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ABSTRACT

A prudent assessment of dependence is crucial in many stochastic models for 
insurance risks. Copulas have become popular to model such dependencies. 
However, estimation procedures for copulas often lead to large parameter 
uncertainty when observations are scarce. In this paper, we propose a Bayesian 
method which combines prior information (e.g. from regulators), observations 
and expert opinion in order to estimate copula parameters and determine the 
estimation uncertainty. The combination of different sources of information 
can signifi cantly reduce the parameter uncertainty compared to the use of only 
one source. The model can also account for uncertainty in the marginal dis-
tributions. Furthermore, we describe the methodology for obtaining expert 
opinion and explain involved psychological effects and popular fallacies.
We exemplify the approach in a case study.
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1. INTRODUCTION

In insurance, it is crucial to take into account the effects of dependence when 
modeling the joint distribution of risks. Estimating the dependence structure 
is relatively easy if  many joint observations are available, see McNeil et al. 
(2005). In a (re)insurance setting, often only very few joint observations are 
available, which may be the case even when plenty of information is available 
on the marginal distributions. In such a case, it is often considered adequate 
to make an assumption of independence or impose simple assumptions on 
correlations. However, these approaches have been shown to contain several 
pitfalls when used in risk management, see Embrechts et al. (2002). 

Models for fi nancial and insurance risks which account for dependence in 
a more comprehensive way than a variance-covariance approach have gained 
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272 P. ARBENZ AND D. CANESTRARO

much interest in recent years, see e.g. McNeil et al. (2005). As the credit crisis 
showed, dependence, particularly in the tails, must be accounted for correctly, 
see Donnelly and Embrechts (2010).

One possibility to model dependence between random variables are copula 
functions. On some probability space (W, A, P), the joint cumulative distribution 
function of a random vector (X1,  …,  Xd)  !  Rd with margins Fi (x)  =   P [Xi  #  x ], 
i  =  1,  …,  d, can be written as

 P [X1  #  x1,  …,  Xd  #  xd ]   =   C(F1(x1),  …,  Fd (xd)),  for all  (x1,  …,  xd )  !  R
d,

where C  :  [0,1]d  "  [0,1] is a so-called copula. We refer to Nelsen (2006) for a 
detailed introduction to copulas and an overview on parametric copula fami-
lies. Copulas allow to separate the dependence structure from the margins and 
have gained widespread use in risk management and fi nancial modeling, see 
McNeil et al. (2005) and Genest et al. (2009), respectively.

Suppose an insurance company uses copulas to model dependence. If  joint 
observations are scarce, the actuary may decide to use also other sources of 
information, such as expert judgment or regulatory guidelines, in order to fi nd 
a good estimate of the copula parameters. For instance, experts may predict 
certain yet unobserved joint extreme events, which would lead to a higher 
degree of dependence than what is implied by the observations. We are not 
aware of  an existing sound mathematical framework to combine different 
sources of information in order to estimate copula parameters. This paper fi lls 
this gap by using a Bayesian framework within a parametric copula model and 
provides a robust method that is applicable even if  observations are scarce. 
Our method is based on Lambrigger et al. (2007) who apply Bayesian infer-
ence to combine three sources of information in order to estimate regulatory 
capital for operational risk.

Decisions that involve expert judgement should be rational and be perceived 
as such. In particular if  this judgement has to be defended in front of auditors, 
regulators or rating agencies. Furthermore, it is often tricky to avoid psycho-
logical traps. Hence, certain expert elicitation principles must be adhered to, 
which we will outline later.

The paper is organized as follows. In Sections 2 to 5, we concentrate on 
bivariate copula parameter estimation. Section 2 describes the Bayesian infer-
ence approach, Section 3 outlines the methodology to set the prior density and 
Section 4 describes psychological and procedural aspects of expert judgement. 
Section 5 discusses the Bayesian modeling of expert assessments. Section 6 
extends the model to a multivariate setting, including uncertain marginal dis-
tributions. We give an application in Section 7 and conclude in Section 8.

2. TWO DIMENSIONAL BAYESIAN COPULA INFERENCE

This section introduces the Bayesian inference approach to estimate a copula 
parameter. For didactic reasons, we concentrate fi rst on the bivariate case with 
known margins, i.e. we introduce a method for estimation of  the copula 
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 ESTIMATING COPULAS FOR INSURANCE FROM SCARCE OBSERVATIONS 273

parameter of a random vector (X1, X2), where the margins F1 and F2 of X1 and 
X2 are continuous and known. The multidimensional case with unknown mar-
gins will be described in Section 6.

For the remainder of the paper, we denote with r (·, ·) a fi xed dependence 
measure, i.e. r maps a pair of random variables to a value in R (in most prac-
tical cases the interval of possible values is [ –1, 1] or [0, 1]), which is then called 
their “degree of  dependence”. We assume that r is independent of  the mar-
gins, i.e. r (X1, X2)  =  r (t1(X1), t2(X2)) for all random vectors (X1, X2) and 
strictly increasing transformations t1 and t2. Commonly used dependence 
measures satisfying this condition are for example Kendall’s tau or asymptotic 
tail dependence. Other dependence measures can be found in McNeil et al. 
(2005).

Our method allows statistical inference in the following situation.

Situation 2.1. The following three sources of information are given.

(1) A set O of N independent observations (X1, n, X2, n), n  =  1,  …,  N, of (X1, X2).

(2) From K experts, a set E of point estimates fk of  r (X1, X2), k  =  1,  …,  K.

(3) An additional prior source of information (e.g. regulatory guidelines) which 
provides an estimate of r (X1, X2).

