are
trichotomic. �

3.3 Completeness

Before we establish completeness, we recall [26] some technical results about integer constraints of
the form x≤y, where (i,x) and (i,y) are local labels in Si. It is clear that any such constraint is of the
form u1 +n≤u2 +m, where u1 and u2 are either label variables, label terms whose head is a Skolem
function, or 0. Let A={A1,A2,...} be a (possibly infinite) set of such constraints. The constraint
graph for A is a weighted, directed graph GA =〈VA,EA〉 constructed as follows:

• VA =V(A)∪{0}, where V(A) is the set of variables V i and of label terms headed by a Skolem
function occurring in A;4

• EA ={u1
m−n−→u2 |u1 +n≤u2 +m∈A}∪{0 0→u |u∈V(A)}.

4At this point, labels whose head is a Skolem function symbol are treated as if they were simply variables.

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1262 1245–1279

1262 Labelled Tableaux for DTL

As notation, u1
c→u2 represents the directed edge (u1,u2) with weight c. Intuitively, this means

that u1 is at most c larger than u2. Hence, for instance, edges of the second kind, 0
0→u, express that

0≤u+0, which is satisfied when u is non-negative, i.e. a natural number. As usual, a path in a graph
is a finite sequence of vertices u1,...,un, where (ui,ui+1) is an edge, for all i such that 1≤ i≤n. The
weight of a path is the sum of the weights of its edges.

Proposition 8

A (possibly infinite) set of constraints A is satisfiable if and only if for each non-zero node in GA,
there exists a minimum-weight path in GA among all the paths from 0 to that node.

Proof. (⇒) Assume that A is satisfiable and consider an arbitrary path in GA from 0 to some u

0
c0→u1

c1→ ...
cn−1→ un

cn→u.

This corresponds to the constraints
0 ≤ u1 +c0

...

un−1 ≤ un +cn−1
un ≤ u+cn .

Summing up both sides yields 0≤u+(c0 +···+cn−1 +cn). This means that, given that the constraints
are satisfiable, for each path from 0 to u with weight c, 0≤u+c must hold. Assume now that there
is no minimum-weight path from 0 to u. This means that there is an infinite decreasing succession
{ci}i∈N of integers such that there is a path from 0 to u with weight ci, which means that 0≤u+ci,
for every i∈N, which is clearly impossible. Hence there must be a minimum-weight path.

(⇐) Assume that, for every vertex u, there is a minimum-weight path from 0 to u, and let δ(u)
denote its weight. Obviously, δ(0)=0. Let ρi(u)=−δ(u) for each u. We claim that ρ is a satisfying
assignment for all the constraints in A. Namely, consider a constraint u1 +n≤u2 +m. There is an
edge (with weight m−n) from u1 to u2 and by the triangle inequality, δ(u2)≤δ(u1)+m−n. From the
definition of ρi, −ρi(u2)≤−ρi(u1)+m−n and therefore ρi(u1)+n≤ρi(u2)+m. Thus the constraint
is satisfied. �

We now show how integer constraints can help us establish the completeness of our tableaux
system. To begin with, observe that, in our tableaux, every judgement of the form (i,x)< (i,y) can be
equivalently stated as a constraint of the form x≤y−1. Similarly, a judgement of the form (i,x)= (i,y)
can be equivalently formalized as the pair of constraints x≤y and y≤x. We then have the following
two lemmas.

Lemma 9

Let A be the set of integer constraints extracted from an exhausted branch of a Ti-tableau. Then A is
satisfiable if and only if the branch is open.

Proof. (⇒) Assume that the branch is closed by the rule (Inf). Hence, there are labels (i,x),(i,y)∈
Si and distinct non-negative constants {cn}n∈N such that x+cn<y∈A. We can assume, without
loss of generality, that the constants are ordered increasingly. Furthermore, (i,x) is either (i,k) or
(i,u+k). Similarly, (i,y) is either (i,k′) or (i,u′+k′). Let us consider just the case where (i,x) is
(i,u+k) and (i,y) is (i,u′+k′). Hence, u+(k+cn)<u′+k′ ∈A, for every n∈N. By the rule (LShift),
u<u′+(k′−(k+cn)). Let c′

n =k′−(k+cn). Clearly, {c′
n}n∈N is a strictly decreasing succession of

integers. By the rule (Pos), depending on whether u is variable or a label headed by a Skolem function,

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1263 1245–1279

Labelled Tableaux for DTL 1263

either u=0∈A (and, by (Cong), 0<u′+c′
n ∈A) or 0<u∈A (and, by (DTrans), 0<u′+(c′

n −1)∈A).
In either case, we may conclude that there is no minimum-weight path from 0 to u′, which implies
that A is not satisfiable. If the branch is closed by (NLoop) then this means that there is a negative
cycle in GA and so A is not satisfiable. Note that we need not consider the case where the branch is
closed by (Abs) as that rule can be obtained from (Dif) and (NLoop), as we remarked above. The
same applies to closing with (Arith), although it is clear that A would then be impossible to satisfy.

(⇐) Assume that A is not satisfiable. Then there is a strictly decreasing succession {cn}n∈N such
that there is a path from 0 to some u with weight cn, which implies that either 0<u+(cn +1)∈A
or 0=u+cn ∈A. Clearly, equality can happen at most once: if 0=u+cn ∈A and 0=u+cm ∈A with
cn �=cm then using (Cong) we would have u+cn =u+cm ∈A and we could close the branch using
rule (Arith). Thus, c0 −cn>0 as {cn}n∈N is strictly decreasing and we can apply (RShift) so that
c0 −cn<u+c0 +1∈A for every n. By the rule (Inf), it follows that A is closed. �
Lemma 10

Let A be the set of integer constraints extracted from an open branch of a Ti-tableau. Let ρi be the
assignment extracted from GA according to Proposition 8. If ρi(u)=k then the branch contains either
(i,u)= (i,k) or (i,k−1)< (i,u).

Proof. Note that by Lemma 9, A is satisfiable and so we can extract an assignment ρi on variables
and Skolem-headed labels that satisfies all the constraints in A. We consider first the case where u is
a variable or a Skolem-headed label. Furthermore, assume also that k =0. By (Pos), either u=0∈A
or 0<u∈A. But if 0<u∈A then, as ρi satisfies A, 0<ρi(u), contradicting the initial assumption.
Hence, we can conclude that u=0∈A.

Assume now that k>0 and that ρi(u)=k. Then there is a path from 0 to u with weight −k. That
is, there is a path in GA from 0 to u

0
c0→u1

c1→u2
c2→ ...

cn→u

such that
∑n

i=0ci =−k. In fact, without loss of generality, we can assume that
∑p

i=0ci<0 for all p
such that 0≤p≤n. Hence, the following constraints must be in A:

0 < u1 +c0 +1
...

un−1 < un +cn−1 +1
un < u+cn +1.

Therefore, a simple inductive argument using (LShift) and (DTrans) allows us to conclude that also
0<u+(c0 +···+cn)+1∈A. If k−1>0 then, by using (RShift), we conclude that k−1<u∈A. If
k−1=0 then −k+1=0 and the result follows trivially.

