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ABSTRACT
Using analytic calculations and N-body simulations we show that in constant density (har-

monic) cores, sinking satellites undergo an initial phase of very rapid (super-Chandrasekhar)

dynamical friction, after which they experience no dynamical friction at all. For density pro-

files with a central power law profile, ρ ∝ r−α , the infalling satellite heats the background

and causes α to decrease. For α < 0.5 initially, the satellite generates a small central constant

density core and stalls as in the α = 0 case.

We discuss some astrophysical applications of our results to decaying satellite orbits, galactic

bars and mergers of supermassive black hole binaries. In a companion paper we show that a

central constant density core can provide a natural solution to the timing problem for Fornax’s

globular clusters.

Key words: galaxies: dwarf – galaxies: kinematics and dynamics.

1 I N T RO D U C T I O N

In a seminal paper, Chandrasekhar (1943) showed that a massive

particle moving through an infinite, homogeneous and isotropic

background of lighter particles experiences a force of dynamical

friction given by

Mc

dv

dt
= −4πG2 M2

c

v

|v|3 ln

(
bmax

bmin

)∫ |v|

0

M(v′) dv′, (1)

where Mc and v are the mass and velocity of the infalling particle,

M(v′) dv′ is the mass density of background objects with speeds

v′ → v′ + dv′, and bmax and bmin are the maximum and minimum

impact parameters for the encounters.1 From here on, we refer to

the massive infalling object as a ‘globular cluster’ (GC) and the

background of lighter particles as simply ‘particles’. However, we

could equally refer to, for example, a bar moving in a background

of stars and dark matter.

While equation (1) is only strictly valid for an infinite, homo-

geneous and isotropic background, it has been shown to work re-

markably well for satellites orbiting in spherical galaxies with more

�E-mail: justin@physik.unizh.ch
1Note that bmin → 0 can be achieved (see e.g. White 1976; Binney &

Tremaine 1987, p. 423), while bmax → ∞ cannot. This is because the deriva-

tion of equation (1) assumes an infinite background; bmax defines a scale on

which the infinite background should be truncated. This is often, reasonably,

taken to be the radius at which the mean density falls by a factor of 2 or so.

general background distributions2 (see e.g. White 1983; Bontekoe &

van Albada 1987; Zaritsky & White 1988; Cora, Muzzio & Vergne

1997). Such successes make equation (1) of great practical value.

But they beg the question: why has it been so successful, even when

it is used so far beyond its expected regime of validity? Are we miss-

ing important physical insight into the dynamical friction process in

spherical systems? Does Chandrasekhar fail to work well in some

situations?

In order to address some of these issues, Tremaine & Weinberg

(1984) (hereafter TW84) and Weinberg (1986) (hereafter W86) for-

mulated a perturbative theory of dynamical friction which could be

applied to spherical systems. Notice from equation (1), that most

of the dynamical friction originates from particles with large im-

pact parameters: it is the accumulation of many long range small
interactions which leads to most of the dynamical friction; not the

large-angle scattering of close encounters. This is why perturbative

methods can be used. TW84 and W86 consider a general, small,

perturbation to a single background particle; and then sum over

all particles in the system to obtain to total torque induced on the

perturber.

In Section 2, we will briefly summarize the essence of this per-

turbation method. For now, it is important to note the key assump-

tions in the method; and the key results. The two main assumptions

2 When corrected for velocity anisotropies, it has also been shown to work

well in aspherical systems (see e.g. Binney 1977; Statler 1991; Peñarrubia,

Just & Kroupa 2004).
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are: (i) that the perturbation is small and (ii) that the frequency of the

perturber changes with time, �s = �s(t), faster than the perturba-

tion can grow non-linear. For most potentials of interest this second

assumption is satisfied. The perturber (the GC) will lose angular

momentum to the background particles as a result of the dynamical

friction, and �s will then increase as the GC falls inwards.

Under the above assumptions, the perturbation method gives us

new physical insight into the dynamical friction problem. To the

order of the perturbation approximation, all of the torque comes

from background particles which are close to resonance with the

perturber. Non-resonant particles do not contribute to the friction at

all. This is a key difference between the perturbation solution and

that of equation (1). It suggests that if equation (1) is ever going to

fail, it would do so for background particle distributions which are

especially resonant.

In this paper, we describe such a superresonant potential: that of

the constant density (harmonic) core. For this special potential, all

particles and the perturber always move with constant angular fre-

quency, �. In this case, perturbation methods can no longer be used.

This is because �s = constant; assumption (ii), above, is violated;

and the perturbations, which are always driven at the same resonant

frequency, can grow indefinitely.3

To cope with this special case, we develop a non-perturbative an-

alytic model using a 3D driven harmonic oscillator. This essentially

generalizes an earlier result derived by Kalnajs (1972). Using our

analytic model and N-body simulations, we show that in constant

density cores, equation (1) fails. Sinking satellites undergo an initial

phase of very rapid (super-Chandrasekhar) dynamical friction, after

which they experience little or no dynamical friction at all.

Weinberg & Katz (2005) and Weinberg & Katz (2006), find simi-

lar stalling results for galactic bars (which may be thought of as two

diametrically opposed satellites) inside constant density cores.