 
Let q  =  r (X1, X2) be the unknown value of the dependence measure applied 
to (X1, X2). The direct elicitation of the value of the canonical copula parameter 
is not feasible as this quantity is not familiar to the expert in terms of the way 
he collects and evokes his knowledge. However, a question that asks for the 
value of a dependence measure can be formulated in a way such that substan-
tial answers can be given even if  experts are unfamiliar with probability theory. 
For that reason, we will parameterize the copula through the dependence 
measure and ask experts to estimate this dependence measure.

Defi nition 2.2. Let C2  =  {Cq : q  !  Q} denote a family of absolutely continuous 
bivariate copulas Cq : [0, 1]2  "  [0, 1], parameterized through the dependence 
measure r. I.e. r(U1, U2)  =  q for vectors (U1, U2) with P [U1  #  u1, U2  #  u2]  =
Cq(u1, u2). We denote with c(·|q) the density and with Q  1  R the set of admissible 
parameters.

Most combinations of commonly used dependence measures (Kendall’s tau, 
Spearman’s rho, asymptotic tail dependence) and bivariate copula classes that 
are indexed by a real-valued parameter (Clayton, Gumbel, Frank, Gaussian, 
t with fi xed degrees of  freedom) satisfy the requirements of  Defi nition 2.2. 
Note that the parametrization in terms of the dependence measure also guar-
antees that the copulas are identifi able.

The following proposition allows statistical inference on q, where the 
Bayesian approach combines all available information given in Situation 2.1. 
We will assume that the copula of (X1, X2) is contained in C2 and the experts 
give estimates of r (X1, X2). As experts often base their judgement on common 
knowledge, we allow experts to be dependent, too, and model their dependence 
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274 P. ARBENZ AND D. CANESTRARO

structure through a copula. We will fully describe the modeling of  expert 
assessments in Section 5.

For a detailed introduction to Bayesian inference we refer the reader to 
Bernardo and Smith (1994). For ease of  notation, we denote with p(·) all
(un)conditional densities of those random variables with no specifi cally desig-
nated density.

Proposition 2.3. Suppose Situation 2.1 holds along with the following assumptions.

A1 Conditionally on the degree of dependence q, (X1, X2) has a distribution given 
by the copula C  =  Cq  !  C2 and the fi xed, known margins F1 and F2. I.e.,

  P [X1  #  x1,  X2  #  x2  | q ]   =  Cq(F1(x1),  F2(x2)).

A2 Conditionally on q, experts point estimates fk have a joint distribution given by

  P [f1  #  x1, …,  fk  #  xK | q ]   =   CE(G1(x1 | q ),  …,  GK(xK | q )),

 where Gk(·|q) is the conditional distribution of the k-th expert and CE describes 
the dependence between experts. Assume both CE and Gk have a density, 
denoted by cE and gk(·|q), respectively.

A3 Conditionally on q, O and E are independent.

A4 The prior source of information can be translated into a prior density p(q)  :
Q  "  [0, 3).

Then the posterior density p(q | O, E) of q given O and E satisfi es
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where the symbol \ denotes proportionality with respect to q.

Proof. Bayes’ Theorem leads to p(q | O, E)  p(O, E)  =  p(O, E | q)  p(q), which we 
can write as p(q | O, E)  \  p(O, E | q)  p(q). Due to A3, we get p(O, E | q)  =  p(O | q)
p(E | q). As a consequence of A1 and A2 the quantities p(O | q) and p(E | q), 
i.e. the likelihoods of O and E, given q, can be written as
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We make some remarks on Proposition 2.3 and its assumptions.
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 ESTIMATING COPULAS FOR INSURANCE FROM SCARCE OBSERVATIONS 275

Any Bayesian point estimator (such as mean or median) can now be used 
to calculate a point estimate q of  the copula parameter from p(q | O, E). We 
propose to use the posterior mean E [q | O, E] in order to be consistent with the 
modeling of the expert assessments, which will be based on matching condi-
tional moments. The uncertainty of q can then be assessed through the variance 
var(q |O, E).

More details on the practical transformation of the prior information into 
the prior density are given in Section 3. If  such a prior source of information 
is unavailable, an uninformative prior can be used. The modeling of the experts’ 
marginal conditional distribution (the Gk(·|q)) and the dependence between 
the experts (through the copula CE) will be addressed in Section 4. If  experts 
are conditionally independent, then the cE term in (2.1) drops out. Dependence 
between experts and observations is diffi cult to avoid, but it is unclear how this 
infl uences the expert assessments. An expert could tend to underestimate due 
to inexistent joint observations or to overestimate by overcorrecting through 
unrealistically extreme scenarios.

For sensitivity analyses or in case no expert opinion or observations are 
available, we can calculate p(q | O) and p(q | E), the posterior of q given either 
O or E, in which case p (O | q) or p(E | q) drops out of (2.1).

In other applications of  Bayesian inference, conjugate priors are often 
used, in which case both p(q) and p(q | O, E) belong to the same parametric 
class of distributions, see Bernardo and Smith (1994). We are not aware of any 
conjugate priors for copulas.

The normalization factor p(O, E) is not explicitly known in most cases.
It is however possible to sample from q | O, E through Markov Chain Monte 
Carlo methods (MCMC), see Robert and Casella (2005). If  Q is low dimen-
sional (as it is the case in the present bivariate setting), direct grid discretizations 
may also be feasible.

As our method is intended to be used mainly with small N and K, we 
refrain from proving the following asymptotic results on the convergence
of q | O, E. Proofs and more details concerning the following statements can
be found in Section 10 of Van der Vaart (1998). For N  "  3 the information 
 contained in O increases, the infl uence of p(q) p(E | q) is diminished, and the 
posterior is driven by the observations. The Bernstein-von Mises Theorem states 
asymptotic normality of q | O, E for N  "  3 if  p(q) p(E | q) is smooth and pos-
itive in a neighborhood of the true parameter. Therefore, q | O, E and thus also 
q converge in probability with rate .N1/  Furthermore, Bayesian point esti-
mators are asymptotically effi cient and asymptotically equivalent to maximum 
likelihood estimators. 

