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Nee et al. (1994) presented likelihood equations for
estimating speciation and extinction rates based on
phylogenies of only extant species; in particular their
method can infer extinction patterns without extinct
species data. Meanwhile, even for the simplest model
of speciation and extinction, namely, the constant
rate birth–death process, a number of studies have
been published using different likelihood equations
(Thompson 1975; Rannala and Yang 1996; Yang and
Rannala 1997; Gernhard 2008; Stadler 2009). The
likelihood functions differ due to conditioning the
likelihood on different quantities, like the age of the tree,
survival of the tree, or the number of species in the tree.

Which conditionings yield the most accurate
speciation and extinction rate estimates? In order
to answer this question, I present an overview of 7
likelihood functions (which have been published in
previous articles), conditioning on different aspects
of the tree. I investigate and discuss the impact of
the different conditionings toward accuracy of the
maximum-likelihood rate estimates by inferring rates
based on simulated phylogenies.

The second part of this article discusses a possible
bias in speciation and extinction rate estimates when
analyzing incomplete phylogenies, that is, phylogenies
in which not all extant species are included. The
analytic considerations reveal that we cannot estimate
the fraction of nonsampled species, but have to know it,
when estimating speciation and extinction rates.

The conclusions reached in this article, assuming the
simple constant rate birth–death model, will also apply
when assuming the more realistic macroevolutionary
models allowing for nonconstant rates (Rabosky 2007;
Alfaro et al. 2009; FitzJohn et al. 2009; Morlon et al. 2011;
Stadler 2011a; Silvestro et al. 2011; Etienne et al. 2012), as
these general models all contain the constant rate birth–
death model as a special case. This article ends with
contrasting these different method implementations
(Table 1) and providing some recommendations for end
users in order to facilitate model comparison across
packages.

SEVEN TREE LIKELIHOOD FUNCTIONS

I will first define the considered macroevolutionary
model, the constant rate birth–death process, and then
present seven functions describing the likelihood of a
phylogeny on only extant species under this model.

The constant rate birth–death process starts at a
time t0 in the past with one species. At all times,
each species gives rise to new species with a constant
rate � and goes extinct with a constant rate μ. After
a speciation event, we distinguish between the two
descending species (e.g., call them “left” and “right”).
The process is stopped after time t0, the present. Each
extant species is sampled with a probability �, and we
denote the number of sampled extant species by n.
The resulting tree where all nonsampled and extinct
species are pruned is called the reconstructed tree. The
n−1 speciation times in a reconstructed tree with n
species are t1 > t2 > ···> tn−1, with the present being time
0, meaning a speciation time measures the amount of
time before present; Figure 1 shows an example of a
reconstructed tree on n=5 species. Note that in the
reconstructed tree, we distinguish between the “left” and
“right” descendant of each branching event, such trees
are also called oriented trees (Ford et al. 2009). I emphasize
that the orientation “left” and “right” is introduced to
distinguish all species at all points in time in a convenient
way when deriving the likelihood functions (namely
each species is characterized by a sequence of “left” and
“right” when following edges from the origin to the
species). A tree with the extant species being labeled can
readily be obtained from the oriented tree by labeling
the extant tips and possibly dropping the “left” and
“right” labels. As pointed out below, parameter inference
will not be influenced by a particular orientation or
labeling.

We emphasize that the birth–death process has four
parameters t0,�,μ, and �, and typically � and � are
the parameters that are being inferred based on a
reconstructed phylogeny using the likelihood function,
whereas t0 and � are fixed prior to the inference.
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TABLE 1. Comparison of different implementations estimating speciation and extinction rates

Software Function Parameter setting Likelihood

R ape birthdeath – 2 log(Equation (5)) - 2 log ((n−1)!)
R laser CalcLHbd log(Equation (5)) + log ((n−1)!)
R geiger Medusa log(Equation (5))
R diversitree make.bisse log(Equation (5))
R diversitree make.bd log(Equation (5)) + log ((n−1)!)
R DDD ddd_loglik Cond=TRUE log(Equation (5)) + log ((n−1)!)
R DDD ddd_loglik Cond=FALSE log(Equation (5)) + log ((n−1)!)
R TreePar bd.shifts.optim Survival=1 −log(Equation (5))-(n−2) log 2
R TreePar bd.shifts.optim Survival=0 −log(Equation (4))-(n−2) log 2
R code Morlon log(Equation (2))
Python BayesRates log(Equation (5)) + log ((n−1)!)
The expressions in the column “likelihood” specifies the value being returned by the implementation. If using different packages for the same
data set, it is essential to make sure to add the appropriate constants such that likelihoods are comparable across packages.

