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In deformation quantization, one can associate five characteristic functions to (stable)

formality morphisms on cochains and chains and to “two-brane” formality morphisms.

We show that these characteristic functions agree.

1 Introduction

Let Tpoly(R
n)= Γ (Rn,∧•TR

n) be the space of multivector fields on R
n and let Dpoly(R

n) be

the space of multidifferential operators on R
n. The central result of deformation quan-

tization is M. Kontsevich’s Formality Theorem [16], stating that there is a Lie∞ quasi-

isomorphism

UKontsevich : Tpoly(R
n)[1] → Dpoly(R

n)[1].

Here, we understand Tpoly(R
n)[1] as a Lie algebra endowed with the Schouten–

Nijenhuis bracket and Dpoly(R
n)[1] as a Lie algebra endowed with the Gerstenhaber

bracket. The differential forms Ω•(Rn) on R
n, with nonpositive grading, form a Lie

module over Tpoly(R
n)[1], and similarly the (topological) Hochschild chains C•(Rn)=

C•(C ∞(Rn),C ∞(Rn)) form a module over the multidifferential operators Dpoly(R
n). For a
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more detailed description of these objects and the actions we refer the reader to [23]. It

was conjectured by Tsygan [23] and shown by Shoikhet [22] that there is a Lie∞ quasi-

isomorphism of modules

VShoikhet : C•(Rn)→Ω•(Rn).

A globalized version of this statement was shown by Dolgushev [10]. Here, the Lie∞
action of Tpoly(R

n)[1] on C•(Rn) is obtained by pulling back the action of Dpoly(R
n)[1] on

C•(Rn) via UKontsevich. In particular, the statement that VShoikhet is a Lie∞ morphism of

modules implicitly references UKontsevich.

The formality morphisms UKontsevich and VShoikhet are given by explicit “sum-of-

graphs” formulas:

UKontsevich
k =

∑
Γ

cKontsevich
Γ DΓ , (1)

VShoikhet
k =

∑
Γ̃

c̃Shoikhet
Γ̃

D̃Γ̃ . (2)

Here Uk (respectively, Vk) is the kth component of the Lie∞ morphism U (respectively, of

Vk). The top sum runs over the set of isomorphism classes of Kontsevich graphs with k

Type I vertices. For the definition of these graphs, we refer the reader to [16], an example

can be found in Figure 1. Finally,

DΓ : SkTpoly(R
n)[2] → Dpoly(R

n)[2]

is an operator naturally associated to a Kontsevich graph Γ . It implicitly depends on

the dimension nof the underlying space R
n. The coefficients cKontsevich

Γ are numbers. Sim-

ilarly, in (2) the sum ranges over all isomorphism classes of Shoikhet graphs with k Type

I vertices (see [22] for the definition and Figure 1 for an example). The coefficients c̃Shoikhet
Γ̃

are again numbers and

D̃Γ̃ : SkTpoly[2](Rn)⊗ C•(Rn)→Ω•(Rn)

are morphisms naturally associated to Shoikhet graphs, cf. [22].

In [11], formality morphisms given by sum-of-graphs formulas as above were

called stable.
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Fig. 1. An example of a Kontsevich graph (left) and a Shoikhet graph (right).

Definition 1 (Following [11]). A stable formality morphism on cochains is a collection

of numbers {cΓ }Γ , one for each Kontsevich graph, such that the formulas

Uk =
∑
Γ

cΓ DΓ (3)

define a Lie∞ quasi-isomorphism of Lie algebras

U : Tpoly(R
n)[1] → Dpoly(R

n)[1]

for all n(= dim R
n), and such that U1 is the Hochschild–Kostant–Rosenberg morphism.

