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In everyday life, humans often encounter complex environments in
which multiple sources of information can influence their decisions.
We propose that in such situations, people select and apply differ-
ent strategies representing different cognitive models of the
decision problem. Learning advances by evaluating the success of
using a strategy and eventually by switching between strategies. To
test our strategy selection model, we investigated how humans
solve a dynamic learning task with complex auditory and visual
information, and assessed the underlying neural mechanisms with
functional magnetic resonance imaging. Using the model, we were
able to capture participants’ choices and to successfully attribute
expected values and reward prediction errors to activations in the
dopaminoceptive system (e.g., ventral striatum [VS]) as well as
decision conflict to signals in the anterior cingulate cortex. The
model outperformed an alternative approach that did not update
decision strategies, but the relevance of information itself. Acti-
vation of sensory areas depended on whether the selected strategy
made use of the respective source of information. Selection of a
strategy also determined how value-related information influenced
effective connectivity between sensory systems and the VS. Our
results suggest that humans can structure their search for and use
of relevant information by adaptively selecting between decision
strategies.

Keywords: model-based fMRI, reinforcement learning, reward, ventral
striatum

Introduction

In the past decade, the understanding of the neural mechan-
isms that guide human learning and decision-making has
been strongly promoted by the combination of brain imaging
and computational modeling of cognition and behavior (Daw
and Doya 2006; O’Doherty et al. 2007; Rangel et al. 2008;
Glimcher et al. 2009). The rationale is that mathematical
models provide researchers with precise trial-by-trial predic-
tions of internal states of the cognitive system, which can be
regressed against functional magnetic resonance imaging
(fMRI) data to track their neural correlates (O’Doherty et al.
2007). Initially, fMRI studies applied traditional reinforcement
learning (RL) models, such as the Rescorla–Wagner model
(Rescorla and Wagner 1972) or temporal difference (TD)
learning models (Sutton and Barto 1998), to unravel the neural
mechanisms of elementary learning processes, such as classi-
cal and instrumental conditioning (O’Doherty et al. 2003,
2004; Gläscher and Büchel 2005). O’Doherty et al. (2003), for
instance, were able to associate reward expectations and
reward prediction errors (RPEs) with changes in the blood
oxygen level-dependent (BOLD) fMRI signal in the ventral
striatum (VS) and the orbitofrontal cortex using a TD model.

However, recent work suggests that in more complex
decision-making scenarios, human learning behavior can be
better described by more sophisticated, so-called “model-
based” learning approaches (Hampton et al. 2006; Behrens
et al. 2007; Gläscher et al. 2010; Daw et al. 2011). These learn-
ing models assume humans to create an internal represen-
tation of the decision environment, which allows speeding up
the learning process and facilitating the adaptation to chan-
ging environments (Sutton and Barto 1998; Daw et al. 2005;
Gershman and Niv 2010). Critically, the advantage of using
an internal model to guide decisions depends on whether this
model sufficiently matches the environment. Therefore, the
decision maker has to learn about the adequacy of different
internal models and to select an appropriate one for making
accurate inferences. In this vein, a “model” is represented by a
decision strategy. The strategy prescribes which sources of
information should be taken into account and how this infor-
mation should be processed to arrive at a final decision
(Hutchinson and Gigerenzer 2005). Moreover, by being
equipped with a repertoire of strategies (i.e., multiple models
of the environment), the decision maker can learn to select
the strategy that represents the environment best. In the
decision sciences, the concept of a “repertoire” of decision
strategies is very prominent (e.g., Tversky and Kahneman
1974; Payne et al. 1988, 1993; Gigerenzer et al. 1999).

Rieskamp and Otto (2006) introduced a computational
model of adaptive strategy selection, the strategy selection
learning (SSL) theory, and demonstrated its capability to
account for human choice behavior and learning in complex
decision-making situations (see also Rieskamp 2006, 2008;
Mata et al. 2007, 2010; Rieskamp and Hoffrage 2008). SSL
assumes that people possess a repertoire of decision strategies
that have been proved successful in the past. To solve a new
decision problem, a particular strategy is selected based on
the subjective expectation that using this strategy is suitable
in the current scenario. Learning takes place by updating the
strategy’s expectation on the basis of received feedback,
which may result in adopting a different strategy for future
choices. SSL represents an RL approach, because the learning
process is solely based on feedback on the outcome of a
decision and does not require a teaching signal about the
optimal decision (unlike supervised learning).

The purpose of the present study was to test whether SSL
can describe human learning and decision-making behavior
and unravel its neural correlates in a complex scenario with
multiple sources of information. Furthermore, we were inter-
ested in how the selection between strategies influences the
attention to and use of sensory information that might or
might not be relevant to the decision (Khader et al. 2011). To
investigate this, we designed a learning task (Fig. 1), in which
participants decided between buying or rejecting fictitious
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stock offerings of unknown value. They had to infer the at-
tractiveness of each stock based on numerous cues (i.e., stock
ratings and stock trend) presented in 2 different sensory
domains (i.e., visual and auditory). Participants were not told
to what extent these cues were informative, but that they
could learn about their relevance by considering the feed-
back. In fact, we manipulated cue validities by 2 consecutive
environmental conditions: In the compensatory environment,
all cues contributed equally to the determination of the stock
values, whereas in the noncompensatory environment, only
the auditory cue was relevant.

We hypothesized that the complexity of the paradigm (a
large amount of information of unknown relevance, short de-
liberation time, and unspecific feedback) and the disjunction
of cues into separate sensory domains (visual, auditory)
would drive our participants to use particular strategies that
simplify the decisions and the learning process. Reward-based
learning and decision-making parameters have been repeat-
edly associated with the dopaminergic system of the primate
brain (Schultz et al. 1997; O’Doherty et al. 2003; Bayer and
Glimcher 2005; Knutson et al. 2005; Hampton et al. 2006;
Pessiglione et al. 2006; Kable and Glimcher 2007), and this
connection appears to apply to model-based RL as well
(Hampton et al. 2006; Daw et al. 2011; Wunderlich et al.
2012). Further evidence for a central role of this neuronal
circuitry comes from lesion studies (Damasio 1994; Fellows
2011). Thus, we expected to find neural correlates of subjec-
tive expected value (EV) and RPE as derived from SSL in the
VS and the ventromedial prefrontal cortex (vmPFC). We also
tested whether decision conflict (again, quantified on the
basis of SSL) is represented in the anterior cingulate cortex
(ACC; Botvinick et al. 2004; Pochon et al. 2008; Pine et al.
2009; Venkatraman et al. 2009). To strengthen the evidence
for an adaptive strategy selection process, we compared the
behavioral and neuronal fit of SSL with an alternative learning
approach that is based on updating the relevance of each cue
separately, the additive linear model (ALM; Gluck and Bower
1988; Rieskamp 2006; Kelley and Busemeyer 2008). Finally,
we hypothesized that, due to the irrelevance of visual infor-
mation in the noncompensatory environment, participants
would learn to adopt a strategy that solely relies on the audi-
tory cue. This should result in a reduced fMRI BOLD signal in
the visual system as an effect of shifted attention (O’Craven
et al. 1997; Büchel et al. 1998; Shomstein and Yantis 2004).
Using dynamic causal modeling (DCM; Friston et al. 2003),
we then looked at the modulation of effective connectivity

between sensory and reward structures by (sensory-specific)
value information and tested whether the strength of this
modulation depended on the selected strategy.

Materials and Methods

Participants
Participants were 24 right-handed healthy subjects (mean age = 26.5
years, SD = 2.4, range = 22–32 years; 10 females) with normal or
corrected-to-normal vision. All the participants gave written informed
consent approved by a local ethics committee. The subjects were re-
imbursed for participation (10 Euro per hour). They could earn
additional money by winning points during the task: The sum of col-
lected points was converted into Euro at the ratio of 100:1 (e.g., 720
points = 7.20 Euro).