FIGURE 1. Complete phylogeny of age t0 (left) and corresponding
reconstructed phylogeny (right). In the reconstructed phylogeny, all
extinct and nonsampled extant species are pruned, only the sampled
species (denoted with a black circle) are included. The time t0 is also
called stem age, and the time t1 is also called crown age.

In order to obtain the likelihood function of
a reconstructed phylogeny, we need the following
definitions. We write L(t)=k for k species existing at time
t, and Ls(t)=k for observing k species at time t in the
sampled tree. Furthermore, let pn(t) be the probability
of observing n sampled lineages after sampling in
a birth–death tree of age t. Furthermore, let q(t) :=
��(1−e−(�−�)t)/(��+(�(1−�)−�)e−(�−�)t). We have,
from Kendall (1949) for �=1, Yang and Rannala (1997)
for n=0,1, and Stadler (2010) for the general case,

p0(t)=1− �(�−�)
��+(�(1−�)−�)e−(�−�)t

,

p1(t)= �(�−�)2e−(�−�)t

(��+(�(1−�)−�)e−(�−�)t)2
,

pn(t)=p1(t)q(t)n−1.

Note that for �=1 and �>0, we have q(t)= �
�p0(t).

In the literature, the probability density (which is
the normalized likelihood function) of a reconstructed
phylogeny is calculated frequently; the probability
density is essentially a function of p0(t),p1(t), and q(t).
However, due to different assumptions, slightly different
formulae were obtained for the probability density. In
the following, I will present, discuss, and compare the
different probability densities and point out where they
were originally derived.

We recall that the constant rate birth–death process
has 4 parameters t0,�,�, and �, and we typically
want to estimate � and � based on a reconstructed
phylogeny. When calculating the probability density
of a reconstructed phylogeny, we assume � to be a
fixed parameter. Seven different possibilities for t0 are
considered:

We can (1) simply condition on the process starting at
a time t0 (i.e., fix the parameter t0, meaning L(t0)=1).
Additionally, we can (2) condition on the process
between time t0 and 0 to survive, that is, to produce
at least one sampled species, yielding a stem age t0 (for
this condition, we use the shorthand t0 = tstem, instead of
L(t0)=1 and survival). The rationale for this condition is
that we typically do not have information on how many
clades are unobserved due to extinction of the clade,
or nonsampling of the clade. Thus our data analysis
being based on an observed reconstructed phylogeny
is implicitly conditioned on observing a tree, that is,
on survival. Additionally, we can (3) also condition on
observing precisely n sampled species (Ls(0)=n), the
rationale being that we know the number of sampled
species n with certainty and thus may want to condition
on it.

Often, we do not have knowledge about t0, the stem
age of the tree. However, at time t1, we observe two
lineages, thus analog to above, we can (4) condition on
two birth–death processes starting at time t1 (L(t1)=2).
We can (5) also condition on both of these processes
surviving to the present, meaning t1 is the age of the
most recent common ancestor of the extant species (also
called crown age tcrown, we write for this condition
t1 = tcrown, being short for L(t1)=2 and survival), or we
can (6) condition on the number of species being n with
tcrown = t1.

Finally, when no knowledge about t0 is available,
the process has alternatively been conditioned (7) on n
extant species (Ls(0)=n), integrated over all possible t0
(assuming a uniform prior on (0,∞) for t0). The rationale
here is that we are certain about the number of sampled
species n while we are uncertain about the stem age
t0 (or the crown age t1). Note that a uniform prior on
t0 is assumed without knowing the number of extant
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species in the clade. The probability density of t0 given
n sampled extant species in the clade is nonuniform and
given in Gernhard (2008, Theorem 3.2). Interestingly,
assuming that the clade of consideration and its sister
clade have the same speciation and extinction rate yields
the same probability for t0 given n extant species as
the uniform prior assumption (Hallinan 2012), and thus
may be a biological justification for the uniform prior
assumption.

