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S U M M A R Y
We present a method for imaging the global crustal magnetic field at Earth’s surface using
a local basis representation and a minimum norm model regularization approach. The local
basis consists of a spherical triangle tessellation (STT) parametrization of the radial component
of the crustal field at Earth’s reference spherical surface. The Green’s function for Laplace’s
equation in spherical geometry with Neumann boundary conditions provides the necessary
forward modelling scheme. We solve the inverse problem of estimating the crustal field
from satellite magnetic observations by minimizing an objective function comprising a mean
absolute deviation (L1-norm) measure of misfit plus a norm measuring model complexity. Both
quadratic and entropy measures of field complexity are investigated. We report results from
synthetic tests performed on a geophysically motivated scenario; these include a successful
benchmark of the method and a comparison between quadratic and entropy regularization
strategies. Applying our technique to real observations collected by the CHAMP, Ørsted and
SAC-C satellites, we obtain stable images of the crustal magnetic field at Earth’s surface
that include sharp features with high amplitudes. We present details of two prototype crustal
field models STT-CRUST-Q and STT-CRUST-E regularized using quadratic and entropy norms
respectively; these provide a perspective complementary to that given by conventional spherical
harmonic crustal field models.

Key words: Image processing; Inverse theory; Satellite magnetics.

1 I N T RO D U C T I O N

The terrestrial part of the Earth’s magnetic field consists of a domi-
nant core-generated field and a crustal magnetic field due to rema-
nent and induced magnetization of constituent geological minerals.
Maps of Earth’s crustal (sometimes also referred to as lithospheric)
magnetic field are useful in studies of crustal geology, thermal
history and also regional tectonics (e.g. Langel & Hinze 1998; Pu-
rucker & Whaler 2007). Since 1999, satellites have continuously
monitored Earth’s magnetic field from space providing high quality
data with a good and homogenous spatial coverage. Nevertheless,
accurate retrieval of highly localized crustal field anomalies remains
challenging because of the noisy nature of the observations, partic-
ularly at high latitudes where fields due to auroral electric currents
contaminate the signal, and because of the blurring introduced by
the hundreds of kilometres distance between the satellites and the
sources at Earth’s surface. In this paper, we introduce a new method
for robustly estimating the global crustal magnetic field at Earth’s
surface. We adopt a spherical triangle tessellation (STT) basis (Con-
stable et al. 1993) rather than the conventional spherical harmonic
(SH) model parametrization. The STT basis has the advantage of
local support—the value of the field at any location is dependent
on at most three model coefficients (the adjacent nodes of the grid)

in contrast to the situation with a SH basis where it depends on the
entire set of model parameters. Such a local basis is arguably better
suited for modelling the localized field anomalies that characterize
the crustal field. We also search for crustal field models that ad-
equately fit the observations but are characterized by the minimal
required spatial complexity. We explore both conventional quadratic
regularization (Tikhonov & Arsenin 1977; Gubbins 1983; Whaler
1994) and the more sophisticated technique of maximum entropy
regularization (Gull & Daniell 1978; Gull & Skilling 1984; Jackson
et al. 2007a) which was developed for image reconstruction prob-
lems requiring the retrieval by deconvolution of sharp features from
noisy and incomplete observations.

Of course, many previous studies have been carried out in which
crustal magnetic fields have been inferred from satellite magnetic
measurements. The first global scale images of Earth’s crustal mag-
netic field were derived in the mid-1970s from POGO scalar field
data (Regan et al. 1975). Following the MAGSAT mission a num-
ber of more detailed maps were produced (Cain et al. 1989; Cohen
& Achache 1990; Arkani-Hamed et al. 1994; Ravat et al. 1995).
Unfortunately, these were all limited by the rather small amount of
MAGSAT data, inaccuracies in the intensity only POGO data and
difficulties in accounting for external fields. The past five years have
seen a dramatic leap forward in the fidelity of crustal magnetic field
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models driven by the abundance high accuracy, magnetically quiet
data delivered by the low Earth orbit satellites CHAMP, Ørsted and
SAC-C.

Two strategies have dominated recent attempts to construct mod-
els of the crustal field from this new satellite data. Both are based
on a global spherical harmonic model parametrization, but they in-
volve rather different strategies for data treatment. Maus et al. in the
MF series of models have adopted a dedicated, sequential, crustal
field modelling approach in which the data are deterministically
corrected and filtered to remove the influence of core, magneto-
spheric, tidal and other field sources as best as possible before an
inversion is performed for the crustal field alone (Maus et al. 2002,
2006b, 2007b, 2008). A discussion of the philosophy underlying
this approach and results of tests carried out using synthetic data
are given by Maus et al. (2006a). The most recent model in this
series is the MF6 model which it’s authors claim is reliable up to
spherical harmonic degree 120; a spectacular success of this model
is the ability to resolve the direction of magnetic remanence patterns
which appear as stripes parallel to oceanic spreading centres.

The other main approach pursued has been to simultaneously
co-estimate the internal (core and crustal) field, along with vari-
ous components of the external field. Then, after the inversion, the
crustal field model is isolated from the core field model by select-
ing spherical harmonic degrees of the static internal field greater
than 15. Analysis of the spatial spectrum suggests that below this
point the core field dominates while above it the crustal field is
stronger due to geometrical attenuation of the short wavelength
signal from the core. Models constructed from recent satellite and
observatory data following this strategy include the ‘Comprehen-
sive Model’ series by Langel et al. (1996) and Sabaka et al. (2002,
2004), the CHAOS series by Olsen et al. (2006a) and Olsen &
Mandea (2008), the models developed by Thomson & Lesur (2007),
and the GRIMM model produced by Lesur et al. (2008). Although
these models are based on data sets selected using different criteria
and involve rather different parametrizations of the external field
they now agree rather well on the large scale crustal magnetic field
up to spherical harmonic degree 45 (Lesur et al. 2008). Systematic
differences between these models and the MF series of models have
been reported at degrees 15–45; it has been suggested that these
are related to the along track filtering method applied in construc-
tion of the MF models (Sabaka et al. 2004; Lesur et al. 2008). At
shorter wavelengths (above spherical harmonic degree 45) there is
still no consensus between the various models and the problem of
determining which crustal field features are robust remains a major
challenge.

As noted by O’Brien & Parker (1994), the spherical harmonic
basis (adopted by all the studies discussed above) is unfortunately
rather ill-suited for crustal field modelling. This is fundamentally
because of the localized nature of the geological sources compared
to the global sensitivity of spherical harmonics; an enlightening
discussion of this issue in the context of global seismic tomography
(where similar issues arise) has recently been given by Amirbekyan
et al. (2008). A number of alternative local basis functions have
consequently been explored. Methods involving the representation
of the crustal field by a grid of equivalent dipole sources have been
developed by Mayhew (1979) and extended by Covington (1993) to
an icosahedral grid. This method has been employed by Purucker
et al. (1996) to produce models of the crustal field of Earth, Mars
(Langlais et al. 2004) and the moon (Purucker 2008); it has also
proved to be useful in constructing crustal magnetization models.
O’Brien & Parker (1994) proposed a local basis consisting of a
grid of magnetic monopoles; they demonstrated that this could be

used for both global and local field modelling. Following the sug-
gestion by Shure et al. (1982) and Parker & Shure (1982), Whaler
(1994) and Langel & Whaler (1996) have developed models on a
(depleted) harmonic spline basis and have applied this method to
Earth and to Mars (Whaler & Purucker 2005). One may ask why
these local techniques have not become more widely adopted for
high resolution modelling of Earth’s global crustal magnetic field
from satellite data. The difficulty seems to be that spherical harmon-
ics are attractive because they arise in a natural way in the analytic
solution of Laplace’s equation in spherical geometry, and because
the local methods are generally more difficult to code and can be
computationally more expensive, for example requiring conjugate
gradient optimization routines in order to solve the resulting large
matrix systems (Purucker et al. 1996). An additional drawback of
the local modelling approach is the difficulty in suppressing spurious
north–south trending stripes that can be mapped into crustal field
models due to along track spatially correlated noise. As described
in Section 2 and demonstrated in the results presented in Section 4,
the regularized STT method presented in this study permits high
resolution global, stable, models to be obtained in a straightforward
and efficient manner using a standard quasi-Newton optimization
scheme.