Experimental Design and Task
Each trial began with the decision phase (5 s) during which a frame
appeared on the screen enclosing the heading “offering” and the
names of 4 rating companies together with their ratings (Fig. 1). The
order of the companies from top to bottom was fixed. Ratings could
be a “+ +,” “+,” “−,” or a “− −.” Simultaneously, a female voice an-
nounced “the current stock trend” via MR-compatible headphones
(auditory stimulation lasted approximately 2.2 s). In analogy to the
ratings, the stock trend could be “very positive,” “slightly positive,”
“slightly negative,” or “very negative.” The participants were told that
stocks and rating companies were fictitious and that they would not
benefit from any expertise in the field of stock markets. Following the
decision phase, labels for “buy” and “reject” appeared below the
frame on the left and right sides in a randomized order so that partici-
pants would not know in advance which option would occur on
which side. They had 2 s to press the respective button (left/right)
after appearance of the labels and were asked to already establish the
decision itself during the decision phase (missing responses were
rare; <4 per subject). As soon as a response was given, the selection
was framed and the offer disappeared. The time between response
and outcome phases was jittered (0–6 s plus the rest of the 2 s for
responding) to separate BOLD signals, indicative of deciding and
evaluating feedback. During the outcome phase (2 s), feedback was
provided visually (“you get: [no. points won]” colored green for
positive values, red for negative values, and white for 0 points). Trials
were separated by an inter-trial interval of 2–8 s, showing a white
cross. The experiment (160 trials) lasted approximately 43 min.
Before the experiment, the participants were instructed on the para-
digm: They were told that they would play a stock-buying game in
which they could use several pieces of information to decide whether
to buy or to reject a stock offer in every trial. They were introduced to
the different cues, the potential stock trends and ratings, and the
general workflow of a trial. They were also told that taking cues into
account could help them improving their decisions. However, they

Figure 1. Task design. In each trial, participants were offered a stock of unknown value. In the decision phase, a single auditory and 4 visual cues provided information about
the stock. Subsequently, participants had 2 s to respond (buy or reject the offering), and feedback was given after a variable delay to separate BOLD signals for decision and
outcome phases.
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were not informed about the cues’ relevance, the existence (and
switching) of 2 environments, or that stock values are a weighted
linear combination of cue values (see below). Furthermore, the
expression “decision strategy” was strictly avoided in the instructions.
Following instructions, the participants were trained on the stimulus
material. Training trials did not contain meaningful cues or feedback
(i.e., they were set to “unknown”) to prevent subjects from establish-
ing strategies before the actual experiment. Stimulus presentation was
realized using the Presentation Software package (Neurobehavioral
Systems).

Reward Contingencies
The relationship between ratings and stock values was manipulated
by 2 consecutive environmental conditions. In the compensatory
environment, all cues contributed equally to the determination of the
stock values; in the noncompensatory environment, only the stock
trend (i.e., the auditory cue) predicted its value. Gaussian noise was
added to these payoff functions, making the task probabilistic. Each
environment consisted of 80 trials, and the order of environments
was counterbalanced across participants. In the compensatory
environment, the value of a stock (Vt) at trial t was a function of all
cues (at = auditory cue; v1,t to v4,t = visual cues) plus Gaussian noise ε
with μ = 0 and σ = 7.5:

Vt ¼ 10at þ 10v1;t þ 10v2;t þ 10v3;t þ 10v4;t þ 1; ð1Þ

where at = 2, 1, −1, or −2 for “very positive,” “slightly positive,”
“slightly negative,” or “very negative” stock trends and v1,t to v4,t = 2,
1, –1, or –2 for the ratings “+ +,” “+,” “−,” or “− −,” respectively. In
the noncompensatory environment, the value of a stock was only a
function of the auditory cue plus noise:

Vt ¼ 10at þ 1: ð2Þ

The first cue (as any other cue) can adopt 4 different values (2, 1, –1,
and –2), but the sum of all the 5 cues can adopt 21 different values
(from 10 to –10). Hence, the range of possible Vs is less restricted in
the compensatory environment. To overcome this imbalance, we
restricted possible stock offers to those with values of 20, 10, –10, or
–20 plus noise for both environments (this restriction induced a small
negative correlation between cue values of ∼ –0.2). From the remain-
ing pool of 430 stocks, 80 stocks were randomly selected for each par-
ticipant with the further restriction that the 2 strategies ALL and AUD
(see below) made different suggestions to buy or to reject the stocks
in exactly 50% of the trials (this was done to compare the SSL model
predictions with participants’ choices, see Results; without this restric-
tion, the strategies would have made different suggestions in ∼41% of
the trials). The 80 stocks were offered in both environments, but in
differently randomized orders. Thus, stimulus material was kept iden-
tical between environments and offers only differed in terms of
reward contingencies. The noise ε was added in a discrete manner,
such that stock values were always a multiple of 5. For instance, if
at = 1 in the noncompensatory environment, the value Vt could be
−10, −5, 0, 5, 10, 15, 20, 25, or 30 points with a probability of 0.01,
0.04, 0.10, 0.21, 0.28, 0.21, 0.10, 0.04, or 0.01, respectively.

SSL Model
We modeled participants’ behavior using a variant of the original SSL
model (Rieskamp and Otto 2006). SSL assumes that people have a set
of strategies from which they select. For the sake of simplicity, we re-
stricted the set to those 2 strategies that provide an accurate represen-
tation of the 2 environments: 1) ALL is a multiple-cue strategy that
sums over all cue values treating them as equally important; this strat-
egy is equivalent to the established decision strategy “Equal weight”
(Dawes 1979; Payne et al. 1988), also known as “Tallying” (Todd and
Gigerenzer 2007). 2) AUD is a single-cue strategy that focuses
exclusively on the auditory cue; this strategy is similar to the
established lexicographic decision strategy “Take-the-best” (Gigerenzer
and Goldstein 1996). Assuming the existence of only these 2 strategies
is certainly a simplification of the actual repertoire of human

decision strategies. However, for the present decision problem, this
simplification appears justifiable as the 2 strategies provide an accu-
rate model of the 2 environments. Furthermore, the 2 strategies have
successfully described behavior in many inference problems in the
past (e.g., Payne et al. 1988; Gigerenzer et al. 1999; Rieskamp 2006;
Rieskamp and Otto 2006) and they do not represent arbitrary strat-
egies applicable to the decision problem. However, we also tested an
alternative SSL model that included a third strategy (see below).

Each strategy i has its expectancy Q(i)t, representing the partici-
pant’s degree of belief that using the strategy in the current context is
appropriate (or in other words that it represents an accurate model of
the environment). The probability of selecting a strategy at trial t is a
function of its expectancy and the expectancies of all other strategies:

P(i)t ¼ QðiÞt
PJ

j¼1
Qð jÞt

; ð3Þ

where J = number of strategies = 2 (note that in our case P(AUD)t =
1− P(ALL)t). At t = 1, we assume that Q(ALL)t=1 =Q(AUD)t=1 = 1, so
that P(ALL)t=1 = P(AUD)t=1 = 0.5. Because a strategy is selected with a
certain probability in a particular trial, we simulated which strategy
was actually selected randomly according to the specified probabil-
ities (i.e., the simulation selected strategy i at trial t with probability
p(i)t). According to the 2 strategies, each stock offer can be assigned a
strategy value (SV) representing the values of the cues:

SV (ALL)t ¼ at þ v1;t þ v2;t þ v3;t þ v4;t ; ð4Þ

SV (AUD)t ¼ at ; ð5Þ

where the strategy value of ALL depends on all cues and the strategy
value of AUD depends only on the auditory cue. To determine the EV
of the stock offer, the strategy value of the selected strategy i needs to
be multiplied by the subjective value of that strategy, that is:

EV (buyji)t ¼ SV(i)t � QðiÞt : ð6Þ

Due to learning, the Q-value for the appropriate strategy in an
environment should converge to a value of 10, so that the EV of stock
offers will approximate the actual reward structure of the environ-
ments (i.e., eq. 6 will represent the actual EV of a stock according to
eqs 1 or 2, respectively). Likewise, the Q-values of the inappropriate
strategy should converge to 0, since using this strategy would lead to
an average payoff of 0. The probability of buying the current offer is
determined by the softmax choice rule (Sutton and Barto 1998) com-
paring the EVs of buying the stock versus rejecting it (equivalent to
receiving 0):

P ðbuyÞt ¼
1

1þ e�g�½EVðbuyjiÞt�EVðrejectÞt �
; ð7Þ

where γ is the sensitivity parameter (or inverse “temperature”) esti-
mated for each subject. The RPE is defined as the outcome (R) minus
the EV (Sutton and Barto 1998):

RPEt ¼ It � ½Rt � EV (buyji)t �; ð8Þ

where It is an indicator function indicating whether the participant
has actually bought (It = 1) or rejected (It = 0) the offer at trial t (this is
introduced to set RPE to 0 in the case of rejecting the offer). Finally,
SSL updates the Q-value of the selected strategy i for the next trial as
follows:

QðiÞtþ1 ¼ QðiÞt þ a� RPEt � SV(i)t ; ð9Þ

where α is the learning rate estimated for each participant. Note that
strategy values need to be included so that the Q-values are updated
according to the predictions of the strategy (e.g., if a person chooses
the option opposite to a strategy’s prediction, the RPE should influ-
ence the corresponding Q-value inversely).
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SSL Variations
In addition to the described SSL model, we tested 3 variants of SSL.
For the first alternative, the repertoire of strategies was extended by a
third strategy VIS, which takes only visual cues into account. This
strategy appears reasonable, because participants might have con-
trasted auditory against visual information. The strategy value for VIS
in every trial is:

SV (VIS)t ¼ v1;t þ v2;t þ v3;t þ v4;t : ð10Þ

Note that although adding more strategies to SSL does not increase
the number of free parameters, the model’s complexity can increase
because the model can potentially account for more choice patterns
(Pitt and Myung 2002). The second SSL variation does not assume
that only one strategy is taken at a time, but that the EV is a combi-
nation of all strategy values weighted by their probabilities (see, for
instance, Wunderlich et al. 2011). The EV for this “probabilistic” SSL
version thus becomes:

EV (buy)t ¼
XJ

j¼1

SV(j)t � Qð jÞt � Pð jÞt : ð11Þ

In accordance, the updating rule is changed such that all J strategies
are updated in every trial weighted by the respective strategy selection
probabilities:

Qð jÞtþ1 ¼ Qð jÞt þ a� RPEt � SVð jÞt � Pð jÞt : ð12Þ

The third variation combines these changes, that is, it is a probabilis-
tic SSL model with 3 strategies.