Modelling the prior with a shifted Beta distribution yields a smooth and 
positve prior p(q) on Q. Parametrizing the Beta distribution in terms of  its 
mean to get the conditional expert’s density gk(fk | q) also satisfi es the 
smoothness conditions. We will later choose CE as a Frank copula, which 
implies that p(q) p(E | q) satisfi es the conditions of  the Bernstein-von Mises 
Theorem.
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276 P. ARBENZ AND D. CANESTRARO

3. ASSESSING THE PRIOR DISTRIBUTION

This section describes the methodology to set the prior density p(q) used in (2.1). 
In all relevant cases considered in the paper we have that Q is an interval.

Suppose we can infer a point estimate qp of  q (p for prior) from the prior 
source of information, e.g. regulatory guidelines. We then propose to model 
p(q) with a shifted Beta distribution with mean E[q]  =  qp and support Q. The 
shifted Beta distribution is very suitable as it can take on a wide range of 
shapes and means, yet with only two parameters. The variance var(q) determines 
the credibility which is given to qp. We propose to estimate var(q) from the 
prior source of information or, alternatively, through assessing the subjective 
confi dence that is given to the estimate qp.

In case no prior belief  is available then p(q) can be set as uninformative, 
i.e., uniform on Q. For an uninformative prior, the posterior distribution 
depends mainly on O and E. See Price and Manson (2002) for an introduction 
to uninformative priors.

The following list gives three possibilities for the prior source of informa-
tion.

(1) Regulatory guidelines. Some insurance regulators publish reference val-
ues for the correlation between certain risk types. See for instance 9.2 in 
CEIOPS (2010) for the proposals of  the European Union regulators or 
Section 8.4 in FOPI (2006) for directives from the Swiss regulators.

(2) Physically similar situations. Analogous to the proposal in Lambrigger et 
al. (2007), qp can be taken as the known degree of dependence r(X1

*, X2
*) 

of two random variables X1
* and X2

* whose dependence is similar (at least 
in nature) to the dependence between X1 and X2. This is related to credibility 
theory, where collective data are used as a starting point to estimate indi-
vidual parameters. For instance, Schedule P data from US insurers could 
be used to calculate a prior estimate of the dependence between claims 
reserves in different lines of business.  

(3) Expert Judgement. An expert can either estimate qp according to his per-
sonal belief  or in order to incorporate an artifi cial bias, for instance by 
putting weight on high degrees of dependence in order to avoid underes-
timating dependence.

4. THE ELICITATION OF EXPERT OPINION

As observations are lacking or sparse in many statistical problems, expert 
opinion is increasingly recognized as an important source of additional infor-
mation. In an insurance context, it is important to guarantee a reliable and 
robust expert judgement process which is credible from the point of view of 
insurance, regulator and rating agencies. Therefore, this section outlines some 
psychological and procedural principles which are necessary to turn expert 
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 ESTIMATING COPULAS FOR INSURANCE FROM SCARCE OBSERVATIONS 277

opinion into scientifi cally meaningful statements. For an overview of  the 
recent literature on the use of  expert opinion see Meyer and Booker (2001), 
Ouchi (2004) or Clemen and Winkler (1999).

The task of assessing dependence using experts has received little attention. 
Böcker et al. (2010) model the uncertainty in correlation matrices using expert 
judgement. The approach to directly elicit the value of a dependence measure 
has been subjected to criticism as well as appraisal, see Morgan and Henrion 
(1992) and Clemen et al. (2000), respectively.

Our approach of asking experts for estimates of q and applying Bayesian 
inference to combine the estimates represents a so-called mathematical 
approach. In contrast, in behavioral approaches, experts interact and agree on 
a common conclusion by means of discussions and other forms of interaction. 
However, behavioral approaches have the disadvantage that they are prone
to be infl uenced by dominant personalities, they can suffer from the limited 
participation of less confi dent experts, and there is a general tendency to reach 
a conclusion too fast, see Mosleh et al. (1988) and Daneshkhah (2004).

In order to comprehensively understand a process involving expert judg-
ment, one must understand the psychological effects involved when experts 
assess probabilistic quantities and make judgements under uncertainty.
For instance, experts may not be familiar with describing their beliefs in terms 
of  probabilities. Two large research streams tried to describe these effects:
the cognitive models and the heuristics and biases approach, see Kynn (2008) 
and the references therein for an overview and critique. 

We refrain from giving a review on abstract psychological aspects. Instead, 
we provide the following examples in order to illustrate some of the psycho-
logical effects that can infl uence experts in the assessment of  probabilistic 
quantities.

• In a study described by Kahneman and Tversky (1982), people were asked: 
“Linda is 31 years old, single, outspoken, bright and majored in philosophy. 
She is deeply concerned with issues of discrimination and social justice. Which 
is more likely? (i) Linda is a bank teller or (ii) Linda is a bank teller who is 
active in the feminist movement.” Most answers rank (ii) to be more probable 
than (i), not considering that (ii) must have a probability less or equal than (i) 
because (ii) is a subset of (i).

• According to Eddy (1982), doctors tend to confuse P (positive test | disease) 
(the test sensitivity) with P (disease | positive test) (the power of the test).

• Kahneman and Tversky (1973) fi nd that people tend to ignore prior proba-
bilities when judging conditional probabilities. The question “Is a meticulous, 
introverted, meek and solemn person more likely to be engaged as a librarian 
or as a salesman?” was mostly answered with librarian as the stereotype of 
a librarian better suits the characteristics of  this person. However, this 
answer ignores the fact that there are many more salesmen than librarians.

