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Abstract. The design optimization and analysis of charged particle beam systems em-
ploying intense beams requires a robust and accurate Poisson solver. This paper pre-
sents a new type of Poisson solver which allows the effects of space charge to be ele-
gantly included into the system dynamics. This is done by casting the charge distribu-
tion function into a series of basis functions, which are then integrated with an appro-
priate Green’s function to find a Taylor series of the potential at a given point within
the desired distribution region. In order to avoid singularities, a Duffy transformation
is applied, which allows singularity-free integration and maximized convergence re-
gion when performed with the help of Differential Algebraic methods. The method is
shown to perform well on the examples studied. Practical implementation choices and
some of their limitations are also explored.

PACS: 29.27.-a, 41.75.-i, 41.20.Cv, 05.10.-a
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1 Introduction

Beams are ensembles of particles in directed motion. Charged particle beams underlie
the science of particle accelerators with a variety of applications that span all science from
physics to biology [1]. As accelerator technology improves, the usefulness of high inten-
sity beams continues to increase, as illustrated by several existing and planned machines
at the intensity frontier [2]. In order to properly design new accelerators and analyze
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existing machines to improve performance, a fast and accurate method of modeling and
simulating intense charged particle beams is required. Quantitatively, the phenomena
arising from the average self-fields of beams, i.e. the electrostatic mean field limit, is
called space charge. The beam dynamics that includes both externally applied fields as
well as the space charge fields is paramount to understand in order to design better future
machines and improve operational performance of existing machines. In order to deter-
mine these fields, we must solve Poisson’s equation. With open boundary conditions it
is,

∇2Φ=−
ρ

ǫ0
, (1.1)

where Φ is the scalar potential to vanish at infinity, and which is due to a smooth charge
density distribution ρ.

There are several methods to perform these simulations, most popular being the par-
ticle in cell method [3]. Particle in cell methods involve solving the Poisson equation on
a grid, usually aided by (fast) Fourier transform methods. It uses various charge depo-
sition and force interpolation algorithms. Another alternative is to evolve in time the
one-particle phase space distribution of the beams using the method of characteristics, or
by the direct solution of the corresponding Vlasov equation in the six dimensional phase
space. In any case, a requirement for accurate and efficient examination of the effects of
space charge is a powerful Poisson solver. Examples of methods for calculating the po-
tential are the Fourier transform methods [4] and wavelet methods [5]. Other methods
involve fitting the charge distribution to a series of functions which are then used to de-
termine the potential, one example of which is the Green’s function method [6]. In fact,
there is a long history in beam and accelerator physics related to Poisson solvers, includ-
ing their comparison. A particularly illuminating summary is [7] and references therein.
Here we detail our novel Poisson solver, for which preliminary results and applications
can be found in [8–11].

Before we go further detailing our Poisson solver, it is important to mention another
method that is extensively developed for single-particle beam dynamics: the transfer
map method [12, 13]. Transfer maps give the functional dependence between some fi-
nal and initial conditions and contain all information about the system dynamics. In
this context, normal form methods applied to transfer maps are powerful methods that
allow a comprehensive analysis of low intensity beam dynamics [12, 13]. In order to
extend the method to include space charge dynamics self-consistently, clearly the beam
self-potential needs to be specified. Since the transfer map method requires an analytic
polynomial representation, the question arises how to obtain such a representation from
a particle distribution. This paper shows that with the help of Differential Algebraic (DA)
methods [13], and some innovative algorithmic developments presented here, it is possi-
ble to obtain high order Taylor expansions of the beam self-potential around a point that
is situated inside the charge distribution. For the purpose of this paper, we will restrict
ourselves to open boundary conditions.
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We emphasize that the novelty of the work presented in this paper stems from these
two aspects: the ability, for the first time, to extract self-consistent transfer maps for space
charge dominated beams, which requires a method to represent the scalar potential glob-
ally, over the spatial extent of the beam, in real analytic form from which a truncated
Taylor expansion can be extracted. No previous Poisson solver employed in accelerator
physics has this property. We rectify this here. Our results are compared with the exact,
direct point-to-point, method instead of some other approximate method. The details of
the map extraction method, examples, and its applications will be presented in a forth-
coming publication. Some preliminary results can be found in [8].

Therefore, this work can be regarded as a novel Poisson solver that may find wide-
spread applications wherever the need for such a solver arises. The new methods have
been implemented into the general purpose nonlinear dynamics software package COSY
Infinity [14], which can create non-linear Taylor transfer maps using DA techniques. A
discussion of some DA basics and applications necessary for this paper is found in Ap-
pendix A.

The main elements of the overall algorithm are detailed in the following sections, as
follows: Section 2 describes the method used to numerically calculate the potential from
an analytic distribution function, Section 3 looks at the various ways of determining the
distribution function based on a series of test particles, Section 4 describes the ways the
method is put into practice, Section 5 examines the numerical concerns involved, as well
as a benchmarking example, and finally Section 6 is a summary of the work.

2 Numerically calculating the potential from an arbitrary

analytic distribution

In an ideal world, assuming the distribution of charge is analytic and known, the po-
tential is easily found by multiplying the distribution with a dimensionally appropriate
Green’s function and integrating. However, if the point where the value of the potential is
desired is within the distribution itself, the fact that there is a singularity at the evaluation
point makes numerical integration of the distribution problematic. If we were interested
in finding just the value of the potential at a point this could be solved through judi-
ciously choosing the bounds of integration and the evaluation points. However, since we
would like to compute the potential throughout the region occupied by a charged parti-
cle beam, such methods would shrink the region of convergence of the resulting Taylor
series unacceptably. See Appendix A for details about DA integration.

The solution to this problem is to use what is known as a Duffy transformation [15].
This is a series of coordinate transforms which split the integral up into a sum of integrals
over smaller domains such that the singularity is removed in the end. This allows the
integral to be computed with quadratures having any nodes, allowing for an accurate
determination of the potential. Again, if the integral is computed by employing the DA
techniques detailed in Appendix A, the result is not only the value of the integral, but also
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its Taylor expansion with respect to any user-specified parameters. If these parameters
are set to be the evaluation point for the potential, the result is the Taylor expansion of
the potential around that point. The process is described in some details below in two
dimensions, followed by some examples in later sections. The three dimensional case can
be found in Appendix C.