The general result for labels follows from a direct application of the rules (RShift) and (LShift).
�

We can now prove completeness for the tableaux system Ti. Since the Skolem function symbols
are only used as an internal mechanism within our system, we will assume that the initial set of
judgements contains no Skolem functions.5

5Note that this requirement could be dropped if (i) we added additional constraints to the graphs GA imposing the required
ordering between labels whose heads are Skolem functions and their subterms (e.g. stating that (i,si)< (i,fϕWψ(si))) and (ii)
we split each of the rules (W1), (¬W1), (B1) and (¬B1) in two rules, one for introducing the Skolem symbols and one for
introducing their properties.

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1264 1245–1279

1264 Labelled Tableaux for DTL

Proposition 11

Ti is complete, that is, a set of local judgements�without Skolem functions is satisfiable if and only
if there is a Ti-tableau for � with an open branch.

Proof. If there is no open tableau for � then a simple inductive argument, using Proposition 7,
establishes the unsatisfiability of �. We now prove the converse. Assume that there is an open
tableau for � and let � be the set of judgements that appear in an open branch (which include �).
Note that � is closed under the rules.

1. Let A be the set of linear constraints extracted from �. By Lemma 9, this set is satisfiable and
so, using Proposition 8, we can extract an assignment ρi satisfying all linear constraints.

2. Let λi =〈Ei,≤i〉 be defined as follows:
• Ei ={ρi(x)|(i,x) :ϕ∈� and ρi(x)>0};
• e≤i e′ is the usual order on N.
To continue the proof, we first establish an auxiliary lemma.

Lemma 12

If k ∈Ei then there is some (i,x) :ϕ∈� such that ρi(x)=k−1.

Proof. Assume that k ∈Ei. Clearly we have that k>0. Then there is some (i,y) :ϕ∈� such that
ρi(y)=k and by Lemma 10, either k−1<y∈A or y=k ∈A. In the first case, by (Fill), (i,k−1) :
�∈�. In the second case, as (i,k)> (i,0)∈�, by (Pred) and (Cong), (i,k−1)< (i,y)∈� and
once again by (Fill), (i,k−1) :�∈�. Hence choose (i,x) to be (i,k−1). �
From this lemma, we may conclude that if k ∈Ei and k>1, then k−1∈Ei and, furthermore,
〈Ei,≤i〉 is a countable, discrete, well-founded total order. Local states are of the form {1,...,e}.
We consider any distributed interpretation structure µ such that µi =〈λi,σi〉, where σi(∅)=
{p | (i,x) :p∈� and ρi(x)=0} and σi({1,...,e})={p|(i,x) :p∈� and ρi(x)=e}. We also fix any
compatible distributed assignment ρ.

3. We show that µ,ρ� (i,x) :ϕ for every (i,x) :ϕ∈�. Simultaneously, we must also prove that
ρi(f (z))=[[(i,f (z))]]µ,ρ, for every Skolem function symbol f . We will push the proof of this
later fact to the application of the until and since rules, as we assume that no Skolem functions
appear in �. The proof follows by induction on ϕ. If x :p∈�, then the result follows by
construction. If (i,x) :¬p∈�, then, by (Abs), (i,x) :p �∈�. If (i,y) :p∈� then, by (Dif), either
(i,x)< (i,y)∈� or (i,y)< (i,x)∈�. In either case, we can conclude that p �∈σi([[(i,x)]]µ,ρ), i.e.

µi,ξ
[[(i,x)]]µ,ρ
i �i ¬p and so µ,ρ� (i,x) :¬p. The proof for implication, negated implication, and

double negation follows by the induction hypothesis.
Assume that x :Fψ∈�. Then by the rule (F), (i,v) :ψ∈� and (i,x)< (i,v)∈�. By the induction
hypothesis, µ,ρ� (i,v) :ψ and, since [[(i,x)]]µ,ρ< [[(i,v)]]µ,ρ, then µ,ρ� (i,x) :Fψ.
Assume that (i,x) :¬Fψ∈�. Let k ∈Ei, such that [[(i,x)]]µ,ρ<k. (If such a k does not exist,
then the result follows immediately.) Then there is some (i,y) :ϑ∈� such that [[(i,y)]]µ,ρ=k.
Hence, by Lemma 10, either y=k ∈A or k−1<y∈A. In the first case, using (Pred) and (Cong)
we also have k−1<y∈A. Using (TrF), then either (i,x)< (i,k−1)∈� or (i,x)= (i,k−1)∈�
or (i,k−1)< (i,x)∈�. As A is satisfied by ρi, the third case is excluded. If (i,x)< (i,k−1)∈�,
then, by (DTrans) and (Mon), (i,x)< (i,y)∈�. If (i,x)= (i,k−1)∈�, then, by (Cong), (i,x)<
(i,y)∈�. In each case, we may apply (¬F) to conclude that (i,y) :¬ψ∈�. By the induction

hypothesis,µ,ρ� (i,y) :¬ψ, i.e.µi,ξ
k
i ��iψ for every k> [[(i,x)]]µ,ρ. Henceµi,ξ

[[(i,x)]]µ,ρ
i ��i Fψ

and therefore µ,ρ� (i,x) :¬ψ.

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1265 1245–1279

Labelled Tableaux for DTL 1265

Assume that (i,x) :Pψ∈�. Then by (P), (i,v) :ψ∈� and (i,v)< (i,x)∈�. By the induction
hypothesis, µ,ρ� (i,v) :ψ and since [[(i,v)]]µ,ρ< [[(i,x)]]µ,ρ then µ,ρ� (i,x) :Pψ follows.
Assume that (i,x) :¬Pψ∈�. Furthermore, let k ∈Ei such that k< [[(i,x)]]µ,ρ. (If such a k
does not exist, then the result follows immediately.) Then there is some (i,y) :ϑ∈� such
that [[(i,y)]]µ,ρ=k. Hence, by Lemma 10, either k−1<y∈A or y=k ∈A. By an argument
similar to (¬F), we have k−1<y∈A. Applying (TrF), we have either (i,x)< (i,y)∈�
or (i,x)= (i,y)∈� or (i,y)< (i,x)∈�. The first two conditions are excluded because A is
satisfiable ([[(i,x)]]µ,ρ>k =[[(i,y)]]µ,ρ). Hence (i,y)< (i,x)∈�. By (¬P), (i,y) :¬ψ∈� and
by the induction hypothesis, µ,ρ� (i,y) :¬ψ, i.e. µi,ξ

k
i ��iψ for every k< [[(i,x)]]µ,ρ. Hence

µi,ξ
[[(i,x)]]µ,ρ
i ��i Pψ, which implies that µ,ρ� (i,x) :¬Pψ.

