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In this paper we develop full information methods for estimating the
parameters of a system of simultaneous equations with error component struc-
ture and establish relationships between the various structural estimators.

1. INTRODUCTION

The error component model is one of the earliest econometric models devel-
oped to enable the use of pooled time-series and cross-section data. Studies
like those of Balestra and Nerlove [5], Wallace and Hussain [20], Amemiya
[1] are just a few references that deal with single-equation error component
models. Avery [2] went a step further by combining error components and
seemingly unrelated equations, and Magnus [12] offered a complete analysis
of estimation by maximum likelihood of multivariate error component mod-
els, linear and nonlinear, under various assumptions on the errors. Recently,
the error component structure was extended to a system of simultaneous
equations by Baltagi [7], Varadharajan [19], and Prucha [18]. In this paper
we develop full-information methods for estimating the parameters of a sys-
tem of simultaneous equations with error components structure and estab-
lish relationships between the various structural estimators available.
Prucha's article, which appeared as the final version of this paper was sub-
mitted for printing, also deals with the full information maximum likelihood
(FIML) estimation of a system of simultaneous equations with error com-
ponent structure. He follows an approach similar to that of Hendry [11] to
generate a class of instrumental variable (IV) estimators based on the IV rep-
resentation of the normal equations of the FIML procedure. We follow a
different approach, similar to that of Pollock [16], and derive the limiting
distributions of both the coefficient estimators and covariance estimators of
the FIML method, whereas Prucha gives the limiting distribution of the coef-
ficient estimators only.

Our paper is organized as follows. Section 1 presents the model and spec-
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224 P. BALESTRA and J. VARADHARAJAN-KRISHNAKUMAR

ifies the notations. In Section 2, maximum likelihood estimation of the
reduced form is described and the limiting distribution of the resulting esti-
mators is shown to be the same as that of covariance estimators. In Section
3, alternative specifications of 2SLS and 3SLS, namely "generalized" 2SLS
and "generalized" 3SLS, are presented. It is also shown that the "general-
ized" 2SLS and the indirect least squares (ILS) estimators of the coefficients
of a just-identified structural equation have the same limiting distribution
and that when the whole system is just-identified, "generalized" 3SLS and
"generalized" 2SLS estimators are identical and are both asymptotically
equivalent to ILS estimators. Section 4 derives the full information maxi-
mum likelihood (FIML) estimates of structural parameters and proves the
asymptotic equivalence of the FIML estimators and the "generalized" 3SLS
estimators. Finally, conclusions are drawn in Section 5.

The Model

We consider a system of M simultaneous equations in M current endogenous
variables and K exogenous variables, written as:

YY + X0 + U = 0, (1.1)

where Y = [yt- -yM) is NT x M, X = [*, • • xK] is NT x K, and U =
[w, •••!/*,] isNTxM,T = [7r---7M] is MxM, and 0 = [jS,*---^]
is K x M. Taking account of the normalization rule and the zero restrictions,
a typical structural equation, say the yth one, can be written as:

yj = Yjaj + Xjfy + uj = Zjbj + uj, (1.2)

where Yj = YHj is NTx (Mj - 1), Xj = XLj is NTxKj, a, is (My - 1) X 1,
(3j is Kj x 1, Zj = [YjXj], h'j = [ajPj], with Hj and Lj being appropriate
selection matrices.

The error components structure is given by:

uj = (IN ® 'T-)/X, + ( i * ® Ir)h + "j j=\,...,M (1.3)

where IN, IT are identity matrices of order TV and T, respectively, tN and 17-
are unit vectors of order N and T, respectively, and (x) denotes the Kronecker
product, ti'j = iix,y -iiNJ), X; = (X|>- • -Xry). and "/ = (vnj---vNTj) are
random vectors independent two by two with the following properties:

E(N)=0, E(\j) = O, E(PJ) = 0, j=l,...,M (1.4)

= olj,IN, E(\j\', ) = olj,IT,

l) = olj,INT, for j and / = 1, . . . ,M. (1.5)

Thus it follows that:

£ = £(vec (/)(vec U)' = £„ ® A + Ex ® B + E, ® INT, (1.6)
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ERROR COMPONENT STRUCTURE 225

where A = IN ® irif, B = iNi'N ® IT, £„ = [o*,,], Ex = [*&#], E, = [aj,] •
We denote a typical block of E, corresponding to E(UJU'I), by E,/.