2.1 Two dimensional Duffy transformation

Typically, charged particle beams have compactly supported unimodal charge distribu-
tions. If an analytic charge distribution function is denoted by ρ and the potential is
evaluated at the point (x0,y0) inside its support, the value of the integral

I(x0,y0)=
∫ d

c

∫ b

a
ρ(x,y)ln(

√

(x−x0)2+(y−y0)2)dxdy, (2.1)

is the potential at that point. We assume that the support of ρ is inside the rectangle
[a,b]×[c,d] and we are interested in the potential inside this region.

First, the rectangle is subdivided into four rectangles as shown in Fig. 1, which moves
the singularity from the interior of the domain to the corners of four regions.

Due to this domain split, the total integral is transformed into four integrals which
can have their limits of integration rearranged such that the equation becomes

I=
∫ c

y0

∫ a

x0

ρ(x,y)ln(
√

(x−x0)2+(y−y0)2)dxdy

−
∫ c

y0

∫ b

x0

ρ(x,y)ln(
√

(x−x0)2+(y−y0)2)dxdy

−
∫ d

y0

∫ a

x0

ρ(x,y)ln(
√

(x−x0)2+(y−y0)2)dxdy

+
∫ d

y0

∫ b

x0

ρ(x,y)ln(
√

(x−x0)2+(y−y0)2)dxdy. (2.2)

Figure 1: The full integration region is subdivided into four smaller regions with one of their corners on the
expansion point.
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Figure 2: This shows how the integration region is further subdivided into triangles.

These are now all the same kind of integrals, merely with different bounds of integration.
Henceforth we will look at the first integral in the series, remembering that all four will
be solved in the same way. We continue by rescaling the rectangles to unit squares by the
coordinate transformation:

u1=
x−x0

a−x0
, (2.3)

u2=
y−y0

c−y0
, (2.4)

dx=(a−x0)du1, (2.5)

dy=(c−y0)du2. (2.6)

For expedience we will use λ1 =(a−x0) and λ2 =(c−y0). The first integral in (2.2) now
becomes,

Iac=
∫ 1

0

∫ 1

0
λ1λ2ρ(λ1u1+x0,λ2u2+y0)ln

(

√

λ2
1u2

1+λ2
2u2

2

)

du1du2. (2.7)

As shown in Fig. 2, in order to perform the final coordinate transform, we cut the square
into two triangles that are integrated separately,

Iac=
∫ 1

0

∫ u1

0
λ1λ2ρ(λ1u1+x0,λ2u2+y0)ln

(

√

λ2
1u2

1+λ2
2u2

2

)

du1du2

+
∫ u2

0

∫ 1

0
λ1λ2ρ(λ1u1+x0,λ2u2+y0)ln

(

√

λ2
1u2

1+λ2
2u2

2

)

du1du2. (2.8)

In order to finish the Duffy transformation the triangles are now converted to squares yet
again. This is accomplished with the transformation

u1=w1, (2.9)

u2=w1w2, (2.10)
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in the first integral in (2.8), which makes the integral take the following form:

∫ 1

0

∫ 1

0
λ1λ2w1ρ(λ1w1+x0,λ2w1w2+y0)ln

(

√

λ2
1w2

1+λ2
2w2

1w2
2

)

dw1dw2. (2.11)

This is simplified to

λ1λ2

∫ 1

0

∫ 1

0
ρ(λ1w1+x0,λ2w1w2+y0)

(

w1 ln(w1)+w1 ln

(

√

λ2
1+λ2

2w2
2

))

dw1dw2. (2.12)

Since limw1→0w1 ln(w1)=0, and the argument of the other logarithm is never zero, the sin-
gularity is removed. A similar transform is made to the second triangle (and the second
term in (2.8)),

u1=w1w2, (2.13)

u2=w2, (2.14)

converting it into the following:

λ1λ2

∫ 1

0

∫ 1

0
ρ(λ1w1w2+x0,λ2w2+y0)

(

w2 ln(w2)+w2 ln

(

√

λ2
2+λ2

1w2
1

))

dw1dw2.

Assembling the partial results, we finally obtain a singularity-free formula for the com-
putation of the potential,

φ(x0,y0)=
4

∑
n=1

λ1,nλ2,n

∫ 1

0

∫ 1

0
dw1dw2

×





ρ(λ1,nw1+x0,λ2,nw1w2+y0)
(

w1ln(w1)+w1ln
(√

λ2
1,n+λ2

2,nw2
2

))

+ρ(λ1,nw1w2+x0,λ2,nw2+y0)
(

w2ln(w2)+w2ln
(√

λ2
2,n+λ2

1,nw2
1

))



. (2.15)

It is shown in Appendix B that, if the original domain [a,b]×[c,d] is a square, the
integrals only need to be determined once for a polynomial approximation of ρ and can
be scaled to fit the required bounds of integration and specific distribution very easily.
The Duffy transformation works also in three dimensions, as shown in Appendix C.

As already mentioned, if the integral (2.15) is evaluated in DA, the result is not just the
potential at (x0,y0) but also the Taylor expansion of the potential around the point (x0,y0).
The question then arises about the region of convergence of the expansion. If we look at
the final set of integrals (2.15) that need to be determined, and assume that the function ρ

does not limit the convergence region, it is clear that the domain of convergence is limited
by the smallest value of λ1,n or λ2,n for which any of the square roots vanish. Since the
domain of both w1 and w2 is [0,1] it is easy to see that the radius of convergence R is

R=min(b−x0,x0−a,d−y0,y0−c), (2.16)
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equal to the distance between the expansion point and the nearest boundary of the rect-
angle [a,b]×[c,d]. The point (x0,y0) is typically a reference particle, used to set the origin
of a local coordinate system, so without loss of generality can be set to (0,0). There-
fore, for best convergence we choose the smallest a= b= c= d possible (determined by
the charge distribution support), which is of course application dependent. More about
this in Section 5.5. With this choice, the integration domain is a square and the scaling
relations of Appendix B can be readily applied.

It is worthwhile mentioning that the resulting Taylor series in two or three variables
can be reordered and regrouped into a series of homogeneous polynomials. It is well-
known that the resulting region of convergence can never be smaller than that given by
(2.16), and indeed often it is a larger star-shaped domain. This is what we observe in
practice too, as shown in the following sections. In this paper all integrals were deter-
mined using an eighth order Runge-Kutta method with seventh order automatic step
size control, which is built into the code COSY Infinity [14].