• The probability assigned to an event increases with the amount of details 
that are given to describe it. For instance, the estimated probability that a 
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278 P. ARBENZ AND D. CANESTRARO

person dies due to a natural cause is usually smaller than the sum of the 
separately estimated probabilities for heart disease, diabetes and other natu-
ral causes, see O’Hagan et al. (2006).

The general goal of applying expert elicitation procedures is to allow decisions 
to be taken in a rational manner and to be perceived to be as such. To that 
end, Cooke (1991) recommends to adhere to the following fi ve principles.

(1) Reproducibility. All data must be open to qualifi ed reviewers and results 
must be reproducible in order to allow revision from auditors or regulators.

(2) Accountability. Questionnaires are stored and each opinion can be linked 
to the corresponding expert.

(3) Empirical control. There should be in principle the possibility to verify 
expert opinion on the basis of measurable observations.

(4) Neutrality. There must not exist any incentives (such as a change in reputa-
tion or salary) for the experts to give answers different from their true hon-
est opinion.

(5) Fairness. Experts are not discriminated or given smaller weights due to rea-
sons that cannot be justifi ed through the mathematical model.

More detailed suggestions and guidelines are given in Cooke and Goossens 
(2000).

5. THE BAYESIAN MODELING OF THE EXPERT ASSESSMENTS

We will now address the mathematical modeling of the expert assessments E. 
By the assumptions in Proposition 2.3, p(E | q) reads as

 q qq q )( | ) ( | ), | ) |p G gK K k
k

K

k1 1
1=

E ( ,E = (c f,… Gf f_ i %

where the Gk(·| q) describe the experts conditional distribution and cE is the 
the density of the copula that represents the dependence between experts.

As we believe our experts to be correct, on average, we model the expert 
estimates to be conditionally unbiased, i.e. E[fk|q ]  =  q for all q  !  Q, as it is 
also done in Lambrigger et al. (2007). To refl ect experts’ uncertainty we assign 
each expert a variance sk

2, k  =  1,  …,  K, which is assumed to be independent 
of q  :  var(fk | q)  =  sk

2 for all q  !  Q. It remains to fi t a conditional density which 
attains these moments. Due to the versatility and the explicit expressions for 
moments, and because Q is assumed to be an interval, we use the (shifted) Beta 
distribution, see Appendix A. Other distributions on intervals such as the 
Kumaraswamy, triangular and raised cosine distributions were tested. How-
ever, these have complicated expressions for moments and/or give zero weight 
to large parts of Q, hence, from a modeling point of view they were found to 
be inferior to the Beta distribution.
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 ESTIMATING COPULAS FOR INSURANCE FROM SCARCE OBSERVATIONS 279

As proposed in Jouini and Clemen (1996), we use the Frank copula for CE:

 q)| , q 1 1- q( ,… ) f-| .lnG 1 1( | )E
K k

K

k

K

1 1
1

1

k k

f= + -f- -

=

f ( - fGeC efG^ ^ ^fh h hp%

The Frank copula has a single parameter f  !  (0, 3) and an analytic density. 
It is radially symmetric, which means that joint high expert assessments behave 
like joint low expert assessments. The parameter f can be set by fi xing Kendall’s 
tau rt, which is equal for all pairs of experts assessments fi and fj. The relation 
between rt and q is given by rt(fi, fj | q)  =  1  –  4f–1  +  4f–2 ft

0
#  / (exp(t)  –  1)dt.

Note that the assumptions on variance and copula of the expert assess-
ments determine the amount of information that is contained in E, hence we 
do not have to further specify the relative weights between the observations 
and the experts.

It remains to estimate f and the sk
2. We fi rst show three possible approaches

to calculate estimates ks2Z  of  sk
2, where the most suitable approach (or a com-

bination of those) must be chosen according to the situation at hand.

(1) Homogeneous experts. If  experts are assumed to have equal uncertainty, 
i.e. sk

2  =  s2 for k  =  1,  …,  K, we may estimate

  f ,K 1
1

k
k

K

1

2
=

-
-

=

s2 f^ h
Y /

 where kk 1=f .K
1= K f/  This approach is also advocated by Lambrigger et 

al. (2007).

(2) Seed variables. Suppose we have a number H of  seed variables. Seed var-
iables are values k0

(h), h  =  1,  …,  H, which are known to the person doing 
the elicitation but not known to the experts. The experts are then asked to 
provide estimates kk

(h), k  =  1,  …,  K of k0
(h). By again assuming that the experts 

are unbiased and that their uncertainty in estimating the seed variables is 
the same as the uncertainty in estimating q, we can estimate sk

2 by 

  k k
(

0 , 1, ,…H k K1 ) ( )h h

h

H

1

2
= - =

=

s k k2 .` jZ /

 
 Ideal seed variables for our situation are given by k0

(h)  =  r(Y1
h,Y2

h) for some 
random vectors (Y1

h, Y2
h), h  =  1,  …,  H, which also lie in the fi eld of exper-

tise of the expert. For instance, the (Y1
h, Y2

h) could be random vectors that 
are similar in nature to (X1, X2), but for which much more observations 
are available to estimate r(Y1

h, Y2
h).

(3) Subjective variances. The sk
2 can be estimated through any technique deemed 

feasible, e.g. through the number of years of  the experts’ experience or 
through subjective judgment, see Gokhale and Press (1982). This includes 
a weighted average between approaches 1, 2 and 3. Winkler (1968) proposes 
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280 P. ARBENZ AND D. CANESTRARO

to let experts provide an estimate of their uncertainty themselves, which 
is however criticized in Cooke et al. (1988), as experts tend to be too opti-
mistic.