A stable formality morphism on cochains and chains is a stable formality mor-

phism on cochains together with a collection of numbers {c̃Γ̃ }Γ̃ , one for each Shoikhet

graph, such that the formulas

Vk =
∑
Γ̃

c̃Γ̃ D̃Γ̃ (4)

define a Lie∞ quasi-isomorphism of modules

V : C•(Rn)→Ω•(Rn)

for all n, and such that V0 is the Connes–Hochschild–Kostant–Rosenberg morphism. �

Example 1. In particular, to every Drinfeld associator Φ one may associate a stable

formality morphism of cochains as follows:

(1) To the Alekseev–Torossian Drinfeld associator ΦAT , see [2, 20], we associate

the Kontsevich stable formality morphism UKontsevich.
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(2) Let Φ be any Drinfeld associator. The Grothendieck–Teichmüller group acts

freely transitively on the set of Drinfeld associators. Hence there is a unique

element g of the Grothendieck–Teichmüller group that maps ΦAT to Φ. Using

the pro-unipotence of the Grothendieck–Teichmüller group we may write

g = exp(ψ)

For a unique ψ in the Grothendieck–Teichmüller Lie algebra grt1. This ele-

ment ψ may be associated a graph cohomology class in M. Kontsevich’s

graph complex GC2 (see [26, Section 3]), which is represented, say, by some

degree 0 cocycle γ ∈ GC2. Now GC2 naturally acts on the set of stable formal-

ity morphisms of cochains (see [11, 26, 27]). We define the stable formality

morphism associated to Φ as

exp(γ )UKontsevich.

Note that this is well defined only up to homotopy, since one had to make a

choice in picking one representative of the graph cohomology class canoni-

cally associated to ψ .

In a similar way one may also obtain a stable formality morphism of

cochains and chains as discussed in [28]. �

Remark 1. Definition 1 differs slightly from the one given in [11, Definition 5.1] by

Dolgushev. There, a stable formality morphism was defined as an operad map from a

colored operad governing open closed homotopy algebras to a colored operad KGra, sat-

isfying some conditions. Elements of KGra are essentially linear combinations of Kont-

sevich graphs. We leave it to the reader to check that both definitions agree. �

Remark 2. Note that all formality morphism constructed as in Example 1 can be glob-

alized, that is, they satisfy suitable properties (P1)–(P5) stated by Kontsevich [16]. �

1.1 A remark on signs and prefactors

The explicit definition of M. Kontsevich’s formality morphism, correct with signs and

prefactors, and the definition of the symbols DΓ is quite lengthy to state. In fact, a

separate paper [4] has been written just about the signs and prefactors. It involves con-

ventional choices at various places in the construction. We want to avoid flooding this
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paper with pages of definitions to fix the signs. To still obtain well-defined numbers cΓ

we adopt the following conventions:

(1) For each isomorphism class of Kontsevich (respectively, Shoikhet) graphs we

fix once and for all a representative graph, together with an ordering of the

edges. Below, when we introduce certain such graphs, we will indicate the

ordering of the edges by writing numbers next to the edges.

(2) Our conventions regarding DΓ are assumed to be chosen such that the for-

mulas (1) are correct, for cΓ given by Kontsevich’s integral

cKontsevich
Γ =

∫ ∏
(i, j)

1

2π
darg

(
zi − zj

z̄i − zj

)

where the product is over all edges, in the order that was specified once and

for all for this isomorphism class of Kontsevich graphs. Similarly, we choose

our conventions regarding D̃Γ̃ such that (2) is correct for c̃Γ̃ being the usual

Shoikhet integral, without any additional prefactors.

A careful discussion of signs for the Kontsevich morphism, which is somewhat

shorter than [4] (but still spans many pages) has been given by the author in [29].

1.2 Homotopies and homotopy invariant functions

Recall that an L∞ structure on g is a degree 1, square zero coderivation on S+g[1], the

cofree cocommutative coalgebra (without counit) cogenerated by g[1]. An L∞ morphism

between L∞ algebras g and h is a map of coalgebras

f : S+g[1] → S+h[1]

compatible with the given coderivations. Let us say that two L∞ morphism f , g from g

to h are directly homotopic if there is an L∞ morphism

F : g → h[t,dt]

such that the restriction to t = 0 (respectively, t = 1) agrees with f (respectively, with g).