3 Calculating the distribution function from test particles

In practice, often an analytically defined distribution function might not be known. In
these cases, the important question of density estimation comes up. Here we explore
density estimation based on expansion in some basis functions. Some basis functions
will be more useful than others depending on the actual distribution; here we examine
a sum of monomials and a sum of Legendre polynomials as the basis functions. Clearly,
these are not the only expansions that can be used. They were chosen for demonstration
purposes, and for a systematic study of density estimation for charged particle beams in
orthogonal function bases see [11] and references therein.

If the distribution function is a sum of monomials, the potential will be a sum of the
monomials integrated with a Green’s function. As shown in Appendix B, the integrals
can be precomputed and stored, and then read and scaled without reintegration at run-
time, allowing for faster calculations.

3.1 Smooth distribution functions

We assume that there is a smooth function f that describes the distribution, and that this
function can be expanded in a complete set of smooth basis functions ϕ of the form,

f (x,y)=
∞

∑
i=0

∞

∑
j=0

Dij ϕi(x)ϕj(y), (3.1)

with coefficients Dij. The task is to choose some specific basis functions and to deter-
mine the corresponding coefficients based on some limited information available about
f . Typically, the available information are the moments of f . The moments may be known
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exactly to all orders, or only approximately to some finite order. The challenge is to ex-
tract the coefficients Dij as accurately as possible. There are several ways that this can be
done. Here we examine two methods. One method involves calculating the moments of
the distribution to find a sum of monomials, the other involves casting the distribution
as a series of projections onto orthogonal polynomials.

3.1.1 The moment method

In this method we assume that the distribution function can be approximated using a
series of the form

ρ(x,y)= ∑
i+j≤n

Cijx
iyj. (3.2)

According to [16], if two compactly supported distributions have the same moments,
then they are mathematically identical. Hence, the goal of this density estimation method
is to generate a polynomial approximation of the true density that has the same moments
up to a fixed order as f . If the moments up to a given order are known, the series co-
efficients up to the same order can be determined. The question arises about the con-
sequences due to the finite truncation order. Intuitively, the higher the truncation or-
der, the closer the resemblance between the two functions is going to be. Nevertheless,
the answers will still not be unique. However, it can be shown that among all single
variable probability density functions ρ with the same first 2p moments as f satisfy the
relation [17]

| f (x)−ρ(x)|≤
1

VT
p (x)M−1

p Vp(x)
, (3.3)

where VT
p(x)=(1,x,x2,··· ,xp) and

Mp=















m1 m2 ··· mp

m2 m3 ··· mp+1

m3 m4 ··· mp+2
...

...
...

...
mp+1 mp+2 ··· m2p















, (3.4)

mi being the moments that the functions have in common. Thus, the tail probabilities will
become indistinguishable first, followed by core probabilities. Convergence speed scales
with x−2p. This is useful in providing practical guidance about the truncation orders to
be employed in practice.

The moments are defined as

Mnm=
∫ xu

xℓ

∫ yu

yℓ

xnym f (x,y)dxdy, (3.5)

as integrals over the support of f , where xℓ, xu, yℓ, and yu are the horizontal lower and
upper bounds, and the vertical lower and upper bounds of integration, respectively.
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The coefficients Cij are found by solving a linear system of equations that result from
the matching conditions between the exact moments Mnm and the moments of ρ. This is
done by creating a system of equations such that,

Mnm=
∫ xr

−xr

∫ yr

−yr

xnym∑
i

∑
j

Cijx
iyjdxdy, (3.6)

where we assume |xℓ|= xu = xr and |yℓ|=yu =yr , which can be reduced to

Mnm=∑
i

∑
j

N(n+i)(m+j)(xr,yr)Cij, (3.7)

where

Nkl(x,y)=
xk+1yl+1

(k+1)(l+1)

(

(1−(−1)k+1)(1−(−1)l+1)
)

. (3.8)

This can be cast as a matrix equation ~M=N~C, where ~M is a vector built from the moments

Mnm and ~C is a vector built from the coefficients Cij. An example of how this is done is
shown in Algorithm 3. The matrix N is arranged in the following manner, where p is the
maximum order,





















M00

M10
...

M01
...

M0p





















=





















N00(xr,yr)N10(xr,yr) ··· N01(xr,yr) ··· N0p(xr,yr)
N10(xr,yr) ··· N11(xr,yr) ··· N1p−1(xr,yr) 0

...
...

N01(xr,yr)N11(xr,yr) ··· N0p(xr,yr) ··· 0
...

...
N0p(xr,yr) 0 0 0









































C00

C10
...

C01
...

C0p





















. (3.9)

The coefficients are solved by inverting N and multiplying by the known moments,
C = N−1M. Assuming the region of integration is the square [−1,1] (as justified in the
preceding section) the matrix N has the form,

N=











































1 0 1
3 0 1

5 0 ··· 1
p+1

0 1
3 0 1

5 0 ··· 1
p+1 0

1
3 0 1

5 0 ··· 1
p+1 0

...

0 1
5 0 ··· 1

p+1 0
...

1
5 0 ··· 1

p+1 0
...

0 ··· 1
p+1 0

. . .
...

... 1
p+1 0

. . .
...

1
p+1 0 ··· ··· ··· ··· ··· 0











































. (3.10)
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This is an ill-conditioned matrix for high values of p. In order to preserve as much
accuracy as possible a truncated singular value decomposition method [18] was adapted
for our use. In summary, this method is a useful way of estimating distributions as Taylor
series since it only requires that the statistical moments of the distributions through some
fixed finite order be known.

3.1.2 Orthogonal polynomials

Since the distribution has compact support, at least any of the Jacobi polynomials could
be used for the purpose of distribution estimation. For the scope of this paper and for
simplicity we present the use of Legendre polynomials Pi(x).