An alternative approach to obtaining local basis functions on a
spherical surface involves modifying spherical harmonics so they
give support only over a limited region, for example in the method
of spherical cap analysis (Haines 1985; De Santis et al. 1999) and
its revisions (Thébault et al. 2006a,b; Thébault 2008). The most
advanced application of this approach to the problem of global
crustal field modelling from satellite data has been described by
Thébault (2006). Lesur (2006) proposed another elegant approach
whereby quasi-localized functions with well-defined spherical har-
monic content can be constructed; Lesur & Maus (2006) used this
method to obtain a crustal field model with locally restricted spectral
content in the troublesome polar regions. Simons et al. (2006) and
Simons & Dahlen (2006) have also recently developed a promising
strategy involving band-limited spherical functions whose energy
is optimally concentrated in a geographically localized region; this
method has however not yet been applied in crustal field modelling.
It should further be noted that Freeden et al. (1998) and Freeden &
Schreiner (2009) have developed sophisticated mathematical tools
(based on vector kernel functions) that allow one to work in a local
but multi-resolution basis in spherical geometry. Their approach
was applied in geomagnetism to the internal–external field separa-
tion problem by Mayer & Meier (2006), but it has not yet been used
for crustal field modelling. Many of the methods discussed in this
paragraph approach the spherical harmonics when the domain of
interest becomes global—in this case they lose their attractive local
character. If instead one restricts them to some local region then a
series of difficult mergers are required (see, for example, Thébault
2006). The STT basis used in the present study is by contrast truly
local, while also being specifically designed to represent potential
fields everywhere on a spherical surface, and avoiding any problems
at the poles. As described by Constable et al. (1993) it involves an
icosahedral discretization of the two-sphere into spherical triangles
(Baumgardner & Frederickson 1985). These define a continuous
(but not infinitely differentiable), piecewise linear basis that is the
2-D equivalent on a spherical surface of a 1-D basis involving B-
splines of order 2 (Jackson et al. 2007b). Further mathematical
details concerning the implementation of the STT basis are given
in Section 2.

To obtain a model of the crustal magnetic field at Earth’s surface
from satellite observations made at altitudes of 300–800 km requires
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downward continuation of a potential field. This procedure is well
known to be unstable in the presence of poorly determined model
parameters. Two solutions to this problem that have previously been
explored are: (i) truncation of the model to retain only the spatial
scales which are believed to be well determined (see, e.g. Olsen et al.
2006b; Lesur et al. 2008; Maus et al. 2008) and (ii) regularization
during model construction so that the models obtained are stable
and well converged at the surface of interest (see, e.g. Whaler 1994;
Maus et al. 2006b). The regularization or minimum norm approach
(Tikhonov & Arsenin 1977; Parker 1994; Gubbins 2004) has been
widely used for the past 25 years to construct trustworthy models
of the core magnetic field at the core–mantle boundary (Shure et al.
1982; Gubbins & Bloxham 1985)—a classic example of solving
an unstable downward continuation problem in geomagnetism. The
approach is philosophically attractive because the non-uniqueness
inherent in the inverse problem is mitigated by searching for a model
which minimizes a chosen measure of field complexity, in addition
to fitting the observations to within error estimates. We argue here
that a minimum norm approach to the crustal field determination
problem can provide a useful perspective on those field structures
that can be unambiguously determined from recent satellite data.

In the small number of previous applications of regularization
in crustal field modelling, simple quadratic measures of field com-
plexity such as the square of vertical field (Z) integrated over the
Earth’s surface (Whaler 1994), or ad hoc penalization of unstable
model coefficients (Maus et al. 2006b) were employed. Ad hoc regu-
larization of specific coefficients makes it difficult to state precisely
what measure of model complexity is minimized and leaves open
the possibility that not all parts of the resulting image are stable at
Earth’s surface, so we prefer not to follow this path. Instead here we
use the techniques described in Section 2 to first construct models
which, similar to the work of Whaler (1994), minimize the square of
radial field integrated over Earth’s surface. This procedure permits
stable, low complexity field models to be constructed at Earth’s sur-
face, but unfortunately also tends to artificially depress the crustal
field amplitude and prevents sharp local features from being ac-
curately imaged. We therefore also construct models regularized
using a well-known non-quadratic measure of complexity, namely
entropy. We use the term entropy in the information-theory sense
(Shannon 1948; Jaynes 1957) and adopt a definition which satis-
fies the properties of subset independence, coordinate invariance,
system independence and scaling (Skilling 1988) and is appropri-
ate for non-positive functions (Gull & Skilling 1990; Hobson &
Lasenby 1998)—further details are given in Section 2. Construc-
tion of models which maximize entropy while remaining consistent
with observations has proven to be a very successful strategy in
a wide variety of other image deconvolution problems, especially
where retrieval of objects with high dynamic range from noisy and
incomplete data is desired (see, e.g. Buck & Maculay (1991) or
Sivia & Skilling (2006), chapter 6).

In Section 4.2, we report results of a geophysically motivated
synthetic test where both the target crustal field and statistics of the
contaminating noise are perfectly known; the synthetic data set is
described in Section 3.2. We compare the merits of quadratic and
maximum entropy regularization in this well-controlled scenario
and find that the maximum entropy method is capable of producing
images with greater contrast, and possessing better localized struc-
tures. Prototype models derived from real satellite observations
using both quadratic and entropy regularization inversion methods
are reported in Section 4.3. The purpose of presenting these models
is to demonstrate the utility of our new modelling scheme–our focus
here is not on how best to process and filter the satellite observa-

tions and issues such as anisotropy or space–time dependence of
error budgets are not considered. The details of the satellite data
selection and processing are given in Section 3.1. A discussion of
the results obtained, comparison to some other crustal field models
and possible future extensions of the method are given in Section 5
before conclusions are presented in Section 6.

2 M E T H O D O L O G Y

2.1 Crustal magnetic field representation

We adopt the spherical polar coordinate system and denote position
by r = (r , θ , φ) where r is radius, θ is co-latitude and φ is longitude.
In what follows we assume that the crustal field is to a good approx-
imation static and ignore its time variation (for a justification see
Thébault et al. 2009). We construct a model of the crustal magnetic
field at the reference radius of the Earth’s surface (a = 6371.2 km)
and use this to account for the static short wavelength magnetic field
measured by satellites. The atmosphere is approximated as an insu-
lator where no electric currents flow so the magnetic field B due to
crustal sources is assumed to be a potential field and represented by

B = −∇V, (1)

where V is the magnetic potential. Since ∇ · B = 0, V satisfies
Laplace’s equation

∇2V = 0. (2)

The solution for the potential V accounting only for internal sources,
is conventionally written in terms of a spherical harmonic expansion

V = a
∞∑

l=1

l∑
m=0

(a

r

)l+1 [
gm

l cos mφ + hm
l sin mφ

]
Pm

l (cos θ ), (3)

where gm
l , hm

l are the Gauss coefficients and Pm
l are the Associated

Legendre Functions.
Here we explore an alternative approach where the field is in-

stead parametrized directly in physical space in terms of the radial
magnetic field Br at r = a and evaluated for r > a using ap-
propriate Green’s functions (Gubbins & Roberts 1983). Constable
et al. (1993) have presented the mechanics of this approach when
modelling the geomagnetic field at Earth’s core surface; the same
apparatus largely carries over to modelling the crustal field at Earth’s
surface so the following account closely resembles their treatment.