Concretely, F may be written as

F = ft + ht dt
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where ft is a (polynomial) family of L∞ morphisms interpolating between f0 = f and

f1 = g. We call the other component, ht the homotopy.

We say that two L∞ morphisms f, g are homotopic, if there is some (finite) tuple

of L∞ morphisms (a1, . . . ,ak) such that f is directly homotopic to a1, each aj is directly

homotopic to aj+1 and ak is directly homotopic to g. Clearly being homotopic is an equiv-

alence relation on the set of L∞ morphisms from g to h. A function from the set of L∞
morphisms from g to h to some other set is homotopy invariant if it is constant on

equivalence classes. For a more detailed discussion of homotopies between homotopy

morphisms we refer the reader to [12].

The above notion of homotopy may be transferred to stable formality mor-

phisms with minor changes [11, Section 5]. So let U , U ′ be stable formality morphisms

(say of cochains, the case for cochains and chains is analogous). We say that U , U ′

are directly homotopic if there is a collection of polynomials cΓ (t,dt) ∈ R[t,dt] such

that:

(1) The formulas

Ũk :=
∑
Γ

cΓ (t,dt)DΓ

define an L∞ morphism Tpoly(R
n)→ Dpoly(R

n) for each n.

(2) Restricting Ũ to fixed t yields a family of stable formality morphisms inter-

polating between U (for t = 0) and U ′ (reached at t = 1).

As above one may split

Ũ = Ũt + ht dt (5)

where Ũt is the restriction of Ũ to fixed t and we call ht the homotopy.

Again we define the equivalence relation of being homotopic as the transitive

closure of the relation of being directly homotopic. For more details we refer the reader

to [11].

A function on the set of stable formality morphisms is called homotopy invariant

if it is constant on equivalence classes of the above equivalence relation. Of course, this

is equivalent to saying that the function takes the same values on directly homotopic

stable formality morphisms.
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1.3 Characteristic functions

We will consider the following four characteristic functions:

• Let U be a stable formality morphism of cochains. We set fDuflo(x)=∑
j≥2 λ

Duflo
j xj where λDuflo

j = 1
j cΓ (I )

j
− 1

j cΓ (I I )
j

and c
Γ
(I )
j

and c
Γ
(I I )
j

are the coefficients

of the graphs

(6)

in U j+1 and

(7)

in U j. The function fDuflo appears in the proof of Duflo’s Theorem through

deformation quantization as in [16, Section 8] (more precisely, the series fDuflo

appears in the morphism Istrange of [16, Section 8.3.4]).

• Let U be a stable formality morphism of cochains. We set fcurv(x)=∑
j≥2 λ

curv
j xj where λcurv

j = 1
j cΓ (I I I )

j
and c

Γ
(I I I )
j

is the coefficient of the wheel graph
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with spokes pointing outwards

(8)

in U j+1. These graphs appear in [7, 24, 25], and in particular as a curvature

term in the formality morphism with branes [5, 8].

• Let (U ,V) be a stable formality morphism of cochains and chains. We set

fchain(x)= ∑
j≥2 λ

chain
j xj where λchain

j = 1
j c̃Γ̃ j

and c̃Γ̃ j
is the coefficient of the

graph

(9)

in V j+1. These graphs determine the character map in deformation quantiza-

tion, see [9].

• For any Drinfeld associatorΦ(X,Y) one defines the formal function fassoc(x)=∑
j≥2 λ

assoc
j xj, where λassoc

j is the coefficient of X j−1Y in Φ(X,Y), divided by j.