We now state the probability density of a
reconstructed phylogeny (with branching times
t1,...,tn−1) under the seven conditions:

f (T |L(t0)=1) = p1(t0)
n−1∏
i=1

�p1(ti) (1)

f (T |t0 = tstem) = p1(t0)
1−p0(t0)

n−1∏
i=1

�p1(ti) (2)

f (T |t0 = tstem,Ls(0)=n) =
n−1∏
i=1

�
p1(ti)
q(t0)

(3)

f (T |L(t1)=2) = p1(t1)2
n−1∏
i=2

�p1(ti) (4)

f (T |t1 = tcrown) =
(

p1(t1)
1−p0(t1)

)2 n−1∏
i=2

�p1(ti)(5)

f (T |t1 = tcrown,Ls(0)=n) = 1
(n−1)

n−1∏
i=2

�
p1(ti)
q(t0)

(6)

f (T |Ls(0)=n) = n
p1(t1)

1−p0(t1)

n−1∏
i=1

�p1(ti) (7)

Equation (1) has been derived in Stadler (2010,
Theorem 3.5). Dividing Equation (1) by the probability
of the process having sampled species at the present
(1−p0(t0)) leads to Equation (2). Dividing Equation (1)
by the probability of observing n extant species at the
present (pn(t0)) yields Equation (3). Equation (4) follows
directly from Equation (1) by acknowledging that the
two trees descending the two lineages at time t1 can be
calculated using Equation (1). Equation (5) is established
equivalent to Equation (2), that is, by dividing with the
probability of survival of the two lineages at time t1.
Equation (7) has been established in Stadler (2009) by
integrating Equation (3) over t0. It remains to derive
Equation (6).

Derivation of Equation (6): We have,

f (T |Ls(0)=n,t1 = tcrown)

= f (T ,Ls(0)=n,t1 = tcrown|L(t1)=2)
p(Ls(0)=n,t1 = tcrown|L(t1)=2)

= f (T |L(t1)=2)
p(Ls(0)=n,t1 = tcrown|L(t1)=2)

.

We derive p(Ls(0)=n,t1 = tcrown|L(t1)=2), the
probability of sampling n sampled species with
crown age t1, by calculating the probability for one
subtree descending the root at time t1 yielding i sampled
species, and the other subtree yielding n−1 sampled
species (for all possible i):

p(Ls(0)=n,t1 = tcrown|L(t1)=2) =
n−1∑
i=1

pi(t1)pn−i(t1)

= (n−1)p1(t)2q(t)n−2.

This establishes Equation (6).

Remarks:

1. Equation (4) appears in Thompson (1975, p. 58),
Equation (3.4.6) for �=1. The author states that
this expression p1(t1)2∏n−1

i=2 �p1(ti) is the density
of a tree conditioned on the most recent common
ancestor of the extant species being at time t1,
that is, f (T |t1 = tcrown) (see also Thompson’s Figure
3.4). However, Thompson actually calculated
f (T |L(t1)=2) (Equation (4)).

2. Equation (5) has been derived in Nee et al. (1994,
p. 308).

3. Equation (6) is provided in Yang and Rannala
(1997). For �=1, Equation (6) was first derived
in Rannala and Yang (1996, Equation (8)). Note
that the authors derive Equation (6) by using
f (T |t1 = tcrown) from Thompson (1975). As stated in
Remark 1, Thompson actually derived f (T |L(t1)=
2) (and not f (T |t1 = tcrown)). Because Rannala and
Yang (1996) divide this density by p(Ls(0)=n,t1 =
tcrown|L(t1)=2), the correct density for f (T |Ls(0)=
n,t1 = tcrown) is obtained.

4. For a tree with unknown origin t0, we could
estimate t0,�,� (instead of fixing t0 and estimating
only �,�) based on a tree with speciation times
t1,...,tn−1.

5. For t0 = t1, Equation (2) multiplied by n equals
Equation (7). In particular, the maximum-
likelihood parameter estimates are the same if t0
approaches t1.

6. Equations (1–7) hold for reconstructed trees where
the descendants of each branching event are
distinguished by “left” and “right” (oriented
trees). For obtaining the probability density of
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the more commonly used labeled tree, that is, the
tree where each tip has a unique label but the
“left” and “right” is ignored, we need to divide
Equations (1–7) by the number of labelings (n!)
and multiply by the number of “left” and “right”
assignments (2n−1). Note, however, that the factor
2n−1/n! does not change the likelihood of a tree.
Furthermore, under the constant rate birth–death
process, it has been established that branching
times are independent of the tree shape (Aldous
2001). In fact, for a given vector of branching times,
there are (n−1)! different oriented trees, and each
of them is equally likely. Thus, for obtaining the
probability density of the branching times, we
need to multiply Equations (1–7) by (n−1)!.

