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L estimates and integrability by compensation in
Besov—Morrey spaces and applications
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Abstract. L*° estimates in the integrability by compensation result of H. Wente fail in
dimension larger than two when Sobolev spaces are replaced by the ad-hoc Morrey spaces
(in dimension n > 3). However, in this paper we prove that L°° estimates hold in arbi-
trary dimension when Morrey spaces are replaced by their Littlewood—Paley counterparts:
Besov—Morrey spaces. As an application we prove the existence of conservation laws for
solutions of elliptic systems of the form

—Au=Q-Vu

where Q is antisymmetric and both Vu and €2 belong to these Besov—Morrey spaces for
which the system is critical.
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1 Introduction

In this section we will give the precise statement of our results and add some
remarks. For the sake of simplicity, in what follows we will use the abbreviation a
for %a.

Our work was motivated by Riviere’s article [14] about Schrodinger systems

with antisymmetric potentials, i.e. systems of the form
—Au=Q-Vu (1.1)

withuy € Wh2(w, R™) and Q € L?(w,so(m) @ A'R"), w C R".

The differential equation (1.1) has to be understood in the following sense.
For all indices i € {1,...,m} we have —Au’ = Z;-"zl Qj - Vu/ and the nota-
tion L?(w,s0(m) ® A'R") means that ¥ i, j € {1,...,m}, Qj € L?(w, A'R")
and Q} = —Q{ . In particular, it was the result that in dimension n = 2 solutions
to (1.1) are continuous which attracted our interest.
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The interest for such systems originates in the fact that they “encode” all Euler—
Lagrange equations for conformally invariant quadratic Lagrangians in dimen-
sion 2 (see [14] and also [9)).

In what follows we will take @ = B7 (0), the n-dimensional unit ball.

In the above cited work, there were three crucial ideas.

o Antisymmetry of Q. If we drop the assumption that €2 is antisymmetric, there
may occur solutions which are not continuous as the following example shows.
Letn =2,u' = 210g10g% fori = 1,2 and let

vul 0
Q="
0 Vu?
Obviously, u satisfies equation (1.1) with the given €2 but is not continuous.
* Construction of conservation laws. In fact, once there exists
A € L®(B](0), M(R)) N W 12(B] (0). M (R))

such that

d*(dA—AQ) = 0. (1.2)
for given Q2 € L2(Bi’(0), so(m)® A'R™), then any solution u of (1.1) satisfies
the following conservation law:

d(xAdu + (=1)""Y(xB) A du) = 0 (1.3)

where B satisfies —d*B = dA — ASQ. The existence of such an A (and B)
is proved by Riviere in [14] and relies on a non linear Hodge decomposition
which can also be interpreted as a change of gauge (see in our case Theo-
rem 1.5).

e Understanding the linear problem. The proof of the above mentioned regular-
ity result uses the result below for the linear problem.

Theorem 1.1 ([26], [7] and [24]). Let a, b satisfy Va,Vb € L? and let ¢ be the
unique solution to

{—A(p = Va-V1b = x(da A db) = axby —ayby in B¥(0), ",
@ =0 ondB0).
Then ¢ is continuous and it holds that
lelleo + IVell2 + V20l < ClIVall2 [Vb]|2. (1.5)

Note that the L™ estimate in (1.5) is the key point for the existence of A, B satis-
fying (1.2).
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A more detailed explanation of these key points and their interplay can be found
in Riviere’s overview [15].

Our strategy to extend the cited regularity result to domains of arbitrary dimen-
sion is to find first of all a good generalisation of Wente’s estimate. Here, the first
question is to detect a suitable substitute for L? since obviously for n > 3 from
the fact that @, b € W12 we cannot conclude that @ is continuous. So we have to
reduce our interest to a smaller space than L2. A first idea is to look at the Morrey
space MZ, i.e. at the spaces of all functions f € L2 (R") such that

loc

I/IM51 = sup sup R*™"/?|| f|L*(B(xo, R))|| < 0.
xo€R” R>0
The choice of this space was motivated by the following observation (for details
see [16]). For stationary harmonic maps u we have the following monotonicity es-

timate:
rH/ |Vul* < RH/ |Vul?
B} (x0) B (x0)

for all r < R. From this, it is rather natural to look at the Morrey space M.
Unfortunately, this first try is not successful as the following counterexample in

dimension n = 3 shows. Leta = |’;—1| and b = |’;—2‘ As required

Va, Vb € M3(B;(0)).

3
The results in [7] imply that the unique solution ¢ of (1.4) satisfies VZ¢ € M7,
but ¢ is not bounded! Therefore, in [16] the attempt to construct conservation laws
for (1.1) in the framework of Morrey spaces fails.

Another drawback is that C* is not dense in M7 . This point is particularly im-
portant if one has in mind the proof via paraproducts of Wente’s L° bound for the
solution ¢.

In this paper we shall study L°° estimates by replacing the Morrey spaces
MY by their “nearest” Littlewood—Paley counterpart, the Besov—Morrey spaces
B° "2 i.e. the spaces of f € 8’ such that

1

(Z II?‘IW?fIM’é(R”)IIZ) <o
j=0

where ¢ = {gp; };?’;0 is a suitable partition of unity.

It turns out that we have a suitable density result at hand, see Lemma 2.15.
These spaces were introduced by Kozono and Yamazaki in [10] and applied to the
study of the Cauchy problem for the Navier—Stokes equation and semilinear heat

equation (see also [11]).
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Note, that we have the following natural embeddings, B ME,2 C M (see Lem-
ma 2.11), and on compact subsets BY M2 is a natural subset of L2 (see Lem-
ma 2.14).

The success to which these Besov—Morrey spaces give rise relies crucially on
the fact that we first integrate and then sum!

In the spirit of the scales of Triebel-Lizorkin and Besov spaces (definitions are
restated in the next section) where we have for 0 < g < occand 0 < p < oo

s s s
Bp,min{p,q} - FP,‘I cB p,max{p,q}

and due to the fact thatfor 1 <g < p < o0

(Z 71y %‘fﬁ)
j=0

it is obvious to exchange the order of summability and integrability in order to find
a smaller space starting from a given one.

A more detailed exposition of the framework of Besov—Morrey spaces is given
in the next section.

We have

D=

’

My

IS llaeg =~

Theorem 1.2. (i) Assume thata,b € BR{n 5> and assume further that
2
0 .
Ax,ay,byx,by € B,Mg,z where x,y = zj,zj withi, j,e {1,...,n}.
Then any solution of
—Au = ayby, —ayby
is continuous and bounded.

(ii) Assume that ayx,ay, by and by are distributions whose support is contained
in BY(0) and belong to BM” n > 3. Moreover, let u be a solution (in the
sense of distributions) of

_Au == axby - bxay.
Then it holds
0
Vu e BMg,l'

(iii) Assume that ayx,ay, by and by are distributions whose support in B} (0) and
belong to BR{n 5+ Moreover, let u be a solution (in the sense of distributions)
2

of

—Au = axby — byay.

Then it holds
2 -1 -2
\Y ueBMg’l C Bo,
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Remark 1.3. -« If we reduce our interest to dimension » = 2, our assumptions in
the theorem above coincide with the original ones in Wente’s framework due
to the fact that M3 = L? and BY , = L? = F),.

* Obviously, we have the a priori bound
lulloo < C(llalBign ol + IValBlen 5 1) (161BSen 51l + V5] Bign ).

* Now, if we use a homogeneous partition of unity instead of an inhomogeneous
as before, our result holds if we replace the spaces B?Ms 2 by the spaces Nno,z,z-
For further information about these homogeneous function spaces we refer to
Mazzucato’s article [11].

¢ Note that the estimate Vu € Bﬁ'(n , implies that u is bounded and continuous.
2

As an application of what we did so far, we would like to present an adaptation
of Riviere’s construction of conservation laws via gauge transformation (see [14])
to our setting; more precisely we are able to prove the following assertion.