If we assume that the distribution can be expanded as,

ρ(x,y)= ∑
i+j≤n

C̃ijPi(x)Pj(y), (3.11)

and knowing that Legendre polynomials satisfy the orthogonality condition,

∫ 1

−1
Pℓ(x)Pm(x)dx=

2

2ℓ+1
δℓm. (3.12)

The coefficients can be calculated from

∫ 1

−1

∫ 1

−1
Pi(x)Pj(y)ρ(x,y)dxdy= C̃ij

2

2i+1

2

2j+1
. (3.13)

We are essentially calculating the Legendre polynomial moments of the distribution in-
stead of the monomial moments used in the moment method. On the other hand, if we
assume we already know the monomial moments, it is easy to calculate the Legendre
coefficients directly, as follows. The same moment matching conditions are applied, that
is, we require that the moments of ρ are the same as the actual moments of f up to a fixed
order n. Since every product of Legendre polynomials can be re-expanded into a power
series,

Pi(x)Pj(y)= ∑
k+l≤i+j

akl x
kyl , (3.14)

the left hand side of (3.13) can be written as a linear combination of these moments, and
we obtain

C̃ij=
(2i+1)(2j+1)

4
~A· ~M, (3.15)

where ~A is a coefficient vector built from akl . Hence, we obtain an approximation of the
original distribution as a series of Legendre polynomials without the need to invert any
matrices.
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3.2 Estimating smooth distributions from discrete point distributions

The previous examples assumed that the moments of a distribution were known exactly.
However, that is not always the case in practice. In fact, when studying particle systems,
a finite number of test particles are used to model the beam. The main difference in this
case is that ρ(x,y) is no longer a smooth function but is now a collection of particles,
i.e. can be described by a discrete point distribution in terms of a sum of Dirac delta
functions,

ρ(x,y)=
N

∑
i=1

δ(x−xi)δ(y−yi), (3.16)

where the sum is over the number of particles N and (xi,yi) are the individual particle
coordinates in configuration space. The moments of this distribution are calculated by

Mnm=
N

∑
i=1

xn
i ym

i . (3.17)

When (3.17) is utilized in (3.9), we obtain the discrete variant of the moment method.
The calculation of Legendre coefficients takes the form,

C̃ij=
2i+1

2

2j+1

2

N

∑
n=1

Pi(xn)Pj(yn), (3.18)

by directly applying (3.16) to (3.13).
These changes do not alter the methods used to find the potential, but they might

alter what methods will finally be used for simulation purposes, as discussed in Section
5.6.

4 Implementation

The main ingredient of the equations of the motion of self-interacting charged particle
system dynamics is the electric field caused by the space charge. This is obtained from
the potential, by the gradient operator. Taking the gradient in DA is an elementary oper-
ation, in which no truncation or interpolation error is involved. Therefore, the potential
computation requires most effort. This section describes the main aspects of the imple-
mentation of the computation of the Taylor expansion of the potential using the methods
described in the preceding sections and for a variety of cases and circumstances.

4.1 Using the moment method

Schematically, the new method of obtaining the scalar potential is outlined in Fig. 3.
Using the moment method involves the determination of the optimum order for mo-

ment calculation and of the range of integration (i.e. the support of the distribution func-
tion). A simple outline of the method is shown in Algorithms 1-4.
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Figure 3: Overview of the method used to find the potential of a given distribution.

Algorithm 1 Moment Method Stage 1

for k=1,Number of Particles do

for i=0,max order do

for j=0,max order do

if i+j ≤ max order then

Momentij = Momentij+x
j
kyi

k
end if

end for

end for

end for

As illustrated in Algorithm 1, stage 1 of the moment method creates the moment
matrix obtained from (3.5). Since we are assuming that the distribution is a collection
of delta functions, the moment integrals are just a sum of the relevant powers of the
coordinates.

Stage 2 of the moment method creates the transfer matrix between moments and the
Taylor coefficients (Algorithm 2). The matrix is then inverted using truncated SVD inver-
sion. The order of the indices is arranged such that the matrix entries will match with the
result of Stage 3 in Algorithm 3.

Stage 3 of the moment method transfers a matrix of calculated moments into a vector
which can be multiplied by the inverted matrix found in Stage 2 to find the coefficient
vector for the Taylor series representing the distribution function of the particles.

Stage 4 determines the potential by combining the Taylor series coefficients with pre-
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Algorithm 2 Moment Method Stage 2

m=0
for k=1,max order do

for l=1,max order-(k-1) do

n=0
for i=1,max order do

for j=1,max order-(i-1) do

N(j+n)(l+m)=
(1−(−1)k+i−1)(1−(−1)l+j−1)

(k+i−1)(l+j−1)

end for

n=n+j
end for

end for

m=m+l
end for

Calculate N−1

Algorithm 3 Moment Method Stage 3

n=0
for i=1,max order do

for j=1,max order-(i-1) do

Mj+n=Mji

end for

n=n+ j
end for

C=N−1M

Algorithm 4 Moment Method Stage 4

for i=0,max order do

for j=0,max order do

if i+j ≤ maxpower then

φ(x,y)=φ(x,y)+Cji

∫ ∫

xjyi ln(
√

(x−x0)2+(y−x0)2)dxdy
end if

end for

end for

calculated integrals (see Appendix B) to create a potential function made of Differential
Algebraic objects (Algorithm 4). Since the potential is its own polynomial expansion, the
relevant equations of motion can be used to advance particles under the influence of the
electrostatic fields of the particle distribution.
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4.2 Using orthogonal polynomials

The use of orthogonal polynomials is slightly different than the moment method. The
corresponding steps are shown in Algorithms 5-7.

The first stage (Algorithm 5) of the orthogonal polynomial method creates a matrix of
coefficients, by taking the inner product of the particles with their respective polynomials,
according to (3.13). Since the distribution function is a series of delta functions, the inner
product is just the polynomial with the particle as its argument.

The second stage (Algorithm 6) of this method uses the coefficients along with a
Differential algebraic expansion of the orthogonal polynomials; this creates a DA object
which represents the distribution function.

Finally, the coefficients in this new expansion can be used with the pre-calculated
integrals from the moment method to find the potential, as shown in Algorithm 7.

Algorithm 5 Orthogonal Polynomial Method Stage 1

for i=0, max order do

for j=0,max order do

Cij =
N particles

∑
k=1

Pj(xk)Pi(yk)

end for

end for

Algorithm 6 Orthogonal Polynomial Method Stage 2

for i=0,max order do

for j=0,max order do

ρ(x,y)=ρ(x,y)+Cji Pi(x+dx)Pj(y+dy)
end for

end for

Algorithm 7 Orthogonal Polynomial Method Stage 3

for i=0,max order do

for j=0,max order do

if i+j ≤ max order then
φ(x,y)=φ(x,y)+ coefficient(ρ(x,y))ij

∫ ∫

xiyjln(
√

(x−x0)2+(y−y0)2)
end if

end for

end for
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5 Performance tests

After the method has been implemented, it is necessary to determine how well the parts
of the implementation work, and where various sources of error are. We also need to
explore the best method for determining the Taylor series of the distribution function
(moment or Legendre). Finally, a number of studies need to be performed in order to
calibrate the use of these methods in practice. These include the number of particles for
convergence of sample moments to true moments, the moment truncation order for the
distribution to be well approximated, the effect of the size of the region of integration
on the potential, the errors stemming from the numerical integration, and the combined
effects of all these on the accuracy of the computed potential.

