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mean-independent. However, if we take a non-compact group and con-
sider the space of all continuous functions with the topology of convergence
uniform on every compact set, a novel situation arises in so far as the set of
translates f(xa) is generally unbounded. I hope to return to this question
in a later paper. Another problem of some interest would be to apply
Theorem A to the study of the mean-invariant envelope of a specified set
of translates of a given function, a question which appears not to have
been discussed at all amidst the vast literature on linear envelopes of
translates.
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BOUNDS FOR THE GREATEST LATENT ROOT OF A POSITIVE
MATRIX

A. OSTEOWSKI*f.

1. Let A ==• {a^) be an ?< X w-matrix with arbitrary non-zero u^.

Put /?„= £ U^ (n=\, . . . , n ) , ( I )
r = l

H = max tiM, (2)
it

r - • min RM, (3)

K = min 1^,1, (4)

/ / r—K \ . >
a=V{-R^)' &
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Then the root co ivith the greatest modulus of the equation

\XE-A\ = 0 (6)

satisfies the inequality

and, if all a^ are positive, the further inequality

(8)

2. The results (7) and (8) are an improvement of the corresponding
inequalities given a year ago in an interesting note* by W. Ledermann.

Put

8=maxf'; (9)
RR U

then the inequalities of Ledermann are obtained from (7) and (8) on
replacing a by y/h and ^ by < .

3. Since the modulus of <o is majored by the greatest fundamental root
of the matrix (Ia^l), it is sufficient to consider the case in which all am are
positive. Then by a theorem of Perron and Frobenius, o> is positive and
there exists a fundamental vector (xlt ..., xn) of A corresponding to cu, with
positive xf:

n

o>a;,,= S altyxv (/x= 1, ..., n). (10)

We shall prove a little more than the result stated, namely, assuming
r<B,

minav
p

 K , < ~ J :
 <<T. (11)

R—r-\-K max re.

We can assume, by permuting the rows and columns of A in a cogredient
mannerf and multiplying all x, by a convenient constant, that

(12)

. * W. Ledermann, " Bounds for the greatest latent root of a positive matrix ", Journal
London Math. Soc., 25 (1950), 265-268.

f A cogredient transformation is the application of the same permutation to the rows
and the columns.
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Then we have from (10), (12) and (4), for any /x,

„!+ ( 2 %Axn = 0,^(1—xn)+RMxn,

In a similar manner it follows that, for any index A,

n - l
xKu> < S

4. We now specialize (13) and (14) by taking ^ and A such that

RM = R, Rx = r. (15)

Then it follows from (13) and (14), since x^^l, xx ̂ -xn, that

i.e. x , ( ( iZ-K)<w-K< — , (16)

and therefore „ < A/ \JT^-) — <*• (17)

We write now (1.3) and (14) for p = n, A = l , and obtain, since

, (18)

co </?—*+<«, (19)

that is (7) and (8).

"). On the other hand we have from (18), since the bound on the right-
hand side in (IS) is less than R and Rn^r,

and solving this with respect to xn, we obtain

*»>TP^rR- (20)"
that is (11).
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<v It may be remarked finally tha t the inequalities (7). (S) and (11) can

be still further improved, by introducing the expie.-sions

i<{ miii a w . K2 - nimalir. (21)

Then in these inequalities we can replace a by

and K by K2.
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CORRIGENDA

ON A THEOREM DUE TO M. RIESZ

G. L. ISAACS*.

P. 289. In the conclusion of Theorem E, o(e-°") should be replaced by o(«* e~#").

THE ASYMPTOTIC EXPANSION OF THE GENERALISED HYPERGEOMETRIC
FUNCTION

E. M.

P. 287, LEMMA, line 3, for Am read KAM;

line 6, for *•-•* read *-*-•*.

I am indebted to Dr. E. C. Bullard for drawing my attention to this error.

* This Journal, 26 (1951), 285-290.
t This Journal, 10 (1935), 286-293.