The proofs for G and H are similar to the ones above, given their corresponding abbreviations.
Assume that (i,x) :Xψ∈�. Then using the rule (X), (i,x+1) :ψ∈�. By the induction
hypothesis, µ,ρ� (i,x+1) :ψ, which implies that µ,ρ� (i,x) :Xψ.
Assume that (i,x) :¬Xψ∈�. If [[(i,x)]]µ,ρ is the maximum of Ei (if one exists) then there is
no successor and so µ,ρ� (i,x) :¬Xψ. Otherwise, there is a k ∈Ei such that [[(i,x)]]µ,ρ<k.
As k ∈Ei, there is some (i,y) :ϑ∈� such that [[(i,y)]]µ,ρ=k. By Lemma 10, either y=k ∈A
or k−1<y∈A. By an argument similar to the cases above, we may conclude that k−1<
y∈A anyway. Hence, by (TrX), either (i,x)< (i,k−1)∈� or (i,x)= (i,k−1)∈� or (i,k−1)<
(i,x)∈�. Once again, since A is satisfiable, the third possibility is excluded. If (i,x)< (i,k−1)∈
�, we may apply (Fill) and (¬X). If (i,x)= (i,k−1)∈�, by (Cong), we have (i,x)< (i,y)∈�.
Once again, we may apply (¬X). In each case, we conclude that (i,x+1) :ψ∈�. Hence, by
the induction hypothesis, µ,ρ� (i,x+1) :ψ, which implies that µ,ρ� (i,x) :¬Xψ.
Assume that (i,x) :Yψ∈� then, by (Y), (i,x−1) :ψ∈�. By the induction hypothesis, µ,ρ�
(i,x−1) :ψ and thus µ,ρ� (i,x) :Yψ.
Assume that (i,x) :¬Yψ∈�. By (Pos), either (i,x)= (i,0)∈� or (i,0)< (i,x)∈�. If (i,x)=
(i,0)∈�, since A is satisfiable, then [[(i,x)]]µ,ρ=0 and therefore µi,ξ

[[(i,x)]]µ,ρ
i ��iYψ. If (i,0)<

(i,x)∈�, then (¬Y) may be applied and (i,x−1) :¬ψ∈�. By the induction hypothesis, µ,ρ�
(i,x−1) :¬ψ, which implies that µ,ρ� (i,x) :¬Yψ.
Assume that (i,x) :ϕWψ∈�. Then, using the rule (W1), either (i,x) :Gϕ∈�, or (i,x)<
(i,fϕWψ(x))∈� and (i,fϕWψ(x)) :ψ∈�. In the first case, it follows directly from the
completeness for G that µ,ρ� (i,x) :Gϕ, and therefore µ,ρ� (i,x) :ϕWψ. In the second
case, we can conclude that [[(i,x)]]µ,ρ<ρi(fϕWψ(x)). Furthermore, by the induction hypothesis,
µ,ρ� (i,fϕWψ(x)) :ψ. Consider now k ∈Ei such that [[(i,x)]]µ,ρ<k<ρi(fϕWψ(x)). Then there
is (i,y) :ϑ∈� such that [[(i,y)]]µ,ρ=k. As before, using Lemma 10, (Pred) and (Cong)
we can conclude that k−1<y∈A. Hence, using (TrW1) either k−1<x∈A or k−1=x∈A
or x<k−1∈A. Since A is satisfiable, the first condition is excluded. If k−1=x∈A by
(Cong), we have (i,x)< (i,y)∈�. If x<k−1∈A then by (DTrans) and (Mon) we have again
(i,x)< (i,y)∈�. Using now (TrW2), we have that either y< fϕWψ(x)∈A or y= fϕWψ(x)∈A
or fϕWψ(x)<y∈A. Again, since A is satisfiable, the last two conditions are excluded. Hence
(i,y)< (i,fϕWψ(x))∈� and we may apply (W2) and conclude that (i,y) :ϕ∈� and (i,y) :¬ψ∈�.
By the induction hypothesis, µ,ρ� (i,y) :ϕ and µ,ρ� (i,y) :¬ψ. From the conditions on k, we
may finally conclude that ρi(fϕWψ(x))=[[(i,fϕWψ(x))]]µ,ρ and µ,ρ� (i,x) :ϕWψ.
Assume now that (i,x) :¬(ϕWψ)∈�. By the rule (¬W1), we have (i,x)<
(i,f¬(ϕWψ)(x)),(i,f¬(ϕWψ)(x)) :¬ϕ,(i,f¬(ϕWψ)(x)) :¬ψ∈�. Hence, we have that [[(i,x)]]µ,ρ<
ρi(f¬(ϕWψ)(x)). By the induction hypothesis, we also have that µ,ρ� (i,f¬(ϕWψ)(x)) :¬ϕ and
µ,ρ� (i,f¬(ϕWψ)(x)) :¬ψ. If k ∈Ei is such that [[(i,x)]]µ,ρ<k<ρi(f¬(ϕWψ)(x)), then by an

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1266 1245–1279

1266 Labelled Tableaux for DTL

argument similar to the case of W, using now the trichotomy rules for ¬W, we can conclude that
there is (i,z) such that [[(i,z)]]µ,ρ=k and (i,x)< (i,z)< (i,f¬(ϕWψ)(x))∈�. Then, by the rule
(¬W2), (i,z) :ϕ,(i,z) :¬ψ∈� and hence, by the induction hypothesis, we have µ,ρ� (i,z) :ϕ
and µ,ρ� (i,z) :¬ψ. We may finally conclude that ρi(f¬(ϕWψ)(x))=[[(i,f¬(ϕWψ)(x))]]µ,ρ and
µ,ρ� (i,x) :¬(ϕWψ).
The proofs for B are analogous to those for W. �

As a consequence, we can reason about entailment in the logic.

Corollary 13

Given�∪{ψ}∈Li,��iψ if and only if every exhausted Ti-tableau for {(i,0) :G◦ϕ |ϕ∈�}∪{(i,v) :
¬ψ} is closed.

Our previous examples also illustrate this. Example 5 proves that �i ((ϕWψ)∧X(¬ψ))⇒Xϕ.
Moreover, the proof in Example 6 establishes that (ϕ⇒Xϕ)�i (ϕ⇒Gϕ).

4 Tableaux for global reasoning

4.1 The global tableaux system

Our aim now is to build a tableaux system T for full DTL by capitalizing on the local tableaux
systems for each agent i∈ Id. To do so, we now introduce an additional kind of global judgement:
synchronization between labels. Labelled local formulas will also be unrestricted, i.e. communication
formulas are allowed. Of course, the language of labels is now distributed, that is, if Id ={i1,...,in}
then

S ::=Si1 | ··· |Sin .

Here, the local labels of each agent i∈ Id are defined, as before, by

Ti ::=N0 |V i +Z |Fi(Ti)+Z,

Si ::= (i,Ti),

but the Skolem symbols are extended to the full language, that is,

Fi = {fϕWψ |ϕ,ψ∈Li}∪{f¬(ϕWψ) |ϕ,ψ∈Li}∪
{fϕBψ |ϕ,ψ∈Li}∪{f¬(ϕBψ) |ϕ,ψ∈Li}.

The syntax of global judgements can now be defined by

J ::=Ji1 | ··· |Jin |Si ��Sj ,

where the local judgements are extended to also incorporate communication formulas

Ji ::=Si :Li |Si =Si |Si<Si |closed.