Defining an appropriate Green’s function, G(r, ŝ), where ŝ is a
unit vector ranging over the surface S, and denoting the radial field
on the Earth’s surface S by Br (ŝ), then the magnetic potential V (r)
at any point outside S with r > a may be written as

V (r) =
∫

S
G(r, ŝ)Br (ŝ) d2ŝ. (4)

This approach is justified by the existence theorem for the solu-
tion of the exterior Neumann boundary value problem for Laplace’s
equation (see, for example, Kellogg 1954, chapter 9, p. 246). The
components of the gradient of this Green’s function in spherical po-
lar coordinates required to calculate the observed northward, east-
ward and downward vector magnetic field components (X , Y , Z )
may then be written in the form

G X (r) = 1

r

∂G

∂θ
= 1

4π R3

{
1 + 2R − ρ2

T

}
ρ3ŝ· θ̂ , (5)

GY (r) = − 1

r sin θ

∂G

∂φ
= − 1

4π R3

{
1 + 2R − ρ2

T

}
ρ3ŝ· φ̂, (6)
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Figure 1. A tessellation of the sphere by spherical triangles, generated by
bisections and trisections of the regular icosahedron on the unit sphere,
following Baumgardner & Frederickson (1985). Here the nodes are joined
by straight lines, generating planar surfaces; in our calculations we join the
nodes by great circles, generating spherical triangles.

G Z (r) = ∂G

∂r
= − 1

4π

{
ρ2(1 − ρ2)

R3
− ρ2

}
, (7)

where ρ = a/r, μ = r̂ · ŝ, R =
√

1 − 2μρ + ρ2 and T = 1 + R −
μρ . r̂ is the unit vector in the direction of the observation location.
The local directions at the observation location pointing southward
and eastward, respectively are denoted by θ̂ and φ̂. Further details
concerning the derivation of these Green’s functions are found in
the appendix of Constable et al. (1993).

In order to represent Br (ŝ) in a discrete fashion we once more
follow Constable et al. (1993) and adopt a local spherical triangle
tessellation (STT) basis (Baumgardner & Frederickson 1985) rather
than the traditional truncated spherical harmonic global basis. In the
STT approach Br (ŝ) is represented by a finite set of M nodes; as
demonstrated by Baumgardner & Frederickson (1985) these define
2M − 4 spherical triangles on the sphere of unit radius as illustrated
in Fig. 1. Note that the edges of the spherical triangles are defined by
geodesic arcs so there is no geometrical distortion associated with
using this grid in a spherical geometry. At positions intermediate
between the nodes, the field is calculated by linear interpolation of
Br within the gnomonic projection of each spherical triangle onto
a plane tangent at its centroid. Under this parametrization the value
and sign of the field at any point on s is dependent on at most three
node values whereas with a spherical harmonic representation the
point value depends on the weighted sum of the entire set of model
parameters. For each node in the STT model an index is assigned;
the tessellation is then specified by a list of triplets forming the ver-
tices of each triangle (Baumgardner & Frederickson 1985). With
this discretization the integrals required to compute the commonly
measured northward, eastward and vertically downwards geomag-
netic field components (X , Y , Z ) = (−Bθ , Bφ , −Br) are reduced
to simple numerical summations over the spherical triangles so that

X (r) =
2M−4∑

i=1

∫
�i

G X Br (ŝ) d2ŝ, (8)

Y (r) =
2M−4∑

i=1

∫
�i

GY Br (ŝ) d2ŝ, (9)

Z (r) =
2M−4∑

i=1

∫
�i

G Z Br (ŝ) d2ŝ, (10)

where �i stands for the ith spherical triangle. The integral over
each spherical triangle is performed numerically. Two additional
comments are worth making concerning this STT field represen-
tation. First, as discussed by Jackson et al. (2007b), the STT
representation does not explicitly require the no monopole con-
dition to be obeyed. Nonetheless, in the STT models we present
here, the diagnostic ratio calculated directly in the STT domain∫

S Br d2ŝ/(
∫

S Br 2d2ŝ)1/2 < 0.01, while the l = 0 term obtained by
spherical harmonic transform |g0

0| < 0.03 nT, so the contribution of
the monopole term is insignificant. We note that the divergence free
constraint could be explicitly imposed if desired, at very little extra
computational cost. Second, because the STT representation in-
volves linear interpolation between nodes it is only piecewise linear
continuous and not infinitely differentiable in contrast to spherical
harmonics. This unfortunately makes exact transformations from
STT models to spherical harmonics models impossible. However,
this restriction is irrelevant to the production of accurate and use-
ful images of the crustal field, provided the grid parametrization is
sufficiently fine as is the case here.

2.2 The crustal field modelling forward problem

In the crustal field modelling problem, we compare the predicted
vector components of the crustal field (X , Y , Z ) with the observed
vector field minus the vector field components predicted by a chosen
core field model. In practice, it is also necessary to deal with scalar
field (intensity) anomaly observations especially at high latitudes
where vector satellite data is difficult to use. If we assume that the
observed field Bobs (after correction for external fields) consists
only of contributions from the core and crustal field then the scalar
intensity of the observed field is

|Bobs| =
√

(Bcore + B)2, (11)

where Bcore is the core field and B = (X , Y , Z ) is as before the field
due to crustal magnetization. Since |B| � |Bcore| then to a good
approximation, as shown in Blakely (1995) and Langel & Hinze
(1998),

|Bobs| ≈ |Bcore| + Bcore · B

|Bcore| . (12)

The scalar (intensity) anomaly due to the crustal field

�F = |Bobs| − |Bcore|, (13)

may therefore be approximated by substituting from (12)

�F ≈ Bcore · B

|Bcore| . (14)

This scalar anomaly �F is found from the observed intensity F
by subtracting the intensity predicted by a core field model. Un-
der approximation (14), �F is then linearly related to the vector
components of the crustal field (X , Y , Z ) as defined in eqs (8) to
(10). Langel & Whaler (1996) demonstrated that this linear approx-
imation involved an error much smaller than possible observation
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errors. This linearized treatment of the scalar data greatly simplifies
the inverse problem discussed below.

The resulting linear forward problem of predicting the vector
components or intensity anomaly at a particular observation location
from a known model of the crustal field Br (ŝ) at Earth’s reference
surface can be written in discrete form as

d̃ = Am, (15)

where elements of vector d̃ are the predicted field elements, m are
the model parameters, that is, the crustal magnetic field at the M
nodes, mi = (Br)i, and A is a matrix of the forward functionals
relating the model m to d̃ as described in eqs (8) to (10) and (14).
Model predictions for observed vector field components X , Y , Z
and the scalar field anomaly �F can thus easily be calculated from
a given crustal field model m together with an assumed core field
model.

Due to the imperfect measurements and the incomplete model,
real observations d and predictions of the forward model are not
exactly equal, but are related by

d = Am + e, (16)

where e = (d − d̃) is an error vector of the residual between the
observations d and the model predictions d̃ = Am.

2.3 The crustal field modelling inverse problem

Finding a crustal field model m consistent with observations of the
crustal field d is an ill-posed problem: many possible models exist
that could fit the data within their estimated errors (see, e.g. Parker
1994). One successful and widely used method of dealing with this
difficulty is to regularize the inverse problem. When regularizing,
one seeks the simplest model for a given fit to the data by search-
ing for the m that minimizes not just the misfit between the data
and the model predictions but also a norm measuring the model’s
complexity.

The conventional L2-norm measure of misfit χ between the model
predictions and the observations is given by

χ =
√√√√ 1

N

N∑
i=1

[
di − d̃i

σi

]2

, (17)

where di is the ith observation, d̃i is the associated prediction
from the forward model, σ i is the estimated error of the datum
and N is the number of observations. Model estimation meth-
ods based on L2-norm measures of misfit certainly perform well
when the noise that contaminates the signal of interest is truly ran-
dom (Gaussian). However for non-Gaussian noise, as is expected
when unmodelled fluctuations in external fields contaminate the
observations, an L1-norm (absolute deviation) measure of mis-
fit has been shown in many studies to be a more robust method
of model estimation (Claerbout & Muir 1971; Farquharson &
Oldenburg 1998; Aster et al. 2005). The L1-norm measure of misfit
ξ takes the form

ξ =
√

2

N

N∑
i=1

∣∣∣∣di − d̃i

σi

∣∣∣∣ . (18)

Model estimation methods using the L1-norm measure of misfit have
recently been found to perform well in geomagnetic field modelling
applications (Walker & Jackson 2000; Thomson & Lesur 2007;
Lesur et al. 2008). The L1-norm approach enables robust crustal
field models to be obtained even at high-latitudes where there is

large amplitude noise due to electrical currents flowing in the auroral
region. We implement the L1-norm using an iteratively reweighted
least squares (IRWLS) algorithm (Scales et al. 1998; Walker &
Jackson 2000). This procedure is started from an initial inversion
produced using the conventional L2-norm method.