Theorem 1.4. Let n > 3. There exist constants e(m) > 0 and C(m) > 0 such that
for every Q € B° " ,(B1(0),s0(m) ® AYR™) which satisfies

0
1218, < e(m)
there exist

A € L®(B7(0), Gl (R)) N 33%3,2 and B € ijzl’z(B;’(O), M, (R) ® A*R")

such that
) doA =dA—AQ = —-d*B =—xd * B,
G IABSg ol + VAT B sl [ s, SO0
1
< C(m)|12Bje .
(iii) IVB|BYn 5]l < Cm)|2] Bl .

This finally leads to the following regularity result.

Corollary 1.5. Let the dimension n satisfy n > 3. Let ¢(m), 2, A and B be as in
Theorem 1.4. Then any solution u of

—Au=Q-Vu
satisfies the conservation law

d(x*Adu + (=1)""Y(xB) A du) = 0.
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Moreover, any distributional solution of Au = —Q - Vu which satisfies in addition
0
Vu € BME’,Z
is continuous.

Remark 1.6. Note that the continuity assertion of the above corollary is already
contained in [16], but our result differs from [16] (see also [18] for a modification
of the proof of Riviere and Struwe) in so far, as on one hand we do not impose any
smallness of the norm of the gradient of a solution and really construct A and B
(see Theorem 1.4) and not only construct 2 and £ such that P~ 1dP + P7I1QP =
*d &, but on the other hand work in a slightly smaller space.

The present article is organised as follows. After recalling some basic defini-
tions and preliminary facts in Section 2, we give in the third section the proofs of
the statements claimed before.

2 Definitions and preliminary results

We recall the important definitions and state basic results we will use.

2.1 Besov and Triebel-Lizorkin spaces
Non-homogeneous Besov and Triebel-Lizorkin spaces

In order to define them we have to introduce some additional notions. We will start
with an important subspace of § and its topological dual.

Definition 2.1 (Z(R") and Z’(R")). The set Z(R") is defined to consist of all
¢ € 8(R") such that

(D*F ¢)(0) =0 for every multi-index «,
and Z’(R") is the topological dual of Z (R").
Next, we introduce the Littlewood—Paley partitions of unity.

Definition 2.2 (®(R"), ®(R”)). (i) Let ®(R") be the collection of all systems
¢ ={g; (X)}j";o C 8(R") such that

suppgo C {x | x| <2},
supp¢; C {x | 277 < x| <2/t ifj=1,2,3,...,
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for every multi-index o there exists a positive number C,, such that
2719 D%, (x)| < Cy forall j =1,2,3,... andall x € R"

and

oo
prj(x) =1 forall x € R"
j=0
(i) Let ®(R") be the collection of all systems ¢ = {o; (x)};";_oo C 8(R™)
such that

supp@; C {x [ 2771 < |x| <27t} if j is an integer,
for every multi-index « there exists a positive number C,, such that
2j|a||Da<pj (x)| < C, for all integers j and all x € R”

and
o0

Z @j(x) =1 forall x € R"\ {0}.

j=—00

Remark 2.3. + Note that in the above expression Z;io @j(x) = 1, the sum is
locally finite!

e Example of a system ¢ which belongs to ®(R"™). We start with an arbitrary
Cs° (R™) function ¥ which has the following properties: ¥ (x) = 1 for |x| < 1
and ¥/ (x) = 0 for |x| > 3. We set go(x) = Y(x)., p1(x) = Y(3) — Y (x),
and ¢ (x) = ¢1 (2=/*1x), j > 2. Then it is easy to check that this family ¢
satisfies the requirements of our definition. Moreover, we have Z?:o pi(x) =
v (27"x), n > 0. By the way, other examples of ¢ € ®, apart from this one,
can be found in [17], [25] or [6].)

Now, we can state the definitions of the above mentioned Besov and Triebel—
Lizorkin spaces.

Definition 2.4 (Besov spaces and Triebel-Lizorkin spaces). Let —oco < § < o0,
let 0 < g < ooandletp € ®(R").

(i) If 0 < p < oo, the (non-homogeneous) Besov spaces Bls,’q (R™) consist of
all f € 8’ such that the following inequality holds:
7

. .
| £1B5.,(R™)[* = (Z 2fsq||f‘—1<o,~3~‘f||z) < oo,

J =0
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(i) If 0 < p < oo, the (non-homogeneous) Triebel-Lizorkin spaces Fj ,(R")
consist of all f* € 8’ such that the following inequality holds:

1f1Fp R = < o0.

o0
S F g F F(x)19)7 dx
Jj=0 p

Here ¥ denotes the Fourier transform.

Recall that the spaces B;,’ 7 F If’ q are independent of the choice of ¢ (see [25]).
Most of the important facts (embeddings, relation with other function spaces,
multiplier assertions and so on) about these spaces can be found in [17] and [25].

In what follows we will give precise indications where a result we use is proved.

Besov-Morrey spaces

Instead of combining L?-norms and /4-norm one can also combine Morrey- (re-
spectively Morrey—Campanato-) norms with /9-norms. This idea was first intro-
duced and applied by Kozono and Yamazaki in [10].

In order to make the whole notation clear and to avoid misunderstanding, we
will recall some definitions.

We start with the definition of Morrey spaces.

Definition 2.5 (Morrey spaces). Let 1 < g < p < oo.
(i) The Morrey spaces M} (R™) consist of all f € Lﬁ)c (R™) such that

IfIME| = sup sup R"P~"/4|| £|L9(B(xo. R))|| < oo.
xo€R” R>0

(ii) The local Morrey spaces M,}’ (R™) consist of all f € LY (R™) such that

loc

IfIMZIl= sup sup R™P=™4| f|L9(B(xo. R))| < o0

x0€R” 0<R<1

where B(xg, R) denotes the closed ball in R” with center x¢ and radius R.

Note that it is easy to see that the spaces M,f and Mf coincide on compactly
supported functions.

Apart from these spaces of regular distributions, i.e. function belonging to Llloc,
in the case ¢ = 1 we are even allowed to look at measures instead of functions.
More precisely, we have the following measure spaces of Morrey type. They will
become useful later on in a rather technical context.
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Definition 2.6 (Measure spaces of Morrey type). Let 1 < p < oo.

(i) The measure spaces of Morrey type MP (R") = MP consist of all Radon
measures i such that

|| MP|| = sup sup R P71 |u|(B(xp, R)) < o0.
x0€R” R>

(ii) The local measure spaces of Morrey type M P (R™) = M ? consist of all Ra-
don measures p such that

|ulMP) = sup sup R™P7"|u|(B(xo. R)) < o0
x0€R” 0<R<1
where as above B(xg, R) denotes the closed ball in R” with center xo and
radius R.

Remember that all the spaces we have seen so far, i.e. M2, M,f , MP and M P,
are Banach spaces with the norms indicated before. Moreover, M f and M lp can be
considered as closed subspaces of M? and M ? respectively, consisting of all those
measures which are absolutely continuous with respect to the Lebesgue measure.
For details, see e.g. [10].

Once we have the above definition of Morrey spaces (of regular distributions),
we now define the Besov—Morrey spaces in the same way as we constructed the
Besov spaces, of course with the necessary changes.

Definition 2.7 (Besov—Morrey spaces). Let 1 < g < p < 00,1 <r < oo and
s e R.

(i) Let ¢ € ®(R"). The homogeneous Besov—Morrey spaces Ny g.r consist of
all f € Z’ such that

1

- 1
1/ 1 Npg.r R = ( > 2’S’II?_1<PJ3“'f|M5(R”)II’> < 0.