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1267 1245–1279

Labelled Tableaux for DTL 1267

Figure 11. Rules for communication

Figure 12. Rules for synchronization

The intended meaning of a synchronization judgement (i,x)�� (j,y) is that the event leading to state
x of agent i is synchronized with the event leading to state y of agent j. Semantically, we require a
distributed assignment on label variables ρ={ρi}i∈Id . The denotation of labels is defined as before,
given an interpretation structure µ. The satisfaction of judgements is also just extended with

• µ,ρ�si ��sj if ξ
[[si]]µ,ρ
i �=∅, ξ

[[sj]]µ,ρ
j �=∅, and last i(ξ

[[si]]µ,ρ
i)= last j(ξ

[[sj]]µ,ρ
j).

We can finally define our tableaux for global reasoning, which we then show to be sound and
complete.

Definition 14

The global tableaux system T for DTL, built over sets of global judgements in J , consists of the
rules of Ti for each agent i∈ Id, together with the global rules in Figures 11 and 12.

The rules for communication in Figure 11 closely follow the semantics. Consider, for instance,
the rule (©): if agent i, in state x, just communicated with agent j, for whom ϕ held, then the event
leading to state x is synchronized with an event leading to some state v of agent j, where ϕ holds (and
where v is fresh). In a similar way, for rule (¬©), if agent i in state x does not communicate with
agent j in a state where ϕ holds, but the event leading to x is synchronized with the event leading to
some state y of j, then it must be the case that ϕ cannot hold in y for j.

Figure 12 contains the rules for synchronization. Rule (Evt) guarantees that synchronization is
only possible in states following the initial state, given that the initial state of an agent is not reached
by an event. Rules (Sym) and (Trans) express the symmetry and transitivity of the synchronization
relation. Rule (Self) ensures that self-synchronization is not allowed. Finally, rule (Tr ��) applies
trichotomy to any two states of agent i involved in the synchronizations and rule (Order) guarantees
that local orders are globally compatible. If there is a chain of synchronizations linking two events
of agent i, then these two events preserve the ordering imposed by the synchronization chain. For
instance, assume that the events leading to states si and s′

i of agent i have just synchronized with the
events leading to states sj and s′

j of agent j, respectively. Furthermore, assume that sj precedes s′
j.

Then this order must be reflected in agent i and so si must precede s′
i. This extends to more than two

agents in a straightforward way.
We illustrate the use of the tableaux system with a short example. More substantial examples are

given in Section 5.

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1268 1245–1279

1268 Labelled Tableaux for DTL

Example 15

To show

{@i[©j[�]⇒©j[X©k[�]]],@j[©k[�]⇒©k[X©i[�]]]}�DTL @i[©j[�]⇒F©k[�]]
it is enough (as will follow from the completeness result we give below) to build a closed T -
tableau for the corresponding judgements, as depicted in Figure 13 (where we write Abs :¬� to
abbreviate the closure of the unfolding of ¬�). Figure 14 shows a possible life-cycle. The formula
@i[©j[�]⇒©j[X©k[�]]] expresses that if agent i synchronizes with agent j then, in the next state (of
j), agent j will synchronize with agent k. Similarly, the formula @j[©k[�]⇒©k[X©i[�]]] expresses
that if agent j synchronizes with agent k then, in the next state (of k), agent k will synchronize with
agent i. These two formulas entail that if agent i synchronizes with agent j then he will eventually
also synchronize with agent k. However, observe that synchronization between agents i and k need
not necessarily take place after two local state transitions of agent i. Between the synchronization
with j and the synchronization with k, agent i might have changed state many times.

4.2 Soundness

We now proceed to establish the soundness and completeness of our tableaux system Ti. We first
prove the soundness of the rules.

Proposition 16

The rules of T are sound.

Proof. The soundness of the rules of Ti, for each i∈ Id, follows from Proposition 7. To show the
soundness of the communication and synchronization rules, let µ be an arbitrary model and ρ an
assignment.

(©): Assume that µ,ρ� (i,x) :©j[ϕ]. Then µi,ξ
[[(i,x)]]µ,ρ
i �i ©j[ϕ]. Hence, we have that

last i(ξ
[[(i,x)]]µ,ρ
i)∈Ej and µj,(last i(ξ

[[(i,x)]]µ,ρ
i)↓ j)�j ϕ. As v is fresh, let ρj(v) be

the number of the local state (last i(ξ
[[(i,x)]]µ,ρ
i)↓ j) of agent j∈ Id, i.e. ξ

[[(j,v)]]µ,ρ
j =

(last i(ξ
[[(i,x)]]µ,ρ
i)↓ j). Thus, µj,ξ

[[(j,v)]]µ,ρ
j �j ϕ, i.e. µ,ρ� (j,v) :ϕ. Furthermore, as

last j(ξ
[[(j,v)]]µ,ρ
j)= last j((last i(ξ

[[(i,x)]]µ,ρ
i)↓ j))= last i(ξ

[[(i,x)]]µ,ρ
i), then µ,ρ� (i,x)�� (j,v).

The proof for (¬©) is similar. Let us now turn to the rules for synchronization.

(Evt): Assume thatµ,ρ� (i,x)�� (j,y). By definition, ξ
[[(i,x)]]µ,ρ
i �=ξ0

i =∅. Clearly, then, [[(i,x)]]µ,ρ �=
0 and therefore [[(i,x)]]µ,ρ> [[(i,0)]]µ,ρ=0. Hence, µ,ρ� (i,0)< (i,x).

(Order): Assume µ,ρ�si1 ��si2 ,si2<s′
i2
,s′

i2
��si3 ,si3<s′

i3
,...,s′

ip
��si2 . It follows that

[[si1]]µ,ρ,[[s′
i1
]]µ,ρ,[[si2]]µ,ρ,[[s′

i2
]]µ,ρ,...,[[sip]]µ,ρ,[[s′

ip
]]µ,ρ �=∅, and also [[si2]]µ,ρ<

[[s′
i2
]]µ,ρ,...,[[sip]]µ,ρ< [[s′

ip
]]µ,ρ. Hence, last i1 (ξ

[[si1]]µ,ρ
i1

)= last i2 (ξ
[[si2]]µ,ρ
i2

)< last i2 (ξ
[[s′

i2
]]µ,ρ

i2
)=

···= last ip (ξ
[[sip]]µ,ρ
ip

)< last ip (ξ
[[s′

ip
]]µ,ρ

ip
)= last i1 (ξ

[[s′
i1

]]µ,ρ
i1

). Since < is a partial order of global

causality, we have last i1 (ξ
[[si1]]µ,ρ
i1

)< last i1 (ξ
[[s′

i1
]]µ,ρ

i1
), which implies [[si1]]µ,ρ< [[s′

i1
]]µ,ρ.

Therefore, µ,ρ�si1<s′
i1

.