To implement the L1-norm we modify the standard regularized
least squares problem (Gubbins 2004; Aster et al. 2005) to an opti-
mization problem to find the model m which minimizes the objective
function

�(m) = [d − Am]T C−1/2
e WkC−1/2

e [d − Am] + λR(m), (19)

where Wk is a weighting matrix derived from the misfit of each da-
tum in the previous (kth) model iteration (Walker & Jackson 2000),
Ce is the data covariance matrix containing information concerning
estimated errors, λ is a constant known as the damping param-
eter and R(m) is the regularization norm. The first (misfit) term
measures the difference between model predictions and the obser-
vations weighted by the estimated observation errors. The second
(regularization) term is a norm measuring the model complexity.
The damping parameter λ controls the relative importance of fit to
the data and model complexity.

If R(m) is non-quadratic then minimizing (19) is a non-linear
optimization problem requiring an iterative approach for its solution.
Here, we use a quasi-Newton scheme (see, e.g. Luenberger 1969;
Tarantola 2005). This may be written in the form

mk+1 = mk − μk [∇∇�(mk)]−1 [∇�(mk)] , (20)

where μk are real constants small enough to avoid divergence of
the algorithm and large enough to allow the algorithm to advance.
μk are here chosen to be unity, since the Hessian metric accounts
sufficiently well for the local geometry of the objective function.
Substituting (19) into (20) and taking μk = 1 leads to the scheme

mk+1 = mk + [
2AT C−1/2

e WkC−1/2
e A + λ∇∇R(mk)

]−1

× [
2AT C−1/2

e WkC−1/2
e (d − Amk) − λ∇R(mk)

]
.

(21)

Following Jackson et al. (2007b) and using a variant of the quasi-
Newton algorithm that solves for the mk+1, rather than a perturbation
δm to mk , the iterative scheme becomes

mk+1 = [
2AT C−1/2

e WkC−1/2
e A + λ∇∇R(mk)

]−1

× [
2AT C−1/2

e WkC−1/2
e d + λ∇∇R(mk)mk − λ∇R(mk)

]
.

(22)

Note that when Wk = I, where I is the identity matrix, this scheme
reduces to that for the conventional regularized least-squares prob-
lem. Iteration is required to find a solution because Wk depends on
mk .

In this study, we explore both a conventional quadratic regular-
ization norm (Shure et al. 1982; Gubbins & Bloxham 1985; Whaler
1994) and also an entropy regularization norm which is a non-
quadratic measure of complexity (Gull & Daniell 1978; Jackson
et al. 2007a). In the next two sub-sections we discuss the mathe-
matical form of these choices of regularization in detail.

2.3.1 Quadratic regularization

We perform quadratic regularization using the integral of the square
of the radial component of the crustal magnetic field over Earth’s
surface∫

S
B2

r d2ŝ. (23)
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Following Constable et al. (1993), an approximation to this norm
using a SST basis summing over the 2M − 4 spherical triangles
takes the form

RQ(m) =
2M−4∑

i

(Br )2
i . (24)

The appropriate gradient and the Hessian operators required in the
quasi-Newton algorithm are therefore

(∇RQ)i = 2mi , (25)

(∇∇RQ)i j = ∇(2mi ) j = 2δi j , (26)

where δij is the Kronecker delta.
The iterative scheme (22) for this choice of quadratic regulariza-

tion therefore takes the form

mk+1 = [
AT C−1/2

e WkC−1/2
e A + λI

]−1 [
AT C−1/2

e WkC−1/2
e d

]
.

(27)

2.3.2 Maximum entropy regularization

Use of an entropy norm for regularization (often referred to as the
maximum entropy method) has been employed by many workers in
a diverse range of applications in the past 20 years (Gull & Daniell
1978; Gull & Skilling 1984; Sivia & Skilling 2006). We refer read-
ers to Jackson et al. (2007a) for details of the calculation of the
entropy of a magnetic field on a spherical surface discretized using
an STT basis. To facilitate comparisons with quadratic regulariza-
tion we follow Gillet et al. (2007) and use the following form of the
negentropy as a measure of field complexity,

S[m, w] = −4w

M∑
i=1

{
ψi − 2w − mi log

[
ψi + mi

2w

]}
. (28)

Here w is the default parameter and ψi =
√

m2
i + 4w2. This form

assumes that the default parameter takes the same value for each
node. The default parameter w specifies the width of the entropy
function (Maisinger et al. 2004); it should ideally be set using
prior knowledge concerning the expected magnitude of the unsigned
flux

∫
S |Br |d2ŝ of the crustal field. However, in the absence of

definitive prior knowledge it can be treated as a free parameter
and varied to obtain suitably sharp images (Jackson et al. 2007a).
Defining the above expression for the negentropy of the image to
be a regularization norm (i.e. RS = S[m, w]), the required gradient
and Hessian operators are

(∇RS)i = (∇S)i

= −4w

{
mi

ψi
− log

[
ψi + mi

2w

]
− mi

ψi + mi

(
mi

ψi
+ 1

)}

= 4w log

[
ψi + mi

2w

]
,

(29)

and

(∇∇RS)i j = (∇∇S)i j = 4w

ψi + mi

(
mi

ψi
+ 1

)
δi j = 4w

ψi
δi j , (30)

where δij is again the Kronecker delta. Our iterative optimization
scheme for the maximum entropy regularization is then

mk+1 = [
2AT C−1/2

e WkC−1/2
e A + λαk

]−1

× [
2AT C−1/2

e WkC−1/2
e d + λαkmk − 4wλβk

]
, (31)

with

αk = diag

{
4w

ψ1
,

4w

ψ2
, . . . ,

4w

ψM

}
,

βk =
{

log

(
ψ1 + m1

2w

)
, log

(
ψ2 + m2

2w

)
, . . . , log

(
ψM + mM

2w

)}
.

[Correction made after online publication 14 September 2009: in
the second line of equation (31), the term ‘mk’ has been inserted
after ‘λαk’].

In the next section, we describe the satellite data set used to
demonstrate the operation of the STT-regularized crustal field mod-
elling scheme described above, and a synthetic data set used to test
its performance in a controlled scenario.

3 DATA C O M P I L AT I O N

3.1 Satellite data for crustal field modelling

We employ a well established, high quality, satellite data set to test
our new modelling procedure in order to permit a straightforward
comparison to previous results. This is the xCHAOS 03p 08 data set
selected and previously used by Olsen & Mandea (2008) to derive
their xCHAOS model. It consists of more than 8.5 yr of CHAMP,
Ørsted and SAC-C geomagnetic satellite data with Ørsted scalar
and vector data between 1999 March and 2007 December, CHAMP
scalar and vector data between 2000 August and 2007 December
and SAC-C scalar data between 2001 January and 2004 December.
The selection of geomagnetically quiet data for the xCHAOS data
set followed the same protocol as for the CHAOS data set of Olsen
et al. (2006a): (i) at all latitudes the Dst-index must change by less
than 2 nT hr−1; (ii) at non-polar latitudes (equatorwards of 60◦ geo-
magnetic dipole latitude) it is required that K p ≤ 2o; (iii) for regions
polewards of 60◦ geomagnetic latitude the merging electric field at
the magnetopause must be less than 0.8 mVm−1; (iv) only data
from dark regions (sun 10◦ below horizon) were used; (v) vector
data were accepted for geomagnetic dipole latitudes equatorwards
of ± 60◦ while only scalar data were used for regions polewards of
±60◦ or if attitude data were not available and (vi) non-polar
CHAMP data are used only after local midnight, to avoid the in-
fluence of the diamagnetic effect of dense plasmas. This selection
criteria has in the past successful enabled the construction of high
resolution models of both the core and crustal magnetic field.