Jj=—00

(i) Let ¢ € ®(R™). The inhomogeneous Besov—Morrey spaces le,q,, consist
of all f € &’ such that

N ,
| £INS g R = (Z 2f"||37—1¢j$f|M,;’(R">||’) < oo,

j=0

Note that since L?(R") = M}; (R™) the framework of the N, . (R") can be
seen as a generalisation of the framework of the homogeneous Besov spaces.
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In our further work we will crucially use still another variant of spaces which
are defined via Littlewood—Paley decomposition. We will use the decomposition
into frequencies of positive power but measure the single contributions in a homo-
geneous Morrey norm.

Definition 2.8 (The spaces Bj%é: D-Letl <g<p<oo, 1 <r=<oocands € R.
Let ¢ € ®(R").
(i) The spaces Bfug', . consist of all f* € & such that
o ?
1 1Bz, R = (Z 2’”||37‘1sa/37f|M5(R”)||’) < oo.
Jj=0
(i) The spaces 3{5 - (82) where  is a bounded domain in R” consist of all
f S Bj\(é’,r

which in addition have compact support contained in £2.

Remark 2.9. (i) Again, as in the case of Besov and Triebel-Lizorkin spaces, all
the spaces defined above do not depend on the choice of ¢.

(i) Previously we mentioned that our interest in these latter spaces was moti-
vated by the work of Riviere and Struwe (see [17]); let us say a few words

about this. In [17] the authors used the homogeneous Morrey space Lf’"_z

with norm
1
2 2
171220 = s sop( s [ vu),
1 xoeR? r>0\ 7 B—r(x0)

Note that u € L%’" 2 s equivalent to the fact that for all radii » > 0 and all

xo € R" we have the inequality

- n_2
||Vu||L2(Br(x0)) < Cl‘(n 2D/p — Cr272,

but this latter estimate is again equivalent to the fact that Vu € M7 . Finally
we remember that

no__ 0

2= Mo

(see for instance [11]) and note that Vu € N,?z , isequivalenttou € an 29
since for all s — even for the negative ones — we have the equivalence

2w ey 2 11(V) llpe

because we always avoid the origin in the Fourier space and also near the
origin work with annuli with radii r >~ 25.
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Before we continue, let us state a few facts concerning the spaces B » , which
. . . q-»
are interesting and important.

Lemma 2.10. (i) The spaces Bj\(f , are complete for all possible choices of in-
dices.

(i) (@) Lets >0, 1 <g<p<oo, 1 <r<oocand) > 0. Then

IfAIBz Il < CA™7 sup{LAY || fBjyr |-
(b) Lets =0, 1l <g<p<oo, 1 <r <ocoand A > 0. Then

If A Bz Il < CA™7 (1 + [og AD*I /| Bz I

|

The first assertion is obtained by the same proof as the corresponding claim for
the spaces le’q’r in [10]. The second fact is a variation of a well-known proof
given in [5].

Furthermore, we have the following embedding result which relates the spaces
B?%g, . to the Morrey spaces with the same indices respectively, similar for the

0
spaces N, ; ..

where

if A>1,
—1=1 jfo<ir<l

— N

Lemma2l1l.letl <g =<2 1<g<p<ooandr <q. Then

CMP and Np,.CMP.

0
Ber,’ 4T

,r
From this result we immediately deduce the following corollary.

Corollary 2.12. et 1 < g <2, 1 < g < p < oo andr < g and assume that
f e BB%; . has compact support. Then f € L1.

This holds because of the preceding lemma and the fact that for a bounded
domain 2 we have the embedding qu (RQ) C L1(Q).

Similar to the result that W17 = Fpl,z, 1 < p < oo, we have the following
lemma.

Lemma 2.13. Let f be a compactly supported distribution. Then, if 1 < g <2,
1 <q < p<ooandr < g, the following two norms are equivalent:

1f1BSz Il + IV f1B3r |l and || f1Bjez .-



296 L.G. A. Keller

Moreover, also the fact that for a compactly supported distribution the homo-
geneous and the inhomogeneous Sobolev norms are equivalent, has the following
counterpart.

Lemma2l14.letl <g <2, 1<g<p<o00,2=<p r <qandn > 3. Assume
that the distribution f has compact support and that V [ € Bf/)% P Then

1
f € BMg’r.
As a by-product of our studies we have the following density result.

Lemma2.15.letl < g < p <oo,1 <r <ocoands € R. Then Oy is dense
in Ny , , respectively in N, , . and Bj%g’r where Oyy denotes the space of all
C*°-functions such that for all B € N" there exist constants Cg > 0 and mg € N
such that

108 £(x)| < Cp(1 + |x|)™ Vx € R”.

Moreover, if f € le,q’r or f € B:f%z’r withs > 0,1 <g<2andl1 < p <0
has compact support, it can be approximated by elements in C§°.

Last but not least, we would like to mention a stability result which we will
apply later on.

Lemma 2.16. Let g € Bjj , and f € B}y » N L. Then

g/ 1Blez, 2l = CligIBley 2llLS 1By 21l + 11/ lloo),

. 0 . . 7. . . . . 1
i.e. B M2 B stable under multiplication with a function in B M2 N L.

The proofs of Lemma 2.11, 2.13, 2.14, 2.15 and 2.16 are given in the next
section.
For further information about the Besov—Morrey spaces, see [10], [11] and [12].

2.2 Spaces involving Choquet integrals

In what follows, we will use a certain description of the pre-dual space of M!.
Before we can state this assertion, we have to introduce some function spaces in-
volving the so-called Choquet integral. A general reference for this section is [1]
and the references given therein.

We start with the notion of Hausdorff capacity.

Definition 2.17 (Hausdorff capacity). Let £ C R"” andlet {B;}, j = 1,2,...,be
acoverof E,i.e.{B;} is acountable collection of open balls B; with radius r; such
that £ C | i Bj. Then we define the Hausdorff capacity of E of dimension d,
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0 < d < n, to be the following quantity:
Héio(E) = inf er‘-i
J
where the infimum is taken over all possible covers of E.

Remark 2.18. The name capacity may lead to confusion. Here we use this expres-
sion in the sense of N. Meyers. See [13], page 257.

Once we have this capacity, we can pass to the Choquet integral of a function
¢ € Co(R")™.

Definition 2.19 (Choquet integral and L1(HZ)). Let ¢ € Co(R™)*. Then the
Choquet integral of ¢ with respect to the Hausdorff capacity Hglo is defined to be
the following Riemann integral:

o0
/¢ dHE = / HL[p > Al dA.
0
The space L1 (HZ) is defined to be the completion of Co(R") under the functional
1l dHE,

Two important facts about L!(H, g’o) are summarised below, again for instance
see [1] and also the references given there.

Remark 2.20. * The space Ll(Hc‘fo) can also be characterised to be the space of
all Hgo—quasi continuous functions ¢ which satisfy [ || ngo < o0, i.e. for
all ¢ > 0 there exists an open set G such that H, go[G] < ¢ and that ¢ restricted
to the complement of G is continuous there.

* One can show that L! (Héio) is a quasi-Banach space with respect to the quasi-
norm [ |p| dHE.

Now, we can state the duality result we mentioned earlier. A proof of this asser-
tion is given in [1], but take care of the notation which differs from our notation!

Proposition 2.21. We have (L' (H, g’o))* = M#=a and in particular the estimate

[ du] = Wl g Nl acees
holds and

Il gy = sup )/u | = el acrta

ol 1 g, <1
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Note that in order to show that a certain function belongs to M —d it is enough
to show that it defines a linear functional on L1(HZ ) j.e. that

‘/ud,u)<oo

This does not require that L' (Hgo) is a Banach space and is quite different from
the case when you use the dual characterisation of a norm in order to show that a
certain distribution belongs to a certain space.

||u||L1(Hd <1

Remark 2.22. The above proposition is just a special case of a more general result
which involves also spaces L? (H ), see for instance [2].

Before ending this section, we will state some useful remarks for later applica-
tions.