Constant density cores have recently become interesting in as-

trophysics. Observations of galaxies on all scales from dwarf

spheroidals in the Local Group, up to giant spirals suggest that

their central dark matter density has such a constant density core

on the scale of ∼1 kpc (see e.g. Binney & Evans 2001; Borriello &

Salucci 2001; de Blok et al. 2001; Kleyna et al. 2003); but see also

Hayashi et al. (2004) and Rhee et al. (2004), for a discussion of the

potential systematic errors in such observations. If cores are present

at the centre of galaxies, their resonant properties can significantly

affect the dynamics. Bars can be much longer lived,4 while infalling

satellites and GCs will stall at the core radius. In a companion pa-

per, Goerdt et al. (2006), we investigate this last idea further (see

also Hernandez & Gilmore 1998; Sanchez-Salcedo, Reyes-Iturbide

& Hernandez 2006). The Fornax dwarf spheroidal galaxy in the

Local Group has 5 GCs at a range of projected radii. Application

of Chandrasekhar dynamical friction suggests the clusters should

rapidly fall to the centre of Fornax from their current positions; fine

tuning is required to have them arrive at their present positions at

the current epoch. In Goerdt et al. (2006) we show that a small core

of radius greater than 0.24 kpc can solve this problem by causing

some, or all, of Fornax’s GC to stall.

3 This is true for any perturbative scheme (e.g. Colpi, Mayer & Governato

1999).
4 Debattista & Sellwood (1998) and Debattista & Sellwood (2000) show that

low central dark matter densities lead to bars which remain fast. Here we

discuss the extreme case of constant density cores, in which we show that

bars would not slow down at all. This agrees well with earlier findings by

Weinberg & Katz (2005) and Weinberg & Katz (2006).

This paper is organized as follows. In Section 2 we briefly re-

view the perturbative method for calculating dynamical friction and

demonstrate that it fails for the special case of a constant density

core. We show that insight can be gained from a non-perturbative

approach by modelling the system as a driven harmonic oscilla-

tor. In Section 3 we describe our semi-analytic and full N-body

simulations. In Section 4, we test our analytic model against these

high-resolution (∼107 particles) simulations of satellites sinking in

harmonic cores. We demonstrate that such high resolution is re-

quired in order to reduce numerical precession of the GC orbit plane,

but that near-converged results for the GC orbit can be obtained at

lower resolution with O(106 particles). We discuss the importance

of the initial GC orbit, mass, the underlying gravitational potential

and the particle–particle interactions. Finally, in Section 5 we briefly

discuss the implications of these results and present our conclusions.

2 A NA LY T I C R E S U LT S

2.1 A brief review of the perturbation method

The essence of the TW84 perturbative approach to dynamical fric-

tion can be understood in the following way: consider a spherical

potential, �(r), to which a small non-axisymmetric perturbation,

�s, is applied. The perturbation rotates with angular frequency �s.

In this case, the equations of motion of a test particle moving in a

frame stationary with respect to the perturbation are given by

r̈ + ∇[� + �s] + 2�s × ṙ + �s × (�s × r ) = 0, (2)

where the third and fourth terms are the familiar coriolis and cen-

trifugal inertial forces, respectively.

The problem is symmetric about the plane containing the per-

turbation, so it makes sense to work in cylindrical coordinates:

r = r (R, φ, z). Equation (2) then reduces to

R̈ − Rφ̇2 = −∂[� + �s]

∂R
+ 2Rφ̇�s + �2

s R, (3)

Rφ̈ + 2Ṙφ̇ = − 1

R

∂�s

∂φ
− 2Ṙ�s, (4)

and equation (4) can be rearranged to give

d

dt
(R2φ̇) = J̇z = −∂�s

∂φ
− 2R Ṙ�s, (5)

where Jz is the z-component of the specific angular momentum of

the test particle and we have introduced the notation �s = |�s|; and

similarly for other vectors.

In order to solve equation (5), we must now specify the pertur-

bation, �s(R, φ), and the angular motion of the test particle, φ(t).
While it is not necessary in general, it also greatly simplifies the

analysis to assume that Ṙ = 0, which we do from here on. With

this assumption, we can still illustrate usefully the key points of the

perturbation method.

We consider the perturbation: �s = Aeimφ . This is instructive since

it is then one component of a more general Fourier series sum. We

can find φ(t) if we assume that the perturbation is small. The usual

trick is to suppose that over short times the particle trajectory is

the same as in the unperturbed case. For the unperturbed case, �s,

�s → 0 and equation (5) gives φin = �∗t + constant; where the

subscript in reminds us that this is now with respect to an inertial

frame. Transforming φin to the non-inertial frame rotating with �s,

gives φ = (�∗ − �s)t + constant.

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 373, 1451–1460
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Equation (5) may now be integrated to give

Jz = −Re

{
A exp[im(�∗ − �s)t]

(�∗ − �s)

}
− R2�s. (6)

It is clear from equation (6) that Jz just oscillates with no time

averaged change5 (i.e. no dynamical friction) unless �∗ =�s. At this

resonant frequency the test particle appears to have a pathological

specific angular momentum. In practice this just means that the

approximation that the perturbation is small fails.

TW84 show that if �s = �s(t), then this problem can be solved.

Provided �s changes faster than the time taken for the perturbation to

grow into the non-linear regime, then we can sum over all of the res-

onant interactions from the background particles and calculate the

resulting torque on the perturber.6 There are two regimes of interest:

fast and slow passages through resonance. The fast passage through

resonance recovers the Lynden-Bell & Kalnajs (1972, hereafter

LBK) torque formula. This is the perturbation theory equivalent

of equation (1): it describes the dynamical friction. For slow pas-

sages through resonance, TW84 find quite different behaviour. The

torque is stronger than in the LBK case, reversible, and can lead to

the capture (gravitational binding) of background particles by the

perturber. These differences led TW84 to refer to this as dynamical
feedback, rather than friction. We return to this effect in Section 2.2.

In this paper we discuss a special potential of interest generated

by a constant density core. For this special case, the divergence in

equation (5) persists because �s stays fixed. The potential for a

constant density core is the harmonic potential given by

� = �2

2
r 2 + constant, (7)

where � is the angular frequency of test particles (including the GC;

�s = �) in the harmonic core.