From the observations in the xCHAOS 03p 08 data set we sub-
tracted the xCHAOS model predictions for the external (magneto-
spheric) field and for the core field and its secular variation up to
spherical harmonic degree 14. We refer to this set of corrected ob-
servations as xCHAOS-corr : they are observations of the magnetic
signal due to crustal magnetization of interest, but also contain un-
wanted contaminating signals from ionospheric electrical currents,
tidal and steady current driven induction in the oceans; induction
in the 3-D conducting mantle, lithosphere and oceans driven by
external electric currents, measurement errors, and errors due to
imperfections in the core and magnetospheric models that were
subtracted. To obtain a spatially homogeneous, magnetically quiet,
data set we further decimated xCHAOS-corr retaining a subset fill-
ing as well as possible a dense equal area grid consisting of 360
bins equally spaced in cosine latitude by 720 bins equally spaced
in longitude. Within each bin we selected the datum that deviated
least (in an absolute sense) from the xCHAOS prediction using the
full model up to degree 50. Vector data from CHAMP were prefer-
entially selected (due to their lower altitude), then vector data from
Ørsted, then scalar data. For vector data the rms deviation of the
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Table 1. Statistics of the satellite data set xCHAOS-corr-sub used in this study for crustal field estimation.

Data Source Geomag. Lat. range Comp. N Mean (nT) rms (nT) Error Est. (nT)

CHAMP |mlat | ≤ 60◦ X , Y , Z 348 396 0.01 3.82 3.5
|mlat | ≤ 60◦ F 1085 −0.44 3.89 3.5
|mlat | > 60◦ F 11 545 −1.29 8.54 8.0

Ørsted |mlat | ≤ 60◦ X , Y , Z 150 705 −0.04 5.23 5.0
|mlat | ≤ 60◦ F 17 252 0.57 2.48 2.5
|mlat | > 60◦ F 11 291 1.19 5.21 5.0

SAC-C |mlat | ≤ 60◦ F 10 342 0.11 3.07 2.5
|mlat | > 60◦ F 6038 −0.04 5.17 5.0

Notes: The core field (up to degree 14) and magnetospheric field predicted by xCHAOS have been
removed. mlat refers to the geomagnetic latitude in degrees. The number of data in each category, their
mean and rms values in nT and estimated errors used in the inversions are reported in the final column.

three field components was used for selection. This procedure re-
sulted in 556 655 data suitable for estimating the crustal magnetic
field; we refer to this data set as xCHAOS-corr-sub. We acknowl-
edge that our data selection criteria suffers from the problem that
noise could in some cases fortuitously reduce the residual from the
xCHAOS model with the result that the selected data might not be
the least disturbed. Further investigation is needed concerning how
best to combine data within a bin to produce unbiased field models.
It could also be argued that when seeking to determine the crustal
field it is be better to use only CHAMP data in which the crustal field
signature is strongest and to use more quieter intensity data than
we have chosen. For these reasons we refer to the models reported
in Section 4.3 as prototypes. Though sufficient to demonstrate our
modelling approach, they could undoubtedly be improved by a more
sophisticated treatment of the data.

Table 1 summarises the statistics of the xCHAOS-corr-sub real
data set, separated by satellite and field components. Note that the
mean values of all the data subsets are fairly close to zero indicat-
ing that no large biases are present. The rms values for the Ørsted
vector data are somewhat higher than those of the CHAMP vector
data because the quietest low altitude CHAMP data are preferred
during the selection process and because Ørsted vector data contain
additional errors due to attitude uncertainty (Olsen 2002). The es-
timated errors we used to weight the data (through the covariance
matrix Ce) during inversions for field models are given in the final
column of Table 1.

3.2 Synthetic data

To benchmark the inversion scheme described in Section 2, we
first carried out tests using a synthetic data set. This is derived
from a prior crustal magnetic field synthesized from the geology-
based forward model of Hemant & Maus (2005) and the NGDC-720
model (Maus 2006) which was one of the candidate models for the
World Digital Magnetic Anomaly Map (Korhonen et al. 2007). The

NGDC-720 model of Maus (2006) is derived from marine, aero-
magnetic and ground survey data (Maus et al. 2007a) together with
a satellite field model (Maus et al. 2007b). The model of Hemant &
Maus (2005) is used for spherical harmonic degrees 16–80 and the
NGDC-720 model of Maus (2006) is used for spherical harmonic
degrees 81–140. We argue that the resulting model constitutes a
geophysically plausible high resolution crustal magnetic field that
can be used as a test of our inversion scheme. We transformed this
synthetic spherical harmonic crustal field model onto a STT-grid
with of 12 962 nodes. It is this STT model which is the synthetic
reference ‘truth’ with which we compare the results of our test
inversions.

We next constructed a data set that is as close as possible to the
real satellite data set xCHAOS-corr-sub by evaluating the appropri-
ate field components (vector or scalar) from the synthetic reference
‘truth’ model at the geographical positions (co-latitude, longitude
and altitude) of the xCHAOS-corr-sub data. We refer to this noise-
free data set as xCHAOS-SYN-HMN nf —it was used to benchmark
the inversion scheme as reported in Section 4.1. To this noise-free
data set we added two independent noise sources. The first was
designed to mimic noise due to unmodelled ionospheric auroral
electrojet currents that we believe to be an important source of
error, particularly in the CHAMP observations. It consists of ran-
dom samples from a Laplacian probability density function (see,
e.g. Walker & Jackson 2000) weighted by a spatial varying ampli-
tude function with maximum amplitude at 110 km altitude in the
auroral region. The amplitude scaling was chosen so its maximum
value at 400 km altitude was 30 nT. In addition, a second source of
random noise, this time drawn from a Gaussian probability density
function, was added to account for additional noise sources specific
to the vector and scalar measurements made by each satellite (see
the rows of Table 2). The amplitude of this second noise source
was chosen to bring the rms variability of each of these data subsets
close to the estimated errors for the real data reported in Table 1. The
statistics of the final synthetic data set xCHAOS-SYN-HMN used to

Table 2. Statistics of the synthetic data set xCHAOS-SYN-HMN used for the synthetic tests.

Data Geomag. Lat. Range Comp N Mean (nT) rms (nT) Error Est. (nT)

CHAMP |mlat | ≤ 60◦ X , Y , Z 348 396 0.00 3.80 3.5
|mlat | ≤ 60◦ F 1085 −0.06 3.84 3.5
|mlat | > 60◦ F 11 545 0.02 8.51 8.0

Ørsted |mlat | ≤ 60◦ X , Y , Z 150 705 0.00 5.22 5.0
|mlat | ≤ 60◦ F 17 252 0.00 2.44 2.5
|mlat | > 60◦ F 11 291 −0.11 5.17 5.0

S AC − C |mlat | ≤ 60◦ F 10 342 0.01 3.02 2.5
|mlat | > 60◦ F 6038 −0.05 5.14 5.0

Note: The data have been separated into the same categories as the real satellite data set reported in Table 1.
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obtain the inversion results reported in Section 4.2 are presented in
Table 2.

4 R E S U LT S

4.1 Benchmark test with noise-free data

First, we report results of a simple test based on noise-free syn-
thetic observations that constitutes a benchmark of our STT crustal
field modelling method. The data set used for this test was the
noise-free compilation xCHAOS-SYN-HMN nf derived from the
synthetic ‘truth’ crustal field model described in Section 3.2. For all
the synthetic tests we used a STT grid with a refinement of 2 × 2
× 3 × 3 consisting of 12 962 nodes and 25 920 spherical triangles
(or cells) with triangle sides of approximately 220 km. Note that
the same STT grid was used in the construction of the synthetic
‘truth’ model. The benchmark involved performing an inversion
using quadratic regularization with an extremely small damping pa-
rameter, λ = 1 × 10−7 (nT)−2. We were able to almost perfectly
reproduce the synthetic ‘truth’ obtaining a correlation coefficient
of 1.0000 and a rms percentage difference between the retrieved
field and the true field of 0.14 per cent; further quantitative details
are presented in Tables 3 and 4. This successful benchmark shows
that our STT crustal field modelling scheme functions correctly and
illustrates that our data sets are sufficient to allow accurate field
reconstruction of small scale field structures, assuming noise levels
are sufficiently low.