The soundness of the remaining rules is straightforward. �

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1269 1245–1279

Labelled Tableaux for DTL 1269
(i,0) :G◦(©j[�]⇒©j[X©k[�]])
(j,0) :G◦(©k[�]⇒©k[X©i[�]])

(i,vi) :¬(©j[�]⇒F©k[�])
¬⇒

(i,vi) :©j[�]
(i,vi) :¬F©k[�]

©j

(j,vj) :�
(i,vi)�� (j,vj)

∧:G◦

(i,0) :©j[�]⇒©j[X©k[�]]
(i,0) :G(©j[�]⇒©j[X©k[�]])

�����������������
Pos

�����������������������������������

(i,vi)= (i,0)

Cong

(i,0)< (i,vi)

G

(i,vi) :©j[�]⇒©j[X©k[�]]

 ⇒
������������������

(i,vi) :©j[�]⇒©j[X©k[�]]

(i,vi) :¬©j[�]

Abs

(i,vi) :©j[X©k[�]]
©j

T2 T2

closed

(j,v′
j) :X©k[�]

(i,vi)�� (j,v′
j)

X

(j,v′
j +1) :©k[�]

©k

(k,vk) :�
(j,v′

j +1)�� (k,vk)

∧:G◦

(j,0) :©k[�]⇒©k[X©i[�]]
(j,0) :G(©k[�]⇒©k[X©i[�]])

�����������������
Pos

�����������������

(j,v′
j)= (j,0)

Succ+Cong

(j,0)< (j,v′
j)

Mon

(j,0)< (j,v′
j +1)

G

(j,0)< (j,v′
j +1)

(j,v′
j +1) :©k[�]⇒©k[X©i[�]]

�������������� ⇒
�����������������

T1 T1

(j,v′
j +1) :¬©k[�]

Abs

(j,v′
j +1) :©k[X©i[�]]

©k

closed

(k,v′
k) :X©i[�]

(j,v′
j +1)�� (k,v′

k)

Sym+Trans+Self

(k,vk)= (k,v′
k)

X

(k,v′
k +1) :©i[�]

©i

(i,v′
i) :�

(k,v′
k +1)�� (i,v′

i)

Order+Succ

(i,vi)< (i,v′
i)

¬F

(i,v′
i) :¬©k[�]

Sym+¬©k

(k,v′
k +1) :¬�

Abs:¬�

closed

Figure 13. Tableau for {@i[©j[�]⇒©j[X©k[�]]],@j[©k[�]⇒©k[X©i[�]]]}�DTL @i[©j[�]⇒
F©k[�]]

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1270 1245–1279

1270 Labelled Tableaux for DTL

Figure 14. A life-cycle for Example 15

4.3 Completeness

We can now prove the completeness of the T system. The proof follows the lines taken above to
show the completeness of Ti.

Proposition 17

T is complete, that is, a set of global judgements � without Skolem functions is satisfiable if and
only if there is a T -tableau for � with an open branch.

Proof. Once again, if there is no open tableau for �, then by Proposition 16, � is not satisfiable.
Hence, let us assume that we have an open tableau for � and let � be the set of judgements that
appear in an open branch.

1. Let Ai be the set of linear constraints extracted from � involving agent i. By Proposition 8,
each of these sets is satisfiable and these sets do not interact with one another. Hence, we can
extract an assignment ρ on label variables satisfying all linear constraints.

2. For each i∈ Id, let Fi ={(i,ρi(x))|(i,x) :ϕ∈� and ρi(x)>0} and F =⋃
i∈Id Fi. Define≈⊆F ×F

to be the reflexive closure of the relation such that (i,ρi(x))≈ (j,ρj(y)) if (i,x)�� (j,y)∈�. The
rules (Sym) and (Trans) ensure that ≈ is an equivalence relation. Let E =F/≈ and Ei ={e∈
E |e∩Fi �=∅}. For every i∈ Id, define ≤i⊆Ei ×Ei to be the relation such that e≤i e′ if there
are (i,n),(i,n′)∈Fi such that (i,n)∈e, (i,n′)∈e′, and n≤n′, on the natural numbers. It is not
difficult to see that, with this construction, 〈Ei,≤i〉 is a local life-cycle (see Proposition 11 for
details). Note that for every e∈E, using (Self), |e∩Fi|≤1. This means that there is at most one
local event from each individual in each global event e. Therefore, rule (Order) guarantees
that the induced global causality relation ≤ is indeed a partial order.
Let µ=〈λ,σ〉, where each λi =〈Ei,≤i〉 and σi are defined as in the local case.

3. Finally, we show that µ and ρ satisfy every judgement in �. The proof, by induction, follows
exactly the same pattern as the one for the local case: showing that ρi(x)=[[(i,x)]]µ,ρ for every
label x. We focus on the new judgements.
Assume that (i,x) :©j[ϕ]∈�. Then, by rule (©), (j,v) :ϕ∈� and (i,x)�� (j,v)∈�. By the

induction hypothesis, µ,ρ� (j,v) :ϕ, i.e. µj,ξ
[[(j,v)]]µ,ρ
j �j ϕ. Moreover, we also know that

[[(i,x)]]µ,ρ= (i,ρi(x))≈ (j,ρj(v))=[[(j,v)]]µ,ρ. Thus, last i(ξ
[[(i,x)]]µ,ρ
i)= last j(ξ

[[(j,v)]]µ,ρ
j) and so it

follows that (last i(ξ
[[(i,x)]]µ,ρ
i)↓j)= (last j(ξ

[[(j,v)]]µ,ρ
j)↓j)=ξ[[(j,v)]]µ,ρ

j . Henceµj,(last i(ξ
[[(i,x)]]µ,ρ
i)↓

j)�j ϕ. This allows us to conclude that µ,ξ
[[(i,x)]]µ,ρ
i �i ©j[ϕ], that is, µ,ρ� (i,x) :©j[ϕ].

Assume that (i,x) :¬©j[ϕ]∈�. If there is no (j,y) such that (i,x)�� (j,y)∈� then [(i,ρi(x))] �∈Ej.

Henceµi,ξ
[[(i,x)]]µ,ρ
i ��i ©j[ϕ], which implies thatµ,ρ� (i,x) :¬©j[ϕ]. Assume now that (i,x)��

(j,y)∈�. Then, by rule (¬©), (j,y) :¬ϕ∈� and, by the induction hypothesis, µ,ρ� (j,y) :¬ϕ.
By an argument similar to the above, we may conclude that µ,ρ� (i,x) :¬©j[ϕ].

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1271 1245–1279

Labelled Tableaux for DTL 1271

Assume that (i,x)�� (j,y)∈�. Rule (Evt) guarantees that both [[(i,x)]]µ,ρ>0 and [[(i,y)]]µ,ρ>
0, thus yielding that (i,[[(i,x)]]µ,ρ)≈ (j,[[(i,y)]]µ,ρ). Hence, we have that last i(ξ

[[(i,x)]]µ,ρ
i)=

last j(ξ
[[(i,y)]]ρ
j), since both take precisely the value of their equivalence class, and so µ,ρ�

(i,x)�� (j,y). �
As a consequence, we may reason deductively about entailment in DTL.

Corollary 18

Given 	∪{@i[ϕ]}∈LDTL, 	�DTL @i[ϕ] if and only if every exhausted T -tableau for {(j,0) :G◦ψ |
@j[ψ]∈	}∪{(i,v) :¬ϕ} is closed.