The spectral decomposition of E is given by:

E = £ E, ® Mi, (1.7)

where E, = E, + 7TM, E2 = E, + 7VEX) E3 = Er + 7T , + JVEX, E4 = Er,
, , -<4 7̂ 7- 5 7jvr 1/f A T , , .-, r ^ 5
M, = - - — , M 2 = - - — , M 3 = — , M 4 = Q = / ^ - - - - +
J
—— with JNT = IIVTI'MT- MU M2, M%, M4 are idempotent matrices of rank
NT
m, = ( N - 1), m2 = (T- 1), m3 = 1, and m4 = (N - 1)(7"- 1), respec-
tively, and Mt + M2 + M3 + M4 = 1^-. Given the particular form of equa-
tion (1.7), the inverse and determinant of E are (cf. Lemma 2.1, [12]):

4 4

Now, the reduced form is obtained by solving equation (1.1) for Y:

Y = XU + V, (1.9)

where II = -/3r~' and V = - UT'1. Since vec V = - (T~] ® / ) ' vec U,
the variance-covariance structure of the reduced form is also of error com-
ponents structure. In fact, we obtain:

Q = is(vec K)(vec V)' = ft] ® Mi + Q2 ® M2 + Q3 ® M3 + Q4 ® M4,

(1.10)

where

n, = (r-')'E,r-'. d.ii)

Here, it may be added that the relationships that exist between Ej, E2, E3,
E4, and EM, Ex, E, hold in the case of the reduced form also, giving Q^, Q,,
Qx from Qi, ^2. ^3. ̂ 4 and vice versa.

The inverse and determinant of fi are analogous to those given for E in
(1.8). It suffices to replace E, by 0,-.

Additional Assumptions

In deriving the limiting distribution of the various estimators, we further
make the following assumptions:

i. Independence between uncorrelated elements of each error component vector
ftj, \j and vj.
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226 P. BALESTRA and J. VARADHARAJAN-KRISHNAKUMAR

i i . A* is a non-stochastic matrix such that:

lim --XQX = S, (1.12)
N~ oo NT
r-e»

S being a positive definite matrix and Q being equal to M4 as defined previ-
ously. However, some precaution must be taken when the model contains a
constant term. In this case, the matrix X'QX is necessarily singular for any
sample size and therefore its limit cannot be positive definite. Hence, we shall
assume that either there is no constant term in the equations (and all the fol-
lowing results hold as such) or that the data are centered (and the results con-
cern only the slope coefficients). It is worth noting that, with the covariance
structure adopted in this paper, it is always possible to center the data before
applying the GLS or the maximum likelihood principle, without modifying the
results for the slope parameters,

iii.

lim - = 1. (1.13)
W-oo T
T— oo

For the maximum likelihood estimation, we obviously assume normality
of the error components \Lj, X,, and vj for j = 1,.. .M.

2. MAXIMUM LIKELIHOOD ESTIMATION
OF THE UNRESTRICTED REDUCED FORM

Before examining the maximum likelihood estimator, let us write down two
obvious estimators of II, namely, the feasible GLS estimator (nfGLs) and
the covariance estimator (flcov):

vec(nfGLS) = \£ (Of1 ® A"A/,A-)1 ' £ (Of1 <S> X'M,)vec Y, (2.1)
L/=i J /=i

vec(ficov) = [I®X'QX]-'(I®X'Q)\KY, Q = M< (2.2)

or

ncov = (X'QX)-'X'QY. (2.3)

The estimators of the variance components are obtained by ANOVA
methods using residuals of the covariance method:

&i= — (Y- XU^YM^Y- Xflcm) i = 1,2, and 4, (2.4)

Q 3 = n, + n2 - &»• (2.5)
There is no guaranty that the matrix in (2.5) is positive definite in a given
sample. However, if we assume that the data are centered, X'M3Xis equal
to zero and the sum in (2.1) runs only over the indices 1, 2, and 4 and (2.5)
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ERROR COMPONENT STRUCTURE 227

is not needed. Note also that in the case of only individual effects, there is
no such problem.