4.2 Synthetic test: inversion for a known crustal field
from noisy data

To test the performance of the method in more detail with
noisy data and to compare the merits of quadratic and maxi-
mum entropy regularization a further suite of synthetic tests was
carried out. These were based on the noisy synthetic data set
xCHAOS-SYN-HMN described in Section 3.2 and also involve a
STT model with 12 962 nodes and 25 920 spherical triangles.

The test inversions with the noisy data were carried out with the
damping parameter λ = 1 × 10−3 (nT)−2. This was found to corre-
spond approximately to the knee of the trade-off (or L-curve) where
misfit is plotted against model norm (e.g. Hansen 1998; Gubbins
2004; Aster et al. 2005). The trade-off curve was constructed from
inversions using first an L2-norm measure of misfit then further
iterations with an L1-norm measure of misfit. The number of iter-
ations was limited by the computational expense, but the models
were sufficiently converged to correctly establish the shape of the
trade-off curve. The model with λ = 1 × 10−3 (nT)−2 and using the
quadratic norm for regularization is referred to as the ‘quadratic’
model in Tables 3, 4 and discussion below.

Starting with the ‘quadratic’ model a series of maximum entropy
inversions (also derived using the L1-norm measure of misfit), for a
range of the default parameter w were carried out. We reiterate that
the same damping parameter was employed for both the quadratic
and maximum entropy regularized inversions. The level of misfit
between all the entropy regularized models and the synthetic data
set was very similar and close to 1, indicating, unsurprisingly, that
our error estimates correctly quantified the level of noise we added

Table 3. Statistics of the inverted models derived from the synthetic data set xCHAOS-SYN-HMN .

Model λ (nT)−2 w (nT) σBr (nT) min (Br) (nT) max (Br) (nT) misfit (L1)

Truth (L = 140) – – 37.872 −801.035 446.608 1.092
Truth (L = 60) – – 16.094 −148.447 148.960 1.093

Benchmark 1 × 10−7 – 37.873 −801.053 446.669 0.035
Quadratic 0.001 – 16.463 −168.196 133.814 1.087
Entropy 0.001 50.0 14.599 −190.029 140.181 1.088

0.001 30.0 14.094 −233.941 158.274 1.088
0.001 20.0 14.493 −264.804 171.305 1.088
0.001 15.0 14.916 −285.014 183.480 1.087
0.001 10.0 15.836 −359.102 225.160 1.087
0.001 5.0 17.142 −382.002 246.146 1.087

Notes: λ is the preferred damping parameter and w the chosen default value. σBr is the rms value of the Br field amplitude at the
models nodes. Min and max are the minimum and maximum node values of Br, respectively. Misfit (L1) stands for the L1-norm
measure of misfit of the model to the data, normalized by the error estimates.

Table 4. Statistics of the difference between the retrieved models from the synthetic data set xCHAOS-SYN-HMN and the ‘truth’
reference model (L = 140).

Model λ (nT)−2 w (nT) σ diff (nT) ρ140 ρ60

Truth (L = 140) – – 0.000 1.0000 0.4260
Truth (L = 60) – – 16.094 0.4260 1.0000

Benchmark 1 × 10−7 – 0.052 1.0000 0.4260
Quadratic 0.001 – 35.013 0.3845 0.7248
Entropy 0.001 50.0 34.909 0.3883 0.7778

0.001 30.0 34.812 0.3944 0.7742
0.001 20.0 34.772 0.3965 0.7677
0.001 15.0 34.761 0.3969 0.7584
0.001 10.0 34.715 0.4001 0.7381
0.001 5.0 34.915 0.3921 0.6979

Notes: λ is the preferred damping parameter, w the chosen default value and σ diff refers to the rms difference between the inverted
and reference ‘truth’ (L = 140) models. ρ is the correlation coefficient of the inverted model to the reference ‘truth’ model
truncated at spherical harmonic degree L = 60 and at full resolution (L = 140).
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to the perfect synthetic observations. Statistics for the reference
synthetic ‘truth’ model, a version of the ‘truth’ truncated at spherical
harmonic degree L = 60, the ‘quadratic’ model and entropy models
with the default parameter w varying between 50 and 5 nT are
presented in Table 3.

To quantify the success of the inversions we use the follow-
ing definition of the correlation coefficient in physical space, (see,
e.g. Rice 1995, p. 132 and Langel & Hinze 1998, p. 79),

ρ =
∑M

i=1(Br )i (Bref
r )i√∑M

i=1(Br )2
i

∑M
i=1(Bref

r )2
i

, (32)

where (Br)i and (Bref
r )i are the radial magnetic field of the inverted

model and the reference synthetic ‘truth’ model at the ith model
node, respectively. We report ρ for the inverted models compared
to the full reference ‘truth’ model up to spherical harmonic degree
L = 140 (ρ140) and to the same model truncated at degree L =
60 (ρ60) together with the standard deviation of the rms differences
between the inverted and full reference models (σ diff ) in Table 4.
Fig. 2 shows Hammer–Aitoff projection plots of the radial compo-
nent of the full (L = 140) reference ‘truth’ model (top) at Earth’s
surface in nT, the ‘quadratic’ regularized model (middle) and our
preferred entropy regularized model with highest ρ140(w = 10 nT)
(bottom), also at Earth’s surface in units of nT.

4.3 STT models of Earth’s crustal magnetic field derived
from real satellite data

In this section, we present results concerning two new STT based
prototype models of the crustal magnetic field at Earth’s reference
spherical surface derived from the satellite data set xCHAOS-corr-
sub described in Section 3.1. These models involve STT-grids with
a refinement of 2 × 2 × 2 × 2 × 3 consisting of 23 042 nodes
and 46 080 spherical triangles (with approximate triangle sides
of 1.5◦ or 170 km). Note however that it is the information con-
tent of the data and strength of the imposed regularization rather
than the grid spacing that control the minimum lengthscale that
can be imaged. These models were built in a similar manner to
the models constructed with synthetic data described above. The
damping parameter for both models was chosen to be λ = 2.5 ×
10−4 (nT)−2 which is close to the knee of the trade-off curve. The
default parameter for the entropy inversions was also chosen to
be w = 10 nT based on experience with the synthetic experi-
ments (though we acknowledge that the noise level was some-
what higher in the synthetic tests compared to the real scenario
and our reference ‘truth’ was not the real crustal field ). An L1-
norm measure of misfit was employed and the models were iterated
until satisfactory convergence was reached according to the cri-

teria
√∑M

i=1[(mk)i − (mk+1)i ]2/
∑M

i=1[(mk+1)i ]2 < 10−2. Hence-
forth we refer to the quadratic model derived from the real data as
STT-CRUST-Q and the preferred entropy model (with w = 10nT)
derived from the real data as STT-CRUST-E.

In Fig. 3, we present plots of the radial magnetic field at Earth’s
surface in units of nT for STT-CRUST-Q (top panel) and STT-CRUST-
E (bottom panel). To judge the quality of our models we compared
them to a model that is thought to represent very well the large scale
field [the GRIMM model for spherical harmonic degrees 15–45
(Lesur et al. 2008)—see Fig. 4 (top panel)] and also to a more am-
bitious model that claims to also represent smaller scale features
[the MF6 model for degrees 16–120 (Maus et al. 2008)—see Fig. 4
(bottom panel)]. The Lowes spectrum (Lowes 1974) showing the

variance per degree at Earth’s reference radius (up to degree 120)
for xCHAOS, MF6, GRIMM , STT-CRUST-Q and STT-CRUST-E is
presented in Fig. 5. Complementary information is given in Fig. 6
where the spherical harmonic degree correlation between our two
STT-models and the three spherical harmonic models is presented.
Note however that constructing these two figures required an im-
perfect transformation from the piecewise linear STT models to
an infinitely differentiable spherical harmonic representation. Fi-
nally, a local comparison between STT-CRUST-E (middle panel),
GRIMM (left-hand panel) and MF6 model (right-hand panel) for
North America is presented in Fig. 7.

Statistical information concerning STT-CRUST-Q and STT-
CRUST-E together with similar details for GRIMM , xCHAOS and
MF6 are presented in Table 5. The misfit for both STT-CRUST-Q
and STT-CRUST-E are less than 1.0. Since their damping parameters
were chosen so they were close to the knee of the trade-off curve
this indicates that our a priori error estimates reported in Table 1
were rather pessimistic. Note that the reported misfits for GRIMM ,
xCHAOS and MF6 refer to predictions from these models (which
were derived from other data sets) transformed to a 23 042 node
STT-grid and compared to the xCHAOS-corr-sub data set.