Implementations
The R packages ape, laser, geiger, diversitree, DDD,

and TreePar (Paradis et al. 2004; Harmon et al. 2008;
FitzJohn et al. 2009; Rabosky 2009; Stadler 2011a;
Etienne and Haegeman 2012), as well as R code
provided in Morlon et al. (2011) and the Python
implementation BayesRates (Silvestro et al. 2011), all
estimating macroevolutionary rates under a range of
models, allow to condition on survival for most of
the implemented models, in particular for all methods
assuming the constant rate birth–death process (Table 1).
Note in particular that if a method assumes no extinction
and complete sampling (�=0,�=1), then conditioning
on survival or not yields the same result (as p0(t)=0 for
all t).

The R packages diversitree, TreePar, BayesRates,
and Morlon’s implementation allow for uniform taxon
sampling where each extant species has probability
� of being sampled; DDD allows for uniform taxon
sampling where n out of m species are being
sampled (see Supplementary Material of Etienne et al.
2012). BayesRates allows for clade-specific sampling
probabilities, and diversitree allows for trait-specific
sampling probabilities. Medusa in geiger and TreePar
can further analyze incomplete phylogenies in which
some clades are collapsed to a single tip, and only
the number of species represented by that tip is
known.

Note that TreePar multiplies each branching event by
two in order to allow the likelihood to be compared with
general models where branching events are asymmetric
such that we need to label the two descendants;
for example, the two descendants may be ancestor
and offspring, resulting from peripatric speciation
(or transmission between hosts if considering virus
phylogenies). For the simple constant rate birth–death
process, assigning the left descendant “ancestor” and
the right descendant “offspring” or vice versa result
in the same likelihood of the tree, as the constant rate
birth–death process is memoryless, thus the factor 2.

WHICH LIKELIHOOD FUNCTION IS THE BEST?

I simulated 1000 trees on 100 and 1000 extant species
using the function sim.bd.taxa in the R package TreeSim
(Stadler 2011b), and then reestimated the speciation
and extinction rates. I chose �=1,�=1, and varied the
turnover �/�=0.00,0.05,0.25,0.50,0.75,0.95 (note that
for different values of �, the time scale is changed, but
the results are the same). When estimating parameters,
I fixed �=1 (because we cannot estimate the sampling
fraction, see the section below). The parameter estimates
obtained using Equations (1–7) are shown in Figures 2
and 3.

First, I note that simulating trees on a fixed number of
species (here 100 and 1000) is performed by choosing any
tree with n species uniformly at random. This procedure
implicitly assumes a uniform prior on (0,∞) for the age
of the tree (Hartmann et al. 2010), and thus Equation (7)
is the appropriate equation for this simulated data.

The seven methods perform similarly well, and in
particular for the trees of size 1000, the seven methods
produce on average correct estimates with a very small
variance across the simulated trees. Empirical trees
are typically smaller than size 1000. Based on the
simulations for trees with moderate size (100 tips), I
observe important differences in performance of the
seven likelihood functions, in summary:

1. Is the stem age t0 important? Equations (1–3)
use the information of the stem age t0, whereas
Equations (4–6) neglect it. We observe that the
corresponding Equations (1) vs. (4), (2) vs. (5),
and (3) vs. (6) produce equivalent results, that
is, the additional stem age does not provide much
additional information for rather large trees. This
agrees with our expectation: the stem age is
the 100th datapoint, while both methods use 99
datapoints (the 99 branching times), that is, the
stem age only adds about 1% information when
analyzing trees with 100 species. However, when
analyzing empirical phylogenies, some branching
times might be estimated less accurate than
others, and an accurate stem age estimate might
therefore add more than just 1% of information.
Thus, whenever an accurate stem age estimate is
available, it should be included. This inclusion is
in particular relevant for small trees.