5 A detailed example

In this section, we formalize and reason about a simplified version of a two-phase commit protocol
from [33], used to commit a transaction in a distributed system. In this protocol, one process acts
as the coordinator and works with multiple subordinates. We designate the coordinator by C and
assume that there are two subordinates, A and B. The behaviour of the three agents is depicted as
transition diagrams in Figures 15 and 16. The commit protocol begins when the coordinator informs
her subordinates that she is starting the protocol and that they should prepare to commit. She does this
by executing an action (denoted by prep) that is synchronized with the actions of the subordinates
(denoted by req). When a subordinate receives the commit request, he checks if he is ready to
commit. When he is ready, he sends a message to the coordinator (reply) informing her of this. The
corresponding replyA or replyB action is triggered in the coordinator. The protocol ends when the
coordinator receives the replies from both subordinates.

We begin by introducing the distributed signature �=〈Id,{Propi}i ∈ Id〉 including the proposi-
tional symbols used to construct a model of the states of the processes:

• Id ={A,B,C}
• PropA =PropB ={work,pend}
• PropC ={active,gotA,gotB}

We can then define the transition diagram states using the following abbreviations:

• idle≡ (¬active)∧(¬gotA)∧(¬gotB)
• waitAB ≡active∧(¬gotA)∧(¬gotB)
• waitA ≡active∧(¬gotA)∧gotB
• waitB ≡active∧gotA∧(¬gotB)
• done≡active∧gotA∧gotB

Since there are only five states, we will also employ the following constraints:

• gotA⇒active
• gotB⇒active

Similarly, we define the subordinates’ states as:

• free≡work∧(¬pend)
• busy≡work∧pend
• ready≡ (¬work)

and employ the following state constraint:

• pend⇒work

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1272 1245–1279

1272 Labelled Tableaux for DTL

idle

prep
��

waitAB
replyA

�����������

replyA
replyB

��

replyB

�����������

waitB

replyB ����������� waitA

replyA�����������

done

Figure 15. Transition diagram for the coordinator

free

req
��

busy

reply
��

ready

Figure 16. Transition diagram for the subordinates

DTL can be extended with actions (as we do, for instance, in [5]), but we do not need them here as
we can model the occurrence of an action by a process changing from one state to another. To model
the coordinator’s actions, we define the following abbreviations:

• prep≡waitAB∧Y idle
• replyA ≡gotA∧Y(¬gotA)
• replyB ≡gotB∧Y(¬gotB)

Note that the replyA and replyB actions may occur independently or even simultaneously. With
these definitions, we have not yet fully formalized the transitions in Figure 15. In particular, the
states satisfying gotA are waitB and done, whereas the states satisfying ¬gotA are idle, waitAB and
waitA. Therefore, replyA specifies a possible transition from any of the states idle, waitAB and waitA
to either waitB or done. Note that this allows more transitions than those in our transition diagram
and hence we further restrict them as follows:

• ∗⇒ idle
• idle⇒(idle W prep)
• waitAB⇒(waitABW (replyA∨replyB))
• waitA⇒(waitAW replyA)
• waitB⇒(waitBW replyB)
• gotA⇒(G gotA)
• gotB⇒(G gotB)

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1273 1245–1279

Labelled Tableaux for DTL 1273

Similarly, we define the subordinates’ actions as follows:

• req≡busy∧Y free
• reply≡ ready∧Y busy

As above, we restrict these to the transitions in Figure 16 with the propositions:

• pend⇒work
• ∗⇒free
• free⇒(free W req)
• busy⇒(busy W reply)
• ready⇒(G ready)

Finally, the synchronization is specified as follows:

• @C[prepA req]
• @C[prepB req]
• @A[replyC replyA]
• @B[replyC replyB]

With respect to this specification, we prove the property:

{@A[req⇒(F reply)],@B[req⇒(F reply)]}�@C[prep⇒(F done)].

This property expresses that, under certain fairness assumptions on the subordinates (given by the
two premises), if the coordinator begins the commit protocol, she will eventually receive a reply from
both subordinates. The tableau for this proof is depicted in Figures 17–20. In Figure 17, we present the
first part of the tableau, focusing on local reasoning for the coordinator C (where the leftmost branch
is identical to the branch on the right and hence we omit it). This part of the tableau ends with the
interaction between the coordinator C and the subordinates A and B. As before, we systematically use
boxes to avoid repeating sub-tableaux in the figures. The reasoning depicted in T1 can be repeated on
the leftmost branch, by means of a straightforward application of the rule (Cong). A similar comment
applies also to the sub-tableau T2, in Figure 18, where we depict local reasoning for the subordinate
A, triggered by the interaction with the coordinator. Note that we write ∧: replyA to abbreviate the
unfolding of the definition of replyA and the split of the two conjuncts. This part of the tableau ends
with interaction between A and C. A similar flow of reasoning applies to the subordinate B, which we
refrain from showing. In any case, both must be considered in subsequent reasoning, where they are
denoted by Figure 18A and B, their corresponding variables being decorated with one prime (like v′

C)
or two primes (like v′′

C), respectively. In Figures 19 and 20, we show the last part of the tableau, which
is a mixture of local reasoning for the coordinator C and of the interaction between the subordinates
and the coordinator. In these figures, we write, for instance, T3[B] to denote the sub-tableau T3[A]
with A replaced by B. Moreover, we also write ¬∧:done to abbreviate the unfolding of the definition
of done and the split of the three resulting disjuncts.

6 Related and future work

We have given the first sound and complete tableaux system for DTL. To do so, we first gave a system
for reasoning locally (in LTL) at each agent and afterwards we combined the local systems into one
for global reasoning.

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1274 1245–1279

1274 Labelled Tableaux for DTL

(A,0) :G◦(req⇒(F reply))
(A,0) :G◦(reply⇒©C[replyA])

(B,0) :G◦(req⇒(F reply))
(B,0) :G◦(reply⇒©C[replyB])

(C,0) :G◦(prep⇒©A[req])
(C,0) :G◦(prep⇒©B[req])
(C,0) :G◦(gotA⇒ active)
(C,0) :G◦(gotB⇒ active)

(C,0) :G◦(gotA⇒ G gotA)
(C,0) :G◦(gotB⇒ G gotB)
(C,vC) :¬(prep⇒ F done)

¬⇒
(C,vC) :prep

(C,vC) :¬F done

∧:G◦

(C,0) :prep⇒©A[req]
(C,0) :G(prep⇒©A[req])

��������������
Pos

��������������

(C,0)= (C,vC)

Cong

(C,0)< (C,vC)

G

(C,vC) :prep⇒©A[req] (C,vC) :prep⇒©A[req]

���������������
⇒

��������������

T1 (C,vC) :¬prep

Abs

(C,vC) :©A[req]

∧:G0

T1

Closed

(C,0) :prep⇒©B[req]
(C,0) :G(prep⇒©B[req])

G

(C,vC) :prep⇒©B[req]

��������������
⇒

������������

(C,vC) :¬prep

Abs

(C,vC) :©B[req]
©

Closed

(A,vA) : req
(C,vC)�� (A,vA)

©

(B,vB) : req
(C,vC)�� (B,vB)

Fig. 18

Figure 17. Local reasoning for agent C

A number of tableaux and other deductive systems have been given for different versions of
temporal logic, e.g. [3, 14–16, 23]. For LTL, in particular, many of the proposed systems are based
on the Fischer-Ladner approach [13, 27, 37] and take advantage of the fixedpoint definitions of the
temporal operators to build a graph for checking the satisfaction of eventualities [17, 20, 31, 32, 37].
As noted in the introduction, this approach leads to a decision procedure based on loop checking in
the graph.