The equation of motion for the GC perturber moving in the har-

monic potential is given by

r̈ c + ∇� = 0 = r̈ c + �2r c, (8)

which may be trivially solved to give the general solution

r c = [X sin(�t + φx ), Y sin(�t + φy)]. (9)

From equation (9) we can see that orbits in harmonic potentials

are of fixed relative phase angle, closed and of constant angular fre-

quency,�. This means that provided the potential remains harmonic,

any perturbation to the GC orbit – including dynamical friction and

loss of angular momentum – will not change � or �s = �. In other

words, �s 
= �s(t) and we can no longer apply perturbation theory

methods.

M. Weinberg (private communication) has made the valid point

that the perturber itself, and the non-spherically symmetric back-

ground distribution it induces, cause deviations from true harmony.

It may be possible to use a perturbative approach in this, more real-

istic, case.

2.2 A non-perturbative approach

Perturbation methods fail for the harmonic core. However, all is not

lost analytically. We can still gain much insight by writing down the

5 Recall that we have assumed that R = constant.
6 Note that there is now an extra term which should also be included in

equation (2): �̇ × r ; we assume that this is small.

equations of motion for the GC and a tracer background population,

and searching for stable solutions. As we shall show next, for the

special case of a harmonic potential plus point mass perturber (the

GC), solutions exist where the background particles rotate about

the GC on stable epicycles. Stable orbits mean no time averaged

angular momentum transfer and, therefore, no dynamical friction.

Such a model allows us to make firm qualitative (if not quantita-

tive) statements about what will happen when a GC is introduced

to an isotropic constant density core. Initially, particles will be in

equilibrium in the constant density core. As the GC approaches

the core, the system will need to rearrange itself and reach a new

equilibrium state. The non-linear interplay between the GC and the

background distribution during this rearrangement leads to a period

of enhanced, superresonant friction. After ∼1 dynamical time, the

distribution function of the background will now be the correct one

for the GC plus harmonic core, and dynamical friction will cease.

Note that this rearrangement may also be understood in terms of the

TW84 dynamical feedback discussed in Section 2.1.

Our model does not include the back-reaction of the test particles

on the GC, nor does it include the interaction between the back-

ground particles themselves. However, we find a good agreement

between our analytic model and full N-body simulations, which in-

clude the above effects, in Section 3. This suggests that our simple

model does capture the essential physics of the problem.

The analytic set-up is shown in Fig. 1. The infalling GC at a ra-

dius, r c is marked by the black circle and is a phase angle, α, away

from a given background particle at a radius, r p. We assume that

the underlying potential is always harmonic (given by equation 7);

the GC is well approximated by a point mass; and the background

potential is nailed down (this is reasonable provided that Mc �
Men where Men is the mass enclosed by the GC). Under these as-

sumptions, the equation of motion for a single background, massless

tracer, particle is given by

r̈ p + �2r p = F = G Mc(r c − r p)

|r c − r p|3
, (10)

where F is the specific force on the particle from the GC, G is the

gravitational constant and Mc is the mass of the GC.

We now search for stable solutions to equation (10) where the GC

orbit is unchanged by the background. Combining equations (8) and

(10) gives

r̈ d +
(

�2 − G Mc

|r d|3
)

r d = 0, (11)

where r d = r c − r p.

From equation (11), it is clear that stable solutions exist where the

background particles move on circular epicycles about the GC with

|r d| = constant. However, more general solutions may be found

by noting that equation (11) is spherically symmetric. Moving to

Figure 1. A schematic diagram of the analytic set-up. The infalling GC is

marked by the solid black circle. The GC and particle orbits are marked by

the grey ellipses. See text for further details.
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spherical polar coordinates, r d = (r , θ, φ), it is straightforward to

show that the θ and φ specific angular momenta are conserved:

Jθ = r 2θ̇ = constant; Jφ = constant. This is to be expected given

the symmetry of the problem. Equation (11) then reduces to

r̈ + d�eff

dr
= 0, (12)

�eff = �2r 2

2
+ G Mc

r
+ J 2

θ

2r 2
, (13)

where �eff is the effective potential.

From equation (12), we can see that in general, the background

particles move on epicycles about the GC. These epicycles will

not be closed, but they are quasi-periodic. Provided the distribution

function of these background particles is the correct equilibrium

distribution for the GC plus the harmonic core, there will be no time

averaged momentum exchange between the GC and the background,

and therefore no dynamical friction. The epicyclic orbits are stable,

as can be readily seen by considering ∂2�eff/∂r2.

The existence of stable analytic solutions is a very special property

of the harmonic potential; they exist because � = constant. In more

general potentials, � = �(r p) and the symmetry of equation (11)

is broken. This is an important issue. One can imagine a thought

experiment where a GC is held (artificially) on a fixed orbit in a

general spherical potential. After a few dynamical times, it will have

scattered the resonant background particles, reducing the torque

from the background to zero. It is important to stress that this is

quite different to the situation we have described in this paper. In the

above thought experiment, a tiny perturbation to the GC orbit (which

must in practice occur as a result of its self-consistent interaction

with the background) will expose the GC to an entirely new set of

resonant background particles: dynamical friction will not cease. In

our example, however, any perturbation to the GC orbit will not alter

its orbital frequency at all: the resonances will remain unchanged.

This is why our assumption, above, that the GC orbit is fixed is not

an important one for the harmonic potential, but would be for any

other potential. We test that this is indeed the case by relaxing the

assumption of a fixed GC orbit in Section 3.

We can use the above solution to calculate the final distribution

of background particles at equilibrium when the dynamical friction

ceases. The key point is that the final distribution will move on

stable epicycles about the GC. First, this means that we can expect

a density enhancement around the GC, and a depletion of particles

away from the GC. Secondly, we can expect a large depletion in

counterrotating particles with respect to the centre of the potential.