Remark 2.23. + Observe that M7 C &’ (in particular for p = -%7). In order
to verify this, note that M? C Npo1 o C 8. Let © € M? and let as usual
¢ € ®(R™). Then we have

(AT sup g * nIMP || = :up G * | M2

(I’IOtC that (pv * e C C Ll since n e D’ and (pv * U can be seen as a
k¥ U loc k
measure)

< ksui)/ lorllille|MP]|  (because of [10], Lemma 1.8)
€

< C||u|MP]|| < oo (according to our hypothesis).

Once we have this, we apply the continuous embedding of N 0 o into 8’ (see
e.g. [11]) and conclude that actually M? C §8’. Note also that 8 c L! (H ).

« Using the duality asserted above, we can show that L! (Hoo) C 8’. We start
with f € C§°(R"). Since f € L°°, it is fairly easy to check that f ¢ MZ,
1 <g < p < oo, with ||f|M,f|| = || f lloo- Moreover, f even belongs to eMg.
In order to establish this, it remains to show that there is a constant C, inde-
pendent on f, such that for all x € R"” and for 1 < r

n

I/l (B, (x)) = Cra 7.

In fact, it holds for all x € R” and for all r > 1

n

I/, o = Nl < N fllara 2
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since due to the choice of p and g we have ’ql — = > 0. If we put together all

these information, we find

IAIMEN =1 flloo + ILfIl1-

Now, recall that the duality between L!(H ;lo) and M~ is given by

nﬁd,Ll(Hgo) = /M d/L

where u € Ll(Hodo) and u € M = . In a next step we define the action of
u € L' (Hx) on f € CS° as follows:

n
p

e tt) (1 (=

(u, flor,cge == (fru)mata, L' (HL)-

Last but not least, we observe that for ¢ € § we have

[¢lloo + llellt = Cm)llells-
This finally leads to the conclusion that, in fact, Ll(Hgo) c 8.

This last remark enables us to use the above introduced L1 (Hgo)—quasi norm
to construct — in analogy to the case of Besov- or Besov—Morrey-spaces — a new
space of functions.

Definition 2.24 (Besov—Choquet spaces). Let ¢ € ®(R™). We say that /' € §’

belongs to BLOI(HC‘!Q),oo if H{ (0}, C L! (Hgo) such that the following holds:

o
[=Y_F"'0F fi inS'R"
k=0

and
sup I fel L (HL)|| < oo

Moreover, we set
1£1BL: pr 00ll = infsUp L L (HE)I

where the infimum is taken over all admissible representations of f. Moreover, we

denote by bOLl d the closure of § under the construction explained above.
(HS,), 00

Remark 2.25. In complete analogy to the construction of the Besov spaces (re-
spectively the Besov—Morrey-spaces) one could also construct new spaces if we
replace the Lebesgue LP-norms (respectively the Morrey-norms) by L? (Hgo)—
quasi-norms.
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3 Proofs
3.1 Some preliminary remarks
In what follows we set
I =777 Hx)

where ¢ = {¢; (x)};?‘;o € ®(R").
Recall that once we can control the paraproducts

oo k-2 oo k+1
m(fe) =Y. > flgf. m(ro=Y Y flk
k=21=0 k=01=k—1
and
oo [-2
ma(fg) =Y > flgk
[=2k=0
(ff = 0ifi < —1 and similarly for g), we are also able to control the product

fg (see e.g. [17]). Since in the sequel we want to take into account cancellation
phenomena, we will analyse

oo s+1
m1(ax. by). mi(ay.by). w3(ax.by). w3(ay.by)and Y Y albs —dlbi.

§s=01t=s—1

(3.1
Last but not least, remember that

-2
supp?(Za;bg,) C {S 273 < €] < 21+3} for [ > 2
i=0

and

I+1

supp?( Z a;bi) C {5 D€ < 5~21} for [ > 0.
i=l—1

3.2 Proof of Theorem 1.2 (i)

The proof of this assertion is split into several parts. In a first step we show that
71 (ax, by), 73(ax, by), w3(ay, by) and 71 (ay, bx) € B!, and

oo  s+1

tys tys -2
D D dby—abi € B,

s=0t=s—1
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Once we have this, we show in a second step that under this hypothesis the solution
u of
—Au = f where f € Bo_oz,1

is continuous.

Claim mq(ax,by) € Bo_ozl. Our hypotheses together with [10], Theorem 2.5,
ensures us that ay, by € B:;ol,z. Next, due to [17], Chapter 2.3.2, Proposition 1, it
is enough to prove that

12727 ¢ 11N (L) < 00

2

where as before ¢j 1= thc;o a;bf. We actually have

0o J—2
1272 i 1N (L) =Y 272 |y alb)
J t=0

o0

IA

155 oo

o0

2

j—2

j t
D
=0

Jj—2

t
2 d

t=0

277 11b4 oo

2 1 1
2 o0 . . 2
) (22—2-f b uzo)
o] J=0

121

—
o0
272
j=0
o0
-y
j=0

oo

(due to Holder’s inequality)

o0
< (Z 272
j=0

j—2

t
2 d

t=0

27 16y B

Jj=2
>
t=0
J
27/ Z a
t=0
(because of [17], first lemma in Chapter 4.4.2)

= Cllax| Bollliby 1B |
(thanks to our hypothesis)

<c 12(L%) |y B

t
X

< oQ.

This shows that in fact 771 (ax, by) € Bgo%l as claimed. Similarly one proves that
also 1 (ay, bx), m3(ax, by) and 1 (ay, by) belong to the same space.
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It remains to analyse the contribution where the frequencies are comparable.
This is our next goal.

Analysis of Y72 Zi::_l al b} —albs.. Instead of first applying the embed-

ding result of Kozono/Yamazaki which embeds Morrey—Besov spaces into Besov
spaces and then analysing a certain quantity, we invert the order of these steps in
. %o} s+1 t t
order to estimate ) piine ths_l ayby — ay'bfc.
We will use the following result concerning predual spaces of Morrey spaces.

' 0 H 0 n
Proposition 3.1. The dual space of b} 1 (H'=2), 00 IS the space B ME 1
Remark 3.2. The above result has the same flavour as (see for instance [17])

(boo,00)" = BL1-

Proof of Proposition 3.1. We have to show the two inclusion relations.
We start with (bgl(Hggz),oo)* D Bﬁ‘?’ |- Assume that

fEBg,{l%,l CN(%),I,l CS/ and \/febgl(Hgo—2)’oo

By density we may assume that Y € §.
We have to show that f € (bgl(an2) o) " To this end let Y72 @ * Y be
a representation of { with

sup Vi1 a2 < 2091621 (gr2-2), oo -

Note that in our case - as a tempered distribution - f acts on ¥ and we estimate

|f@)| = f(Zék*wk) f(Z ?—‘(wkmk))
k=0

k>0

= Zf(?_l(fﬂk?lﬂk))| =
k=0

> / SF o F Vi)
k=0

I
WER

wk?(wk?"lf)|

=
I

0

=gjofwkdf

where df = F (¢ ¥~ f) d A with A the Lebesgue measure

<> T (@ F 1)
k=0
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(recall Proposition 2.21)

o0
< sup [l a2y O IF (@ F " f)llat
k=0 k=0
(cf. also Remark 2.23)

o0
= sup [[Vill a2y Y 1F (@ P~ f)llac
kz0 k=0

IA

(e e]
C sup Vil 12y Y I F o F )l
k=0 k=0

<C ||\p|b21(Hgo—z)’oo|| ||f|33{1% 1l < oo (thanks to our assumptions).

Now we show the other inclusion, (bgl (HI=2), ) C Bg'{l%’ 1~ We start with
f e (bgl (HI=2), )" and we have to show that f belongs also to ij{ 17 1
First of all, note that f gives also rise to elements of (L!(HZ2))* as follows.
Each ¢ € bgl(Hgo—Z)’oo can be seen as a sequence {Yx }p>, C LY(H% ), and
of course
O * Yr € bgl(Hgo—Z)’oo for all £k € N.