It can be easily verified that both VAT (vecftfGLS — vecll) and
VAT(vecncov - vecll) have a normal limiting distribution with zero mean
and covariance matrix equal to (04 (g) S~l). This limiting distribution is the
same as that of the full GLS estimator.

Let us add that our feasible GLS estimator is the same as the second one
given in Baltagi [6], i.e., the one that uses covariance residuals for estimat-
ing the variance components. Avery [2] uses OLS residuals and this method
also leads to an asymptotically efficient estimator of coefficients, as pointed
out by Prucha [17].

We now proceed to develop the maximum likelihood estimator. The log
likelihood, apart from an irrelevant constant, is

log L(y7n,n,,Q,,fix) = - \ £ m, log|Q,| - \ £ tr K'M,™,-'. (2.6)

Notice that we parametrize the likelihood function in terms of [)„$},,,Gx

(which are fixed parameters independent of T and N), but we use the 0, as
short-hand notation. The definitions of fl, are the same as the correspond-
ing ones for E, given immediately after formula (1.7). Also V stands for
Y-XU.

The log likelihood has to be maximized with respect to all the parameters,
subject to the symmetry conditions

CvecO, = 0, j = ii,\,v, (2.7)

where C is a known x M2 matrix of full row rank such that

C'C is equal to the idempotent matrix (/ - P), P being the commutation
matrix. By writing the symmetry condition as in (2.7) above, we avoid
extracting the redundant elements of the different covariance matrices.1

It turns out that the symmetry conditions are automatically satisfied by the
first-order conditions of the associated Lagrangian function. We can there-
fore proceed to the direct maximization of log L. It should be kept in mind,
however, that the constraints represented by (2.7) are relevant for the com-
putation of the (bordered) information matrix.

The first-order differential of (2.6) is2:

1 4

dlogL = - - EniitrQrHdQ,)

- £ \ tr VM,(dV)Qrl

1=1 2

1 4

+ - £ tr V'M, Kfi - ' (rffi,)«,"'. (2.8)
2 /=!
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228 P. BALESTRA and J. VARADHARAJAN-KRISHNAKUMAR

Substituting

^ (2.9)

dQ2 = rffi, + NdQx, (2.10)

(2.11)

(2.12)

= XdU, (2.13)

into the first-order condition d log L = 0 for all dH & 0 and tf fi, =£ 0, j =
H,\,i>, we can conveniently set up the following equations:

[ 4 1 - 1 4

Y. (Qf' ® X'MiX) Y. (fir1 ® A"A/,)vec y, (2.14)
/ti J ifi

fi, = — (y - XU)'Mi(Y- XU) + — QtWQi, i = 1,2 (2.15)

(YXn)'M(YXTl) 0 ^ 0 (2.16)

where

«3 = Q,+ n 2 - n 4 . (2.17)

Contrary to the case of only individual effects (Qx = 0, see Magnus [12]),
in the present situation no explicit expressions for the fl, in terms of II can
be obtained. However, the whole system (2.14) to (2.17) can be solved iter-
atively as follows3:

STEP 1. Initial conditions: Of1 = 0, / = 1,2,3 and fi4 = /.
STEP 2. Use (2.14) to compute vec II.
STEP 3. Compute Q,, / = 1,2,4 from (2.15) and (2.16), using on the

right-hand side of these equations the current estimates for II and the pre-
vious ones for O,-. (Note that in the first iteration W = 0). Compute also
«3 = fl, + Q2 - Q4 and Wfrom (2.17).

STEP 4. Go back to Step 2 until convergence is reached. If the above ini-
tial values are chosen, then it is easily verified that:

ft = ncov at the first iteration, and

ft = ftfOLS at the second iteration.