All particles, whether they move on corotating or counterrotating

epicycles have guiding centres which corotate with the GC. For

|r d| < |r c|, the radius of the epicyclic orbit is smaller than that of

the GC: none of these particles can counterrotate with respect to the

centre of the potential. For |r d| > |r c|, particles on counterrotating

epicycles can appear to counterrotate with respect to the centre of the

potential. These will be a small fraction of the total particles which

Table 1. Simulation labels and parameters. From left- to right-hand side the columns show the simulation label; a brief description (for more details see the

relevant subsection in Section 3); the initial GC orbit (see Section 3.3); the background gravitational potential; the simulation resolution; and the mass of the

GC (Mc). Parameters marked with a ∗ are allowed to vary. In Section 4.3, we measure the effect of changing γ on the NB3 simulation; in Section 4.2, we

measure the effect of changing Mc.

Simulation Description GC orbit Potential Resolution Mc

semi-analytic{c,e} Semi-analytic Fixed, {(c)irc., (e)llip.} Fixed, harmonic 105 tracer 2 × 105 M�
N-body{c,e} N-body Live Live, α, β, γ = [1.5, 3, 0] 107 2 × 105 M�
N-body3{c,e} N-body Live Live, α, β, γ = [1.5, 3, 0∗] 107 three-shell 2 × 105 M∗�

remain. We test these qualitative expectations, using simulations, in

Section 3.

A final point, which will become important later on, is that the

orbit plane of the GC matters. Equation (11) is spherically symmetric

about the GC and hides this fact. If the GC orbit changes (and

noise within the full N-body simulations can cause this to happen)

then the angular frequency vector of the GC, �, will change: the

background distribution will no longer be in equilibrium with the

GC. The system will have to move once again into equilibrium and

this rearrangement will lead to some associated dynamical friction

on the GC.

2.3 The Kalnajs solution

Our analytic method is a more general case of an earlier result found

by Kalnajs (1972). Kalnajs studied dynamical friction in a uniformly

rotating sheet in which all particles initially move on circular orbits.

This is an equivalent problem to a GC moving on a circular orbit

within a harmonic potential. He showed, using results from plasma

physics that in this case dynamical friction will vanish. Here we

generalize this result to a GC moving on a general orbit within a

harmonic potential. In our solution, the background perturbation

need not lie in the plane of the GC orbit.

3 S I M U L AT I O N S

In this section we compare semi-analytic and full N-body (NB)

simulations to the analytic formulae derived in Section 2. The sim-

ulations are labelled as in Table 1 and described in detail in the

subsections below.

The analytic arguments given in Section 2 suggest that once a GC

is introduced to a constant density background, the system will move

towards a stable equilibrium where the background particles move

on epicycles about the GC. However, this simple analytic argument

cannot say anything about interactions between the GC and the

background particles prior to such an equilibrium being achieved; or

of interactions between the background particles themselves. In this

section we investigate this approach to equilibrium using numerical

simulations. We use two types of simulation. The semi-analytic (SA)

run solves equation (10) numerically. We still assume that the GC

orbit is fixed, however we can study how the system moves from one

equilibrium state (without the GC) to its final equilibrium with the

GC. The full NB run includes the interaction between the particles

and the GC self-consistently. The GC is now free to respond to

the background particles. This allows us to study the full effect of

dynamical friction on the GC as the system moves towards its new

equilibrium state. We compare results for a GC initially on a circular

orbit and an elliptical orbit.

3.1 The semi-analytic model

In the semi-analytic model we solved equation (10) with the GC orbit

held fixed (the GC initial conditions are described in Section 3.3).

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 373, 1451–1460
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The underlying potential was pure harmonic and static. We used

�2 = 4/3Gρ0 and ρ0 = 9.93 × 107 M� kpc−3. We used an isotropic,

constant density, 3D, initial distribution of massless tracer particles.

The equations of motion were solved using an RK4 numerical inte-

grator (Press et al. 1992), with fixed time-steps of 1.5 × 10−5 Gyr.

This was found to conserve energy to machine accuracy over the

whole simulation time in the limit Mc → 0. We ran the simulations

for 1 Gyr, which is ∼10 dynamical times for the GC at the core ra-

dius. This is the appropriate length of time for comparison with the

full NB run (see Section 3.2). We tried runs with force softening for

the GC and without. There was no significant change in the results

for a force softening of 10 pc. The GC orbit was chosen to match

the final stalled orbit observed in the N-body models. We ensured

that the final position of the GC was identical in both models.

3.2 The N-body model

In the full N-body (NB) model, we used the parallel multistepping

N-body tree code, PKDGRAV2, developed by Stadel (2001). The po-

tential was calculated self-consistently from the live particle distri-

bution. The GC was allowed to freely respond to the background

particles.

We constructed stable particle haloes using the techniques devel-

oped by Kazantzidis, Magorrian & Moore (2004). The particles are

drawn self-consistently from a numerically calculated distribution

function. We used a density distribution that is described by the α,

β, γ law (Hernquist 1990; Saha 1992; Dehnen 1993; Zhao 1996):

ρ(r ) = ρ0

(r/rs)
γ
[
1 + (r/rs)

α
](β−γ )/α

, (14)

where we used ρ0 = 9.93 × 107 M� kpc−3, rs = 0.91 kpc, α =
1.5, β = 3.0 and γ = 0.0. Note that rs is the scale radius, not the

core radius. The radius at which the log-slope of the density profile

is shallower than −0.1 is rcore ∼ 200 pc, which defines the constant

density region in this model. This halo has a virial mass of 2.0 ×
109 M� and the concentration parameter is 40. A plot of the density

profile is given in Fig. 2, where rcore is marked by the vertical dotted

line. Inset in the plot is the distribution of orbital frequencies in the

core region, plotted as |r̈i/ri |; ri = xp, yp, zp (solid, dotted and

dashed lines). These are equal and strongly peaked around a single

value, showing that the core is indeed harmonic (cf. equation 7).