ALM Model
We tested the predictions of SSL against an alternative learning model
that assumes stock values to be predictable by a weighted linear com-
bination of cues. This model has been shown to account for human
behavior in multiple-cue inference task and is known as the ALM
(Kelley and Busemeyer 2008) or adaptive network model (Gluck and
Bower 1988; Rieskamp 2006). ALM compares the relationship
between predictions and outcomes for each cue directly and indepen-
dently. In more detail, ALM integrates all cues and cue weights into a
linear additive function to generate the EV:

EV (buy)t ¼
XM

m¼1

wm;t � cm;t ; ð13Þ

where wm,t is the cue weight of cue m (M = number of cues = 5) at
trial t and cm,t, the prediction (stock trend or rating) of cue m at trial t
(i.e., c1,t = at; c2,t = v1,t; c3,t = v2,t etc.). The cue weights thus determine
the direction and magnitude of the impact of a cue’s prediction on the
overall EV. Initially, all weights are set to 1, assuming that at the be-
ginning, participants have a weak belief in the positive validities of all
cues (we ensured that the setting of initial weights and strategy expec-
tations did not have a substantial effect on our results and con-
clusions). The softmax choice rule and the calculation of RPEs are
equivalent to SSL (see eqs 7 and 8). ALM updates each cue weight
independently taking the RPE and cue predictions into account (thus
and similar to SSL, updating a cue against its own prediction is pre-
vented) so that,

wm;tþ1 ¼ wm;t þ a� RPEt � cm;t : ð14Þ

ALM and SSL share the same number and type of free parameters:
A learning rate and a sensitivity parameter.

Model Fitting and Model Comparison
We used maximum likelihood techniques to estimate the parameters
of our models for each individual separately. As a goodness-of-fit
measure, we calculated the log-likelihood of the data for all trials,

given the model

LLModel ¼
XN

t¼1

ln½ ftðyjuÞ�; ð15Þ

where N = number of trials = 160. ft(y|θ) represents the probability
with which the model predicts the choice y of the participant in trial t
given the models’ parameter set θ. For each participant and model,
we estimated the parameters that maximized the likelihood of the
data by means of the “fminsearchcon” algorithm as implemented in
Matlab (MathWorks). Because the selected strategies for a trial were
simulated according to probabilities specified by equation (3), the
actual learning process depended considerably on the strategies
selected. Therefore, we simulated the learning process for each par-
ticipant repeatedly for 10 000 simulations per model and used
the average model fit for model comparison and the average model
variables (such as EV[buy|i]t or P(ALL)t) for the fMRI analysis
(see below).

For model comparison, we determined the models’ deviances (see
Lewandowsky and Farrell 2011):

devianceModel ¼ �2� LLModel: ð16Þ

We tested each model against the deviance of a Baseline model that
predicted all the 160 choices with a pure chance probability of 0.50:

devianceBaseline ¼ �2� N � lnð0:5Þ: ð17Þ

A log-likelihood ratio test (with a χ2-distributed test variable with
2 degrees of freedom for the 2 free parameters in the different
SSL models and the ALM model, respectively) was used to test
whether a particular model predicted choices above chance level for a
particular participant (Table 1). SSL and ALM were also tested against
each other using the deviances (note that using the Bayesian In-
formation Criterion for comparing SSL with ALM would lead to the
same conclusions as SSL and ALM have the same number of free
parameters).

fMRI Data Acquisition and Preprocessing
Whole-brain fMRI data were collected on a 3-T Siemens Trio scanner
using a 12-channel head coil. Echo-planar T2*-weighted images were
acquired using 40 axial slices and a voxel size of 2 × 2 × 2 mm plus a
1-mm gap between slices (further parameters included: Repetition
time 2380ms, echo time 25ms, field of view 208 × 208, flip angle
90°). Slice orientation was tilted −30° to the anterior–posterior com-
missure axis to reduce signal drop in regions of the orbitofrontal
cortex (Deichmann et al. 2003). Additionally, a high-resolution
T1-weighted image (voxel size 1 × 1 × 1 mm) was acquired for each
subject to improve spatial preprocessing. Preprocessing of fMRI data
was performed using SPM8 (Wellcome Trust Center for Neuroima-
ging, University College London). Preprocessing commenced with
slice timing correction to the middle slice of each volume followed by

Table 1
Behavioral model comparison

SSL2, determ. SSL3, determ. SSL2, probab. SSL3, probab. ALM

Deviance 118.19 (43.42) 116.02 (41.90) 119.90 (44.05) 119.27 (44.34) 140.83 (34.35)
n (best) 7 8 2 5 2
n (<baseline) 24 24 24 24 22
% correct 82.9 (9.4) 83.0 (9.5) 82.9 (9.4) 82.9 (9.4) 79.1 (8.5)

Note: Values in parentheses represent standard deviations.
SSL: strategy selection learning model (subscripts = the number of strategies and strategy
selection rule); ALM: additive linear model; n(best): the number of participants for which the
respective model performed best; n(<baseline): the number of participants for which the
respective model performed significantly better than the baseline model; %correct: the average
percentage of trials in which the respective model correctly predicted the decision (if buy/reject
predictions were assigned according to P(buy)t> 0.5/<0.5).
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spatial realignment and unwarping to account for movement artifacts.
The individual T1-weighted image was coregistered to the mean
functional image generated during realignment and then segmented
into gray matter, white matter, and cerebrospinal fluid. Spatial nor-
malization of functional images to the MNI space was achieved using
the normalization parameters from the segmentation. Finally, images
were smoothed by a Gaussian kernel of 8-mm full-width at half-
maximum.

fMRI Data Analysis
The conventional statistical analysis of fMRI data was based on the
general linear model (GLM) approach as implemented in SPM8.
The GLM was set up to test the predictions of SSL with respect to the
modulation of the fMRI BOLD signal at the time when the decision
was made by 1) EV, 2) strategy selection, and 3) decision conflict, and
at the time when feedback was provided by RPEs. Subject-specific
design matrices were thus generated including an onset vector for
estimating the average BOLD response during the decision phase.
This onset vector was accompanied by 3 parametric modulators
(Büchel et al. 1996) encoding the SSL-based trial-by-trial estimates
of 1) the expected value EV(buy | i)t, 2) the probability of selecting
strategy ALL P(ALL)t, and 3) the conflict elicited by each decision,
which we quantified based on P(buy)t as

conflict ¼ �jP ðbuyÞt � 0:5j; ð18Þ

such that conflict was low when P(buy)t was close to 0 or 1 and high
when P(buy)t was close to 0.5. Correlations between parametric
modulators were very low in general (still, we omitted the automatic,
step-wise orthogonalization of parametric modulators in SPM).
The GLM further comprised an onset vector for the time point of the
button press together with a parametric modulator encoding the
specific response (buy or reject) and an onset vector for the outcome
phase together with a parametric modulator encoding the reward
prediction error, RPEt (for an illustration of all GLM regressors, see
Supplementary Fig. 1). At group level, we used the full factorial
design as implemented in SPM8 (controlling for nonsphericity of the
error term) to test for effects related to the parametric modulators EV,
strategy selection, decision conflict, and RPE. This analysis was
repeated for the SSL model with 3 strategies using the sum of prob-
abilities for strategies ALL and VIS (i.e., P(ALL)t + P(VIS)t) as para-
metric modulator for strategy selection (since both strategies rely
on visual information in contrast to AUD; see Supplementary Figs 2
and 4). The statistical threshold for the imaging results was set to
P < 0.05, family-wise error (FWE) rate corrected for spherical search
volumes (sphere radius: 10 mm) based on previous studies that tested
for comparable effects of interest (EV and/or prediction error, decision
conflict, visual attention): Center coordinates of spheres were [x =−3,
y = 42, z =−6] for vmPFC (Chib et al. 2009), [±14, 10,−10] for VS
(O’Doherty et al. 2004), [−6, 24, 38] for ACC (Venkatraman et al.
2009), and [±44, −75, −10] for lateral occipital complex (LOC; Rose
et al. 2005). Regions beyond those for which we had a priori hypoth-
eses were reported if they survived a threshold of P < 0.05, FWE-
corrected for the whole brain. For display purposes, we used a
threshold of P < 0.001 (uncorrected) with 10 contiguous voxels unless
stated otherwise. Activations are depicted on an overlay of the mean
structural T1-weighted image from all participants. Images are pre-
sented in neurological convention.