The Limiting Distribution

The limiting distribution of the maximum likelihood (ML) estimators can be
said to be normal by virtue of Vickers' theorems (as stated in Magnus [13],
p. 295). Indeed, it can be shown that:
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ERROR COMPONENT STRUCTURE 229

a. Each element of the information matrix, when divided by an appropriate nor-
malizing factor, tends to a finite function of the true parameters as TV and T
tend to infinity; and

b. The variance of each element of the matrix of second-order derivatives of the
log-likelihood function, when divided by the square of the corresponding nor-
malizing factor, converges uniformly to zero.

The moments of the limiting distribution can be obtained directly from the
inverse of the bordered (limit) information matrix, see Appendix A. We may
therefore conclude that:

4NTvec(tlML - n.) - N(O,UV ® S"1),

V77Tvec(fi, - Qr) ~ NIO,^ (/+ P)(20, ® Q,) i (/ + P)Y

,^ (I+P)(2Utl ® 0,)

^ (I + />)(20x ® fix) \(I+

The asymptotic equivalence between vecflML, vecftCOv, and vecnfGLs is
thus proved.

3. "GENERALIZED" THREE-STAGE LEAST SQUARES

In this section we consider different structural estimation methods. Before
discussing what we call "generalized" 3SLS (G3SLS) which is a full-
information system method, a single equation method, namely, "generalized"
2SLS (G2SLS) is presented and these estimators are compared with the esti-
mators obtained by indirect estimation when the structural equation in ques-
tion is just-identified. Then the generalized 3SLS is presented as a direct
extension of the generalized 2SLS and the asymptotic properties of the
G3SLS are derived. Finally, it is shown that G3SLS reduces to G2SLS in the
case of a just-identified system.

Generalized Two-Stage Least Squares

Let us consider the first structural equation and premultiply it by X'F*
where F* is an NT x NT matrix to be determined:

X'F*ys = X'F*Zt 5, + X'F*u,. (3.1)

Let 6Hg) denote the estimator of 5, obtained by applying GLS on (3.1). It
can be shown that (see Balestra [3]) F* = £7/ minimizes the trace and deter-
minant of the asymptotic covariance matrix of 6Hg) and also gives the min-
imal positive definite asymptotic covariance matrix. This leads us to define
the G2SLS estimator of 61 as follows:
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230 P. BALESTRA and J. VARADHARAJAN-KRISHNAKUMAR

\~ X)~ 'Lji Z\]

(3.2)

If we p u t F* = Q, w e get the 2 S L S covar iance e s t ima to r of 8it name ly :

5i.cov= [Z\QX{X'QX)-'X'QZx]-xZ\QX(X'QX)-lX'Qyu (3.3)

Another 2SLS estimator is given by

kRF=(Z\QZly
xZ\Qyu (3.4)

where Zx = [ Yx Xt ] , Yt = XUHX, Ft being any consistent estimator of the
reduced form. Straight calculation shows that when II is estimated by the
covariance method, the two estimators in (3.3) and (3.4) are equal.

The G2SLS is not feasible, in general, since the variances are not known.
These variances can be consistently estimated in the following way. Use
either 6lcov or 61RF to compute residuals for the first structural equation,
i.e., u, = yx — Zxbx. Then, by the ANOVA formulas, we get

afu = — u\M,uu 1 = 1,2,4
m-,

With these estimates we can compute £,, =
feasible G2SLS estimator, i.e.,

(3.5)

(3.6)

, and construct the

(3.7)

It is interesting to note that the four 2SLS estimators presented here all
share the same asymptotic distribution which is normal with zero mean and
covariance matrix given by

1)r
1. (3.8)

Their small sample properties are not known yet; they could be investigated
by Monte Carlo experiments.

In addition, when the equation is just-identified, the ILS estimator of 5X

derived using ncov is equal to the 2SLS covariance estimator and the one
derived using either ncov or nfGLS has the same limiting distribution as that
of the feasible G2SLS estimator.