The NB run, with 107 particles, corresponds to just 103 particles

within 300 pc. To achieve higher resolution, in the NB3 model we

also used a novel three-shell approach (Zemp et al., in preparation).

We briefly summarize this approach here, but defer the details and

tests to Zemp et al. (in preparation). The three-shell model breaks

up the mass distribution into three concentric spheres. The particles

in each sphere are reduced in mass and increased in number so

that central regions are of higher resolution. Such a model is very

useful for the current study where we would like many particles to

accurately sample the central harmonic core, but are not interested in

the outer density profile which may then be less accurately sampled.

Massive particles from the outer sphere can and do enter the central

core in this model, but they are given proportionately higher force

softening to prevent them from causing spurious hard scattering.

The model produces stable density profiles over >20 Gyr, very high

central resolution, and no unwanted two-body effects. More detailed

tests are given in Zemp et al. (in preparation), but for the present

study we also explicitly verified that the single component model

(NB) gives comparable two-body noise (see Appendix A).

We used a three-shell model that has 106 particles for the inner-

most sphere with 300 pc radius, 106 particles for the shell between

Figure 2. The density distribution for the background particles used in the

numerical simulations, see equation (14). The dotted line marks the asymp-

totic central core where the density is constant and the potential harmonic.

Inset in the plot is the distribution of orbital frequencies in the core region,

plotted as |r̈i /ri |; ri = xp, yp, zp (solid, dotted and dashed lines). These

are equal and strongly peaked around a single value, showing that the core

is indeed harmonic.

0.3 and 1.1 kpc and 4 × 106 particles for the rest of the halo. This

gives us O(106) particles within the core region. To achieve a similar

number of particles within the central 300 pc without the three-shell

model would require 4 × 108 particles in total. This is not yet tech-

nically feasible. Yet, as we show in Section 3.4 and Appendix A,

such high resolution is required to avoid spurious precession of the

GC orbit plane. The advantage of the three-shell model, given such

limitations, is clear. The softening lengths of the particles in these

shells were 3, 30 and 300 pc, respectively. The particle masses were

8.9, 164.0 and 757.2 M�. Even the most massive particles were 100

times less massive than the GC. We experimented with varying the

shell force softening and radii and found our results to be insensitive

to these values.

3.3 The GC orbit

We used a GC mass of Mc = 2 × 105 M� with a force softening

of 10 pc. This gives Mc/Men = 0.06, where Men is the total mass

of background particles inside rcore. For the N-body simulations,

the GC was placed initially at a radius of 1.069 kpc on a circular

(NB3c) and elliptical (NB3e; vi = 0.4vcirc) orbit. In both cases the

GC orbited in the xp, yp plane. For the SA simulations, the GC orbit

was chosen to match that of the GC in the N-body models after it hit

the constant density core and stalled. Its orbital phase was chosen

such that at the end of the SA simulation (after 1 Gyr) the GC would

be in the same place as in the N-body simulations.

3.4 Particle noise, resolution and convergence

We had surprising difficulty in obtaining enough resolution in the

N-body simulations for our results to be believable. The problem

centred around the precession of the GC orbit plane. For a spherical

potential (such as that studied here) all orbits, including that of the

GC, should be planar. However, in our initial lower resolution runs,

with a resolution of 105 particles within 300 pc, we found that the
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GC orbit plane would precess, sometimes by as much as 20◦ over

10 Gyr. Since we are trying to model an effect that relies critically

on the orientation of the GC orbit plane, it is essential that the plane

remains stable.

In Appendix A, we use a simple analytic model of a 2D random

walk to prove that this precession is a result of two-body noise in

the simulations. Reducing such noise drove us to use the three-shell

model discussed above. We show in Appendix A that the noise is

not some special property of the three-shell model, but is present in

all N-body simulations. We found that some initial GC orientations

showed more precession than others, for the same resolution. This

is to be expected from a random walk driven by two-body noise.

The effect of such precession was found to be quite small. However,

it does lead to a spurious (and very slow, sub-Chandrasekhar) decay

of the GC orbit once it reaches the core. We present the results here

from simulations which showed the minimal GC plane precession.

However, our main results are not sensitive to such selection. Nor

are our results sensitive to the use of the three-shell model.

4 R E S U LT S

4.1 The stalling of dynamical friction in the core

Fig. 3 (straight solid line) shows the decay of the radius of the GC as

a function of time for the NB3c and NB3e simulations (see Table 1).

Overlaid is the prediction from the Chandrasekhar formula given in

equation (1). For this we used a constant ln �= 5, which is the value

we use throughout this paper. If we equate bmin with the GC force

softening, bmin = 10 pc, this gives bmax � 1.5 kpc, which is of order

the ‘size’ of our system. This is consistent with values found in other

numerical studies of dynamical friction on point mass particles (see

e.g. Spinnato, Fellhauer & Portegies Zwart 2003).

As the cluster nears the constant density core (rcore ∼ 200 pc),

it enters a phase of super-Chandrasekhar dynamical friction, after

which dynamical friction practically ceases. This occurs irrespective

Figure 3. The decay of the radius of the GC as a function of time for a GC

on a circular (straight solid line) and elliptical (oscillating solid line) orbit.

Overlaid (dotted lines) are the predictions from the Chandrasekhar formula

given in equation (1), using ln � = 5. Notice that for the first few Gyr the

agreement with equation (1) is excellent. As the cluster nears the constant

density core (rcore ∼ 200 pc), it enters a phase of super-Chandrasekhar

dynamical friction, after which dynamical friction practically ceases.

of the initial GC orbit. This is in excellent qualitative agreement with

analytic expectations from Section 2.