5.1 Duffy transformation and differential algebras

The first examination will look at the effectiveness of the Duffy transformation as it ap-
plies to integrating known distribution functions. This integration using differential alge-
bras will result in a differential algebraic (DA) vector as an answer, which gives the Taylor
expansion of the potential. Fig. 4 and Fig. 5 illustrate the use of the Duffy transformation
to determine the three dimensional potential of a spherical and Gaussian distribution, re-
spectively. When reading these DA vectors the coefficient column gives the coefficient of
the Taylor expansion of the potential, the order column shows what order the current co-
efficient is, and the exponents column shows the x, y and z exponent values, respectively.
For the case shown in Fig. 4 we can use Gauss’s law to find that the electric field should
be Er = (1/3)r which would give the potential as φ(x,y,z) = (1/6)(x2+y2+z2)+(1/2)
which compares very well with Fig. 4. The differences arise both from the Runge-Kutta
integrator, which has its accuracy set at 10−8, and the use of tanh to approximate the
sphere; this was done to soften the edge of the distribution to make it analytic for easier
numerical integration.

Next, the ways in which errors are introduced throughout the process are shown in
Fig. 6. The analytical distribution which is the left most column uses a uniform square of
charge integrated using the Duffy transformation. This is shown in the left most column
where the only sources of error are the Runge-Kutta integrator, which in this case is set
to an accuracy of 10−8 (including higher order coefficients). Next, we use the analytic
distribution function to determine the moments directly from the distribution function;
and compound the errors of both the moment calculation as well as the Duffy transfor-
mation, and the inversion of the matrix to find the Taylor series of the distribution; this
is shown in the middle column. Finally, we sample the distribution function to create a
population of test particles which follow the distribution function. The sources of error
involve both the Duffy transformation, the matrix inversion, and the inherent graininess
of a distribution of particles; this method is shown in the right column.
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Figure 4: This shows the results of a direct DA integration of a uniform spherical distribution using the Duffy
transformation. We use an analytic distribution function given by ρ(x,y,z)=(1−tanh(20(x2+y2+z2−1)))/2.

Figure 5: This shows the potential of a directly integrated Gaussian distribution in 3 dimensions using the Duffy

transformation. This used the analytic distribution function ρ(x,y,z)=(27/(2π)
3
2 )exp(−(9/2)(x2+y2+z2)).
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Figure 6: Comparison of various expansions of the potential of a uniform square of charge distribution. The
left column shows the Duffy integration of the exact distribution. The middle column uses the moment method
with the moments calculated exactly from the analytical distribution, truncated at order 16. The column on
the right shows the potential expansion obtained from sample moments using one million test particles sampled
from the exact distribution function, truncated at the same order.

5.2 Distribution reconstruction method

The foremost question when implementing these techniques for finding the potential is
which method of distribution estimation should be used. The key criteria are accuracy
and speed. In order to determine which method is the best, a series of comparisons have
been performed using uniform and Gaussian distributions. These methods were tested
first by finding their moments through direct integration of an exactly known distribution
(see Fig. 7), then by determining the moments of particle distributions derived from the
exactly known distribution functions (see Fig. 8). These were then compared to potentials
computed by Mathematica, using direct integration for the uniform distribution, and the
Bassetti-Erskine formula for the Gaussian distribution [19], shown in (5.1),

Φ(x,y)=
∫ ∞

0

e
− x2

2σ2
x+t

− y2

2σ2
y+t

√

2σ2
x +t

√

2σ2
y +t

dt. (5.1)

As can be seen in Fig. 7, the accuracy of the Legendre and the moment methods are
roughly the same at 15th order, but the Legendre is more accurate at 23rd order. When we
compare the results from the delta-function distributions of Fig. 8, we see the opposite
effect; the moment method is now more accurate than the Legendre polynomials. The
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Figure 7: Comparison of the exact moment method on the right with the Legendre method on the left at
15th and 23rd order. These simulations used a uniform distribution with the red square denoting the region of
integration. The potential was found both analytically using direct expansion around each point, and then it was
determined using either the moment or Legendre methods to the indicated order, with the absolute difference
indicated on the contour plot.

use of particles presents an inherent graininess to the distribution, which can be thought
of as an error in the right hand side of two systems of linear equations. The error in the
system is proportional to the condition number, κ, of the matrix [20],

~C=N ~M, (5.2)

‖δ~C ‖

‖ ~C ‖
≤κ(N)

‖δ ~M ‖

‖ ~M‖
. (5.3)

Since the moment method uses truncated SVD methods to invert its matrix, it reduces the
condition number, thus making the moment method more accurate for particle systems
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Figure 8: Comparison of the sample moment method on the right with the Legendre method on the left at 15th

and 23rd order. These simulations used a uniform distribution of particles with one million test particles. The
potential was found both analytically using direct expansion around each point, and then it was determined
using either the moment or Legendre methods to the indicated order, with the absolute difference indicated on
the contour plot.

at high moment orders. Combined with its higher speed, the moment method is the
method of choice for the extensive simulations.

We also would like to be sure that the potentials are accurate within the bounds we
wish to use for distributions that are not symmetric in the region of interest. An elliptic
Gaussian beam comparison is shown in Fig. 9.

5.3 Particle number

The number of test particles required to get an accurate distribution must be calculated.
This was done for a Gaussian distribution; some results for a couple of moments are
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Figure 9: Comparison of two Gaussian distributions; the first showing an elliptic distribution, the second rotates
the distribution by 45◦. The left picture shows the potential as calculated by (5.1), the second is calculated
using the moment method, and the third shows the absolute difference between the two with the white square
denoting the region of integration. The only contour in the absolute difference column is the 1% error contour.

shown in Fig. 10. As can be seen in Fig. 10, high order moments converge slower than
lower order moments. As expected, the vast majority of the elements go to zero. Overall,
it is found that the number of particles should exceed 1 million for adequate convergence.
This conclusion is supported by other distribution types too [11].

5.4 Moment truncation order

The moment truncation order is an important consideration, since the moment calcula-
tion is one of the slower parts of the method. The order at which a given accuracy is
achieved should be minimized. Also, since the particle number utilized is also a factor
in determining accuracy and efficiency, series convergence speeds also need to be inves-
tigated.