Moreover, for each k € N we have — again by density of § —

S @y @5 V) = L BVV60, 1y W . oo
= (f. ¢ * 1ﬁk)(bo )*,b0

LY (H2),00" ""LY(HZ?), 00
= (/i gr *Vi)s.s = ([.F o FVi))s.s
= (F(@F ') v, s
= (F (e F ) Vi) s, L 2.

Next we will construct a special element of bgl (H=2), 00" Let 0 < & small. We
o >
choose ¥ such that

¢ Y € 8. Remember that we have density!
* ||1/fk||L1(Hgo—2) <L
© 0 < (F(oeF 1) Vi) ms, L1 (Hr2).
(F (e F L) i) s, L )
> |\ F (o Ot — 278 = 17 (e 7 Ol =y — 627

(r0d ("’_1 -,
= sup (F(@F T )u) -2k
ueLl(H!?)
el 1 (gn—2, =1



304 L.G. A. Keller

Note that like that ¥ = Y37 @k * Vg € b1 n—2) o, With

11621 grn2), ool < 1.

If we put now all this together, we find — recall that f acts linearly! —

o0 o0

n o—1 frod n
D Nt =D 0F o F )l
k=0 k=0

o0
=C Y 17 @F " Ot
k=0

<2e+ f(¥) where ¥ is as constructed above
<26+ || £1(B% 1 pyn— * by g
=2+ | 1L (g1-2),00) I IVIPL1 (g1-2) ool

<2+ ||f|(b21(Hgo—2),w)*||-

Since this holds for all 0 < ¢, we let ¢ tend to zero and get the desired inclusion.
All together we established the duality result we claimed above. |

What concerns the next lemma, recall that § is dense in bgl (H'=2), 00"
5,

Lemma 3.3. Let ¢ € ®(R") and assume that € 8 N LY(H2) with represen-
tation {Yg gy i-€. Y peo Pk * Vi = Y, such that

Sl}ip Vil L1 g2y < 2||1/f|bgl(Hgo—2),oo||-

Then

a . a .
7 P * Vi = a—(wk * Yi)
X L1(HI2) X LY (HI?)

< C2°|[Yillpr o2y
< C2°|[Y1b21 (gn2), ool-

Proof. For the proof of this lemma, we need the fact that if f(x) > 0 is lower
semi-continuous on R”, then

1AL ae,) =/dego~sup{/fdu : ,ueer" and ||pl|mta < 1},

see Adams [1].



L estimates and integrability in Besov—Morrey spaces 305

It holds
8 D v
ax e Vi < ||| * vl
X Ll(Hé’o_2) 8x Ll(Hgo—z
d .
<C sup {[ ‘a—q)k * [Vl du}
2 X
MEM_%_
lellac? <t
¢ {// ‘_(pk (x = Yrl(y) d/\(y)du(x)}
ne .M2
||M||.Mz <1

(by Tonelli’s theorem)

o A [ [ moe] 6= ducoaaon|
p,eeMZ
||M||M2<1
)
o A [l [ || 0 =0 dnwiao)|
MGMz
||M||M2 <1

(note that ¢ can be chosen radial which implies that ¢y and gok are radial, see

e.g. [22])
e {/muw‘—wk (v = x) % 1(y) dMy)}
Mi
||.U«||.M2§1
5

<C s { / ) dv(y)} where v := g »
MGMZ
lullams <1

<c s {uwkuLl(Hgo—z)
MGM_,Z_
lellac? <t

(by [10], Lemma 1.8)

aJ .
o] )
X M3

<c s {uwkuLl(Hgo—z)
MEM_,Z_
lellac? <t

8 4 n
72 Pk [l el nes
X Ll
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and we continue

<C n—
L= = HWkHL‘(HOO 2)

5 . ' .
‘a(pk *Wk ‘Egﬂk 7 <C2 ||Wk”Ll(Hgo—2)

= C2k||‘ﬁ|bgl(Hgo—2),oo||
what we had to prove. o

The next lemma is a technical one.

Lemma 3.4. Let a and b belong to C§°(R"), t = s + j where j € {—1,0, 1} and
¥ with representation {Yx }72, i.e. Y ko Gk * Vi = V¥, such that

S‘;P Vil L1 g2y < 2||W|b1(11(Hgo—2),oo|| =2

Then

[, astabiw = b

s+3 9 s+3
= / —(atbs)(z ?_l(wk?Wk)) - a—(atbi)(z ?_l(wk?Wk))-
! k=0 Y k=0

Proof. First of all, note that 4 € 8" and a’b} and a’by, belong to & independently
of the choices of s and 7.
We now calculate

ad
L, et = b

=/ @by~ / 2 @b

= ; -1 NI © PP
‘/Rn ) Z @ Vi) /R ay(a’bx)];)? (6 F V)

SO

[ b = @iy

s+3 0
=/R B_(a bs)[z-?_l((ﬂk}ka)‘f' > 5‘7_1(<ﬂk5‘71/fk)}

k=0 k=s+4

s+4
—/n 2 ath )[Z? NaFv+ Y 7 l(sokfwk)]

k=s+4
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These calculations show that we have to prove that

i D) S T g ) = 0

ox
" k=s+4

and

L —(abe) S g ) 0.

k=s+4

In what follows, we will only discuss the first integral because the second one can
be analysed in exactly the same way.
So from now on we look at

[ 2wy Y 7w
R? k=s+4

Here we have

[ a3 rarm

k=s+4

d
:/ P tbs)fif' ( Z orF xpk) (since the sum is locally finite)
R”2 x

k=s+4
= [ Lawprrty *( > gokmk)
\/R" 0x k=§-4
n T 9 tys . T
e [ 5 (E(“ by)) L ) =0

In the second last step we use the facts that

a o0
a(atb;) €48 and Z o Fyr) e s’
k=s+4

and in the last step of the above calculations we used the facts that
i
supp (-@'b)) © (e s1el = 5-2)
0x
and

supp > (=) C {£: 2573 <[]}

k=s+4
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imply that
ad
supp?(—(a bs)) N supp Z o = 0.
ox
k=s+4
This completes the proof. o
Now, we can start with the estimate of Y52 ) 5511 Y as.by — al,by. Our goal

is to show that 352/ S8£! 4t b} —aj, by, belongs to BMZ 1 Maklng use of the
above duality result, see Proposmon 3. 1 we will first show that

s+1
Z asby —asby € B?%?,l forall s € N,

t=s5s—1

then we establish

(o) s+1
trs trs 0 =n
a b’ —atbl|By,5 < 00.
Z Z x7y yOx|PME 1
s=0{t=s—1
This ensures that
oo s+1
tys tys 0 n 0
Z Z axby—aybxGBerJCN%’l’l.
s=0t=s—1

First of all, let us fix ¢t = s 4+ j where j € {—1,0, 1}.
In order to show that
asby —aiby € BM2 10

it suffices to show that for all ¢ € bgl(Hn—Z) oo With ||1/f|b21(Hn—2) woll < 1 the
following inequality holds:

1/fd(a by —a bs) —/ v (a’, by —a bs) dl < oo
where as before A denotes the Lebesgue measure.
Moreover, in the subsequent calculations we assume that for ¥ we have a rep-

resentation {Yx } 7 i-€. Y reo Pk * Yx = V¥, such that

SI;P Vil o2y < 2|W|b21(ygo—2),oo|| =2

and again, recall that we have density of & in bg] (H!=2), 00"
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In this case we have
[ vty =i = [ v —vt@n
(because of the same reason as in Lemma 3.4)

B s+3 s+3
= / @by (Z? HoeF wk)) ——(a‘bS)<Z FH oeF V) ]

k=0 k=0
(by a simple integration by parts)

B g (513 5 (513 7
= / |ty (Z?‘l(wkf"wk))m’bs 5 (Zf"—l(wkwk))

L k=0 k=0 -
43 43
t v Y
<[ u(E i) o (Enen)
k=0 k=0
s+3 9
= Z / [—atbs—% * Y +a' by —— g ¥ Wk]
Y
(by Proposmon 2.21)
s+3 R 9
< Z(nafb;wn ’5@( x wk\Ll(H;’o‘z)
k=0

+ la’bS M2 |

8 v 1 n—2
@ﬁﬂk*lﬁk‘L (H5% ™)

)
)

s+3

< Z(| a'b}

i *wk\L (HZ™)

+ ||a’bS|M2|| —wk # | LN (HE)

(see also the remark below)
s+3

< Z(na M 155142

k=0

’ i YL (HE)

0
+ @’ [MZ ] 1D IM3 | ¢k*Wk‘L (H5%?)