So

Φ(X,Y)= 1 +
∑
j≥2

jλassoc
j X j−1Y + (other terms)

The exponential of the function − fassoc has been called Duflo function in [3]

and the Γ function in [13].
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Example 2. Several of these characteristic functions have been computed in the

literature:

• Kontsevich computed [16] that for his stable formality morphism UKontsevich

fDuflo = −
∞∑

k=1

1

2k

B2k

2(2k)!
x2k = −1

2
log

(
ex/2 − e−x/2

x

)

where Bj is the jth Bernoulli number. In fact, it was shown by Shoikhet [21]

that c
Γ
(I )
j

= 0 in this case.

• For the Kontsevich stable formality morphism UKontsevich it has been computed

in [24] that

fcurv(x)= −
∞∑

k=1

1

2k

B2k

2(2k)!
x2k = −1

2
log

(
ex/2 − e−x/2

x

)
.

Consider also the stable formality morphism of chains and cochains

(UKontsevich,VShoikhet). In this case, the integral expressions defining c
Γ
(I I I )
j

and

c̃Γ̃ j
agree. This also shows that in this case

fchain(x)= −1

2
log

(
ex/2 − e−x/2

x

)
.

• For the stable formality morphism obtained using the Kontsevich “ 1
2 -

propagator” (see [1]) it has been shown by Merkulov [18, Appendix A] that

fcurv(x)=
∞∑

k=2

ζ(k)

k(2πi)k
xk = log

(
Γ

(
1 − x

2πi

))
− γ

2πi
x

where Γ , ζ , and γ are the Γ function, the Riemann ζ function and the Euler–

Mascheroni constant as usual.

• It is known (see [17] or [3, Example 9.1]) that for the Knizhnik–Zamolodchikov

associator

fassoc(x)=
∞∑

k=2

ζ(k)

k(2πi)k
xk = log

(
Γ

(
1 − x

2πi

))
− γ

2πi
x.
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• One can check that the even part of fassoc(x) must be the same for all Drinfeld

associators. Since the Alekseev–Torossian associator [2, 20] is even, we obtain

from the previous example that for the Alekseev–Torossian associator

fassoc(x)=
∞∑

k=1

kζ(2k)

(2πi)2k
x2k = −1

2
log

(
ex/2 − e−x/2

x

)
. �

Lemma 1 (Homotopy invariance). Let U1,U2 be stable formality morphisms of cochains

that are homotopic. Let fDuflo
1 , fcurv

1 and fDuflo
2 , fcurv

2 be the associated characteristic

functions as defined above. Then fDuflo
1 = fDuflo

2 and fcurv
1 = fcurv

2 .

Let furthermore (U1,V1) and, (U2,V2) be homotopic stable formality morphisms

of cochains and chains and let fchain
1 and fchain

2 be the characteristic functions associated

to V1 and V2 as above. Then fchain
1 = fchain

2 . �

Proof sketch. It is sufficient to consider only directly homotopic stable formality mor-

phisms (see Section 1.2). Let us use the notation from Equation (5). The dt-components

of the Lie∞ relations for Ũ say that

d

dt
Ũt = ±dSht ± dH ht ± [Ut,ht] (10)

where dS is a term containing the Schouten–Nijenhuis bracket, dH is (induced from) the

Hochschild differential and the bracket is (induced from) the Gerstenhaber bracket.

To see the invariance for fcurv one notes that (for large enough n) the right-hand

side cannot contain any terms associated to graphs (8), as they could be produced by

neither the differential dS and dH , nor by the Gerstenhaber bracket. Hence fcurv must be

the same for each Ũt. For fchain the argument is analogous.

The case of fDuflo is more difficult, as the right-hand side of (10) may contain

graphs of the forms (6) and (7). Concretely, both can be produced by terms corresponding

to a unique graph in ht, namely the following:

(11)



6548 T. Willwacher

The term dH ht (may) contain terms corresponding to the graph (7) and the term [Ut,ht]

(may) contain terms corresponding to the graph (6).