Accuracy was tested by first creating a set of initial conditions of uniform density
with a circular cross section. The potential was computed using the exact particle-particle
method of Coulomb interactions at a fixed radius at 100 equally spaced points around the
center of expansion. The radius is then increased in 100 equal increments out to 1.5 times
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Figure 10: Comparison of a low order and a high order sample moment of a Gaussian distribution as a function
of particle number with the exact values. The horizontal axis shows the particle number going up to 1×107.
The difference of the plots on the left and the right is the scale of the horizontal axis. The solid lines show
the exact values. Note the difference in the vertical axes scale, illustrating the difference in convergence speed.
Higher order sample moments converge slower.

the size of the integration region. This process is repeated for each potential calculated
using the different integration and moment orders. The integration order is the order of
the Taylor series resulting from the integrals obtained by the Duffy transformations in
Section 2.1. The average differences between the exact Coulomb potential and the poten-
tial calculated from the moments are summed up at the desired radius, then averaged,
and used as the magnitude in Fig. 11.

As can be seen in Fig. 11, the results converge only when the integration order is larger
or equal than the moment order. This follows from the fact that the values of the Taylor
coefficients of the potential are dependent on the moment order, and if the moments
are larger than the integration order the higher order terms will not be included. The
accuracy improves with order, but when we examine the data there appears to be a drop
in accuracy at high enough orders. This is caused by the ill-conditioned nature of the
matrix that gets inverted and the decreased convergence speed of high order sample
moments for a fixed number of particles. This gives a band of moment orders in which
optimum performance is obtained. However, it is not clear if the same results hold for
more complicated distributions and applications.
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Figure 11: Contour plot of errors in the potential of a uniform circular distribution for different integration and
moment orders. The darker the area the higher the accuracy. The contours show the region between 0 and
0.002.

5.5 Integration region

The region over which the transformation matrix (3.9) is calculated may have a strong
influence on the final answer. Since we are using a Taylor series to approximate the
potential, it is necessary to choose the region carefully. The series must converge within
that region fairly well so bounds must contain the points needed and not too much empty
space. In distributions such as Kapchinsky-Vladimirsky where there is a definite edge the
difference is not as strong, but in unbounded distributions such as a Gaussian this can
cause complications. The optimal bounds will just contain “most” of the beam; in this
case the support of the distribution function just barely fits into the integration region,
and simultaneously the resulting polynomial approximation of the distribution function
will result in optimal accuracy over that region at a fixed order of the polynomial. In the
case of Gaussian, an empirical test shows that the optimal truncation is at a distance of
around 5σ from the center [24].

5.6 Beam propagation example

One method of validating the methods of this paper involves comparing the results from
this method to an example that has a known analytic solution. The example provided
involved tracking a 100 KeV laminar electron beam with an initial radius of r0 = 5mm
and a current of I = 1A. This beam was propagated over a distance of z = 20cm and
approximated using 106 test particles. This dynamics problem has an analytic solution
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Figure 12: A comparison of the initial and final horizontal and vertical test particle positions in a 20cm drift at
100 KeV beam energy 1A of current with an initial radius of 5mm. Purple indicates the initial points, blue the
final.

for the ratio of final to initial beam sizes given by [21],

rm

r0
=1+5.87×10−5 I

(γ2−1)
3
2

(
z

r0
)2, (5.4)

which predicts a beam size growth of 33%. In this equation I is the beam current, γ is the
relativistic factor, rm and r0 are the final and initial radii respectively, and z is the propa-
gation distance. Two methods employed involved placing test particles on the edge, and
comparing their initial and final positions as well as examining the linear dependence of
the final position of a given particle on its initial position, which we refer to as (x f |xi),
(y f |yi) for the horizontal and vertical dependence, respectively. A comparison of the ini-
tial to final distribution can be seen in Fig. 12, and a comparison of the final results can
be seen in Table 1. Therefore, the two methods bracket the analytic solution with relative
error less than 2%, which is within the accuracy of the analytical result (5.4).

Table 1: Table of different methods for finding the increase in size from beginning to end in the 20cm drift at
100 KeV beam energy 1A of current with an initial radius of 5mm.

Method Growth

Edge Point x 35.27 %

Edge Point y 35.30 %

(x f |xi) 31.21 %

(y f |yi) 31.34 %
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6 Summary and conclusions

In this paper we presented a Poisson solver that uses differential algebraic techniques to
convert diverse distributions into Taylor series expansions of the potential. The method
can be used to convert a set of test particles into a Taylor series distribution using either
the statistical properties of the particles, or by projecting the test particles onto a set of
orthogonal polynomials. The resulting set of coefficients of the Taylor series can then be
multiplied by the pre-computed integrals of a generic Taylor series to find the potential.

The pre-computed integrals are calculated using a generic polynomial series and a
dimensionally appropriate Green’s function. In order to avoid numerical singularities
arising from the Green’s function a Duffy transformation is used to remove the singular-
ities. The differential algebras used in these integrals not only calculate the potential at
the center of the distribution, but also the Taylor series expansion around that point. The
combination of these individual expansions with the coefficients calculated from the dis-
tribution provides an expansion of the potential within the region of interest and some-
times beyond.

We found that for maximum accuracy at least 1×106 particles were needed, that the
region of integration needs to be a square that encompasses the distribution without be-
ing too much larger, and that this method could model distributions that were not en-
tirely symmetric. We also determined that the use of the statistical moments was superior
in accuracy to the use of orthogonal polynomials since the method used to convert the
moments of a point distribution is more resilient to problems caused by the graininess of
a point distribution. We found that, when using the moment method, the ideal moment
order was 16 with the order of integration for the pre-computed integrals being greater
than or equal to 16 for near-uniform distributions.

Finally, there are (multi-modal, oscillatory) distributions that are not easily modeled
accurately with 16th order Taylor series. For these cases the methods of this paper still
allow the extraction of potential and electric field maps, but their accuracy will be limited.
While they may not be accurate enough for propagation of the charge distribution, it still
might be useful for local analysis purposes. The push of particles in this case can be
solved with one of the various other existing methods such as the fast multipole method.
This way one can determine and analyze the dynamics of the central core of a beam.
Exploration of these ideas is the subject of ongoing work.
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A DA vectors and their uses

Differential Algebraic (DA) methods are mathematical constructs that allow high order
derivatives computation numerically without truncation error [22]. This can the thought
of as generalizations of computational differentiation [23], and it is a much larger field
of study. The area we are interested in relies on computation of Taylor expansions of
flows of ordinary differential equations, and the ability of differential algebraic methods
to determine very high order derivatives of multivariable functions very accurately. Here
we are enumerating a few examples that in some way are used in the body of the paper;
we mostly follow the exposition of [13].