)

(according to Lemma 3.3)
s+3
< 3 (a1 M3 115 1M1 259162 1 112y,
k=0
+ lla' |M I3 1MEN 2419162 1 112, o)
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and finally have
/Rn Y(ayby, —ayby) < C2%||a" MG | |1y | M3 | + C2°|la’ | MG || Ib5 | M3 |

< 00 (due to our assumptions).
Thus we have seen that for all s € N
ayby —ayby € (bgl(Hgg2),oo)* = B?u?,l C Ny,

Next, we study

0o s+1

tys tys 0 n
2| Do by —ayby CYERTE
s=0|lt=s—1

As far as this last quantity is concerned, we will assume for the sake of simplicity
that t = 5. Then we can estimate

[e.¢]
D llaiby —ajbyIBRs |
s=0
[e.e]
= llagby —aDbQBYs (Il + Y lasby —ajby|Bis |
s=1
< Clla®|ME|| [|by| M5 + C [la®| M5 || 1B M5 |
=Cla 211 16y [M3 a 2 H110x M3
[e.¢] [e.¢]
+C 32 | MG IB3IME ]+ C Y20 [0 | MG 1651 A5 |
s=1 s=1
(similar to 2™%||g|l, >~ [|[V™gl|, (under appropriate assumptions) cf. also Theo-
rem 2.9 in [10])

< Clla®| M3 | 1691 M5 | + C lla®| M5 152 M5 |

o0 o0
+C Y Nla MR B ME] + C > llay| M5 b3 M5

s=1 s=1

(by Holder’s inequality)

< Clla®| M1 1bg M| + Clla®| M | 1531M5 |

0 3 /oo 3

e (Z ||a;|M;’||2) (Z ||b;|aw5||2)
s=1 s=1

1

2

00 3/ oo
e (Z ||a;|M';||2> (Z ||b;|M§||2)
s=1 s=1
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0 0 0 0
< C(llal B3y o1l 1851 BSer o1l + a1 By 511 1621 By

+ llax| By 21l 15y 1By o1l + lay | BSex 21 1551 B 1)
< oo (thanks to our hypothesis).

All together we have seen that (if |s — | = 0)
o0
Zaib; —ayby € Bgl?,l C Ng,l,l'
s=0
If |s — t| = 1, a similar calculation yields the estimate

00
O n

> lakby — aybyIB

s=0

0 0
[+ llay| By, 21 65 By 1)

0 0 0 0
< C(Hlal By, 51 161 BSeq o1 + lal By 151 By 2

0 0
+ llax| BSey ol by By 5

Note that the right hand side of our estimate is the same as before in the case
|s — | = 0, which finally leads to the conclusion that

oo s+1
tys tys 0 n 0
Z Z axby_aybx GBME’I CN%,I,l
§=01t=s5—1
since
oo  s+1 oo s+1
ts trs 0 tys trs 0 n
DT RN LTI Y Dol SR
§s=0t=s—1 §s=0t=s—1
1 00
s+j1s S+Jj1,8 | R0 »n
= ZE ”ax by_ay bx|BM12,1||
j=—1s5=0

0 0 0 0
< 3C (llal By, o1l 1631 By, o1 + Il By o1 1 By

0 0 0 0
o+ llax By 20 by B3 ol + lay By o1 15 BSey 21)-

Now, as we know that

oo s+1
tLs t1s n 0
D D axby—ayby € Bl CNyia

s=01t=s5—1
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we apply the embedding result of Kozono/Yamazaki, Theorem 2.5 in [10], and

find that
oo  s+1

tys tys -2
D D diby—aybi e B,

§s=0t=s—1

Remark 3.5. Assume that f, g € M%. Then we have for all 0 < r and for all
x e R

178l oy < I f L2, cn gz, o) < Crr2 1 Cor2 ™t = Cr* 2.

According to the definition, this shows that fg € cMli

Regularity. We rewrite our equation Au = f as Au = [0 + Y1) k. and
the solution u can be written as

U= A_1f0+A_1(ka) =:up + us.
k>1

Our strategy is to show that 1 as well as u5 is continuous and bounded.

What concerns u1, observe that due to the Paley—Wiener Theorem f 0 is ana-
lytic, so in particular continuous. This implies immediately — by classical results
(see e.g. [8]) — that u; is continuous.

On one hand we have

foeB%Z forall s € R

(since Va, Vb € BY 12 C M’ C L"™); on the other hand we know that
f%e B, forall seR

because [ € BO_O%I. From that we can deduce by standard elliptic estimates (see
also [17]) and the embedding result of Sickel and Triebel [19] that u; is not only
continuous but also bounded!

Next, we will show that u, is bounded and continuous. In order to reach this
goal, we show that u, € Bgo’l. We find the following estimates:

00 0o 0o
0 —25~2 -2
2l BE 1 =Y Mt lloo = Y 272 2% S floo = C Y 272 [[(Att2)* [l oo
s=0 s=0 s=0

This last passage holds thanks to the fact that

2" gl = IVl

if the Fourier transform of g is supported on an annulus with radii comparable to
2%(see [23] for instance).
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For s = 0 we observe
7o) =73 1)
k>1
which implies
supp(F (u2)) C (B1(0))°
because of the fact that
supp(%‘(Z fk)) C (B1(0))".
k>1

So in this case too, we can apply the above mentioned fact in order to conclude
that also for s = 0 we have

lu3lloo = Cll(Au2)° oo

Back to our estimate, we continue

o0
2l B 11l < € 3 27251 (Au) oo

(z)

o
=C Z 2—25
s=0 k>1

s+1 R
J*"”( > wsfpkf)

k=s—1

o0

‘ o0

o
—cy o
s=0
(thanks to a Fourier multiplier result, for further details we refer to [25])

o
-2
<327 s
s=0
=C|f |BO_02,1 || < oo (according to our assumptions).

This shows that 1, belongs to Bgo’I (R™).

Alternatively one could make use of the lifting property, see [17], Chapter 2.6,
to show that u, € C. (Recall that C denotes the space of all uniformly continuous
functions on R”.) The last ingredient is the embedding result due to Sickel/Triebel
(see [19]).