fMRI Model Comparison
In addition to the behavioral model comparison, we tested SSL
against ALM on the basis of fMRI data. Since both models make
trial-by-trial predictions on EV, decision conflict, and RPE, we tested
which of the 2 models better accounts for fMRI signals in the hypoth-
esized brain areas (vmPFC and VS for EV and RPE, respectively; ACC
for decision conflict). We used a Bayesian model estimation and selec-
tion approach (Penny et al. 2005; Stephan et al. 2009; Rosa et al.
2010), which has already been applied in model-based fMRI research
on value-based learning and decision-making (Hare et al. 2011; Wun-
derlich et al. 2011). The approach comprises 3 steps: First, a

conjunction analysis (threshold: P < 0.001, uncorrected) is used to de-
termine voxels within the hypothesized brain areas that are predicted
by both learning models (i.e., SSL and ALM). Secondly, the GLMs for
the 2 learning models are re-run using the Bayesian estimation pro-
cedure as described in Penny et al. (2005). This analysis is restricted
to the voxels specified by the conjunction analysis. Thirdly, the result-
ing exceedance probability maps are compared using the
random-effects Bayesian model selection (BMS) approach as de-
scribed in Stephan et al. (2009). We replicated the fMRI model com-
parison for the SSL model with 3 strategies (Supplementary Fig. 3).

Dynamic Causal Modeling
We expected participants to learn the right model representing the
compensatory or the noncompensatory environment, that is, they
should learn selecting ALL in the compensatory and AUD in the non-
compensatory environment. Importantly, in our task, ALL makes use
of both auditory and visual information to generate the EV, but AUD
solely relies on the auditory cue. We used DCM (Friston et al. 2003) to
test whether the selection of a particular strategy is also reflected in
the interaction of sensory and reward systems in the brain. Briefly,
DCM models the neural dynamics between regions of interest (ROIs)
by 3 different sets of parameters: 1) direct inputs of external variables
on ROIs, 2) context-independent effective connectivity between ROIs,
and 3) context-dependent modulations of this connectivity. In our
experiment, we expected the effective connectivity from a sensory
area to a reward area to be positively modulated by the value infor-
mation that is conveyed from the sensory area. For instance, the con-
nectivity between auditory and reward regions should be more
positive (negative) if the auditory cue is positive (negative). If,
however, the sensory information is not used to generate the value
representation (as a consequence of the selected strategy), this
context-dependent modulation should not be present. Therefore, we
predicted a reduced modulation of the coupling between the visual
and reward regions when the strategy AUD was selected.

To test this hypothesis, we first set up a new GLM to separate 1)
trials where the strategy ALL was used from those where AUD was
used and 2) modulations by value information conveyed by the 2
different sensory systems (auditory and visual). The first separation
was realized by splitting trials into ALL and AUD trials based on
P(ALL)t (i.e., split at P(ALL)t = 0.5), for which 2 onset vectors of the
decision phase were generated. The second separation was realized
by accompanying these onset vectors by 2 parametric modulators
coding for the sensory-specific value information:

Value (visual)t ¼ v1;t þ v2;t þ v3;t þ v4;t ; ð19Þ

Value (auditory)t ¼ at : ð20Þ

Note that Value(visual)t and Value(auditory)t are equivalent to the
strategy values for VIS and AUD, respectively (eqs 10 and 5). In the
next step, we extracted fMRI BOLD time series from visual, auditory,
and reward areas. For anatomical plausibility, we first restricted our
search for relevant brain areas: For the primary visual and auditory
input systems, we created masks including only the primary visual
(V1) and primary auditory cortices (A1), respectively, as defined by
an anatomical atlas (Tzourio-Mazoyer et al. 2002); for the reward
system, bilateral 10-mm spheres were placed at the VS coordinates as
defined above (we selected the VS as reward structure as we obtained
the strongest effects related to EV here). Secondly, within each of
these ROIs, we identified the peak activations of specific effects (i.e.,
main effect of decision phase for visual and auditory regions; effect of
EV for reward region) separately for each participant. Thirdly, we ex-
tracted fMRI time series from 4-mm spheres placed around the indi-
vidual peak coordinates.

We then defined a set of candidate DCM models to test them
against each other (using BMS) to identify the model that provided
the Bayesian optimal balance between goodness of fit to the data and
model parsimony (Penny et al. 2004; Stephan et al. 2009, 2010). The
8 identified models shared the following features: All the models con-
sisted of 3 ROIs (V1, A1, and VS); V1 and A1 received the external
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driving input (onset vector of the decision phase) and had directed
intrinsic connections toward the VS; these connections were modu-
lated by their sensory-specific value information (i.e., Value(visual)
on V1–VS; Value(auditory) on A1–VS). The models differed in terms
of 3 variations: 1) whether bidirectional intrinsic connections
between V1 and A1 were included or not, 2) whether backward in-
trinsic connections from VS to V1 and A1 were included or not, and
3) whether Value(visual)/Value(auditory) could also modulate the
connections A1–VS/V1–VS or not (see Fig. 6A and Supplementary
Table 1). We identified the optimal model using the BMS approach
(Stephan et al. 2009) (see Fig. 6B for the optimal model and Sup-
plementary Fig. 6 for the model comparison). In the final step, we
compared the best model’s estimated parameters of the modulation
of V1–VS and A1–VS connections by Value(visual) and Value(audi-
tory), respectively, for ALL trials against AUD trials (Fig. 6C). We
replicated the DCM analysis for the SSL model with 3 strategies,
comparing AUD trials with ALL and VIS trials together (Supplemen-
tary Fig. 5).

Results

Behavioral Results
The participants played 160 rounds of the stock-buying task
(Fig. 1) while lying in the MR scanner, 80 trials in the com-
pensatory and 80 trials in the noncompensatory conditions.
The order of environments was counterbalanced across par-
ticipants. To test for learning within each environment, the
trials were separated into 16 consecutive blocks of 10 trials,
and the average accuracy (i.e., buying good and rejecting
poor stocks) per block was introduced into an 8 × 2 × 2 analy-
sis of variance with 8 trial blocks and 2 environments as
within-subject factors and 2 environment orders as a between-
subjects factor. This analysis revealed a main effect of trial
blocks indicating a strong learning effect within each environ-
ment (F7,154 = 14.70, P < 0.001).

Figure 2A shows that participants increased their perform-
ance in the initial 30 trials before reaching a plateau. In the
ninth trial block, performance broke down due to the change
in the environment, followed by an increase in performance
comparable with the first half. A significant interaction of
environment × environment order was also found, suggesting
a higher average performance in both groups in the first
phase of the experiment compared with the second phase
(F1,22 = 5.30, P = 0.031). This effect appears to be driven by
the severe drop in accuracy in the ninth block. Finally, the
interaction of trial block × environment was significant
(F7,154 = 2.34, P = 0.027), indicating a somewhat stronger
learning effect in the noncompensatory environment. Impor-
tantly, the main effects of environment and environment
order were not significant, which implies equivalent perform-
ance in both environments and for both groups.

Behavioral Model Fit and Comparison
The strategy-based learning model SSL, as it is specified for
the current study (see Materials and Methods), assumes par-
ticipants to select from among 2 strategies: ALL, which sums
over all cue values treating them as equally important, and
AUD, which focuses exclusively on the auditory cue and does
not take the visual cues into account. Thus, ALL and AUD
represent 2 models that match the compensatory and the
noncompensatory environments, respectively. Therefore, we
expected participants to learn to select ALL in the

compensatory and AUD in the noncompensatory environ-
ments. Note that the 2 strategies made different predictions in
50% of all trials. This allowed us to compare behavior with
predictions from the SSL model as follows: We approximated
the frequency of selecting a strategy i per block as the ratio
between the number of trials in which the actual behavior
matched exclusively the prediction of strategy i and the total
number of trials with diverging strategy predictions. As
shown in Figure 2B, SSL-based strategy selection probabilities
closely matched these frequencies in both environments and
groups (average correlation per participant was 0.79). Fur-
thermore, by comparing SSL with a Baseline model, we found
that SSL predicted behavior significantly better than chance
level in all the 24 participants (Table 1).

