mean-independent. However, if we take a non-compact group and consider the space of all continuous functions with the topology of convergence uniform on every compact set, a novel situation arises in so far as the set of translates $f(x a)$ is generally unbounded. I hope to return to this question in a later paper. Anuther problem of some interest would be to apply Theorem A to the study of the mean-invariant envelope of a specified set of translates of a given function, a question which appears not to have been discussed at all amidst the vast literature on linear envelopes of translates.

References.

1. R. E. Edwards, "On functions whose translates are independent" (to appear in the Annales de l'Inst. Fourier).
2. M. Krein and D. Milman, "On extreme points of regular convex sets", Studia Math., 9 (1940), 133-138.
3. H. Steinhaus, "Sur les distances des points des ensembles de mesure positive", Fundamenta Math., 1 (1920), 93-104.
4. A. Weil, L'intégration dans les groupes topologiques et ses applications (Act. Sci. et Ind., No. 869, Paris, 1940).

Birkbeck College,
London.

BUUNDS FOR THE (RREATEST LATENT ROOT OF A POSITIVE MATRIX

A. Ostrowsei* \dagger.

1. Let $A=\left(a_{\mu \nu}\right)$ be an $n \times n$-matrix with arbitrary non-zero $a_{\mu \nu}$.

Put

$$
\begin{align*}
R_{\mu} & =\sum_{\nu=1}^{n} \mid n_{\mu \nu}!\quad(\mu=1, \ldots, n) \tag{1}\\
R & =\max _{\mu} R_{\mu} \tag{2}\\
r & =\min _{\mu} R_{\mu} \tag{3}\\
\kappa & =\min _{\mu \nu}\left|a_{\mu \nu}\right| \tag{4}\\
\sigma & =\sqrt{V}\left(\frac{r-\kappa}{R-\kappa}\right) \tag{5}
\end{align*}
$$

[^0]Then the root ω with the greatest modulus of the equation

$$
\begin{equation*}
|\lambda E-A|=0 \tag{6}
\end{equation*}
$$

satisfies the inequality

$$
\begin{equation*}
|\omega| \leqslant R-(1-\sigma) \kappa \tag{7}
\end{equation*}
$$

and, if all $a_{\mu \mu}$ are positive, the further inequality

$$
\begin{equation*}
\omega \geqslant r+\left(\frac{1}{\sigma}-1\right) \kappa . \tag{8}
\end{equation*}
$$

2. The results (7) and (8) are an improvement of the corresponding inequalities given a year ago in an interesting note* by W. Ledermann.

Put

$$
\begin{equation*}
\delta=\max _{R_{\mu}<R_{\nu}} \frac{R_{\mu}}{R_{\nu}} \tag{9}
\end{equation*}
$$

then the inequalities of Ledermann are obtained from (7) and (8) on replacing σ by $\sqrt{ } \delta$ and \leqslant by $<$.
3. Since the modulus of ω is majored by the greatest fundamental root of the matrix $\left(\left|a_{\mu \nu}\right|\right)$, it is sufficient to consider the case in which all $a_{\mu \mu}$ are positive. Then by a theorem of Perron and Frobenius, ω is positive and there exists a fundamental vector $\left(x_{1}, \ldots, x_{n}\right)$ of A corresponding to ω, with positive x_{ν} :

$$
\begin{equation*}
\omega x_{\mu}=\sum_{v=1}^{n} a_{\mu v} x_{v} \quad(\mu=1, \ldots, n) \tag{10}
\end{equation*}
$$

We shall prove a little more than the result stated, namely, assuming $r<R$,

$$
\begin{equation*}
\frac{\kappa}{R-r+\kappa}<\frac{\min _{\eta} x_{r}}{\max x_{\eta}} \leqslant \sigma \tag{11}
\end{equation*}
$$

We can assume, by permuting the rows and columns of A in a cogredient manner \dagger and multiplying all $x_{\text {, }}$ by a convenient constant, that

$$
\begin{equation*}
1=x_{1} \geqslant x_{2} \geqslant \ldots \geqslant x_{n} \tag{12}
\end{equation*}
$$

[^1]Then we have from (10), (12) and (4), for any μ,

$$
\begin{gather*}
x_{\mu} \omega \geqslant a_{\mu 1}+\left(\sum_{\nu=2}^{n} a_{\mu \nu}\right) x_{n}=a_{\mu 1}\left(1-x_{n}\right)+R_{\mu} x_{n} \\
\omega \geqslant \frac{1}{x_{\mu}}\left[x_{n} R_{\mu}+\left(1-x_{n}\right) \kappa\right] . \tag{13}
\end{gather*}
$$