Generalized Three-Stage Least Squares

The extension from G2SLS to G3SLS is made in an analogous manner to
that from classical 2SLS to 3SLS. Let

Z, 0

Z. = 5 = y = vec Y, u = vec U.
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ERROR COMPONENT STRUCTURE 231

Then, the set of M structural equations can be written compactly as:

y = Z.b + u. (3.9)

Let D = diag (E,, • • -£MM) and let us premultiply (3.9) by \'D~\ where
X = IM®X. This gives:

x'D-ly = x'D-iZ.5 + x'D-1u. (3.10)

Performing GLS on (3.10) yields the G3SLS estimator of 6:

xr'x'D-'y. (3.11)
Again, the unknown variances have to be estimated and one way of esti-

mating them is as follows:

A 2 _ 1 -

and

22 _ p.2 i A 2 A 2

whence

and a feasible G3SLS estimator (6fG3SLs) is obtained by substituting D, E
for A E, respectively, in (3.11).

It can be shown that \INT (6fG3SLs — 5) has a normal limiting distribution
with zero mean and (P'(E^"' ® S)P)~! as covariance matrix where

0

P= •. , (3.12)

0 (nHMLM)

When the whole system is just-identified, the feasible G3SLS estimator of the
coefficients of any structural equation is exactly equal to the corresponding
feasible G2SLS estimator if we estimate its covariance matrix by the same
method in both cases and their common limiting distribution is the same as
that of the ILS estimator.

4. FULL INFORMATION MAXIMUM LIKELIHOOD ESTIMATION
OF THE STRUCTURAL FORM

In this section we shall discuss the ML estimation of the constrained struc-
tural form. Again it is extremely difficult to get analytical results since the
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232 P. BALESTRA and J. VARADHARAJAN-KRISHNAKUMAR

normal equations can be solved only by numerical methods. To this end, we
adapt a procedure suggested by Pollock [16] for the classical simultaneous
equation model. It is also shown that the FIML estimator has the same
asymptotic distribution as the G3SLS estimator.

The Problem

The starting point is the log-likelihood function, see equation (2.6), which
is to be expressed now in terms of the structural parameters. We use the fol-
lowing identities and definitions:

n = -jsr-'

e ' = [r'jS'i

Z = [YX]

U = [10], L'Q =T

where the E, are defined in (1.7).
Then we can write

^ . E x ) = - \ Z>/log|E,| + ]-NT\og\L'e\2

1 4

- - tr £ O'Z'MiZQL-1. (4.1)

We are interested in maximizing this function with respect to 9,£„,£,., and
Ex subject to two types of restrictions:

i. A priori restrictions on the coefficients. These must include the normalization
rule for each equation (typically y,,- = — 1), the exclusion restrictions (zero a
priori coefficients) and eventually other linear restrictions on the parameters.
They can be expressed conveniently by

R vec 0 = r,

where R is a known s x M(M + K) matrix of full row rank and ris a known
s x 1 vector of constants. To ensure identification, s must be greater than or
equal to M2.

ii. Symmetry conditions:

CvecEy = 0 j = v,fi,\

where C is the matrix defined in (2.7).
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ERROR COMPONENT STRUCTURE 233

Again, it can be verified that the first-order conditions for maximization
automatically satisfy the symmetry conditions. These can therefore be
neglected for this purpose, but they will be important for the computation
of the information matrix.

We therefore write the following Lagrangian function:

L* =logL + A ' ( r - / ? v e c 0 ) , (4.2)

where A is a vector of Lagrangian multipliers.

The ML Solution

The first-order differential of the Lagrangian function is given by:

dL* = - \ Y,m, trE,-VE, + NTtr(0'L)-'Z/rf0
2 ;

- \ trE (de)'Z'M,zeL-1 - - tr
2 ,• 2

+ ̂
2

+ A'/tovec 9 + (dA)'R vec 0. (4.3)

Once again, substituting

tfE, = dLy + TdL,,, (4.4)

dE2 = dZ, + M/Ex, (4.5)

dT.y = dLv + TdL^ + NdLx, (4.6)

dZ, = dZp, (4.7)