We also tested a variation of SSL that included a third
decision strategy, VIS, which takes only visual information
into account. Given the distinction between visual and audi-
tory information, it appears reasonable to assume that partici-
pants might have considered this strategy as well.
Furthermore, VIS can perform well in the compensatory
environment (as it considers 4 of the 5 relevant cues),
although it is inferior to ALL. Inspection of the strategy selec-
tion probabilities of this 3-strategy SSL version suggests that
participants might have alternated between ALL and VIS in
the first blocks of the compensatory environment, but then
learned to select the more accurate strategy ALL (Fig. 2C;
note, however, that this suggestion is based on estimated
strategy probabilities but not frequencies, which cannot be
calculated for the 3-strategy version due to the high overlap
of choice predictions for ALL and VIS). In line with this, no
participant reported having only considered visual infor-
mation at the end of the compensatory environment (Sup-
plementary Table 2). When comparing this model with the
2-strategy model by means of their deviances, the 3-strategy
version appears to perform slightly (but not significantly)
better (Table 1). Note, however, that this model is also more
complex, given the inclusion of a third strategy. We further
tested 2 probabilistic SSL variations (1 with 2 strategies and
1 with 3 strategies) that assumed the EV to be influenced by
all strategies at the same time, weighted by their selection
probabilities. These models made very similar predictions
compared with the “deterministic” SSL models, but performed
slightly (not significantly) worse (Table 1).

Finally, we tested an alternative learning approach (ALM).
This model does not assume a strategy selection process, but
relies on assigning weights to each cue depending on how
well each cue predicted the outcome in the past. These cue
weights determine the impact of each cue on the EV of the
stock and are updated after feedback. Figure 2D illustrates the
development of the 5 cue weights during the experiment and
it is evident that the model captured the coarse pattern of
choice behavior: In the compensatory environment, all
weights were approximately equal; in the noncompensatory
environment, the auditory cue’s weight was much higher than
the visual cues’ weights. Accordingly, ALM predicted choices
above chance level in 22 of 24 participants. When comparing
ALM with SSL by means of their deviances, however, the
strategy-based learning model proved to be clearly superior
(Table 1; all paired t-tests between ALM and SSL variants,
P < 0.001). Furthermore, SSL made significantly better predic-
tions of participants’ choices (Table 1; all paired t-tests
between ALM and SSL variants, P < 0.001).
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fMRI Results: Expected Value, Prediction Error,
and Decision Conflict
SSL makes trial-by-trial predictions for the EV of each stock
offering and for the RPE of each reward obtained. We tested
whether the neural correlates of these model variables can be
linked to the dopaminoceptive reward system of the brain as
has been shown for other RL scenarios (O’Doherty et al.
2003, 2004; Hampton et al. 2006; Pessiglione et al. 2008;
Gläscher et al. 2009; Daw et al. 2011). For the fMRI analysis,
we thus included EV and RPE as parametric modulators of the
decision and outcome phases, respectively. Note that we
report fMRI results for the original 2-strategy SSL model in the

main text, but replicated all results for the 3-strategy version
(Supplementary Figs 2–5). We found significant BOLD signals
associated with both EV and RPE in the bilateral VS and
vmPFC (Fig. 3A,B; Table 2 provides statistics for all conven-
tional fMRI analyses). The posterior cingulate cortex (PCC)
were also activated, which is in line with previous neuroima-
ging studies (Hampton et al. 2006; Kable and Glimcher 2007;
Gläscher et al. 2009; Peters and Büchel 2009).

SSL further allows quantification of the degree of decision
conflict based on the model-based probability P(buy)t that the
current stock offer is bought or not: If P(buy)t is either very
high or very low, the decision is comparatively easy, since the
stock is either bought or rejected with high probability (i.e.,
high confidence); if, however, P(buy)t is at an intermediate
level, the decision is comparatively difficult (see eq. 18). We
implemented decision conflict as a parametric modulator at
the decision phase in our fMRI analysis and obtained signifi-
cant activation in the ACC (Fig. 3C) replicating previous re-
search (Botvinick et al. 2004; Pochon et al. 2008; Pine et al.
2009; Venkatraman et al. 2009). Note that this effect cannot
be explained by potential differences in reaction times, since
responses were only possible after 5 s of the decision phase
(Pochon et al. 2008; Grinband et al. 2011). A second cluster of
activation was located in the VS (more dorsal and anterior
than the clusters linked to EV and RPE). This additional
finding might be related to outcome uncertainty: Decisions
are complicated by uncertainty about the value of a stock
offer, and this uncertainty has been linked to tonic activity in

Figure 2. Behavioral results and model fit. All the panels on the left refer to the
group that first encountered the compensatory environment; all the panels on the
right refer to the group that first encountered the noncompensatory environment. (A)
Average performance per block (10 consecutive trials). (B) Comparison of frequencies
(continuous lines with error bars) and SSL-based probabilities (dashed lines with
shaded areas) of selecting strategy ALL and AUD. (C) Strategy selection probabilities
for the 3-strategy SSL model. (D) Development of cue weights over time according
to the ALM.

Figure 3. Neural correlates of SSL-based EV, RPE, and decision conflict. (A) EV
during the decision phase was associated with fMRI signals in VS, vmPFC, and PCC.
(B) A similar brain circuit was activated during the outcome phase as a function of
the RPE. (C) ACC and VS encoded the decision conflict during the decision phase.
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the dopaminoceptive system (Fiorillo et al. 2003; Preuschoff
et al. 2006; Bach and Dolan 2012).

fMRI Results: Model Comparison
Next, we compared the learning models, SSL and ALM, in
terms of how well they account for the fMRI signals in reward-
based (vmPFC and VS) and conflict-related (ACC) brain
regions. For reward-based effects, we used a Bayesian model
estimation and selection approach (Penny et al. 2005; Stephan
et al. 2009) that determines the models’ exceedance probabil-
ities for conjointly activated voxels within the vmPFC and VS.
The conjunction analysis for SSL- and ALM-based EV and pre-
diction error showed that both models accounted for
reward-related fMRI signals in the VS (Fig. 4A). The BMS
analysis, however, suggested a higher exceedance probability
for SSL (78.8%) when compared with the ALM (21.2%) in this
region (Fig. 4B). For conflict-related effects in the ACC, we
could not implement this approach, simply because the ALM-
based regressor for decision conflict did not account for fMRI
signals in the ACC even at a very liberal threshold of P < 0.01
(uncorrected; Fig. 4C). Together, these results indicate that
SSL better explained the fMRI signals in the proposed brain
areas.

fMRI Results: Strategy Selection
The behavioral modeling results suggest that participants
learned to use a single-cue strategy (AUD) in the noncompen-
satory environment, in which visual cues were irrelevant for

estimating stock values. We propose that using ALL as the
decision strategy requires a greater allocation of attention to
visual information than using AUD, which should be linked
to higher activation in the visual system (O’Craven et al. 1997;
Büchel et al. 1998; Shomstein and Yantis 2004). In fact, we do
not know which strategy was applied in a single trial, but SSL
makes probabilistic predictions for how likely ALL was used
in every trial. We implemented this probability, P(ALL)t, in

Table 2
Peak coordinates and statistics of fMRI analyses

Contrast Name of region MNI coordinates
in mm

Statistics

x y z t-value Z-value P-value

Expected value Left ventral
striatum

−6 8 −12 5.35 4.97 <0.001

Right ventral
striatum

6 8 −12 4.74 4.47 0.001

vmPFC −2 42 −14 3.85 3.70 0.010
Left PCC 12 −22 42 5.68 5.25 0.004
Right PCC −10 −50 24 5.86 5.39 0.002
Precuneus −6 −38 48 5.53 5.13 0.008
Angular gyrus −42 −74 34 5.26 4.91 0.021

Reward prediction
error

Left ventral
striatum

−10 4 −10 8.93 7.56 <0.001

Right ventral
striatum

12 6 −12 8.08 7.01 <0.001

vmPFC −10 40 −6 3.82 3.67 0.011
PCC 0 −34 28 6.69 6.02 <0.001
Medial temporal
gyrus

58 −40 −12 5.64 5.22 0.005

Fusiform gyrus −48 −52 −16 6.62 5.97 <0.001
Left occipital
gyrus

−16 −100 8 6.53 5.90 <0.001

Right occipital
gyrus

26 −96 4 6.11 5.59 0.001

Decision conflict ACC −6 22 38 3.77 3.63 0.012
Left ventral
striatum

−10 18 −6 3.55 3.43 0.022

Right ventral
striatum

14 14 −2 4.98 4.68 <0.001

Probability of
selecting ADD

Left LOC −46 −72 −6 3.91 3.75 0.008
Right LOC 46 −82 −10 4.08 3.90 0.005

Note: Small-volume-corrected regions (ventral striatum, vmPFC, ACC, and LOC) are listed first
followed by other regions that survived a threshold of P< 0.05 FWE-corrected at the whole
brain.