2. Shall we condition on survival? Conditioning on
survival increases the estimated extinction rates
compared with only conditioning on tree age
(Equation (1) vs. (2); (4) vs. (5)). This is because we
only analyze surviving trees: if we use Equation
(1) (respectively, 4), that us, not condition on
survival, the method estimates low extinction rates
as the method only sees surviving trees and
therefore is implicitly informed that no trees went
extinct; thus that extinction was low. I conclude
that for high turnover �/�, it is very important
to condition on survival. However, for very low
extinction rates, the parameter estimates are tighter



[11:38 30/1/2013 Sysbio-sys073.tex] Page: 325 321–329

2013 POINTS OF VIEW 325

FIGURE 2. Maximum-likelihood speciation rate estimates (white boxplot) and extinction rate estimates (gray boxplot) based on 1000 simulated
trees on 100 species (for each parameter combination). The true speciation and extinction rates are indicated by the horizontal lines: speciation
rate is set to 1; each panel corresponds to a different extinction rate. In each panel, the estimates from left to right correspond to using Equations
(1)–(7).

FIGURE 3. Maximum-likelihood speciation rate estimates (white boxplot) and extinction rate estimates (gray boxplot) based on 1000
simulated trees on 1000 species (for each parameter combination). The true speciation and extinction rates are indicated by the horizontal lines:
speciation rate is set to 1; each panel corresponds to a different extinction rate. In each panel, the estimates from left to right correspond to using
Equations (1)–(7).
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using Equation (1) (respectively, 4) rather than
Equation (2) (respectively, 5). This is because � is
bounded from below by 0. Now if we condition
on survival, also some nonzero � are likely, and
thus the variance in estimated extinction rates
becomes wider. As for most clades we expect a high
extinction rate based on the fossil record, I suggest
to condition on survival in the analyses.

3. Shall we condition additionally on the number
of sampled species? If we condition on age and
additionally on the number of species n, the
variance in parameter estimates becomes larger
compared with not conditioning on n. This is
expected since by conditioning on n, the parameter
estimates are not informed any more by the
number of species after time t0 (respectively, t1).
We expect after time t0 (respectively, t1) to observe
n=e(�−�)t0 (respectively, n=2e(�−�)t1 ) species (for
�=1), and the estimation method makes use of this
information for determining �−� as long as we
do not condition on n. Thus, I recommend to not
condition on both age and number of sampled species
(i.e., to not use Equation (3) or (6)).

4. Too much conditioning is bad! In general, if we
condition on more quantities (e.g., n in addition to
age as in the last point), we take away information
in the data (by conditioning on it), and thus the
estimates become less precise. In the extreme case
of conditioning on all speciation times t1,...,tn−1
of the phylogeny, each parameter combination has
the same likelihood (f (T |t0,t1,...,tn−1,n,�,�)=1),
thus no information is left in the data.

5. What is the disadvantage of Equation (7)? I
simulated trees on a fixed number n of species,
thus Equation (7) is the appropriate equation for
our simulation study. We expect Equations (1)–
(6), which are slightly violating the simulation
study design, to not perform better. It turns out
that Equations (2) and (5) perform as well as Equation
(7), meaning these equations are robust toward slight
violations of the simulation study assumption. Due
to this robustness, I suggest to use Equations (2) and
(5). Furthermore, from a conceptual point of view,
people might hesitate using the assumption of a
uniform prior for stem age made in Equation (7),
and in fact for more complicated models, it might
not be possible to integrate over all possible stem
ages which is required to obtain Equation (7).

6. We can estimate high turnover better than low
extinction! This final conclusion is made based on
the observation that the variance in extinction rate
estimates decreases for increasing turnover �/�.
This indicates that for large �/�, small changes
in �/� change the tree distribution significantly,
whereas for small �/�, small changes in �/� barely
change the tree distribution.

CAN WE ESTIMATE PARAMETERS BASED ON INCOMPLETE

PHYLOGENIES?

I performed all simulations using �=1. Due to
parameter correlations, this actually give us information
also for �<1:

Let pi(t|�,�,�) (respectively, q(t|�,�,�) be the
probability pi(t) (respectively, q(t)) with parameters
�,�,�. Let �,�,� and �′,�′,�′ be birth–death parameters.
If and only if these parameters fulfil,

�−� = �′−�′ and ��=�′�′.
we have for all t,

(1−p0(t|�,�,�))/� = (1−p0(t|�′,�′,�′))/�′,
p1(t|�,�,�))/� = p1(t|�′,�′,�′)/�′,
pn(t|�,�,�))/� = pn(t|�′,�′,�′)/�′,

q(t|�,�,�)) = q(t|�′,�′,�′).
The “if” can be verified directly by plugging the
parameters into the above equations. The “and only if”
follows, because: (i) we need �−� constant in order to
have the exponentials of the functions pi and q to be
invariant for all t and (ii) we need �� invariant in order
to have invariant factors in front of the exponentials.