Other systems, such as ours, use labels to naturally capture the logics’semantics. There are labelled
systems for different temporal logics [7, 18, 19, 24, 29, 30, 35]. However, these are not for full

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1275 1245–1279

Labelled Tableaux for DTL 1275

Fig. 17

∧:G◦
(A,0) : req⇒(F reply)

(A,0) :G(req⇒(F reply))

�������������
Pos

�������������

(A,0)= (A,vA)

Cong

(A,0)< (A,vA)

G

(A,vA) : req⇒(F reply) (A,vA) : req⇒(F reply)

�������������
⇒

�������������� T2

T2 (A,vA) :¬req

Abs

(A,vA) :F reply

F

Closed

(A,v′
A) : reply

(A,vA)< (A,v′
A)

DTrans

(A,0)< (A,v′
A −1)

Mon

(A,0)< (A,v′
A)

∧:G◦

(A,0) : reply⇒©C[replyA]
(A,0) :G(reply⇒©C[replyA])

G

(A,v′
A) : reply⇒©C[replyA]

�������������
⇒

�������������

(A,v′
A) :¬reply

Abs

(A,v′
A) :©C[replyA]

©

Closed

(C,v′
C) : replyA

(A,v′
A)�� (C,v′

C)

∧:replyA

(C,v′
C) :gotA

(C,v′
C) :Y¬gotA

Fig. 19

Figure 18. Local reasoning for agent A

discrete LTL. In this respect, the systems closest to ours are [7, 18, 30] (P.H. Schmitt and J. Goubault-
Larrecq, Unpublished data). The [18] considers time points as labels for formulas, whereas [7, 30]
consider time intervals. Schmitt and Goubault-Larrecq employ constraint graphs to reason about
completeness of their rules where labels are time intervals, similar to what we did for our time-point
labels. Most importantly, different fragments of the logic are considered in the different systems to
cope with the difficulties of the full logic, e.g. the difficulties of formalizing rules for until and since.
The manuscript (P.H. Schmitt and J. Goubault-Larrecq, Unpublished data) is an attempt to give a

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1276 1245–1279

1276 Labelled Tableaux for DTL

Fig. 18[A]
Fig. 18[B]

Order

(C,vC)< (C,v′
C)

¬F

(C,v′
C) :¬done

������������� ¬∧:done

�������������

(C,v′
C) :¬active (C,v′

C) :¬gotA

Abs

(C,v′
C) :¬gotB

Order

Fig. 20 [A] Closed (C,vC)< (C,v′′
C)

¬F

(C,v′′
C) :¬done

���

������������� ¬∧:done

�����������

(C,v′′
C) :¬active (C,v′′

C) :¬gotA

�������������
Tr��

�������������
(C,v′′

C) :¬gotB

Abs

Fig. 20 [B] (C,v′
C)< (C,v′′

C)

∧:G◦

(C,v′
C)= (C,v′′

C)

Cong+Abs

(C,v′′
C)< (C,v′

C)

∧:G◦

Closed

(C,0) :gotA⇒G gotA
(C,0) :G(gotA⇒G gotA)

�������������������

Pos

��
��

��
��

��
��

��
��

��
�

Closed

(C,0) :gotB⇒G gotB
(C,0) :G(gotB⇒G gotB)

T3 [B]

(C,0)= (C,v′
C)

Cong

(C,0)< (C,v′
C)

G

T3 [A]

(C,v′
C) :gotA⇒G gotA (C,v′

C) :gotA⇒G gotA

������������� ⇒
�������������

T4

T4 (C,v′
C) :¬gotA

Abs

(C,v′
C) :G gotA

G

Closed (C,v′′
C) :gotA

Abs

Closed

Figure 19. Reasoning about the last interaction

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1277 1245–1279

Labelled Tableaux for DTL 1277

Fig. 19

DTrans+Mon

(C,0)< (C,v′
C)

∧:G◦

(C,0) :gotA⇒active
(C,0) :G(gotA⇒active)

G

(C,v′
C) :gotA⇒active

����������� ⇒
�����������

(C,v′
C) :¬gotA

Abs

(C,v′
C) :active

Abs

Closed Closed

Figure 20. Reasoning about the state constraints of the coordinator

labelled tableaux system for the full logic, but unfortunately it has never been completed. None of
these provides a decision procedure. Note also that [19, 24, 29] include tableaux-based decision
procedures for versions of temporal logic without since and until, or with until but over general (not
necessarily discrete) time, thus avoiding the problems of induction.

We have designed our systems with the aim of providing tableaux for full DTL, including past.
However, it is interesting to note that our system for local reasoning seems to be closely related to
the natural deduction system for future-time LTL of [4], which was developed in parallel with our
work. We have begun investigating whether similar rules would also be suited for the extension to
global reasoning in both past-time and future-time DTL and plan to report on this soon.

As we remarked above, we chose not to address decidability in the context of our tableaux system
and have thus given an infinite closure rule that captures eventualities that are always delayed. If one
really wants to hard-wire loop checking in our system, then exploring different rules, for instance
those of [4], may be interesting. It may be possible here to capitalize on the constraint graphs we
used in our tableaux system. Actually, in the finite case, our Lemma 8 is well-known to amount to
checking that there are no cycles with negative weight in the graph [26], which can be done efficiently
using the Bellman–Ford algorithm [9].

Another direction for future work will be to extend our system to the distributed temporal protocol
logic DTPLthat we have devised to reason about models and properties of security protocols. In [5, 6],
we have applied DTPL in two different ways: first to verify (or refute) that security protocols provide
claimed security properties, and second to prove metatheoretic properties of protocol models that
can be used to simplify the verification of protocols or to search for attacks against them. All of
these results have been obtained directly by semantic arguments. Hence, extending the tableaux
system given here to DTPL will allow us to formalize, and possibly implement, (meta)reasoning
about security protocols. We will report on this in a forthcoming paper.

Acknowledgements

We thank Matthias Schmalz and the anonymous referees for their useful comments on a draft of this
article.

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1278 1245–1279

1278 Labelled Tableaux for DTL

Funding

Hasler Foundation, ManCom project 2071; FCT and EU FEDER via the project KLog
PTDC/MAT/68723/2006 of SQIG-IT; FP7-ICT-2007-1 Project no. 216471, ‘AVANTSSAR:
Automated Validation of Trust and Security of Service-oriented Architectures’ (www.avantssar.eu).

References
[1] D. Basin, C. Caleiro, J. Ramos and L. Viganò. A labelled tableaux system for the Distributed

Temporal Logic DTL. In Proceedings of Temporal Representation and Reasoning (TIME 2008),
pp. 101–109. IEEE Computer Society Press, 2008.