Figure 4. fMRI model comparison. (A) The conjunction analysis of SSL- and
ALM-based EV and prediction error regressors showed that both models accounted
for reward-related fMRI signals in VS. (B) A Bayesian model selection suggested,
however, that SSL provided a more accurate fit to the data (shown in A) than the
ALM. (C) The ALM-based regressor for decision conflict did not correlate with activity
in the ACC even at the very liberal threshold of P< 0.01 (uncorrected) shown here.
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the fMRI model as a parametric modulator of the decision
phase to test our hypothesis. As shown in Figure 5A, higher
probability of selecting ALL was indeed associated with
higher BOLD signals in bilateral LOC. Figure 5B shows the
average percent signal change at the peak coordinates in the
left and right LOC separately for ALL and AUD trials (defined
by a median split at P(ALL)t = 0.5): Activity in LOC was signifi-
cantly positive in both trial types (all effects P < 0.001), but
the strength of the signal was modulated by the selected strat-
egy. We also tested for the reverse contrast (equivalent to P
(AUD)t), but did not find any evidence for activation in gray
matter structures even at a very liberal threshold of P < 0.01
(uncorrected).

DCM Results
The selection of a particular strategy should not only influ-
ence the allocation of attention to different sources of infor-
mation, but also how this information is utilized to generate
value expectations. Therefore, we investigated how the selec-
tion of strategies influences the neural coupling between
sensory and reward systems in the brain. We employed DCM,
which among other features allows making inferences on
how the intrinsic connectivity between brain regions changes
in relationship to experimental manipulations. We expected
that the connectivity between cue-specific sensory and reward
areas is enhanced when the (sensory-specific) value infor-
mation is positive: This is because signals from sensory
systems should always inform the reward system, but only in
the case of positive information, the signal increase in sensory
areas (due to stimulus presentation) should be followed by a
signal increase in reward areas (due to a positive EV). If the

reward system does not make use of the sensory information,
however, we hypothesized that this modulation would break
down. In our design, such a break down should occur for the
coupling of visual and reward areas when strategy AUD is
used (as here the EV is solely based on the auditory cue).

To test this prediction, we set up a DCM model that in-
cluded primary visual (V1) and primary auditory cortex (A1)
as sensory and VS as reward brain structure for which time
series were extracted (see Materials and Methods for details).
V1 and A1 received the driving input and had directed con-
nections to VS. These connections were modulated by value
information conveyed by the respective sensory system, that
is, the V1–VS connection was modulated by Value(visual) and
the A1–VS connection by Value(auditory) (see eqs 19 and 20).
Importantly, we analyzed 2 separate sets of models for ALL
and AUD trials to compare the estimated DCM parameters of
the 2 strategies. Before looking at the DCM model parameters,
we identified an optimal model among 8 candidates (Sup-
plementary Table 1) by testing them against each other using
BMS (Stephan et al. 2009). Figure 6A illustrates which connec-
tions were included in all models (continuous lines) and
which were variable (dashed lines). Figure 6B shows the best
model according to BMS (across both trial types as well as for
ALL and AUD trials independently; see Supplementary Fig. 6)
together with the average connection weights separated for
ALL (left panel) and AUD trials (right panel). We used the
parameters from the best model to test our hypothesis regard-
ing the difference between ALL and AUD trials in connectivity
modulation. We found a strong positive modulation of the
V1–VS connection by Value(visual) for ALL trials (t(23) = 4.82;
P < 0.001) that was absent in AUD trials (P = 0.813; Fig. 6C).
The direct comparison of parameters between different trial
types was also significant (t(23) = 4.21; P < 0.001). On the con-
trary, the A1–VS connection was positively modulated by Value
(auditory) for both trial types (ALL trials: t(23) = 3.11; P = 0.005;
AUD trials: t(23) = 3.27; P = 0.003), and the comparison of par-
ameters did not reveal significant differences (P = 0.161). There
was only one further connection weight that slightly differed
between ALL and AUD trials: The intrinsic connection from V1
to A1 was less negative in ALL trials (t(23) = 2.12; P = 0.045).
DCM model #2, which was very similar to the best model but
did not include backwards projections from VS to the sensory
areas (Supplementary Table 1), also performed well in terms of
BMS (Supplementary Fig. 6) and actually was the preferred
model in 9 of the 24 participants. Therefore, we repeated our
DCM comparison between ALL and AUD trials using model #2
and again found a difference in the value-related modulation of
the V1–VS connection (P < 0.001), but not of the A1-VS connec-
tion (P = 0.131).

Discussion

We have shown that a computational model of adaptive strat-
egy selection is appropriate to describe the cognitive pro-
cesses of learning and decision-making in a complex,
multiple-cue learning context as well as to reveal the under-
lying neural mechanisms. Activation in the VS and the vmPFC
were correlated with the SSL-based regressors of EV and RPE
and ACC activity reflected decision conflict. By providing cues
in separate sensory domains and changing the reward contin-
gencies of these cues, we could show that the selection of a

Figure 5. The influence of strategy selection on fMRI signals in the visual system.
(A) The higher the probability of selecting strategy ALL, the higher the BOLD signal in
bilateral LOC. (B) BOLD signals extracted from the peak coordinates of the effect in A
separately for ALL and AUD trials (as defined by a median split at P(ALL) = 0.5).
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particular strategy influences the reliance on different sources
of information for generating value expectations.

In general, models of RL have been successfully applied to
account for human learning behavior and to track its neural
correlates. Whereas rather simple model-free RL approaches
might be sufficient to understand elemental learning
phenomena such as classical and instrumental conditioning
(O’Doherty et al. 2003, 2004; Gläscher and Büchel 2005;
Pessiglione et al. 2008), model-based RL seems to better
explain human performance in more complex settings
(Hampton et al. 2006; Behrens et al. 2007; Gläscher et al.
2010; Daw et al. 2011). Model-based RL assumes people to
acquire a “model” representation of the environment, which
allows them to infer the best action. An important question is
how the acquisition of an accurate internal model takes place,
that is, how people learn to use relevant and to ignore irrele-
vant information in complex environments. One solution to
this task is to assign weights to each piece of information and

to adjust these weights according to feedback. An alternative
solution is to generate decision strategies that appear ade-
quate for solving the problem. Here, learning takes place by
selecting a particular strategy and evaluating its adequacy
based on the outcome. We compared these 2 cognitive
models (ALM and SSL) and found that SSL described behav-
ioral and neuronal responses better in the context of our para-
digm. An explanation for this result could be that ALM
requires the decision maker to keep each of the 5 cue predic-
tions in mind until the outcome is revealed in order to update
each cue weight separately. In contrast to this cognitively very
demanding approach, SSL only requires remembering the pre-
diction of a single (selected) strategy. Hence, a strategy-based
learning approach might be particularly useful to predict
human decisions when the amount of potentially relevant
information is very large. The SSL approach becomes,
however, problematic if the contingency rules between cues
and outcomes are more difficult than in our task (e.g., if cue

Figure 6. DCM model and results. (A) Overview of the variables, regions of interests, and connections used for the DCM analyses. Continuous lines refer to connections
included in all 8 models and dashed lines refer to model-specific connections (Supplementary Table 1). (B) Illustration of the best performing model with connection weights for
ALL (left panel) and AUD trials (right panel). Significant differences between the 2 trial types are indicated by dashed boxes around the respective coefficient. (C) Parameter
estimates for the modulation of the connection between V1–VS and A1–VS by Value(visual) and Value(auditory), respectively, for the DCM models shown in B (*P<0.05;
**P< 0.01; ***P< 0.001).
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validities are graded). Here, the limited set of strategies we
assumed would not be sufficient. This raises the questions of
how many strategies people possess and how new strategies
are acquired. SSL does not make explicit predictions about
the number of strategies. The theory is imbedded in the
“bounded rationality” research framework, in which the exist-
ence of simple decision strategies that reflect adaptations to
our decision environments has been proposed repeatedly
(Simon 1956; Tversky and Kahneman 1974; Payne et al. 1988;
Gigerenzer et al. 1999). The strategies used in the present
study are similar to the strategies already tested in this frame-
work and are also obvious, given the dissociation between
auditory and visual information in our design. Nevertheless,
future studies should directly investigate how many strategies
people consider in common decision scenarios and whether
strategies are refined or new strategies are acquired if the stan-
dard repertoire of strategies fails to provide sufficient results
(cf. Scheibehenne et al. 2013).