Incomplete Sampling in Equations (2),(3),(5)–(7)
Based on this last derivation, all tree densities except

of Equations (1) and (4) are functions of only �−� and
��. This means that we cannot estimate the 3 parameters
�,�,� simultaneously, one parameter has to be fixed.

Furthermore, instead of simulating or calculating the
likelihood for the original parameters�′,�′,�′ with�′ <1,
we can set �=1 and �=�′�′,�=�′−�′(1−�′). Because
�≥0, this transformation implicitly assumes �′/�′ ≥1−
�′, see also Stadler and Steel (2012). Thus, we can use
previously published rate estimation methods which
assume �=1 even though for our data we have �′ <1:
we simply transform the estimates �,� obtained by
assuming �=1 into

�′ =�/�′, �′ =�−�(1−1/�′).
If we want to allow �′/�′ <1−�′, we need to use the
equations with �′ <1, as no transformation is available
in that case (Stadler and Steel 2012). As an example,
I transformed the parameters in Figure 2 using �=0.5
(Figure 4). The qualitative pattern of Figure 4 follows the
pattern of Figure 2, thus the conclusions drawn in the
last section still hold under incomplete sampling.

Incomplete Sampling in Equations (1) and (4)
Because Equations (1) and (4) depend on �−�, ��

and �, we might hope to estimate the three parameters
�,�,� based on Equations (1) and (4). However, this is
not possible either: Both Equations (1) and (4) multiplied
by � only depend on �−� and ��. This means that for
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FIGURE 4. Maximum-likelihood speciation rate estimates (white boxplot) and extinction rate estimates (gray boxplot) based on 1000 simulated
trees on 100 species (for each parameter combination) with incomplete sampling (�=0.5). The true speciation and extinction rates are indicated
by the horizontal lines; each panel corresponds to a different extinction rate. In each panel, the estimates from left to right correspond to using
Equations (2), (3), (5)–(7). Note that we could not use Equations (1) and (4) as we used theory for transforming the estimates in Figure 2 such
that we account for �=0.5; this theory only holds for Equations (2), (3), (5)–(7).

any given �,�,�, we can increase the tree likelihood by
decreasing � and keeping �−� and �� constant; thus the
parameters �′ =��/�′ and �′ =�−(1−�/�′)� with �′ >�
yield a higher tree likelihood than �,�,�; the speciation
rate �′ decreases (and thus the tree likelihood increases)
for �′ increasing. We require �′ ≤1 as well as �′ ≥0,
which means that our tree likelihood is maximized for
�′ =min(1,

��
�−� ). If we simulate trees under parameters

�,�,�, and then reestimate the speciation, extinction
and sampling parameter, we obtain on average biased
parameter estimates �′,�′,�′; in particular extinction is
underestimated:

�′ =max(�−�,��), �′ =max(0,�−(1−�)�),

�′ =min
(

1,
��

�−�

)
.

This means that only two out of three parameters
can be estimated (�′ will always be chosen as big as
possible). Always obtaining biased estimates might seem
paradoxical. However, the reason for overestimating
sampling and underestimating speciation as well as
extinction is simple: The tree densities in Equation (1)
(respectively, (4)) describe the probability density of
the process after time t0 (respectively, t1). If we were
to simulate many trees of age t0 (respectively, t1) and
estimate the parameters based on the collection of trees,

including the extinct trees, we would obtain nonbiased
estimates. However, by only estimating parameters
based on nonextinct trees, we bias our estimates toward
low extinction rates.

CONCLUSIONS

I conclude by summarizing the main results of this
article. The macroevolutionary model considered in this
article, the constant rate birth–death process, has 4
parameters, the speciation rate �, the extinction rate �,
the sampling probability �, and the stem age of the tree
(t0). Instead of stem age, we can also consider crown
age as a parameter; crown age is the stem age of the
two clades subtending the first branching event in the
reconstructed tree.

First, the sampling probability � cannot be estimated
together with � and � based on a reconstructed
phylogeny. The likelihood function can only inform
us about two parameters while we have to fix the
third. Thus, one answer to the question posed in the
title of the article, “How can we improve accuracy of
macroevolutionary rate estimates?”, is by improving a
priori knowledge about the sampling probability �.