In a similar manner it follows that, for any index λ,

$$
\begin{gather*}
x_{\lambda} \omega \leqslant \sum_{\nu=1}^{n-1} a_{\lambda \nu}+a_{\lambda n} x_{n}=R_{\lambda}-\left(1-x_{n}\right) a_{\lambda_{n}}, \\
\omega \leqslant \frac{1}{x_{\lambda}}\left[R_{\lambda}-\left(1-x_{n}\right) \kappa\right] . \tag{14}
\end{gather*}
$$

4. We now specialize (13) and (14) by taking μ and λ such that

$$
\begin{equation*}
R_{\mu}=R, \quad R_{\lambda}=r \tag{15}
\end{equation*}
$$

Then it follows from (13) and (14), since $x_{\mu} \leqslant 1, x_{\lambda} \geqslant x_{n}$, that

$$
x_{n}(R-\kappa)+\kappa \leqslant \omega \leqslant \frac{r-\kappa}{x_{n}}+\kappa,
$$

i.e.

$$
\begin{equation*}
x_{\prime \prime}(R-\kappa) \leqslant \omega-\kappa \leqslant \frac{r-\kappa}{x_{n}}, \tag{16}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
" \leqslant \sqrt{ }\left(\frac{r-\kappa}{R-\kappa}\right)=\sigma \tag{17}
\end{equation*}
$$

We write now (13) and (14) for $\mu=n, \lambda=1$, and obtain, since

$$
\begin{gather*}
R_{n} \geqslant r, \quad R_{1} \leqslant R, \quad x_{n} \leqslant \sigma: \\
R_{n}+\left(\frac{1}{x_{n}}-1\right) \kappa \leqslant \omega \leqslant R_{1}-\kappa+x_{n} \kappa, \tag{18}\\
r+\left(\frac{1}{\sigma}-1\right) \kappa \leqslant \omega \leqslant R-\kappa+\sigma \kappa, \tag{19}
\end{gather*}
$$

that is (7) and (8).
5. On the other hand we have from (18), since the bound on the righthand side in (18) is less than R and $R_{n} \geqslant r$,

$$
r+\left(\frac{1}{x_{n}}-1\right) \kappa<R
$$

and solving this with respect to x_{n}, we obtain

$$
\begin{equation*}
x_{n}>\frac{\kappa}{R-r+\kappa} \tag{20}
\end{equation*}
$$

that is (11).

256 Bounds for the grjatest lathiy root of a posittve matrix.
6. It may be remarked finally that the inequalities (7). (8) and (11) ean be still further improved, by introdueing the expresions

$$
\begin{equation*}
\kappa_{1} \cdot \min _{\mu} a_{\mu \mu} \quad \kappa_{2}-\underset{\mu \neq \boldsymbol{m}}{\min } \|_{\mu \mu} . \tag{21}
\end{equation*}
$$

Then in these inequalities we can replace σ by

$$
\begin{equation*}
\sigma_{1}:=\sqrt{ }\left(\frac{r-\kappa_{1}}{R-\kappa_{1}}\right) \tag{22}
\end{equation*}
$$

and κ by κ_{2}.
University of Basel, Switzerland.
American University, Washington, D.C., U.S.A.

CORRIGENDA

ON A THEOREM DUE TO M. RIESZ
G. L. Isanos*.
P. 289. In the conclusion of Theorem E, $o\left(e^{-o \omega}\right)$ should be replaced by $o\left(\omega^{*} e^{-\cdots}\right)$.

THE ASYMPTOTIC EXPANSION OF THE GENERALISED HYPERGEOMETRIC FUNCTION
E. M. Wright \dagger.
P. 287, Lemma, line 3, for A_{m} read κA_{m};
line 5 , for $\kappa^{\dagger-9}$ read κ^{-i-9}.
I am indebted to Dr. E. C. Bullard for drawing my attention to this orror.

[^2]
[^0]: * Received 10 October, 1951; read 15 November, 1951.
 \dagger This paper was preparecl under contract of the National Burean of Standards with the American University, Washington, D.C.

[^1]: * W. Ledermann, " Bounds for the greatest latent root of a positive matrix ", Journal London Math. Soc., 25 (1950), 265-268.
 \dagger A cogredient transformation is the application of the same permutation to the rows and the columns.

[^2]: * This Journal, 26 (1951), 285-290.
 \dagger This Journal, 10 (1935), 286-293.