In the simplest case, a first order one variable structure 1D1, with its elements being
an ordered set of two real numbers (q0,q1), is defined by the following relations:

(q0,q1)+(r0,r1)=(q0+r0,q1+r1), (A.1)

t(q0,q1)=(tq0,tq1), (A.2)

(q0,q1)·(r0,r1)=(q0r0,q0r1+q1r0), (A.3)

(q0,q1)
n =(qn

0 ,nqn−1
0 q1), (A.4)

where t is a scalar and n is an integer.

A.1 Computation of derivatives

Assuming we are using the 1D1 structure, the DA vector x is shown as (x0,x1). In this
example we have the equation f and its derivative,

f (x)= x3+3x−
2

x+1
, (A.5)

f ′(x)=3x2+3+
2

(x+1)2
, (A.6)

which at x=3 gives

f (3)=35
1

2
, (A.7)

f ′(3)=30
1

8
. (A.8)

If instead we evaluate the function replacing x with (3,1) we will get,

f ((3,1))=((3,1))3+3(3,1)−
2

(3,1)+1
, (A.9)
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f ((3,1))=(27,3(3)21)+(9,3)−
2

(4,1)
, (A.10)

f ((3,1))=(27,27)+(9,3)−2
( 1

4
,
−1

16

)

, (A.11)

f ((3,1))=
(

35
1

2
,30

1

8

)

. (A.12)

Thus, the first entry (or the constant part) in the vector is the value the function takes at
that particular point, and the second entry is the derivative at the same point. For higher
orders and larger variable numbers the vectors become longer and more complicated,
but conceptually the same procedure is followed. The vector eventually takes the form
of essentially a high order multivariate Taylor series of the function f .

A.2 Integration

An antiderivative can be quickly determined through simple polynomial integration of
the DA vector. Assuming a vector q,

q=(q0,q1,q2,q3,···), (A.13)

its integral Q can be determined simply through a coefficient change,

Q=
(

c,q0,
q1

2
,
q2

3
,
q3

4
,···

)

, (A.14)

where c is an arbitrary constant. Furthermore, since DA vectors work by redefining math-
ematical relations, other basic programs like a Runge-Kutta integrator will carry the DA
vectors through, this would allow in our case for a Taylor series of the potential for an
entire region to be calculated using only an integration of a reference particle.

Another way that this can be used is in the case of a function such as sin(x). It can
be calculated as sin(x+dx) in DA. On the other hand, sin(x+dx) can also be rewritten as
sin(x)+sin′(x)dx, or sin(x)+cos(x)dx. This is shown as an example of the resultant DA
operations in the vector in Fig. 13.

A.3 DA-ODE integration

One method that has been a tremendous speed boost in this work is the use of DA meth-
ods to solve ordinary differential equations (ODEs). This method uses DA integration
to solve a system of first order ODEs. The method works in cases with no explicit time
dependence, since any first order ODE of this type can be written as,

d~z

ds
=~F(~z), (A.15)

~z(si)=~zi.
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Figure 13: This shows examples of 16th order one dimensional DA vectors for various functions. The expansions
are around x=0.

This equation is then recast as an integral equation,

~z
(

s f

)

=~zi+
∫ s f

si

~F(~z)ds, (A.16)

and solved DA-integration as shown above in Subsection A.2. This method is also em-
ployed in computing the Duffy-transformed integrals by recasting the integrals as initial
value problems and solving the associated ODEs.

B Scaling to improve efficiency

There are a number of numerical concerns when working with high order polynomials
on computers. If the bounds of integration are chosen improperly the numbers that result
can become unusably large or so small that the computer truncates them to zero. There-
fore, when determining the distribution function, we have chosen to cast the test particles
in a coordinate system that corresponds to a size scale that provides optimal numerical
stability. Thus, rather than SI units, the Taylor coefficients are determined in units such
that the distribution spans a square that goes from (−1,1) on each side.

The scaling of the integrals is given using dimensional analysis. If the distributions
are given as,

ρa.u.(xa.u.,ya.u.)=C00+C10xa.u.+C01ya.u.+··· , (B.1)

ρS.I.(xS.I.,yS.I.)=D00+D10xS.I.+C01yS.I.+··· , (B.2)
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the coefficients are going to have a form Cnm=[[ρ]]/ℓn+m+2
a.u. and Dnm=[[ρ]]/ℓn+m+2

S.I. . Then,
assuming that xS.I. = axa.u. and yS.I. = aya.u. with the same scaling factor a, the potentials
will be given as

φa.u.(x0,a.u.,y0,a.u.)=∑
n,m

Cnm

∫ 1

−1

∫ 1

−1
xn

a.u.y
m
a.u.

×ln

(

√

(xa.u.−x0,a.u.)2+(ya.u.−y0,a.u.)2

)

dxa.u.dya.u., (B.3)

φS.I.(x0,S.I.,y0,S.I.)=∑
n,m

Dnm

∫ a

−a

∫ a

−a
xn

S.I.y
m
S.I.

×ln

(

√

(xS.I.−x0,S.I.)2+(yS.I.−y0,S.I.)2

)

dxS.I.dyS.I.. (B.4)

The integral can be scaled in the following way,

Inm,S.I.(x0,y0)=
∫ 1

−1

∫ 1

−1
(axa.u.)

n(aya.u.)
m

×ln

(

√

(axa.u.−ax0,a.u.)2+(aya.u.−ay0,a.u.)2

)

adxa.u.adya.u., (B.5)

Inm,S.I.(x0,y0)=an+m+2
∫ 1

−1

∫ 1

−1
xn

a.u.y
m
a.u. ln(a)

+xn
a.u.y

m
a.u. ln

(

√

(xa.u.−x0,a.u.)2+(ya.u.−y0,a.u.)2

)

dxa.u.dya.u., (B.6)

Inm,S.I.(x0,y0)=an+m+2

(

(1−(−1)n+1)(1−(−1)m+1)

(n+1)(m+1)
ln(a)

+
∫ 1

−1

∫ 1

−1
xn

a.u.y
m
a.u. ln

(

√

(xa.u.−x0,a.u.)2+(ya.u.−y0,a.u.)2

)

dxa.u.dya.u.