Finally, we also have to determine f, the copula parameter that determines 
the dependence between experts. In most cases, suffi cient statistical data is not 
available to estimate f and the actuary has to resort to his personal judgement, 
analogous to approach 3 above for the estimation of the sk

2. The following 
aspects increase the dependence between experts and should be considered:

• Experts often come from similar professional environments and share sources 
of information. They may know the same historic data and predictions of 
the future.

• With respect to probability theory and related concepts, experts may have 
been exposed to the same learning methods, terminology, and misconceptions.

• The use of identical elicitation procedures and questionnaires for several 
experts can increase the risk of common misunderstandings.

However, according to Kallen and Cooke (2002), experts are in general less 
dependent than implied by the heuristics above.

6. MULTIVARIATE COPULA INFERENCE

This section extends our method to a multivariate setting including uncertain 
marginal distributions. We assume that the (possibly multidimensional) copula 
parameter q as well as the parameters of the marginal distributions Xi, i  =  1, …,  d, 
are uncertain. In order to make Bayesian inference feasible, we make similar 
assumptions on the available information as in Section 2.

We will assume that the copula of interest lies in a class of copulas which 
can be parameterized through the value of the dependence measure r for a 
given set of pairs of margins.

Defi nition 6.1. Let Cd  =  {Cq : q  !  Q} denote a family of absolutely continous 
copulas Cq  :  [0, 1]d  "  [0, 1] with a parameter vector q  =  {q i, j  !  R  :  (i, j)  !  I}, 
where I  1  {(i, j)  :  1  #  i  <  j  #  d}. The copulas Cq are parametrized such that q i, j 
is equal to the degree of dependence between margin i and j, i.e.  

 P[U1  #  u1, …, Ud  #  ud ]  =  Cq (u1, …,  ud )   +  r(Ui, Uj)  =  q i, j  for all  (i, j)  !  I.

We denote with c(·|q) the density and with Q  1  R|I| the set of admissible param-
eters q.

The set I denotes the pairs of margins whose degree of dependence can be 
directly controlled by q. A natural example for Cd  are all elliptic copulas for 
which the characteristic generator is fi xed, such as the Gaussian copula or the 
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 ESTIMATING COPULAS FOR INSURANCE FROM SCARCE OBSERVATIONS 281

t-copula with fi xed degrees of freedom. Note that also one-parameter Archi-
medean copulas (Clayton, Gumbel etc.) are contained in Cd , indeed in this 
case it is suffi cient to know the dependency between one pair of  margins, 
which then fully defi nes the multivariate copula, thus I  =  {(1, 2)}. Also more 
exotic families like nested Archimedean copulas are contained in Cd .

Situation 6.2. The following three sources of information are given.

(1) A set O of N independent observations (X1, n, …, Xd, n), n  =  1, …, N, of (X1,  …,  Xd).
(2) From K experts, a set E of point estimates fk

i, j of r (Xi, Xj), k  =  1,  …,  K, 
(i, j)  !  I .

(3) An additional, prior, source of information on the joint distribution of 
(X1,  …,  Xd).

We will assume that, conditionally, the distribution of (X1, n,  …,  Xd, n) is given 
through a copula C  !  Cd  and margins Fci  !  Fi, where the Fi   =  {Fci : ci  !  Ci}, 
i  =  1,  …,  d denote families of univariate absolutely continuous distributions 
with a parameter set Ci  1  R

r, r  !  N and density fi (· | ci). We will also model 
the parameters ci of  the marginals in a Bayesian framework, which allows to 
incorporate the uncertainty on the marginal distributions.

The following proposition extends Proposition 2.3 and gives a method to 
estimate the distribution of (X1, n,  …,  Xd, n) by calculating a joint posterior dis-
tribution of copula and marginal parameters. This Bayesian method uses all 
information given in Situation 6.2.

Proposition 6.3. Suppose Situation 6.2 holds along with the following assumptions.

B1 Conditionally on the parameters q  !  Q and c  =  (c1,  …,  cd)  !  C1  ≈  ·· ·  ≈  Cd, 
(X1,  …,  Xd) has a distribution given by the copula C  =  Cq  !  Cd  and margins 
Fci  !  Fi , i  =  1,  …,  d :

  P[X1  #  x1,  …,  Xd  #  xd  | q, c] =  Cq(Fc1
(x1),  …,  Fcd(xd)).

B2 The prior source of information can be translated into a prior density
p(q, c)  :  Q  ≈  C1  ≈  ···  ≈  Cd  "  [0, 3). The vector q and the c1,  …,  cd are 
unconditionally independent with a density 

  (q, c1,  …,  cd )   +   p(q) i( )p
i

d

1=

c% .

B3 Conditionally on q, expert point estimates fk
i, j have a joint distribution given 

through the copula model 

k qkq
,

k
i j, 1 , ( , ( | ), 1 , ( , ,I Ix k K i j G x k K i jP

, ,i j
k
i j E

# # # ! # # !f ,i j) )= C ^ h6 @

 
 with a absolutely continuous copula CE  :  [0, 1]K|I|  "  [0,1] and margins Gk

i, j(·|q ), 
where the densities are denoted by cE and gk

i, j(·|q ), respectively. E is inde-
pendent of c.
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282 P. ARBENZ AND D. CANESTRARO

B4 Conditionally on q and c, O and E are independent.