Fig. 4 shows the distribution of particles in a slice about the

orbit plane of the GC. The slice is defined such that |J p J c| <

|J p||J c| cos(θ ), with θ = 10o, where J p,c is the specific angular

momentum of the particle and GC, respectively. The left-hand panel

shows density contours for the particle distribution (which was ini-

tially constant-density) in the xp, yp plane. The right-hand panel

shows velocity histograms for the vφ component of the velocity;

where vφ is the velocity about the zp-axis. We do not show the vr

and vθ components of the velocity, since they are not altered from the

initial conditions and remain approximately Gaussian (r, θ and φ

are the usual spherical polar coordinates). In the top panels, the

solid lines show the slice just before the GC hits the core in

the NB3c simulation (at time t = 5 Gyr); the dotted contours show

the SAc simulation at t = 0. The middle panels show similar results

for the NB3c and SAc simulations at times t = 8 Gyr and t = 1

Gyr, respectively. The bottom panels show the NB3e and SAe sim-

ulations at times t = 4 Gyr and t = 1 Gyr, respectively. We analyse

within this slice to highlight the changes in density caused by the

GC. Outside of the slice, background particles still move on epicy-

cles about the GC, but their projected positions on to the xp, yp plane

make it difficult to see the density enhancement about the GC.

Notice that the velocity histograms for vφ (right-hand panel, top)

are double-peaked. This is because we have taken a thin slice in the

orbit plane of the cluster. The only particles that have vφ = 0 in this

plane are those on pure radial orbits, which is a very small number

of particles in the isotropic initial conditions.

In the top panels of Fig. 4, the particles are close to their initial

configuration. There has been some depletion in density at the centre

and the onset of some substructure, but the velocity histograms

show that the velocity distribution of the background particles is

still isotropic.

The middle and bottom panels in Fig. 4 show the distribution

of particles in the slice after the super-Chandrasekhar friction has

ended, and the GC has settled into equilibrium in the core. Notice

the good agreement with the semi-analytic simulations (SAc,e) for

both the density and velocity distribution in the slice, irrespective

of the initial GC orbit. As expected from the arguments given in

Section 2, the number of counterrotating particles has been signifi-

cantly depleted.

The density distribution in the slice is peaked just behind the

cluster; it has a tail which is longer for the full N-body run. This is

likely due to particle–particle scattering which prevents high-density

regions from forming. Such a tail should lead to some dynamical

friction on the GC from the background. We estimated the strength

of this effect for the SAc model. To do this, we summed the force

from all of the background particles on the GC, assuming that their

total mass was Men. What really matters is the time-averaged force

on the GC. This must be small, since little or no dynamical friction

is observed after the GC reaches the core. However, even the total

force at an instant is always smaller than the dynamical friction

force, computed from equation (1).

Notice from equation (12), that we could construct any final den-

sity distribution using an appropriate combination of epicyclic orbits

about the GC. In practice, however, the final density distribution is

set by the initial configuration of background particles within the

core. The transformation of this initial distribution by the arrival of

the GC must be determined numerically. The SA model is essential

in this respect.

The keen observer will notice that the enhanced friction appears

to set in rather near the region where the resolution in the three-shell
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Figure 4. The distribution of particles in the xp, yp plane for the N-body (solid lines) and semi-analytic (dotted lines) simulations. The left-hand panels show den-

sity contours for the particle distribution (that was initially constant-density) in the xp, yp plane. The right-hand panels show velocity histograms for the vφ com-

ponent of the velocity; where vφ is the velocity about the zp-axis. The solid vertical line marks the GC velocity about the zp-axis. The top two panels show the GC

circular orbit simulations just before the GC experiences super-Chandrasekhar dynamical friction. This corresponds to t = 0 Gyr for the SAc simulation, and t =
5 Gyr for NB3c. Notice that, for the NB3c simulation (solid lines), the background particles are nearly unchanged from their initial distribution. The middle

two panels show the GC on a circular orbit after the super-Chandrasekhar friction has finished and the GC has settled into a steady state in the harmonic core.

This corresponds to t = 1 Gyr for the SAc simulation, and t = 8 Gyr for NB3c. The bottom two panels show the GC on an elliptical orbit (vi = 0.4vcirc) after

it has reached the harmonic core. This corresponds to t = 1 Gyr for the SAe simulation, and t = 4 Gyr for NB3e. In all cases the final position of the GC in the

SAc,e and NB3c,e simulations is identical and marked by the solid circle. Note that there is no GC marked in the top panels since, in the NB3c simulation, the

GC lies outside of the plot area at this time.

model increases (recall that the high-resolution inner shell starts at

300 pc). This is almost certainly a coincidence. We performed two

tests to check this. First, an explicit test is carried out by starting a GC

sinking inside the high-resolution shell. Once again, we observed

enhanced friction followed by stalling. Secondly, we performed

a test run starting the GC outside the second shell. As it moved

through the shell transition at 1.1 kpc, no detectable effect was

observed.
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Figure 5. The decay rate of the GC as a function of Mc (solid lines); Mc is

marked in solar masses. Overlaid are analytic predictions from equation (1)

using ln � = 5, as previously (dotted lines). For these simulations, we

reran simulation NB3c (see Table 1) but using 10 times the GC mass (Mc =
2 × 106 M�), and half of the GC mass (Mc = 1 × 105 M�). Men/Mc at

the point of the onset of the stalling behaviour is, in order of increasing Mc:

[3, 5, 2].