This leads immediately to the assertion we claimed because u as a sum of two
bounded continuous functions is again continuous and bounded. |
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3.3 Proof of Theorem 1.2 (ii)
In a first step we show that ayby, —ay, by € B;tlg ,- From the proof of Theorem 1.2
we know that

oo k+1

k N k S Oﬂ —1
Z Z axby —ayby € Byk 1 C By o
k=0s=k—1

Next, we observe that, by a simple modification of Lemma 3.16 in [11],

s—2

D avby

k=0

o0
73 (ax, b) [ By 1l <€ Y27
s=0

M

s—2
by
k=0

0o
<C Y 27a} | w
s=0

o0

1
(e e]

1
2)2
o0

0 LI
EC(Z ||a;||iq) (22‘”
s=0 s=0

s—2
by
k=0

o0
< Cllax| B3 |l (Z 27>
s=0

(according to Lemma 4.4.2 of [17])

K}
2 by
k=0

0 -1
< Cllax|Bjgz 2l by B e 5|l
0 0
= ||ax|B,M§,2|| ||by|BM’2’,2||-

Now, since

Oy, U = f—l(ilé%jf(m{))

we note first, that due to the facts that Au € Fﬁz c L'andr~! € La=1 forn >3,
(Vu)® e L™ ¢ M2,
which implies that (Vu)? € ngg,z- Second, for s > 1 we have
[(Vu)* ez < C277|[(Au)* || aez,

which leads to the conclusion — remember the first step! — that

Y (Vu)?' € Bl ;-

s>1
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Alternatively one could observe that

()

an information which together with Theorem 2.9 in [10] leads to the same conclu-
sion as above, namely that

<clgmt,

0
Vu e B!Mg’l.

These estimates complete the proof. o

3.4 Proof of Theorem 1.2 (iii)

This proof is very similar to the one of Theorem 1.2 (ii). Instead of the observation
|gler! (IE%)I < C|&|71 1@l here we use Theorem 2.9 of [10] together with the fact
that

‘a'al(%)( < Clgl. o

3.5 Proof of Theorem 1.4
Lemma 3.6. There exist constants ¢(m) > 0 and C(m) > 0 such that for every
Q e B g’z(B{’(O),so(m) ® A'R™) which satisfies
121}y ol < e(m)

there exist € € B, ,(B1(0), so(m)@A"2R") and P € B , ,(B1(0), SO(m))
such that > >

(i) *d& = P~'dP + P7'QP in B} (0).

(ii) & = 00n dB}(0).
Gii) 1B}y 5l + I P1Bhey oIl < ComIRABYy I

The proof of this lemma is a straightforward adaptation of the corresponding
assertion in [16].

Now, let e(m), P and £ be as in Lemma 3.6. Note that since P € SO(m), we
have also P! ¢ Bdlwg, 5+ Our goal is to find A and B such that

dA— AQ = —d*B. (3.2)
If we set A := AP, then according to equation (3.2) it has to satisfy

dA+ (d*B)P = A + dE.
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As a intermediate step we will first study the following problem:
AA=dA-xdg—d*B-VP in B 0),

d(d*B) =dAAdP™' —d x (AdEP™Y) —d % (dEPY),

9A
N

/ A = idy,.
B (0)

For this system we have the a priori estimates (recall Theorem 1.2 with its proof,
Lemma 2.16 and the fact that we are working on a bounded domain)

=0 and B =0 on dB}(0),

IAIB}s 51l + 1 dllco =< ClIEIBx

|AIB}s 5|l + CIPIBgn 5l 1BIBjgs I
and
IBIB gy, 2l < CIP T BYen 5l 1AIBgn 51l + ClIEIB gy 51l 1 Allos
+ CE|B' M3, 2]

Since the used norms of & and P — as well as of P~! — can be bounded in terms
of C|Q|BY,. 2|| the above estimates together with standard fixed point theory
guarantee the existence of A and B such that they solve the above system and in
addition satisfy

1418}y 21l + 14loo + 1 BIBlgp o]l < CIRUBSp ol 33)
Next, similar to the proof of Corollary 1.5 we decompose for some D
dA—Axdt+d*BP =d*D.
Then we set A := A + id,,, which satisfies for some n — 2-form F
dA—Axdé+d*BP =d*D — xdt =: xdF.

It is not difficult to show that *d (xd FP~!) = 0 together with F = 0 on 9B} (0)
imply that FF = 0 (see also a similar assertion in [14] and remember that on
bounded domalns B° ML 2 c L?).

From this we conclude that in fact 4 satisfies the desired equation. If wet finally
set A:= AP~!and let B as given in the above system, we get that in fact these A
and B solve the required relation (3.2).
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So far, we have proved parts (ii) and (iii) of Theorem 1.4 (recall also estimate
(3.3)). Moreover, the invertibility of A follows immediately from its construction,
likewise the estimates for VA and VAL,

Last but not least, the relation A = AP~! + id,,, P! implies that

ldist(4, SO(m)lloo < Clldlloc < CIIRAUBY -

This completes the proof of Theorem 1.4. |

3.6 Proof of Corollary 1.5

The first part of the corollary is a straightforward calculation. Let A and B be as
in Theorem 1.4. Then we have

xd * (Adu) = —d* B - Vu,
{ d(Adu) = dA A du.
These equations together with a classical Hodge decomposition for Adu
Adu =d*E +dD with E,D € W'?
lead to the following equations:

AD = —d*B-Vu,
AE =dA A du.

Since the right hand sides are made of Jacobians, we conclude that D, E € Bgo 1
Next, we observe that

du=AT'(d"E +dD) € Byn ; C BL);.

This holds because
-1 1 o]
A" €B M2 2 NL

(see also Theorem 1.4) and
* 0
dD,d”E € B M1

(see also Theorem 1.2 (ii)). The proof of the above fact is the same as the proof
of the assertion of Lemma 2.16. In a last step we note that (recall the reasons why
Theorem 1.2 hold) thanks to the information we have so far

0
u€ By, CC,

which completes the proof. |
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3.7 Proof of Lemma 2.11

We start with the following observation. Let x¢o € R” and r > 0 and recall that
l <g<2andr <gq. Thenfor f € Be?%p ~ we have

(fBr(xo)<Z|fs|2) )q : /r(xo)2|f |q) (Z/r(xo) )
< iufsuzqw,(xo)))q
< éufsujlg(r’é‘%q);
< (V“_Z)q§||fs||q.ug);

0o 1
q
n n n n
2z a-n 0
=ra p(an%g) =ra 7| fIBYz 4
s=0
n_n 0
< Cra || f1BS .

From the last inequality we have that for all » > 0 and for all xg € R”

(glfslz)g

This last estimate together [12], Proposition 4.1, implies that f € Mg .

The assertion in the case f € N p g,r 1s the same. O

n_n
rr aq

< CI/1BYz, -
L4(By(x0))

3.8 Proof of Lemma 2.13

(i) In a first step we will show that if f € Bl MD,r there exist a constant C — inde-
pendent of f — such that

1/ 1B3e oIl + 1V f1B3ez oIl < CILf 1Bz -

Obviously, we have that

0 1
If1Byz N < IF1B gz Il
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Moreover, we observe that

7

IV £1BSez (Z |(Vf)f||’,M;;)
(Z |(Vf)j||:ug) + 1V )0z

1

< C(Z 27| £ ||5ug) +CILS Nl
j=1

where for the first addend we used an estimate similar to (3.2) with the necessary
adaptations to our situation (see also [10]) and foAr the second addend we used
Lemma 1.8 of [10] and the observation ¥ 1 (£¢@g f) = F 1 (Epo) * f. We esti-

mate further
L

o 1
IV£IBSYy Il < C (Z Nary ||’,Mg) +CIf ez
Jj=1
< C||f|Bd1%5’r|| + C||f|33{5’r|| (because of Lemma 2.11)
< CIfI1Byy, | +CIfIByz
< I/ 1Bz .
as desired.
(i1) Now, we assume that f satisfies
1/ 1BSez N+ 1V f1BYz Il < oo.