Then the posterior density p(q, c | O, E) of q and c given O and E satisfi es 

 

k

i

q

, ( ) (XO E

k

q
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% (6.1)

Proof. The proof is analogous to the proof of  Proposition 2.3. By Bayes’ 
Theorem, we have p(q, c | O, E)   \   p(q, c) p(O, E | q, c). Recalling B2 and B4, 
we get 

 , ( ) ,O E qc( | ) ( ( | ) ( | , .p p p p p
i

d

i
1

? q c q c
=

), O Eq c )%

For the conditional densities of O and E, we have by B1 and B3 that

 

i

k qk q(

q,

,

cq c

q c k

( | ) ( ), ( | ( | )

( | ) | ) | .

p F X X f X

p c G

, , ,

, ,

( ,

,

( ,

,

I
I

n d n i
i

d

i n
n

N

k
i j i j

i j
k K

i j

i j
k K

i j

1
11

1
1

d1
c

f

=

=
!

# #

!

# #

c c
==

EE
)

)

)O …, F

g f

`f

`a ^

j p

j k h

%%

% ¡

We make the following remarks about Proposition 6.3. 
To set p(E | q, c), we use a similar modeling approach as proposed in Sec-

tion 5. Conditionally, fk
i, j | q is modeled with a shifted Beta distribution with 

mean E [fk
i, j | q ]  =  q i, j. For the variance, we assume var(fk

i, j | q )  =  sk
2, which 

implies that the uncertainty for different assessments of a specifi c expert are 
equal.

The copula cE describes the dependency between all experts assessments fk
i, j 

for (i, j)  !  I, k  =  1,  …,  K. Hence, compared to the situation in Proposition 2.3, 
cE does not only describe the dependence between experts, but also the depend-
ence between the assessments of  one specifi c expert. Again, we propose to 
model cE with a Frank copula, calibrated according to the proposals in Section 5. 
If  the dependence between experts is deemed different to the dependence 
between assessments of  one single expert, also more complex dependence 
structures can be used, for instance through nested Archimedean copulas, see 
Hofert (2010).

We suggest to set the prior p(q) as done in Böcker et al. (2010),

 1( ( ) ,p p
( )

,
{ }

I

i jq
!

q
!q Q

,i j

,i j) = %
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 ESTIMATING COPULAS FOR INSURANCE FROM SCARCE OBSERVATIONS 283

where the marginal priors pi, j (q i, j) are modeled as described in Section 3 and 
1{·} denotes the indicator function. In most cases where |I|  >  1, the parameter 
set Q is not a product space, hence the term 1{q  !  Q}. For instance, in the case 
of elliptic copulas, q must induce a positive defi nite correlation matrix.

The prior densities p(ci) for the margins can be set using the classical 
methods from univariate Bayesian inference, see Bühlmann and Gisler (2005). 
Of course, also the information on the marginal parameters ci can be comple-
mented with expert judgement, as done in Lambrigger et al. (2007). We refrain 
from doing so here in order to keep notation simple.

The following corollary covers the simpler case where the marginal dis-
tributions are certain, in the sense that the true marginal parameters c0  =
(c1, 0,  …,  cd, 0 ) are known, thus P[Xi  #  xi ]  =  Fci, 0

(xi ).

Corollary 6.4. Under the assumptions of Proposition 6.3, and with P[c  =  c0]  =  1, 
we have
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 (6.2)

Proof. Analogous to the proof of Proposition 6.3. ¡

7. CASE STUDY: AN ANALYSIS OF THE DANISH FIRE DATASET

In this section, we give a case study investigating the dependence between 
monthly losses to buildings and losses to tenants due to industrial fi re. We use 
Proposition 6.3 within an empirical Bayesian approach to infer the parameters 
of copula and margins.

To obtain observations O, we use the well known multivariate dataset of 
Danish industrial fi re insurance losses1, which has been analyzed in several 
actuarial papers. The dataset contains 2167 single fi re insurance losses over
the period from 1980 to 1990. The losses can be split into the three parts 
‘building’, ‘contents’ and ‘profi ts’. The values are in millions of Danish Krone 
and infl ated to 1985 values. From a risk management perspective, insurance 
companies are mainly interested in the aggregate losses per time period, thus 
we investigate monthly losses instead of single losses. More than 70% losses 
in the category profi ts are zero and of smaller magnitude than the category 
contents. Other publications using this dataset circumvent this problem by 

1 Available at http://www.ma.hw.ac.uk/~mcneil/data.html, retrieved on October 17, 2011.
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284 P. ARBENZ AND D. CANESTRARO

FIGURE 1: The left plot shows the E, the 132 observations of (X1, X2). The right plot shows the
associated empirical copula pseudo-observations, i.e., the rescaled rank order statistics of E.

entirely removing the datapoints with zero entries, see Haug et al. (2011). 
Instead, we proceed by forming a bivariate dataset from the original data. The 
fi rst component (X1) represents aggregate monthly losses to buildings and the 
second component (X2) represents aggregate monthly losses to tenants, which 
is the sum of  losses to contents and profi ts. The resulting dataset has size 
N  =  132 and does not have any zero components. The observations as well as 
the associated empirical copula pseudo-observations are shown in Figure 1.

As a source for prior information we use Hall (2010), which is a study on 
fi re losses in the US. It estimates the correlation between losses to buildings 
and losses due to business interruption by 20%. 

As we are interested in joint extreme large events, we use the upper asymp-
totic tail dependence r(X1, X2)  =  limu  -  1 P[F2(X2)  $  u | F1(X1)  $  u ] as dependence 
measure. The elicitation of r(X1, X2) is indeed feasible. Experts can estimate 
the “non-asymptotic tail dependence” P[X2 is extremely large | X1 is extremely 
large] as an approximation of r(X1, X2) as follows:

(1) Predict all non-negligible causes for X1 to be extremely large, denoted by 
eventj, j  =  1,  …,  J. Of course, also causes without historic evidence need 
to be considered.