However, computing the signs and prefactors both contributions are equal and

hence fDuflo remains unchanged.

Note also that graphs of the form

in ht do not contribute since the two terms of the form (7) that can be produced through

dSht occur with opposite signs and hence cancel. �

1.4 Main result

The main result of this paper is the following theorem.

Theorem 1 (Partially contained in [16, 26, Section 10]).

(1) Let U be a stable formality morphism of cochains. Then

fDuflo = fcurv.

(2) If U is obtained from a Drinfeld associator Φ according to the procedure of

Example 1, then furthermore

fDuflo = fcurv = fassoc.

(3) Let (U ,V) be an extension of U to a stable formality morphism of cochains

and chains. Then

fDuflo = fcurv = fchain. �

Theorem 1 can in fact almost be extracted from existing literature. The fact that

fDuflo = fcurv is essentially contained in some form in [16], and the fact that fcurv = fassoc

is contained (in an albeit sketchy way) in [26]. Nevertheless, we will give a self-contained

proof in Section 3.
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Remark 3. In fact, the even part of the characteristic functions above is the same for

all stable formality morphisms and agrees with the function

−1

2
log

ex/2 − e−x/2

x
= −

∑
j≥1

B2 j

4 j(2 j)!
x2 j

�

2 Action of the Graph Complex

M. Kontsevich’s graph complex GC2 is a complex formed by formal series of (isomor-

phism classes of) undirected, at least trivalent, connected graphs. The simplest nontriv-

ial example of a graph giving rise to an element of GC2 is the tetrahedron graph

For more details, and the (lengthy) definition of GC2 we refer the reader to [26,

Section 3; 11, Section 6]. For us, the important fact is that there is a map of dg Lie

algebras from GC2 to the Chevalley complex of Tpoly(R
n) for each n. In particular, closed

degree zero elements of GC2 give rise to Lie∞-derivations of Tpoly(R
n)[1]. Denote the space

of closed degree 0 elements by GC0
2,cl ⊂ GC2. It is a pro-nilpotent Lie algebra, and is the

Lie algebra of a prounipotent group

ExpGC 0
2,cl

which may be realized as the group-like elements in the completed universal enveloping

algebra of GC0
2,cl . The action of GC0

2,cl on Tpoly(R
n)[1] by Lie∞-derivations integrates to an

action of ExpGC 0
2,cl on Tpoly(R

n)[1] by Lie∞-automorphisms. It is then not hard to check

that precomposition yields an action of ExpGC 0
2,cl on the set of stable formality mor-

phisms (of cochains). It is clear that this action descends to an action of the homotopy

classes of stable formality morphisms. Dolgushev showed the following theorem, which

is important for us.

Theorem 2 ([11]). The induced action of ExpGC 0
2,cl on the set of homotopy classes of

stable formality morphisms is transitive. �
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3 Proof of the Theorem 1

First, let us reduce the statement to the cases involving only stable formality morphisms

of cochains by showing that fcurv = fchain. For this, consider the coefficient of the graph

in the Lie∞ relation for modules. Terms can be contributed by the graph Γ
(I I I )
j (see (8))

and by the graph Γ̃ j (see (9)) and by no other graphs. Checking the prefactors, It follows

that the coefficients need to be equal, up to possibly an overall sign, which depends on

conventions, but not on the particular stable formality morphism chosen. However, for

the Kontsevich/Shoikhet morphism our conventions and Example 2 say that the sign is

“+”, hence it must be “+” for any stable formality morphism.

Next let us turn to the statement that fcurv = fDuflo. By Lemma 1 and Theorem 2

it suffices to show the following two statements:

(1) For one particular stable formality morphism fcurv = fDuflo.

(2) The action of degree zero cocycles in GC2 leaves invariant the expression

fDuflo(x)− fcurv(x).

We take for the particular formality morphism that constructed by M. Kontse-

vich, that is, UKontsevich. In this case item (1) above is settled by Example 2.