)

,

(B.7)

Inm,S.I.(x0,y0)=an+m+2

[

(1−(−1)n+1)(1−(−1)m+1)

(n+1)(m+1)
ln(a)+ Inm,a.u.

( x0.

a
,
y0

a

)

]

. (B.8)

Combined with the scaling of the coefficients, the potential becomes

φS.I.(x0,y0)=∑
nm

Cnm

(

(1−(−1)n+1)(1−(−1)m+1)

(n+1)(m+1)
ln(a)+ Inm,a.u.

( x0

a
,
y0

a

)

)

, (B.9)

where Inm,a.u.(x,y) have been pre-computed and stored.
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C 3D Duffy transformation

In this instance we would like to find the integral over the parallelepiped,

I=
∫ b

a

∫ d

c

∫ f

e

ρ(x,y,z)
√

(x−x0)2+(y−y0)2+(z−z0)2
dxdydz. (C.1)

If we refer to the integrand as Ξ, we can cut the cube into eight smaller cubes and rear-
range their bounds of integration such that we get

∫ b

a

∫ d

c

∫ f

e
Ξdxdydz=−

∫ e

z0

∫ a

x0

∫ c

y0

Ξdxdydz+
∫ e

z0

∫ a

x0

∫ d

y0

Ξdxdydz

+
∫ e

z0

∫ b

x0

∫ c

y0

Ξdxdydz−
∫ e

z0

∫ b

x0

∫ d

y0

Ξdxdydz

+
∫ f

z0

∫ a

x0

∫ c

y0

Ξdxdydz−
∫ f

z0

∫ a

x0

∫ d

y0

Ξdxdydz

−
∫ f

z0

∫ b

x0

∫ c

y0

Ξdxdydz+
∫ f

z0

∫ b

x0

∫ d

y0

Ξdxdydz. (C.2)

Similarly to the 2D case, we focus on one of the integrals, namely

∫ f

z0

∫ b

x0

∫ d

y0

ρ(x,y,z)dxdydz
√

(x−x0)2+(y−y0)2+(z−z0)2
, (C.3)

which we rescale to a unit cube by means of the coordinate transformation,

u1=
x−x0

b−x0
, (C.4)

u2=
y−y0

d−y0
, (C.5)

u3=
z−z0

f −z0
. (C.6)

Again, for convenience we set λ1=(b−x0), λ2=(d−y0), and λ3=( f −z0). This gives the
differential

dxdydz=λ1λ2λ3du1du2du3. (C.7)

The integral then becomes

I=λ1λ2λ3

∫ 1

0

∫ 1

0

∫ 1

0

ρ(λ1u1+x0,λ2u2+y0,λ3u3+z0)
√

λ2
1u2

1+λ2
2u2

2+λ2
3u2

3

du1du2du3. (C.8)
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The integral is now a unit cube, which we map into three pyramids the same way we
mapped the square into two triangles in the section describing the 2D procedure. This is
done by rewriting the integral to read

I=λ1λ2λ3

∫ 1

0

∫ u1

0

∫ u1

0

ρ(λ1u1+x0,λ2u2+y0,λ3u3+z0)
√

λ2
1u2

1+λ2
2u2

2+λ2
3u2

3

du1du2du3

+λ1λ2λ3

∫ 1

0

∫ u2

0

∫ u2

0

ρ(λ1u1+x0,λ2u2+y0,λ3u3+z0)
√

λ2
1u2

1+λ2
2u2

2+λ2
3u2

3

du2du3du1

+λ1λ2λ3

∫ 1

0

∫ u3

0

∫ u3

0

ρ(λ1u1+x0,λ2u2+y0,λ3u3+z0)
√

λ2
1u2

1+λ2
2u2

2+λ2
3u2

3

du3du1du2. (C.9)

Each integral then has its pyramid rescaled into a unit cube; for the first integral,

w1=u1, w2=
u2

u1
, w3=

u3

u1
, (C.10)

u1=w1, u2=w1w2, u3=w1w3, (C.11)

for the second integral,

w1=
u1

u2
, w2=u2, w3=

u3

u2
, (C.12)

u1=w1w2, u2=w2, u3=w2w3, (C.13)

and for the third,

w1=
u1

u3
, w2=

u2

u3
, w3=u3, (C.14)

u1=w1w3, u2=w3w2, u3=w3. (C.15)

The integral now becomes

I=λ1λ2λ3

∫ 1

0

∫ 1

0

∫ 1

0

w2
1ρ(λ1w1+x0,λ2w1w2+y0,λ3w1w3+z0)

√

λ2
1w2

1+λ2
2w2

1w2
2+λ2

3w2
1w2

3

dw1dw2dw3

+λ1λ2λ3

∫ 1

0

∫ 1

0

∫ 1

0

w2
2ρ(λ1w2w1+x0,λ2w2+y0,λ3w2w3+z0)

√

λ2
1w2

2w2
1+λ2

2w2
2+λ2

3w2
2w2

3

dw1dw2dw3

+λ1λ2λ3

∫ 1

0

∫ 1

0

∫ 1

0

w2
3ρ(λ1w3w1+x0,λ2w3w2+y0,λ3w3+z0)

√

λ2
1w2

3w2
1+λ2

2w2
3w2

2+λ2
3w2

3

dw1dw2dw3, (C.16)
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which can be simplified to

I=λ1λ2λ3

∫ 1

0

∫ 1

0

∫ 1

0

w1ρ(λ1w1+x0,λ2w1w2+y0,λ3w1w3+z0)
√

λ2
1+λ2

2w2
2+λ2

3w2
3

dw1dw2dw3

+λ1λ2λ3

∫ 1

0

∫ 1

0

∫ 1

0

w2ρ(λ1w2w1+x0,λ2w2+y0,λ3w2w3+z0)
√

λ2
1w2

1+λ2
2+λ2

3w2
3

dw1dw2dw3

+λ1λ2λ3

∫ 1

0

∫ 1

0

∫ 1

0

w3ρ(λ1w3w1+x0,λ2w3w2+y0,λ3w3+z0)
√

λ2
1w2

1+λ2
2w2

2+λ2
3

dw1dw2dw3. (C.17)

Again, the singularity is now removed and the integrals can be computed using the
eighth order Runge-Kutta routine using adaptive step size.
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