5 D I S C U S S I O N

5.1 Quadratic regularization versus entropy regularization

The ‘quadratic’ and ‘entropy’ models obtained in the synthetic tri-
als in the presence of noise contamination appear rather similar at
first glance—see Fig. 2, but careful examination of the correlation
coefficients in the Table 4 and the recovered amplitudes reveals that
entropy regularization (with w = 10 nT) performs slightly better
at retrieving the full (L = 140) synthetic truth than conventional
quadratic regularization. It appears that the difference between en-
tropy and quadratic regularization is less extreme in the crustal field
problem than in the core field problem (Jackson et al. 2007a) be-
cause the core field problem involves a more severe deconvolution
problem due to the larger distance between the sources and the
observations. How much better the entropy method does also de-
pends on the choice of the default parameter w. If one is interested
in reconstructing the full synthetic ‘truth’ including small scales
as closely as possible, a choice of default parameter w = 10 nT
performs best; on the other hand if one only wishes to reconstruct
the larger scales (for example, up to L = 60) then a higher choice
of w = 50 nT (closer to quadratic regularization) is better suited.
A general problem with the maximum entropy method is that one
requires prior knowledge of the field of interest in order to choose
the default parameter (Skilling 1998; Maisinger et al. 2004).

The retrieved synthetic images in the experiments involving noisy
data (for both choices of regularization) were somewhat disappoint-
ing with only the largest scale details of the reference ‘truth’ recov-
ered. This was a consequence of the large amplitude of the noise
that was added, which turned out to be more than that present in
the real data. The high levels of noise necessitated rather heavy
regularization which prevented the small scales from being imaged.
Note however that stable images free from spurious structures were
obtained using the STT-regularized method even at auroral latitudes
where the amplitude of the imposed noise was largest. These syn-
thetic tests illustrate that when attempting to image the small scale
crustal field it is the quality of the observations rather than the
imaging technique that is often the limiting factor.
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Figure 2. Radial magnetic field Br at Earth’s surface (in units of nT) for the true (L = 140) reference model (top panel) the quadratic regularized model
(middle panel) and entropy regularized (bottom panel) with default parameter w = 10 nT, derived from the synthetic data set xCHAOS-SYN-HMN . Both
inverted models were constructed using a damping parameter of λ = 1 × 10−3 (nT)−2 (Hammer-Aitoff projection).

C© 2009 The Authors, GJI, 179, 929–944

Journal compilation C© 2009 RAS



Imaging Earth’s crustal magnetic field 939

Figure 3. Radial magnetic field Br at Earth’s surface (in units of nT) for the quadratic regularized model STT-CRUST-Q (top panel) and entropy regularized
model STT-CRUST-E with default parameter w = 10 nT (bottom panel). These models were derived from the real data set xCHAOS-corr-sub with a damping
parameter of λ = 2.5 × 10−4 (nT)−2 (Hammer-Aitoff projection). [Correction made after online publication 14 September 2009: the lower panel of Fig. 3 has
been replaced.]

5.2 STT-CRUST field models from real data: comparison
with previous models

The models STT-CRUST-Q and STT-CRUST-E we constructed from
the real data are very similar as shown by their correlation coef-
ficient of 0.960 reported in Table 5. [Correction made after on-
line publication 14 September 2009: in the preceding sentence, the
value ‘0.941’ has been changed to ‘0.960’.] The quadratic model
STT-CRUST-Q represents a rather conventional solution containing
the minimum squared radial field required by the observations. It
probably under-estimates the flux associated with some intense field
features and also likely smoothes out some genuine small scale fea-
tures. The entropy regularized model STT-CRUST-E might give a
slightly more faithful image of Earth’s crustal field, since high ampli-
tude structures are not penalized during its construction. It possesses
higher amplitude flux features and sharper boundaries in the field
morphology.

Comparing global maps of the radial magnetic field at Earth’s sur-
face from STT-CRUST-Q and STT-CRUST-E in Fig. 3 with GRIMM

(to degree 45) and MF6 (to degree 120) in Fig. 4 it should first be
noted that the STT models agree well with what is robustly known
(as represented in the plot of the GRIMM model) concerning the
structure of the large scale crustal field. This is true even in oceanic
regions of low field amplitude and at polar latitudes, despite the
use of very different data selection criteria and numbers of data.
On the other hand, compared to the MF6 model the STT models
contain much less energy and sparser structures with differences
most striking at the mid-to-high latitudes where the auroral elec-
trojet currents contaminate the magnetic signal and crustal field
estimation is difficult. Large differences are also obvious close to
high amplitude continental anomalies, especially in eastern Europe,
central Africa and Australia. This is apparently because in these re-
gions our models contain sparser structures, with magnetic field
energy more localized, although sometimes MF6 also has signifi-
cantly larger field amplitudes. Though our models certainly do not
capture as much small scale detail as MF6, we are confident that
those features present in the STT images are required to fit the
xCHAOS-corr-sub data set. However, we are also aware that our
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Figure 4. Radial magnetic field Br at Earth’s surface (in units of nT) from the GRIMM model of Lesur et al. (2008) for spherical harmonic degree 15–45 (top
panel) and from the MF6 model of Maus et al. (2008) for degree 16–120 (bottom panel) (Hammer-Aitoff projection).

models contain a small number of anomalous features possibly due
to along track noise that remains in the xCHAOS-corr-sub data set
which seems to require some further processing. In the future, using
new improved data sets or data sets better optimized for studying
small scale crustal fields, we expect the STT-regularized modelling
method to will continue to perform well and to robustly image even
smaller scale structures.

Quantitative comparisons between spherical harmonic crustal
field models are often carried out on the basis of Lowes spectra
and calculation of the spherical harmonic degree correlation. This
is undoubtedly a valuable diagnostic approach, so we transformed
our STT models to the spherical harmonic domain to permit such a
comparison—the results for the power spectrum and the degree cor-
relation are presented in Figs 5 and 6, respectively. The STT models
agree rather well with MF6, GRIMM and xCHAOS up to degree 40;
thereafter the STT models have lower power, though STT-CRUST-E
has slightly higher power than STT-CRUST-Q. This is to be expected
because the STT-CRUST models are minimum norm models, that is,
they possess the minimum complexity required to fit the data while
MF6, GRIMM and xCHAOS are constructed using least-square or

least-absolute deviation fits to the observations and model trunca-
tion. The degree correlation of the STT models with the xCHAOS
model is higher (over 0.9 for all degrees up to L = 50), than with
the other two models. That is likely because our real data set is a
subset of the data set used to build the xCHAOS model and because
xCHAOS itself was used in the data selection procedure. The degree
correlation of the STT models with GRIMM and MF6 was also good
up to degree 45. The correlation with MF6 falls away rapidly be-
yond degree 55 at which point the regularization begins to strongly
control the form of the STT solutions as also seen in their Lowes
spectra which begin to decay around this degree. Although these
results are interesting, we wish to point out again that transforming
from a STT grid to spherical harmonics is not an exact procedure
and results in some loss of power making precise comparisons in
the spherical harmonic domain problematic.

The local comparison for North America between STT-CRUST-
E, GRIMM and MF6 presented in Fig. 7 nicely summarises how
our STT models are intermediate in complexity between GRIMM
and MF6. Again, the STT-CRUST-E model captures the same large
scale structures as GRIMM , but also shows higher amplitudes
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Figure 5. Lowes spectrum showing power (variance) per degree of the xCHAOS model (red line), the MF6 model (blue line), the GRIMM model (black line),
the STT-CRUST-Q model (green line) and the STT-CRUST-E model (violet line). [Correction made after online publication 14 September 2009: Fig. 5 has been
replaced.]
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Figure 7. North America regional map of radial magnetic field Br at Earth’s surface (in units of nT) from the STT-CRUST-E model (middle panel), the GRIMM
model of Lesur et al. (2008) (left-hand panel) and the MF6 model of Maus et al. (2008) (right-hand panel) (Mercator projection). [Correction made after online
publication 14 September 2009: Fig. 7 has been replaced.]