The probability of using the multiple-cue strategy ALL
was associated with the fMRI BOLD signal in bilateral LOC.
We assume this to be an effect of shifted attention (O’Craven
et al. 1997; Büchel et al. 1998; Shomstein and Yantis 2004):
As people learned to use AUD in the noncompensatory
environment, their attention was focused on the auditory cue
and visual information was disregarded. This finding is con-
sistent with a recent fMRI study, which demonstrated that in
memory-based decisions, the reactivation of a specific
sensory region depends on the relevance of the sensory-
specific cues (Khader et al. 2011). Note, however, that in the
study by Khader and colleagues, the use of the decision strat-
egy was instructed, and the relevance of information did not
have to be learned via feedback. In addition, our data show
that the value-related modulation of the connectivity between
sensory and reward areas disappears if the selected decision
strategy does not require the respective sensory information
to generate value expectations: When participants used strat-
egy AUD (as indicated by SSL), the value information con-
veyed in the visual cues did not modulate the connectivity
between V1 and the VS anymore. On the contrary, auditory
information was relevant to the A1–VS coupling across both
strategies just as both strategies required taking auditory
information into account. These results promote our under-
standing of how humans extract the relevant from the large
amount of available information in the environment to motiv-
ate their decisions. The data agree with recent literature
toward a critical impact of attention on the neural circuitry of
value computation (Hare et al. 2009, 2010; Krajbich et al.
2010; Krajbich and Rangel 2011; Lim et al. 2011).

Beside the model-based RL approaches we considered (SSL
and ALM), there are many other learning theories that might
account for the effects in our experiment. One attractive
alternative could be learning models that are inspired by
Bayesian probability theory, as these models would allow for-
mulating and testing hypotheses on the relevance of auditory
and visual information (Dayan et al. 2000; Yu and Dayan
2005; Gershman and Niv 2010). If the Bayesian learner thus
discovers the irrelevance of visual information in the noncom-
pensatory environment, he/she can save cognitive capacity by
drawing attention to the auditory cue.

To conclude, our data suggest that by means of adaptive
strategy selection, humans structure their environment when
there are multiple sources of information available. Attention

is focused on the putatively relevant information as reflected
by neural activity in the respective sensory systems. Similarly,
effective connectivity between sensory- and reward-
related brain structures is positively affected by value as long
as the specific sensory information is considered relevant to
the decision.

Supplementary Material
Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/.

Funding

This work was supported by the Deutsche Forschungsge-
meinschaft (GRK 1247/1, TRR 58, and SFB 936 TP A6 to S.G.
and C.B.), the Bundesministerium für Bildung und Forschung
(01GQ0912 to C.B.), and the Swiss National Science Foun-
dation (100014_126721 to J.R.).

Notes
Conflict of Interest: None declared.

References
Bach DR, Dolan RJ. 2012. Knowing how much you don’t know: a

neural organization of uncertainty estimates. Nat Rev Neurosci.
13:572–586.

Bayer HM, Glimcher PW. 2005. Midbrain dopamine neurons encode a
quantitative reward prediction error signal. Neuron. 47:129–141.

Behrens TEJ, Woolrich MW, Walton ME, Rushworth MFS. 2007. Learn-
ing the value of information in an uncertain world. Nat Neurosci.
10:1214–1221.

Botvinick MM, Cohen JD, Carter CS. 2004. Conflict monitoring and
anterior cingulate cortex: an update. Trends Cogn Sci. 8:539–546.

Büchel C, Josephs O, Rees G, Turner R, Frith CD, Friston KJ. 1998.
The functional anatomy of attention to visual motion. A functional
MRI study. Brain. 121(Pt 7):1281–1294.

Büchel C, Wise RJ, Mummery CJ, Poline JB, Friston KJ. 1996. Non-
linear regression in parametric activation studies. Neuroimage.
4:60–66.

Chib VS, Rangel A, Shimojo S, O’Doherty JP. 2009. Evidence for
a common representation of decision values for dissimilar goods
in human ventromedial prefrontal cortex. J Neurosci. 29:
12315–12320.

Damasio AR. 1994. Descartes’ error: emotion, reason, and the human
brain. New York: Putnam.

Daw ND, Doya K. 2006. The computational neurobiology of learning
and reward. Curr Opin Neurobiol. 16:199–204.

Daw ND, Gershman SJ, Seymour B, Dayan P, Dolan RJ. 2011. Model-
based influences on humans’ choices and striatal prediction
errors. Neuron. 69:1204–1215.

Daw ND, Niv Y, Dayan P. 2005. Uncertainty-based competition
between prefrontal and dorsolateral striatal systems for behavioral
control. Nat Neurosci. 8:1704–1711.

Dawes RM. 1979. The robust beauty of improper linear models in
decision making. Am Psychol. 34:571–582.

Dayan P, Kakade S, Montague PR. 2000. Learning and selective atten-
tion. Nat Neurosci. 3(Suppl):1218–1223.

Deichmann R, Gottfried JA, Hutton C, Turner R. 2003. Optimized
EPI for fMRI studies of the orbitofrontal cortex. Neuroimage.
19:430–441.

Fellows LK. 2011. Orbitofrontal contributions to value-based decision
making: evidence from humans with frontal lobe damage. Ann N
Y Acad Sci. 1239:51–58.

Cerebral Cortex August 2014, V 24 N 8 2019

http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bht049/-/DC1
http://www.cercor.oxfordjournals.org/
http://www.cercor.oxfordjournals.org/
http://www.cercor.oxfordjournals.org/
http://www.cercor.oxfordjournals.org/
http://www.cercor.oxfordjournals.org/
http://www.cercor.oxfordjournals.org/
http://www.cercor.oxfordjournals.org/


Fiorillo CD, Tobler PN, Schultz W. 2003. Discrete coding of reward
probability and uncertainty by dopamine neurons. Science.
299:1898–1902.

Friston KJ, Harrison L, Penny W. 2003. Dynamic causal modelling.
Neuroimage. 19:1273–1302.

Gershman SJ, Niv Y. 2010. Learning latent structure: carving nature at
its joints. Curr Opin Neurobiol. 20:251–256.

Gigerenzer G, Goldstein DG. 1996. Reasoning the fast and frugal way:
models of bounded rationality. Psychol Rev. 103:650–669.

Gigerenzer G, Todd PM, ABC Research Group. 1999. Simple heuris-
tics that make us smart. New York: Oxford University Press.

Gläscher J, Büchel C. 2005. Formal learning theory dissociates
brain regions with different temporal integration. Neuron.
47:295–306.

Gläscher J, Daw N, Dayan P, O’Doherty JP. 2010. States versus
rewards: dissociable neural prediction error signals underlying
model-based and model-free reinforcement learning. Neuron.
66:585–595.

Gläscher J, Hampton AN, O’Doherty JP. 2009. Determining a role for
ventromedial prefrontal cortex in encoding action-based value
signals during reward-related decision making. Cereb Cortex.
19:483–495.

Glimcher PW, Camerer C, Poldrack RA, Fehr E, editors. 2009. Neuroe-
conomics decision making and the brain. Amsterdam; Boston;
Heidelberg: Elsevier/Academic Press.

Gluck MA, Bower GH. 1988. From conditioning to category learning:
an adaptive network model. J Exp Psychol Gen. 117:227–247.

Grinband J, Savitskaya J, Wager TD, Teichert T, Ferrera VP, Hirsch J.
2011. The dorsal medial frontal cortex is sensitive to time on task,
not response conflict or error likelihood. Neuroimage. 57:
303–311.

Hampton AN, Bossaerts P, O’Doherty JP. 2006. The role of the ventro-
medial prefrontal cortex in abstract state-based inference during
decision making in humans. J Neurosci. 26:8360–8367.

Hare TA, Camerer CF, Knoepfle DT, Rangel A. 2010. Value compu-
tations in ventral medial prefrontal cortex during charitable
decision making incorporate input from regions involved in social
cognition. J Neurosci. 30:583–590.

Hare TA, Camerer CF, Rangel A. 2009. Self-control in decision-making
involves modulation of the vmPFC valuation system. Science.
324:646–648.