[2] E. Best and C. Fernández C. Nonsequential Processes – A Petri Net View. Springer, 1988.
[3] L. Bolc and A. Szałas, eds. Time and Logic: A Computational Approach. UCL Press Ltd,

1995.
[4] A. Bolotov, O. Grigoriev and V. Shangin. Automated natural deduction for propositional linear-

time temporal logic. In Proceedings of Temporal Representation and Reasoning (TIME 2007),
pp. 47–58. IEEE Computer Society Press, 2007.

[5] C. Caleiro, L. Viganò and D. Basin. Metareasoning about security protocols using distributed
temporal logic. In Proceedings of Automated Reasoning for Security Protocol Analysis
(ARSPA’04), ENTCS 125(1), pp. 67–89, 2005.

[6] C. Caleiro, L. Viganò and D. Basin. Relating strand spaces and distributed temporal logic for
security protocol analysis. Logic Journal of the IGPL, 13, 637–664, 2005.

[7] S. Cerrito and M. Cialdea Mayer. Labelled tableaux for propositional linear time logic over
finite frames. In Labelled Deduction, D. Basin, M. D’Agostino, D. M. Gabbay, S. Matthews,
and L. Viganò, eds. Kluwer Academic Publishers, 2000.

[8] J. Clarke, M. Edmund, O. Grumberg and D. A. Peled. Model Checking. MIT Press, 1999.
[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein. Introduction to Algorithms, 2nd edn.

MIT Press, 2001.
[10] M. D’Agostino, D. M. Gabbay, R. Hähnle and J. Posegga, eds. Handbook of Tableau Methods.

Kluwer Academic Publishers, 1999.
[11] H. -D. Ehrich and C. Caleiro. Specifying communication in distributed information systems.

Acta Informatica, 36, 591–616, 2000.
[12] H. -D. Ehrich, M. Kollmann and R. Pinger. Checking object system designs incrementally.

Journal of Universal Computer Science, 9, 106–119, 2003.
[13] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs. Journal of

Computer and System Sciences, 18, 194–211, 1979.
[14] M. Fisher. Implementing temporal logics: tools for execution and proof. In Proceedings of

Computational Logic in Multi-Agent Systems (CLIMA IV), Lecture Notes in Artifical Intelligence
3900, pp. 129–142. Springer, 2006.

[15] M. Fisher, D. M. Gabbay and L. Vila, eds. Handbook of Temporal Reasoning in Artificial
Intelligence I. Elsevier, 2005.

[16] R. Gore. Tableau methods for modal and temporal logics. In Handbook of Tableau Methods,
D’Agostino, D. M. Gabby, R. Hahnle and J. Posegga, eds. Kluwer Academic Publishers,
1999.

[17] G. D. Gough. Decision procedures for temporal logic. Technical Report UMCS-89-10-1.
Department of Computer Science, University of Manchester, 1984.

[13:10 19/11/2009 exp022.tex] LogCom: Journal of Logic and Computation Page: 1279 1245–1279

Labelled Tableaux for DTL 1279

[18] R. Hähnle and O. Ibens. Improving temporal logic tableaux using integer constraints. In
Proceedings of International Conference on Temporal Logic (ICTL’94), Lecture Notes in
Artifical Intelligence 827. Springer, 1994.

[19] A. Indrzejczak. A labelled natural deduction system for linear temporal logic. Studia Logica,
75, 345–376, 2003.

[20] O. Lichtenstein and A. Pnueli. Propositional temporal logics: decidability and completeness.
Logic Journal of the IGPL, 8, 55–85, 2000.

[21] K. Lodaya, R. Ramanujam and P. Thiagarajan. Temporal logics for communicating sequential
agents: I. International Journal of Foundations of Computer Science, 3, 117–159, 1992.

[22] K. Lodaya and P. Thiagarajan. A modal logic for a subclass of event structures. In Proceedings
of International Colloquium on Automata, Languages and Programming (ICALP 14), Lecture
Notes in Computer Science 267, pp. 290–303. Springer, 1987.

[23] Z. Manna and A. Pnueli, eds. Temporal Verification of Reactive Systems: Safety. Springer, 1995.
[24] M. Marx, S. Mikulas and M. Reynolds. The mosaic method for temporal logics. In Proceedings

of Tableaux’00, Lecture Notes in Artifical Intelligence 1847, pp. 324–340. Springer, 2000.
[25] D. Peled. All from one, one for all: on model checking using representatives. In Proceedings

of Computer Aided Verification (CAV’93), pp. 409–423. Springer, 1993.
[26] V. R. Pratt. Two easy theories whose combination is hard. Technical report, MIT, Cambridge,

1977.
[27] V. R. Pratt. A near-optimal method for reasoning about action. Journal of Computer and System

Sciences, 20, 231–254, 1980.
[28] R. Ramanujam. Locally linear time temporal logic. In Proceedings of IEEE Symposium on

Logic in Computer Science (LICS 11), pp. 118–127. IEEE Computer Society Press, 1996.
[29] M. Reynolds. The complexity of the temporal logic with ‘until’over general linear time. Journal

of Computer and System Sciences, 66, 393–426, 2003.
[30] P. H. Schmitt and J. Goubault-Larrecq. A tableau system for linear-TIME temporal logic. In

Proceedings of Tools and Algorithms for the Construction and Analysis of Systems (TACAS’97),
Lecture Notes in Computer Science 1217, pp. 130–144. Springer, 1997.

[31] S. Schwendimann. A new one-pass tableau calculus for PLTL. In Proceedings of Tableaux’98,
Lecture Notes in Artifical Intelligence 1397, pp. 277–291. Springer, 1998.

[32] R. Scott, M. Fisher and J. Keane. Parallel temporal tableaux. In Proceedings of Euro-Par’98,
Lecture Notes in Artifical Intelligence 1470, pp. 852–861. Springer, 1998.

[33] A. S. Tanenbaum and M. van Steen. Distributed Systems - Principles and Paradigms, 2nd edn.
Prentice Hall, 2006.

[34] P. S. Thiagarajan. A trace consistent subset of PTL. In Proceedings of CONCUR’95, Lecture
Notes in Computer Science 962, pp. 438–452. Springer, 1995.

[35] L. Viganò and M. Volpe. Labelled natural deduction systems for a family of tense logics. In
Proceedings of Temporal Representation and Reasoning (TIME 2008), pp. 118–126. IEEE
Computer Society Press, 2008.

[36] G. Winskel. Event structures. In Petri Nets: Applications and Relationships to Other Models of
Concurrency, W. Brauer, W. Reisig and G. Rozenberg, eds, Lecture Notes in Computer Science
255, pp. 325–392. Springer, 1987.

[37] P. Wolper. The tableau method for temporal logic: an overview. Logique et Analyse, 110,
119–136, 1985.

Received 3 February 2008

	Labelled Tableaux for Distributed Temporal Logic
	1 Introduction
	2 DTL
	3 Tableaux for local reasoning
	4 Tableaux for global reasoning
	5 A detailed example
	6 Related and future work