Table 5. Statistics of the models retrieved from the real data set xCHAOS-corr-sub.

Model λ (nT)−2 w (nT) σBr (nT) min(Br) (nT) max(Br) (nT) misfit (L1) ρ

STT-CRUST-Q 0.00025 – 26.011 −370.384 292.306 0.884 0.960
STT-CRUST-E 0.00025 10.0 27.950 −629.045 607.050 0.883 1.000

GRIMM (L = 45) – – 20.123 −135.500 125.848 0.920∗ 0.554∗
xCHAOS (L = 50) – – 22.812 −159.571 170.435 0.908∗ 0.624∗

MF6 (L = 120) – – 40.973 −927.931 571.577 0.953∗ 0.602∗

Notes: λ is the preferred damping parameter and w the chosen default value. σBr is the rms value of the Br field amplitudes. Min and
max are the minimum and maximum field values, respectively. Misfit (L1) stands for the L1-norm measure of misfit of the model to the
data normalized by the estimated errors, while ρ gives the correlation coefficient between STT-CRUST-E and the other models. The
misfits and correlation coefficient marked with * are calculated after the original spherical harmonic models are transformed to a
23 042 node STT-grid.
[Correction made after online publication 14 September 2009: values in Table 5 have been corrected.]

and finer details of the geologically interesting structures such as
the linear anomaly associated with the Baja California peninsula.
Furthermore, Fig. 7 shows how many of the smaller scale structures
present in STT-CRUST-E can also be identified in MF6, though
MF6 also contains much greater structure especially at high lati-
tudes where the resolving ability of the STT models presented here
was limited by the assignment of cautious error estimates. We be-
lieve the STT-crust models presented here are of interest because
they are stable at Earth’s surface, have not been arbitrarily truncated,
and contain some sharp, localized structures.

In the future, with higher quality data and better external field
models becoming available, workers should be able to construct
crustal field images with lower values of the damping parameter
λ, enabling small scale structures to be reliably imaged with both
the quadratic and entropy regularization techniques. Such models
may require finer grids to ensure that the obtained images are still
controlled by model regularization rather than choice of grid size;
although further STT grid refinements are currently computation-
ally challenging this will certainly not be a major restriction in the
years ahead as computing power continues to improve. Furthermore,
the local basis nature of the STT representation opens the door to
the possibility of local variations in the level of grid refinement, so
for example, higher resolution grids could be constructed in regions
where the data quality and spacing justify a more complex model.
Development of the STT interpolation scheme from linear to higher
order is also in principle a possibility that could be explored in fu-
ture work. Finally, we note that the forward scheme is sufficiently
flexible that magnetic field spatial gradient observations can easily
be predicted and thus utilized in the inversion procedure; this is

likely to be important when using data from future constellations of
magnetic satellites.

6 C O N C LU S I O N S

New images of the crustal magnetic field at Earth’s surface have
been successfully constructed by inverting CHAMP, Ørsted and
SAC-C satellite observations for a STT model consisting of local
parameters. An absolute deviation measure of misfit was employed
that is more robust to the presence of outliers than the conventional
least squares approach. The resulting models possess comparable
resolution to other recent spherical harmonic models derived from
similar satellite data sets. Good agreement of the large scale struc-
tures with the GRIMM model was found, while the stable smaller
scale structures imaged were often compatible with features present
in the MF6 model.

The STT crustal field models are able to satisfactorily account
for the (noise contaminated) satellite observations whilst minimiz-
ing a global measure of field complexity. The later regularization
procedure ensures the models are by construction stable at Earth’s
surface. Using a quadratic measure of field complexity and picking
a model close to the knee of the misfit-norm trade-off curve was
found to be a reliable procedure for producing satisfactory images
of the crustal field at Earth’s surface; the model STT-CRUST-Q was
constructed in this manner. Using an entropy measure of field com-
plexity with a default parameter of w = 10 nT resulted in the model
STT-CRUST-E. This model is structurally sparse with sharp, well-
localized features: regional comparisons of it with previous models
(see Fig. 7) demonstrate the merits of the regularized STT approach.
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The method of crustal field imaging presented here is a useful
alternative to more conventional spherical harmonic schemes. Its
local nature may become an even greater advantage when data
accuracy and resolution improve, as is anticipated with upcoming
multisatellite missions.
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Olsen, N., Lühr, H., Sabaka, T.J., Mandea, M., Rother, M., Tøffner-Clausen,
L. & Choi, S., 2006a. CHAOS—a model of the Earth’s magnetic field de-
rived from CHAMP, ørsted, and SAC-C magnetic satellite data, Geophys.
J. Int., 160, 79–88.

Olsen, N. et al., 2006b. The Swarm end-to-end mission simulator study: a
demonstration of separating the various contributions to Earth’s magnetic
field using synthetic data, Earth Planets Space, 58, 359–370.

Parker, R.L., 1994. Geophysical Inverse Theory, Princeton Univ. Press,
Princeton, NJ.

Parker, R.L. & Shure, L., 1982. Efficient modelling of Earth’s magnetic field
with harmonic splines, Geophys. Res. Lett., 9, 812–815.

Purucker, M.E., 2008. A global model of the internal magnetic field of
the Moon based on Lunar prospector magnetometer observations, Icarus,
197, 19–23.

Purucker, M.E. & Whaler, K.A., 2007. Crustal magnetization, Treatise Geo-
phys., 5, 195–235.

Purucker, M.E., Sabaka, T.J. & Langel, R.A., 1996. Conjugate gradient
analysis: a new tool for studying satellite magnetic data sets, Geophys.
Res. Lett., 23, 1507–1510.

Ravat, D., Langel, R.A., Purucker, M.E., Arkani-Hamed, J. & Alsdorf, D.E.,
1995. Global vector and scalar Magsat magnetic anomaly maps., J. geo-
phys. Res., 100, 20 111–20 136.

Regan, R.R., Cain, J.C. & Davis, W.M., 1975. A global magnetic anomaly
map, J. geophys. Res., 80, 794–802.

Rice, J.A., 1995. Mathematical Statistics and Data Analysis, Duxbury Press,
Belmont, CA.

Sabaka, T.J., Olsen, N. & Langel, R.A., 2002. A comprehensive model of
the quiet-time, near-Earth magnetic field: phase 3, Geophys. J. Int., 151,
32–68.

Sabaka, T.J., Olsen, N. & Purucker, M., 2004. Extending comprehensive
models of the Earth’s magnetic field with Ørsted and CHAMP data,
Geophys. J. Int., 159, 521–547.

Scales, J.A., Gersztenkorn, A. & Treitel, S., 1998. Fast lp solution of large,
sparse, linear systems: application to seismic travel time tomography, J.
Comp. Phys., 75, 314–333.

Shannon, C.E., 1948. A mathematical theory of communication, Bell Syst.
Tech. J., 27, 379–423.

Shure, L., Parker, R.L. & Backus, G.E., 1982. Harmonic splines for geo-
magnetic modelling, Phys. Earth planet. Inter., 28(3), 215–229.

Simons, F.J. & Dahlen, F.A., 2006. Spherical slepian functions and the polar
gap in geodesy, Geophys. J. Int., 166, 1039–1061.

Simons, F.J., Dahlen, F.A. & Wieczorek, M.A., 2006. Spatiospectral local-
ization on a sphere, SIAM Rev., 48, 504–536.

Sivia, D.S. & Skilling, J., 2006. Data Analysis: A Bayesian Tutorial, Oxford
Univ. Press, Oxford.

Skilling, J., 1988. The axioms of maximum entropy, In Maximum En-
tropy and Bayesian Methods on Science and Engineering,Vol. 1,
pp. 173–187.

Skilling, J., 1998. Massive inference and maximum entropy, in Maximum
Entropy and Bayesian Methods on Science and Engineering, pp. 1–14.

Tarantola, A., 2005. Inverse Problem Theory and Methods for Model Param-
eter Estimation, SIAM, Society for Industrial and Applied Mathematics,
Philadelphia.
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