(2) Estimate P [eventj  | X1 is extremely large] ( j  =  1,  …,  J), i.e. the likelihood 
that eventj is the cause if  X1 is known to be extremely large. Roughly 
speaking, these likelihoods are merely weights that sum to one and indicate 
the importance for each eventj.

(3) Estimate P[X2 is extremely large | eventj ] ( j  =  1,  …,  J), i.e. the likelihood 
that X2 is also strongly affected given that one knows that eventj happens.

Finally, by the law of total probability, the expert’s answer to the question “Given 
that an extremely bad outcome is observed in X1, what is your estimate of the 
probability that X2 will experience an extremely bad outcome?” is given by 

fk  = P
j

J

1=

/ [X2 is extremely large | eventj]  ·  P[eventj | X1 is extremely large]   .   r(X1, X2).
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 ESTIMATING COPULAS FOR INSURANCE FROM SCARCE OBSERVATIONS 285

Note that this approach does not require the potentially very diffi cult task to 
estimate the probabilities P[eventj ], P[X1 is extremely large] or P[X2 is extremely 
large].

We have asked four actuaries with experience in industrial fi re insurance to 
estimate r(X1, X2) through the above approach. They identifi ed fi ve (J  =  5) 
possible causes for X1 being extremely large:

• event1: A single, accidentially caused very large fi re.
• event2: A large number of small, unrelated fi res.
• event3: A sequence of arsons by a pyromaniac.
• event4: Terrorism causing either one large loss or several smaller losses.
• event5: A large number of fi res due to riot and civil unrest.

Let Ak,  j and Bk, j denote the estimates of the probabilities P[eventj | X1 is extremely 
large] and P [X2 is extremely large | eventj ] , respectively, by the k-th expert. 
These estimates, as well as the resulting estimates fk  =  j 1= A B, ,k j k j

5/  of r(X1, X2) 
are given in Table 1. In order to estimate the experts variance, we use the 
assumption of homogeneous experts and get an estimate 2sY   =  0.02354 through 
method (1), as shown in Section 5. As proposed in Jouini and Clemen (1996) 
we use a Frank copula to capture the dependence between experts. We cali-
brate the copula to a Kendall’s tau of 0.32 (f  =  3.1477), as Kallen and Cooke 
(2002) fi nd in one of  their datasets an average correlation of  0.32 between 
experts.

TABLE 1

THE ESTIMATED PROBABILITIES Ak, j  =  P[EVENTj | X1 IS EXTREMELY LARGE] AND

Bk,  j  =  P[X2 IS EXTREMELY LARGE | EVENTj ] FOR EACH EXPERT k  =  1, 2, 3, 4.
THE ESTIMATE fj OF r (X1, X2) BY THE j-TH EXPERT IS GIVEN BY fk  =  j 1= A B, ,k j k j

5/ .

Expert 1 Expert 2 Expert 3 Expert 4

A1, j B1, j A2, j B2, j A3, j B3, j A4, j B4, j

event1 (single large fi re) 40% 80% 30% 60% 70% 95% 45% 55%

event2 (extreme frequency) 30% 40% 10% 20% 20% 30% 15% 25%

event3 (arson) 15% 40% 10% 35%  0% 20% 10% 40%

event4 (terrorism)  5% 50% 25% 40%  5% 10% 15% 35%

event5 (riot and civil unrest) 10% 30% 25% 40%  5% 20% 15% 15%

Estimate of r(X1, X2) f1  =  0.555 f2  =  0.435 f3  =  0.740 f4  =  0.400

As we want a dependence structure with upper tail dependence, but without 
lower tail dependence, we chose the family of Gumbel copulas, which is also 
used in Haug et al. (2011) and Blum et al. (2002). We examine the marginal 
samples through QQ-plots for different distributional families, which leads to 
the selection of lognormal distributions for the margins. Thus, we assume that, 
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FIGURE 2: Posterior densities of q,  m1,  m2,  s1, and s2, obtained through the Metropolis-Hastings
MCMC algorithm.

286 P. ARBENZ AND D. CANESTRARO

conditionally on the fi ve parameters q, m1, m2, s1, and s2, the random vector 
(X1, X2) has distribution 

 P[X1  #  x1,  X2  #  x2  | q,  m1,  m2,  s1,  s2 ]   =   Cq , ,m s m s( ), ( )F F x1 21 1 2 2
x` j.  

Parametrized in terms of the upper tail dependence q  = r(X1, X2)  !  Q  =  [0, 1], 
the Gumbel copula is given by

 - q q

q

, .exp ln lnC u u u u( )
( )

( )
( ) ( )

( )

ln
ln

ln
ln ln

ln

1 2 1
2

2

2
2

2 2
2

= - + -q
- -

-

^ ^_ ^^dfh hi hh n p

The margins are conditionally lognormal, ,m s ( )F x
1 1

  =  P [Xi  #  x | mi, si ]  = 
F((ln(x)  –  mi) / si ) for i  =  1, 2, where F is the standard normal cdf.  

Even though correlation is not the same dependence measure as r(·, ·), we 
translate the 20% correlation estimate given in Hall (2010) into a prior point 
estimate qp  =  0.2. We set the prior p(q) to be beta distributed, calibrated to a 
mean E [q ]  =  qp  =  0.2. As prior variance we use the same estimate as for the 
experts, var(q)  =  2sY   =  0.02354, which gives the prior roughly the same weight 
as one expert. For the marginal parameters (m1,  m2,  s1,  s2) we use uninformative 
priors.

To summarize, we employ an empirical Bayes approach, in which Bayesian 
inference is used for the distributional parameters of (X1, X2). For the other 
parameters (variance of prior var(q), variance of experts var(fk | q), parameter 
f of  CE ), we use point estimates obtained from O, E or other publications.