Next consider the action of a degree zero cocycle Γ ∈ GC2. By the explicit descrip-

tion of the action it cannot change the coefficient of the graph Γ (I I )
j (see (7)) in a stable

formality morphism. Furthermore, it changes both the coefficients of the graphs Γ (I I )
j

and Γ (I I I )
j (see (6), (8)) by the coefficient of the wheel graph
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in Γ . In particular, the quantity fDuflo(x)− fcurv(x) is unchanged. Hence we have shown

that fcurv = fDuflo for all stable formality morphisms.

To show the final assertion of Theorem 1 the proof is similar and has been given

in [26]. We recall it here. It clearly suffices to show the following items:

(1) For the Kontsevich stable formality morphism and the Alekseev–Torossian

Drinfeld associator, fassoc = fcurv.

(2) The difference fassoc − fcurv is invariant under the action of the

Grothendieck–Teichmüller Lie algebra grt, where to define its action on stable

formality morphisms one uses the map from grt1 to H(GC2) as in Example 1.

Again, item (1) has been settled by Example 2. Furthermore, the cycle in graph

homology sn that picks out the coefficient of the wheel graph with n spokes (n odd)

is shown in [26, Proposition 9.1] to correspond to the cochain of the Grothendieck–

Teichmüller Lie algebra grt1 that picks out the coefficient of

adn−1
X Y

of elements in grt1. The action of some grt1 element on a Drinfeld associator changes the

coefficient of Xn−1Y of the associator by precisely this term. Hence Theorem 1 follows.

4 Application: Star Products on Duals of Lie Algebras

Let g be any Lie algebra, Ug its universal enveloping algebra, and Sg the symmetric

algebra. The Poincaré–Birkhoff–Witt isomorphism

φPBW : Sg → Ug

endows Sg with an associative (but not necessarily commutative) product �PBW via pull-

back, that is,

p �PBW q := φ−1
PBW(φPBW(p)φPBW(q))

for any p,q ∈ Sg.

Furthermore, for any Lie algebra g the dual space g∗ carries a canonical Poisson

structure, the Kirillov–Kostant Poisson structure. A stable formality morphism provides

us (in particular) with an associative product � on Sg. This product in general depends

on the stable formality morphism chosen. However, it is an elementary exercise to check

that any such product is the pullback of �PBW via an automorphism of the vector space
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Sg of the form

Ψ = exp

⎛
⎝∑

j≥2

cjtr(ad j
∂ )

⎞
⎠ (12)

for some constants cj. Here

tr(ad j
∂ ) := f

k1i j

i1 fk2i1
i2 · · · f

kji j−1

i j
∂k1 · · · ∂kj

are differential operators where fab
c are the structure constants of the Lie algebra and

summation over repeated indices is assumed. Note that the constants cj are not char-

acters of the stable formality morphism, that is, they may change upon changing the

stable formality morphism to a gauge equivalent one. However, there is the following

result.

Proposition 1. Given a stable formality morphism define the formal series f(x) :=
−∑

j
(−1) j

j cjxj, where the cj are as in (12). If the stable formality morphism is such that

the weights c
Γ
(I )
j

of graphs Γ (I )
j (cf. (6)) vanish for all j, then f agrees with the character-

istic function defined above, that is,

f = fDuflo = fcurv. �

Proof. Under the assumptions given λDuflo
j = − 1

j cΓ (I I )
j

. However, it is not hard to check

that �P BW does not contain terms corresponding to graphs Γ (I I )
j . They have to be pro-

duced via pullback with tr(ad j
∂ ) and hence the respective coefficients need to agree, up to

a combinatorial prefactor, independent of the stable formality morphism under consid-

eration. Unwinding conventions left implicit in this paper the combinatorial prefactor

could be computed. However, to settle the prefactors it is also sufficient to check that

both characteristic functions agree for one stable formality morphism for which all of

the coefficients of f are nonzero. It has been shown by Rossi [19] that for the Kontsevich

formality morphism with 1
2 -propagator, f = fcurv (cf. also Example 2). Since in this case

all cj �= 0, the combinatorial prefactors must all be +1. �

In the special case of the Kontsevich stable formality morphism, Ψ becomes the

Duflo morphism, hence the name of fDuflo. Special cases of the above proposition have

been shown in [16, 14, Appendix F, 6, 19].
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5 The “Two Branes” Case