Hare TA, Schultz W, Camerer CF, O’Doherty JP, Rangel A. 2011. Trans-
formation of stimulus value signals into motor commands during
simple choice. Proc Natl Acad Sci USA. 108:18120–18125.

Hutchinson JMC, Gigerenzer G. 2005. Simple heuristics and rules of
thumb: where psychologists and behavioural biologists might
meet. Behav Processes. 69:97–124.

Kable JW, Glimcher PW. 2007. The neural correlates of subjective
value during intertemporal choice. Nat Neurosci. 10:1625–1633.

Kelley H, Busemeyer J. 2008. A comparison of models for learning
how to dynamically integrate multiple cues in order to forecast
continuous criteria. J Math Psychol. 52:218–240.

Khader PH, Pachur T, Meier S, Bien S, Jost K, Rösler F. 2011. Memory-
based decision-making with heuristics: evidence for a controlled
activation of memory representations. J Cogn Neurosci.
23:3540–3554.

Knutson B, Taylor J, Kaufman M, Peterson R, Glover G. 2005. Distrib-
uted neural representation of expected value. J Neurosci.
25:4806–4812.

Krajbich I, Armel C, Rangel A. 2010. Visual fixations and the compu-
tation and comparison of value in simple choice. Nat Neurosci.
13:1292–1298.

Krajbich I, Rangel A. 2011. Multialternative drift-diffusion model pre-
dicts the relationship between visual fixations and choice in value-
based decisions. Proc Natl Acad Sci USA. 108:13852–13857.

Lewandowsky S, Farrell S. 2011. Computational modeling in
cognition: principles and practice. Los Angeles (CA): Sage
Publications.

Lim S-L, O’Doherty JP, Rangel A. 2011. The decision value compu-
tations in the vmPFC and striatum use a relative value code that is
guided by visual attention. J Neurosci. 31:13214–13223.

Mata R, Schooler LJ, Rieskamp J. 2007. The aging decision maker:
cognitive aging and the adaptive selection of decision strategies.
Psychol Aging. 22:796–810.

Mata R, Von Helversen B, Rieskamp J. 2010. Learning to choose: cog-
nitive aging and strategy selection learning in decision making.
Psychol Aging. 25:299–309.

O’Craven KM, Rosen BR, Kwong KK, Treisman A, Savoy RL. 1997.
Voluntary attention modulates fMRI activity in human MT-MST.
Neuron. 18:591–598.

O’Doherty J, Dayan P, Schultz J, Deichmann R, Friston K, Dolan RJ.
2004. Dissociable roles of ventral and dorsal striatum in instru-
mental conditioning. Science. 304:452–454.

O’Doherty JP, Dayan P, Friston K, Critchley H, Dolan RJ. 2003. Tem-
poral difference models and reward-related learning in the human
brain. Neuron. 38:329–337.

O’Doherty JP, Hampton A, Kim H. 2007. Model-based fMRI and its
application to reward learning and decision making. Ann N Y
Acad Sci. 1104:35–53.

Payne JW, Bettman JR, Johnson EJ. 1993. The adaptive decision
maker. Cambridge, New York (NY): Cambridge University Press.

Payne JW, Bettman JR, Johnson EJ. 1988. Adaptive strategy selection
in decision making. J Exp Psychol Learn Mem Cogn. 14:534–552.

Penny WD, Stephan KE, Mechelli A, Friston KJ. 2004. Comparing
dynamic causal models. Neuroimage. 22:1157–1172.

Penny WD, Trujillo-Barreto NJ, Friston KJ. 2005. Bayesian fMRI time
series analysis with spatial priors. Neuroimage. 24:350–362.

Pessiglione M, Petrovic P, Daunizeau J, Palminteri S, Dolan RJ, Frith
CD. 2008. Subliminal instrumental conditioning demonstrated in
the human brain. Neuron. 59:561–567.

Pessiglione M, Seymour B, Flandin G, Dolan RJ, Frith CD. 2006.
Dopamine-dependent prediction errors underpin reward-seeking
behaviour in humans. Nature. 442:1042–1045.

Peters J, Büchel C. 2009. Overlapping and distinct neural systems
code for subjective value during intertemporal and risky decision
making. J Neurosci. 29:15727–15734.

Pine A, Seymour B, Roiser JP, Bossaerts P, Friston KJ, Curran HV,
Dolan RJ. 2009. Encoding of marginal utility across time in the
human brain. J Neurosci. 29:9575–9581.

Pitt MA, Myung IJ. 2002. When a good fit can be bad. Trends Cogn
Sci. 6:421–425.

Pochon J-B, Riis J, Sanfey AG, Nystrom LE, Cohen JD. 2008. Func-
tional imaging of decision conflict. J Neurosci. 28:3468–3473.

Preuschoff K, Bossaerts P, Quartz SR. 2006. Neural differentiation of
expected reward and risk in human subcortical structures.
Neuron. 51:381–390.

Rangel A, Camerer C, Montague PR. 2008. A framework for studying
the neurobiology of value-based decision making. Nat Rev Neuro-
sci. 9:545–556.

Rescorla RA, Wagner AR. 1972. A theory of Pavlovian conditioning:
variations in the effectiveness of reinforcement and nonreinforce-
ment. In: Black AH, Prokasky WF, editors. Classical conditioning
II: current research and theory. New York: Appleton-Century-
Crofts. p. 64–99.

Rieskamp J. 2008. The importance of learning when making infer-
ences. Judgm Decis Mak. 3:261–277.

Rieskamp J. 2006. Perspectives of probabilistic inferences: reinforce-
ment learning and an adaptive network compared. J Exp Psychol
Learn Mem Cogn. 32:1355–1370.

Rieskamp J, Hoffrage U. 2008. Inferences under time pressure: how
opportunity costs affect strategy selection. Acta Psychol (Amst).
127:258–276.

Rieskamp J, Otto PE. 2006. SSL: a theory of how people learn to
select strategies. J Exp Psychol Gen. 135:207–236.

Rosa MJ, Bestmann S, Harrison L, Penny W. 2010. Bayesian model
selection maps for group studies. Neuroimage. 49:217–224.

Rose M, Schmid C, Winzen A, Sommer T, Büchel C. 2005. The func-
tional and temporal characteristics of top-down modulation in
visual selection. Cereb Cortex. 15:1290–1298.

Scheibehenne B, Rieskamp J, Wagenmakers E-J. 2013. Testing adaptive
toolbox models: a Bayesian hierarchical approach. Psychol Rev.
120:39–64.

2020 Adaptive Strategy Selection in the Human Brain • Gluth et al.



Schultz W, Dayan P, Montague PR. 1997. A neural substrate of predic-
tion and reward. Science. 275:1593–1599.

Shomstein S, Yantis S. 2004. Control of attention shifts between vision
and audition in human cortex. J Neurosci. 24:10702–10706.

Simon HA. 1956. Rational choice and the structure of the environ-
ment. Psychol Rev. 63:129–138.

Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ. 2009. Baye-
sian model selection for group studies. Neuroimage. 46:1004–1017.

Stephan KE, Penny WD, Moran RJ, Den Ouden HEM, Daunizeau J,
Friston KJ. 2010. Ten simple rules for dynamic causal modeling.
Neuroimage. 49:3099–3109.

Sutton RS, Barto AG. 1998. Reinforcement learning: an introduction.
Cambridge (MA): MIT Press.

Todd PM, Gigerenzer G. 2007. Environments that make us smart: eco-
logical rationality. Curr Dir Psychol Sci. 16:167–171.

Tversky A, Kahneman D. 1974. Judgment under uncertainty: heuris-
tics and biases. Science. 185:1124–1131.

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard
O, Delcroix N, Mazoyer B, Joliot M. 2002. Automated anatomical
labeling of activations in SPM using a macroscopic anatomical
parcellation of the MNI MRI single-subject brain. Neuroimage.
15:273–289.

Venkatraman V, Rosati AG, Taren AA, Huettel SA. 2009. Resolving
response, decision, and strategic control: evidence for a functional
topography in dorsomedial prefrontal cortex. J Neurosci.
29:13158–13164.

Wunderlich K, Beierholm UR, Bossaerts P, O’Doherty JP. 2011. The
human prefrontal cortex mediates integration of potential causes
behind observed outcomes. J Neurophysiol. 106:1558–1569.

Wunderlich K, Smittenaar P, Dolan RJ. 2012. Dopamine enhances
model-based over model-free choice behavior. Neuron.
75:418–424.

Yu AJ, Dayan P. 2005. Uncertainty, neuromodulation, and attention.
Neuron. 46:681–692.

Cerebral Cortex August 2014, V 24 N 8 2021



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG2000
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG2000
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 175
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