Second, the stem age/crown age of the tree is typically
fixed to the observed value when estimating speciation
and extinction rates. When we estimate rates based
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on reconstructed phylogenies of moderate size (here
100 tips), we should condition the likelihood function
on survival (Equation (2) or (5)), in order to improve
accuracy of macroevolutionary rate estimates. If not
conditioning on survival, we underestimate extinction.
The bias of underestimating extinction would disappear
if we were to include knowledge about the fraction of
clades having gone extinct; however, this information is
typically not available.

As an alternative, conditioning the likelihood function
on the number of species but averaging over all possible
stem ages (Equation (7)) is appropriate, provided that a
uniform prior for the time of origin seems plausible.

We should not combine the two scenarios though: if we
condition on the number of species in the tree in addition
to fixing the tree age (Equation (3) or (6), the estimates
become less accurate, as we take away information from
the data (by conditioning on it)!

For large phylogenies (here 1000 tips), the different
conditionings performed equally well.

In general, the simulations revealed that given the
analyzed trees evolved under a constant rate birth–death
process, the extinction rate can be estimated accurately,
in particular if the turnover (extinction/speciation)
is large. I want to emphasize though that under
more complex models with varying extinction rates,
turnover becomes increasingly difficult to estimate
while diversification rate (speciation–extinction) can
be obtained reliably, see for example, the simulation
results of Stadler (2011a). An additional difficulty in
estimating turnover arises as turnover estimates are very
sensitive toward model misspecification: Rabosky (2010)
simulated phylogenies (with 50 tips) under a model
with constant turnover while speciation rates varied in
a heritable fashion across lineages; fitting a constant
rate birth–death model to these trees yielded bimodal
turnover estimates, both a turnover of zero and one was
supported most. Furthermore, many empirical data sets
reveal an extinction rate estimate of zero while the fossil
record clearly shows patterns of extinction (Purvis 2008).
Thus, a future challenge will be to develop methodology
which uses phylogenetic trees as well as fossil data in
order to obtain more reliable turnover estimates.

In this article, accuracy and precision of parameter
estimates were investigated by simulating a set of
trees, and then inspecting the distribution of maximum
likelihood parameter estimates; the obtained confidence
intervals are parametric bootstrap confidence intervals.
For empirical trees, a set of posterior trees or bootstrap
trees can be analyzed analogously. It is important to
note that the obtained parameter intervals reflect the
sensitivity of the maximum likelihood estimates toward
changes in the phylogeny.

In order to get confidence regions reflecting the
shape of the likelihood function, the contour plot of
the likelihood has to be considered. The contour plot
displays the region in parameter space where the
likelihood is at most x units away from the maximum
likelihood. The value x depends on the number of
parameters and the chosen confidence region (95%, 99%,

etc.). Alternatively, the likelihood functions can be used
in an MCMC analysis (instead of a maximum likelihood
analysis as done in this article) yielding credible intervals
for each parameter. I strongly recommend to analyze the
posterior trees or the bootstrap trees directly, rather than
the summarized maximum clade credible tree or the
consensus tree, as these summary trees do not reflect
branch lengths very well (e.g., branch lengths may be
negative).

When testing the simple constant rate birth–death
process against a more complex model, it is important
that the two likelihoods are comparable, meaning that
they were obtained using the same conditionings and
normalizing constants. For example, if the probability of
extinction of the clade (p0(t1)) is 0.5, then the likelihood
obtained from Equation (5) is larger than that obtained
from Equation (4) by a factor of 4. If p0(t1) is 0.9, then the
factor increases even to 100. As a consequence, if using
Equation (5) for the constant rate birth–death model
while using the analog of Equation (4) for the complex
model, the likelihood ratio test is too conservative
in rejecting the constant rate birth–death process.
Also, likelihoods do not have to be normalized; the
different available packages use different normalization
constants. Table 1 summarizes which conditionings
and normalizing constants are used in the available
packages, which will hopefully facilitate comparison of
models implemented in different packages. Any novel
packages should explicitly state which assumptions are
made and normalizing constants are used to facilitate
comparison with the existing packages.

I want to conclude with some recommendations to end
users. Whenever comparing models across packages,
I suggest that end users verify that, under the simple
constant rate birth–death model, the same maximum-
likelihood value and parameter estimates are obtained
with any of the packages used. For the packages
discussed here, normalizing constants have to be added
to the likelihoods as listed in Table 1. In order to obtain
unbiased extinction rate estimates, I suggest using the
option “condition on survival” if it is available in all of
the considered packages.
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