4.2 The effect of varying Mc

Fig. 5 shows the decay rate of the GC as a function of the GC mass,

Mc (solid lines); Mc is marked in solar masses. Overlaid are analytic

predictions from equation (1) using ln � = 5, as previously (dotted

lines). For these simulations, we reran simulation NB3c but using

10 times the GC mass (Mc = 2 × 106 M�), and half of the GC

mass (Mc = 1 × 105 M�). For reasons of computational expense,

we ran these new runs at a lower resolution with 105 particles in

each shell. We could not investigate smaller GC masses than Mc =
105 M�, since then Mc approaches the mass of the heaviest particle

and two-body effects dominate over dynamical friction.

Notice that the lower resolution runs are noisier and decay faster

once the GC hits the core. This decay is due to the precession (due to

numerical noise) of the GC orbit plane, discussed in Section 3.4 and

Appendix A, and is much smaller in the higher resolution runs. We

explicitly checked that this is indeed the case using lower resolution

runs of NB3c.

In all runs, the GC shows a reduced friction at the core region.

Notice that the point at which the GC departs from Chandrasekhar-

like friction appears to be a weak function of the GC mass. This

is to be expected: a more massive GC will more rapidly scatter the

background particles and stall more quickly once it reaches the core

region. However, it is tempting to suggest a simpler explanation:

that equation (1) is failing simply because Men = ηMc; where Men is

the final mass enclosed and η is some constant of order unity. This is

perhaps worrisome given the mass ratios, Men/Mc, at the point of the

onset of the stalling behaviour. These are, in order of increasing Mc:

[3, 5, 2]. However, we believe that the situation is not this simple

for the following reasons. (i) If the stalling were a result only of

Mc � Men, then it would not be a special property of constant density

cores. We show in Section 4.3, below, that the stalling behaviour does

not occur for steeper density profiles, whatever the enclosed mass.

(ii) The model we present in Section 2 provides a good fit to the

final density and velocity distribution of the background particles

Figure 6. The decay rate of the GC as a function of the central log-slope of

the background density distribution, γ (solid lines); γ is marked on the plot.

Overlaid are analytic predictions from equation (1) using ln � = [8, 7, 3.5],

in order of increasing γ (dotted lines). The crosses mark the radii at which

the final density profile has a central log-slope shallower than −0.1. Men/Mc

at the point of the onset of the stalling behaviour is, in order of increasing

γ : [4, 1].

in the core suggesting that we have captured the correct physical

explanation.

4.3 The effect of varying γ

Fig. 6 shows the decay rate of the GC as a function of the central

log-slope of the background density distribution, γ (solid lines); γ

is marked on the plot. For these simulations, we reran simulation

NB3c but using γ = [0.1, 0.5]. Also shown are results for a sim-

ulation with γ = 1 taken from Goerdt et al. (2006). Overlaid are

analytic predictions from equation (1) using ln � = [8, 7, 3.5], in

order of increasing γ (dotted lines). ln � is different for each of

these simulations, reflecting the change in the underlying density

distribution; similar results have been found elsewhere in the liter-

ature (see e.g. Just & Peñarrubia 2005). All simulations were high

resolution (∼106 particles per shell), but since we are interested in

the core stalling properties of the GC, we started the γ = [0.1, 0.5]

simulations at ∼400 pc, rather than ∼1 kpc as previously.

The key point is that the γ = 1 model is well fitted by the

Chandrasekhar form over the entire simulation time. This is de-

spite the fact that Men � Mc at ∼0.1 kpc for this run. This suggests

that the core stalling behaviour is a special property of the harmonic

core and not to do with the enclosed mass. However, the γ = [0.1,

0.5] runs both show stalling behaviour despite not having a central

core. This occurs because the GC itself creates a small core as it

falls in and heats the background particle distribution. For initial

density distributions steeper than γ = 0.5 this no longer occurs. In

this case, the density profile does become shallower as a result of

heating, but the heating is not sufficient to form a core in the centre

before the GC falls all of the way in. The crosses on Fig. 6 mark

the radii at which the final density profile has a central log-slope

shallower than −0.1. Recall that this is the same definition we used

to define rcore earlier.
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5 C O N C L U S I O N S

Using analytic calculations and N-body simulations we have shown

that in constant density harmonic cores, sinking satellites undergo

an initial phase of very rapid (super-Chandrasekhar) dynamical fric-

tion, after which they experience no dynamical friction at all. This

occurs because, for the special case of harmonic potentials, there

are stable solutions where the background particles move on epicy-

cles about the infalling satellite. The system moves rapidly into this

stable configuration. In doing so, the satellite experiences a brief

moment of enhanced friction. Once in equilibrium, there is no net

momentum transfer between the background particles and the satel-

lite and friction ceases. For density profiles with a central power

law profile, ρ ∝ r−α , the infalling satellite heats the background

and causes α to decrease. For α < 0.5 initially, the satellite gener-

ates a small central constant density core and stalls as in the α = 0

case.

Our results concerning dynamical friction stalling in constant den-

sity cores are of broad astrophysical interest. Recent observational

work suggests that galaxies may have central dark matter density

cores, rather than the r−1 density cusps predicted by numerical sim-

ulations. Galactic bars orbiting in such potentials will experience

very weak dynamical friction and can be very long-lived (in fact

central density distributions do not need to be pure harmonic to

see this effect, low density will also lead to very little friction –

see e.g. Debattista & Sellwood 1998 and Debattista & Sellwood

2000). Satellites falling into such galaxies will stall at the core ra-

dius and never make it to the centre. This point was investigated in

a companion paper (Goerdt et al. 2006), where we suggested that a

constant density core could solve the ‘timing problem’ for the GCs

in the Fornax dwarf galaxy. Finally, recent work on merging black

holes suggests that they can form a central constant density core

in the background distribution (see e.g. Milosavljević et al. 2002;

Ravindranath, Ho & Filippenko 2002) prior to forming a hard bi-

nary. If true, our results suggest that this could further exacer-

bate the well-known problem of getting the binaries to coalesce.