We have to show that this last quantity controls || f| B.}%g’, .|l In fact, we calculate

1

= (Z 2”||ij|34;)

J=0

1
1/1Bz

1
[oe) r
< CIf g +C (Z 27 £ ||ng)
Jj=1
(again by an adaption of estimate (3.2))
< CIf°Bjz, |+ CIVfIB]
— eMé’,r M,f,r”
< CUI/ 1Bz Nl + IV 1Bz D 0
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3.9 Proof of Lemma 2.14
According to Lemma 2.13 it is enough to show that f € B?u 2oy First of all, we
observe that
1
- (z 2-”||ff'||3¢g)
J=0
1

j 0
‘BM,f,r

= C(Z ||(Vf)j||$ug) < IVS1B%z Il
J=0

Now, it remains to estimate || £ || s 2. It holds

(Z | Slzslf«)o)
i=1

Next, due to Lemma 2.11 and its Corollary we know that f € L4 and in particular
- since f has compact support f € L' so & f € L™ for all i. Moreover, thanks
to our assumptions

1 P
_ [1,2].
€ L7°T where €[1,2]
IE | -1
So, for all possible i
&i
|€|2 El f € L p l
From this we conclude that
foel? cME,

and finally

0| RO 0 1
(WA 377 s (I (il 7 o WA W77

m .
Y FBYr

j=1
o0
| RO
ij|BM5,r

j=1
<CIVSIB3z I :

<1 f%r +C

< CIIV/IByp .l +C
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3.10 Proof of Lemma 2.15

Density of Oy in N, , . respectively in BY, , . The idea is to approximate
1 q°
f €Ny, by

Jn = Z fk-
k=0

From the definition of the spaces N, , . we immediately deduce that there exists
N € N such that

o 1
sjr jnr
( S oy anp) <.
j=N+1
As far as the first terms f© to £V are concerned, we know that

N

Zf'/ = fN € Opy.

j=0
So,

o0 G
1f = SN INS gl < c( PR VE ||;4;) <Ce
Jj=N+1

where C does not depend on f. This shows that f approximates f in the desired
way.

The proof in the case B, 2y is the same — with the necessary modifications of
course.
Density of Op in N, .. The idea is the same as above.

Observe that the definition implies that there exist integers n and m such that

1/r
( Al ||g%) ,
Jj €{—n,...,0...m}
As before, this gives us the result that Opy is dense in N

p,q,r

Another idea to prove the density of C*° in N , . arises from the usual molli-

fication. We have to show that for any given ¢ and any given function f € N If
there exists a function g € C°° such that

ILf —&INp4.r
As indicated above, our candidate for g will be a function of the form

N ™

q,r

| <e

g=gs* f

where @g is a mollifying sequence ( and § will be specified later on).
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First of all, observe that due to Tonelli-Fubini we have g5 * f/ = (@5 * f)/.
Now, as above we observe that the fact that f belongs to le,q,, implies that there
exists Ng € N such that

o !
(Z 2’”||f’|Mf||') <z

No+1

which together with [10], Lemma 1.8, immediately leads to the observation that

1

(Z 2js’||(f—f*<ps)j|qu||’) <

No+1

| ™

For the remaining contributions we first of all observe that
1f7 = T %05l < IV lloo8 = CIS NG 41276

In order to see this, note that f/ € le, a1 which together with two results from
[10] similar to the estimate (3.2) and the embedding of Besov—Morrey into Besov
spaces (see also [10]) implies that

IV oo = CILF NG g, 1127
In the case j = 0 observe that

0y, 1)° = F U0 fpo) = FHG1E fpo(po+¢1)) = fOxF ik (po+61)).
which implies that
19x, fOMP| < CIl £OIMP].

Apart from this observation, the argument is the same as the usual one known in
the framework of Lebesgue spaces.
Now, we can calculate for any radius R € (0, 1] and for any point xo € R”

VRN *(psl")

1

< CRTH(IV /7 1457R")"

R~ 4| f7 — f7 % @sllLaBrixg)) = R? 4 (/B

R(x0)

1
< CRF4 (I fIN3 4., 1927967 R")?

= CR7 | fINS 162/
< C|fIN; .. 1I827,
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from which we conclude that
1

7

No NO
(Z 2I57|| £ — f7 % sos|M;’||') < Y IS INg g 82N+ Nos
Jj=0 Jj=0

2N0+N0sr < f

= WNo + DISIN,

if we choose § sufficiently small. This shows that f € N p ¢,r €an be approximated
by compactly supported smooth function — the convolution f *¢g* f has compact
support.

Now, we assume that f/ € B} » . wheres >0,1 <g<2and1<qg <p=<o0
has compact support. First of all we observe that according to Lemma 2.11 we
have f € Mp and since it has compact support, f € L?. From this we deduce
that whenever 0<j <N fle By, for all s € R and arbitrary m and in
particular, f/ € LP?. So for each j there exists a d; such that

1S = £ g, I < (m) .

If we now choose § small enough, then

No No
(Z 22 f T~ qu”n’) = (Z 277 —f*)f'sosqu”ll’) s
j=0 /=0

The other frequencies are estimated as above.

Finally, we observe that f * s is not only smooth but also compactly supported
since it is a convolution of a compactly supported function with a compactly sup-
ported distribution. |

1
>

| ™

Remark 3.7. A close look at the proof we just gave shows that in fact mmzo cm
is dense in the above spaces.

3.11 Proof of Lemma 2.16

We split the product fg into the three paraproducts 771 ( f, g), m2(f, &) and 73( f, g)
and analyse each of them independently.

(i) We start with 71 (f, 8) = Y pep Zf;g flgk 1tis easy to see that a simple
adaptation of Lemma 3.15 of [11] to our variant of Besov—Morrey implies that it
suffices to show that

00 k—2 2
IS
EE

k=2

1

2
) < Clig B oIl £ 1B3en o1l + 11f lloo)-
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2 \}
Mg)

In fact, we calculate

(3 L

k=2 =0

IA

1
2
QM”)

(ol

)

o s }
2
< | D 18518y |sup| D /! )
k=2 S li=0 0o
1
S o 2
I k2
<Jsuol3 1 (z Ie uM;)
=0 o) k=2
=<

sup g1 Bes |

2./
1=0

oo

(because of Lemma 4.4.2 of [17])

0
< 1/ loollg B aez, 2l < o0

(ii) Next, we study 72(f, &) = D peo Z;C:kl_l f!g¥. For our further calcula-
tions we fix [ = k. We will see that what follows will not depend on this choice,
o)

Z fhtsg k’BO

k=0

24/ M",Z =
72 (£ )1Bjyn 5 < C  sup
se{—1,0,1}

In fact, we will show a bit more, namely 7, (f, g) € B}%g . Again a simple

adaptation of Lemma 3.16 of [11] shows that we only have 'to estimate the sum
3R, 2k ||fkgk||(Ml2 . In fact, we have

o0 o0

k rk  k n k) rk k
D2k et < D 261 g 185 e
k=0 k=0

- } /oo )
< (Z 22"||g"||§¢g) (Z ||fk||343)
k=0

k=0
1 0
< llgBley oIl 1 1By ]l < oo.

Once we have this, it implies together with the embedding of Besov-Morrey
spaces into Besov spaces (see [10]) — adapted to our variant of Besov—Morrey
spaces — and the fact that /! C /2 immediately that Y go, f kgk ¢ BO n 2 Fi-
nally, we get that 7> (f. g) € B M2 2
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(iii) The remaining addend is 713 ( f, g) Again, as in (i) it is enough to show that
we can estimate (Y 72, || f ! Z 08& k| Mn)2 in the desired manner. In fact, we
observe that the following 1nequaht1es hold:

0 -2 2 \2 oo -2
(Zlrze| ) <x)rze
1=2ll k=0 lM} =2l k=0 M}
0o -2
<> 0 e | g
=2 k=0 0o
[e%) [—2
= > "2 a2 | D g
=2 k=0 [ele)
o) % [e%) 1—-2 2 %
<<Z 22 £ ||M) (Zz—” gk )
[=0 =0 k=0 00
0o % [o'e) [ 2 %
21 12 21 k
_c<22 ILf ||Mg) (Zz Y g )
I 2\3%
<C||f|Bmzll(Z2_ T gk )
=0 k=0 fe'e)

(according to Lemma 4.4.2 of [17])

< Clf 1By 2ll g1 B,
= CllS 1By 2l 181N 2 5
< CIlf 1By 2Nl 1g1BSs 5]l < oo,

where in the third last step we use the embedding result for Besov—Morrey spaces
due to Kozono/Yamazaki ([10]).

If we put together all our results from (i) to (iii), we see that we have the estimate

lgf B3z >l < CllgIBSer IS 1B

as claimed. O
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