Under the assumptions of Proposition 6.3, p(q,  m1,  m2,  s1,  s2)  p(O, E | q,  m1, 
m2,  s1,  s2) can be calculated, which allows to simulate from (q,  m1,  m2,  s1, s2) | O, E 
through the use of the Metropolis-Hastings algorithm, as described in Robert 
and Casella (2005). Using a sample of size 10,000,000, we estimate posterior 
densities of q, mi, and si which are shown in Figure 2.

Suppose we are also interested in estimating the risk measure VaR0.99 (X1  +  X2), 
i.e. the 99% Value-at-Risk of  the aggregate X1  +  X2. The uncertainty in the 
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FIGURE 3: Posterior density of VaR0.99(X1  +  X2), estimated through nested Monte Carlo simulation.

 ESTIMATING COPULAS FOR INSURANCE FROM SCARCE OBSERVATIONS 287

parameters of the distribution of (X1, X2) naturally carries over to the uncer-
tainty of a functional of (X1, X2), such as VaR0.99(X1  +  X2). We can estimate 
the posterior density p(VaR0.99(X1  +  X2) | O, E) though nested Monte Carlo 
simulations. For each simulated parameter vector (q, m1, m2, s1, s2), drawn from 
the posterior distribution, we draw a sample of  size 10,000 from (X1, X2) |
(q, m1, m2, s1, s2). This sample allows to estimate VaR0.99(X1  +  X2), which pro-
vides one realization of the posterior distribution of VaR0.99(X1  +  X2) | O, E. 
Figure 3 shows the estimated density p(VaR0.99(X1  +  X2) | O, E). 

Table 2 summarizes point estimates and associated uncertainties of the poste-
rior distribution of the parameters and VaR0.99(X1  +  X2). We also give the 90% 
credible interval, defi ned as the 5% and 95% quantile of the posterior distribution.

TABLE 2

STATISTICS OF THE POSTERIOR DISTRIBUTIONS OF q, m1, m2, s1, s2 AND VaR0.99(X1 +  X2).
WE GIVE POSTERIOR MEAN, STANDARD DEVIATION AND THE 90% CREDIBLE INTERVAL.

E[·|O, E] var( , )O E$ ; 90% credible interval

q 0.335 0.056 [0.242,0.428] 

m1 3.277 0.043 [3.207,3.347] 

m2 2.957 0.068 [2.845,3.069] 

s1 0.493 0.030 [0.447,0.544] 

s2 0.792 0.048 [0.718,0.877] 

VaR0.99(X1  +  X2) 188.3 20.33 [158.3,224.6]

In practice, quantiles/VaRs are mostly estimated through parametric models 
(calibrated with maximum likelihood) or through techniques stemming from 
extreme value theory, such as the Peaks-over-Threshold method (POT), see 
McNeil et al. (2005). However, these techniques do not allow to incorporate 
expert opinion and confi dence intervals derived from them may be of dubious 
quality for a small sample size. On the other hand, Bayesian inference allows 
a natural representation of parameter uncertainty.
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8. CONCLUSION

Based on Bayesian inference, we propose a method to estimate the joint 
 distribution of  a random vector (X1,  …,  Xd) by combining three sources of 
information, namely prior information, observations, and expert opinion. The 
model is based on a copula approach, which separates the models and param-
eters for marginals and dependence structure. Through the Bayesian approach, 
uncertainties in the parameters can easily be accounted for. The same holds 
for functionals of  (X1,  …,  Xd), for instance for a risk measure applied to 
X1  +  ···  +  Xd. The model can also be used if  not all of the three sources of 
information are available. For instance, the model allows to estimate model 
parameters and their uncertainty also if  no observations (N  =  0) or no experts 
(K  =  0) are present.

Our method is most helpful in situations where observations are scarce, i.e. 
in cases where standard methods like maximum-likelihood usually exhibit 
severe parameter uncertainties. 

Asymptotic normality holds under mild smoothness and positivity assump-
tions on the prior and the conditional distribution of  experts assessments.
If  the number of observations tends to infi nity, the posterior will converge to 
the true value and point estimates are asymptotically as effi cient as maximum 
likelihood estimates.

We investigated the challenging process of turning expert opinion into quan-
titative information. Certain principles deduced from psychological and statis-
tical research must be adhered to in order to get reliable results. We propose 
procedures to assess the accuracy of the expert assessments through estimating 
their variance, which controls their weight in the fi nal estimate. The Bayesian 
approach allows for natural interpretation of expert opinion.
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 APPENDIX A
DEFINITION AND PROPERTIES OF THE BETA DISTRIBUTION

A random variable Z  !  (0,1) is Beta distributed, if  its density is given by 
fZ(x)  =  xa  – 1(1  –  x)b  – 1/ B(a, b) for x  !  (0,1), where a, b  >  0 and B(·,·) denotes 
the Beta function. Mean and variance are given by E[Z]  =  a / (a  +  b) and var(Z)  =
ab / ((a  +  b)2 (a  +  b  +  1)). The parameters can be inferred from the moments 
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through a  =  E[Z]2 (1  –  E[Z]) / var(Z)  –  E[Z] and b  =  a (E[Z] – 1  –  1). The beta 
distribution is unimodal if  a, b  $  1 or, equivalently, if  the variance satisfi es  
var(Z)  #  min{E[Z]2 (1  –  E[Z]) / (1  +  E[Z]), (1  –  E[Z])2 E[Z] / (2  –  E[Z])}.

The random variable a  +  (b  –  a) Z  !  [a, b] for some a  <  b is said to have a 
shifted Beta distribution with endpoints a and b. For q close to the boundary 
of Q, a fi xed conditional variance var(fk | q)  =  sk

2 can be infeasible. For these q, 
we propose to reduce var(fk | q) to the point where fk | q is unimodal.
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