Their rate of hardening will stall, even before the majority of stars

and dark matter have been ejected from the core, if the back-

ground distribution is close to constant density. This may point

towards gas playing a more important role in bringing supermas-

sive black holes together at the centre of galaxies (see e.g. Gould &

Rix 2000).
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A P P E N D I X A : T WO - B O DY N O I S E A N D
P R E C E S S I O N O F T H E G C O R B I T P L A N E

Here we present a simple analytic model for the precession of the

GC orbit plane due to particle noise and compare this with the

simulations. We show that even quite small particle noise can lead

to significant plane precession over ∼100 dynamical times.

Under the assumption of linear background particle trajectories,

it is straightforward to show that an interaction with one background

particle will produce a velocity kick perpendicular to the orbit plane

of the GC given by (Binney & Tremaine 1987):

δvz = 2mbv3

G(Mc + m)2

[
1 + b2v4

G2(Mc + m)2

]−1

, (A1)

where m is the mass of the background particle, Mc is the mass of the

GC and b is the impact parameter (initial perpendicular separation)

of the encounter. Such a kick occurs over ∼ a dynamical time.

Summing over all such encounters (all impact parameters) then

gives the mean total velocity kick to the GC in ∼ a dynamical time.

We sum over δv2
z to give the rms change; δvz is of random sign and
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will sum to zero:

�v2
z

v2
= 1

v2

∫ bmax

bmin

δv2
z

2Nb

b2
max

db

= 8

2N

[
x2

min − x2
max(

1 + x2
min

)(
1 + x2

max

) + ln

(
1 + x2

max

1 + x2
min

)]
= 8

N
ln �′, (A2)

xmax = Nm

Mc + m
xmin = Nm

Mc + m
�−1, (A3)

where v is now ∼ the velocity of the GC; � = bmax/bmin is the term

inside Coulomb logarithm that also appears in equation (1); N is

the number of background particles inside ∼bmax (the GC orbit is

assumed to lie in the xy plane); and ln �′ = 1/2[· · ·] is defined by

equation (A2).

Notice that in the limit of large impact parameters, bmax � bmin �
GMc/v

2 ⇒ xmax � xmin � 1, and equation (A2) reduces to the more

familiar form: �v2
z /v2 = (8/N) ln �. It is then independent of the

GC mass.

In one orbit, the GC will move a mean z distance, �z ∼ �vz tdyn,

where tdyn is the orbit time. The mean change in angle over one orbit,

�θ , of the vector normal to the GC orbit plane is then given by

�θ ∼ tan−1

(
�z

r

)
= tan−1

(
2π

√
8 ln �′

N

)
, (A4)

where we have assumed that the GC moves on a circular orbit of

radius, r.

Any dependence on the underlying potential completely factors

out in equation (A4), and �θ depends only on the number of parti-

cles, N, and very weakly on Mc/m.

The orbit plane can be tilted due to such scattering noise from

the background distribution in two independent directions. Since

the potential is spherical, there is no restoring force and once the

plane has tilted, the probability it will tilt again is independent of

its past history. Thus we may model the accumulated precession of

the orbit plane by a 2D random walk. This gives

θ = �θ

√
t

tdyn

. (A5)

The orbit time at r = rcore for our model is given by tdyn =
2π

√
r3

G M(r )
= 0.15 Gyr. In Fig. A1 we plot the mean orbit plane

precession predicted by this random walk model, as a function of

simulation time, t/tdyn. We use bmax = 1.5 kpc and bmin = 10 pc,

which gives ln � = 5, as in Section 4. In Section 4, we typically ran

our N-body models for 10 Gyr which corresponds to ∼100 dynam-

ical times. The straight solid lines show the effect of increasing the

particle number, N. Notice that extremely high resolution is required

to keep plane precession to a minimum over our simulation time:

even with 107 particles we can expect a mean precession over the

whole simulation of ∼7◦. Overplotted are results from the NB, NB3c

and NB3c’ simulations (see Table 1). Recall that the NB model was

Figure A1. Evolution of the GC orbit plane in angle, θ , over the simulation

time. The straight solid lines are for an analytic model that assumes a 2D ran-

dom walk. Results are shown for increasing particle number, N. Overplotted

are results from three typical N-body simulations: NB, NB3c and NB3c′ –

see Table 1 and this appendix for details; NB3c′ is identical to NB3c, except

that the GC initial orbit plane is different.

a single shell model with 107 particles in total, with 103 within 300

pc. The NB3 simulations were three-shell models with 106 particles

within 300 pc. NB3c′ is a simulation which is identical to NB3c but

with a different GC initial orbit plane. Notice that in all cases the

plane precesses; it is not some numerical error introduced by the

three-shell model. The NB3 simulations show a smaller precession

than the NB simulation as is expected given their higher effective

resolution. Finally, notice that changing the initial GC orbit plane

can alter the total precession quite dramatically (compare the NB3c

and NB3c′ simulations). This is to be expected given the random

walk model, above.

The total particle number, N, in equation (A4) is a slightly ill de-

fined quantity and so should not be equated exactly with the number

of particles in the simulation (particularly for the three-shell mod-

els). However, it is encouraging that our simple random walk model

produces the correct mean slope for the plane precession and the

correct scaling with particle number. It is clear that the three-shell

model has an advantage over the single shell model: it samples the

core region with 1000 times the resolution of the single shell and

shows much smaller two-body noise.

Throughout this paper, we present simulations which minimize

the evolution of the orbit plane. It is important to note, however,

that all of our simulations show the same central result: a period of

super-Chandrasekhar friction, followed by stalling at the constant

density core.
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