The above results may be extended slightly to apply to the formality morphisms “with

branes” introduced by Calaque et al. [5]. In particular, one may identify a characteristic

function for “stable versions” (i.e., given by sum-of-graphs formulas) of such morphisms,

which has been used implicitly in [6, 19]. This function turns out to agree with the

characteristic functions discussed above.

Let us begin by reviewing the results of [5]. Consider the polynomial (or exterior)

algebras A= R[X1, . . . , Xn] and B = R[ξ1, . . . , ξn] where the formal variables X1, . . . , Xn live

in degree 0, while the formal variables ξ1, . . . , ξn live in degree 1. A and B are Koszul dual

algebras. One may show this by showing that the Koszul complex

A⊗ B∗

has cohomology R. Note also that A⊗ B∗ carries a natural A–B bimodule structure.

The first result of [5] is an explicit construction of an Assoc∞ A–B bimodule

structure on K = R. It was shown in [15] that the bimodule K is in fact Assoc∞ quasi-

isomorphic to A⊗ B∗.

One may package A, B, and K into an A∞ category Cat∞(A, B, K) (notation as

in [5]) with objects A and B and the space of morphisms between A and B being K. The

second result of [5] is the construction of a Lie∞ morphism

Tpoly(R
n)[1] → C (Cat∞(A, B, K))[1]

where the right-hand side is the Hochschild complex of Cat∞(A, B, K). This morphism

contains the Kontsevich formality morphism UKontsevich from above.

One may package both the Assoc∞ bimodule structure and the Lie∞ morphism

into a “nonflat” Lie∞ morphism, that is, a Lie∞ morphism with nonvanishing zeroth term,

which encodes the bimodule structure. This morphism is also given by a sum-of-graphs

formula of the form

WCFFR
k =

∑
Γ̄

c̄CFFR
Γ̄

DΓ̄ .

Here the graphs summed over are essentially Kontsevich graphs, possibly with one dis-

tinguished Type II vertex. For a more precise definition, we refer the reader to [5].

In analogy with Definition 1, we may define a stable formality morphism of

Calaque, Felder, Ferrario, and Rossi (CFFR) type to be a collection of numbers cΓ̄ such
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that

Wk =
∑
Γ̄

cΓ̄ DΓ̄ .

defines a nonflat Lie∞ morphism for all n, and such that (1) the restriction to Kontsevich-

type graphs yields a stable formality morphism and (2) the two graphs below have coef-

ficient 1.

These graphs are the leading contribution to the bimodule structure.

Such stable formality morphisms possess a characteristic function

fbrane(x)=
∑
j≥2

λbrane
j xj

where λbrane
j = 1

j cΓ I
j
+ 1

j c̄Γ̄ j
, with Γ I

j as depicted in (6), and Γ̄ j as follows:

It may be verified that fbrane is indeed a characteristic function, that is, it does

not change when changing the stable formality morphism of CFFR type to a homotopic

one. Note that this is not true if one omits the term cΓ I
j

from the definition. The charac-

teristic function fbrane is implicitly used in [6, 19, 25], where it is shown to agree with

fcurv for two special stable formality morphisms of CFFR type. We have the following

general result.

Proposition 2. fbrane = fcurv for all stable formality morphisms of CFFR type. �
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Proof sketch. The statement is equivalent to saying that the coefficients of the terms

associated to the graphs

in the Lie∞ relations vanish (for n big enough). �
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