(G'L)-' = r ' - ' = n4rEr' = n4L'ez;1, (4.8)

into the first-order condition which is dL* = 0 for all d vec 0 =£ 0, dh ^ 0,
and d vec E, *0,j = \i, v,\ and using the familiar vec-trace relationship, we
can derive the following system of normal equations:

-.K'A = O, (4.9)

R vec 0 = r, (4.10)

E4 = — 6'Z'M4ZQ - — E4^E4, (4.11)
m /7J
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234 P. BALESTRA and J. VARADHARAJAN-KRISHNAKUMAR

E, = — e'Z'Af,Ze+ — E.JFE,,

E2 = — Q'Z'M2ZQ + —
m2 m2

where

(4.12)

(4.13)

Z'MtZ),

The maximum likelihood estimates are obtained by solving simultaneously
equations (4.9) to (4.13) together with the two definitions:

E3 — Ej + E2 — E4,

i4 =

(4.14)

(4.15)

W R'

R 0

vecG

- A

0

r

This system of equations is highly nonlinear.4 We notice, however, that an
explicit solution can be found for vec 0 in terms of the different covariance
matrices. Equations (4.9) and (4.10) can be combined to yield:

(4.16)

The first matrix on the left-hand side of (4.16) is nonsingular, if and only if

i. Rank (/?') = s, which is true by hypothesis, and
ii. Rank (/ - R'(RR')-lR)W(I - R'(RR')~lR) = M{M + K) - s, which is

satisfied whenever the conditions for identification are met. Its inverse (see
Balestra [4]) is given by

Hi H2

Hi H3

where

Hi =F(F'WF)~lF',

H2 = -F(F'WF)~lF'

Hi = -(RR')-lRWR'(RRT* + (RR')-1RWF(F'WF)-XF'WR>(

and F is an M(K + M) x (M2 + MK — s) matrix of orthonormal vectors such
that FF' = I - R'(RR')~lR'. We therefore obtain the following solution:

vec9 =H2r= - R' (4.17)
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It is very useful to note, from an operational point of view, that whenever
the usual restrictions are considered only (normalization and exclusion), the
matrix R can be partitioned as

R =

0

0 RM

(4.18)

when R, is an s, x (Af + K) matrix whose rows are elementary vectors.
Therefore, RR' = Is. Likewise, the corresponding part of r, rit is an ele-
mentary vector (with a minus sign in front) and Rjn = /-,. Furthermore, the
matrix F' can also be partitioned in a block diagonal form

F' =

Fi

0

0

(4.19)

where the M + K — s, rows of Fj are just the elementary vectors which
are complementary (orthogonal) to those appearing in /?,. The matrix Fis
therefore computed without any difficulty. In this case, the expression for
vec 0 simplifies to:

vec 0 = -F(F' WF)~lF' Wr + r, (4.20)

and the non-constrained coefficients are obtained by premultiplication by F',

F' vec 0 = - (F' WF)~lF' Wr. (4.21)

We therefore suggest the following iterative procedure for the solution of the
normal equations:

STEP 1. Initial conditions:

£r< = o, / = 1,2,3 (their limits)

fi4 = jjf (Y- Xtl)'Q(Y - XII)

where ft is a consistent estimator of the reduced form, say ncov.
STEP 2. Use (4.17) or, in case of usual restrictions, use (4.20) to estimate vec 9.
STEP 3. Compute E,, / = 1,2,4, from (4.11), (4.12), and (4.13) using on the

right-hand side the current estimate for 8 and the old ones (from the pre-
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vious iteration) for the different E,-. Compute E3 from (4.14) and Q4

from (4.15).
STEP4. Go back to Step 2 until convergence is reached.

In the case of usual restrictions and with the initial conditions stated in
Step 1, the matrix W becomes

W=I®-G,

where

G = Z'QX(X'QX)-*X'QZ.

In view of the block diagonal form of F' we can obtain directly, for Step 2:

vec0 = -/qdiagfF/G/^r 'HdiagfF/OJr + r

which, for the coefficients of the /th equation, gives

0, = -Fi (F! GF,rl F; Gr, + r,. (4.22)

Now F/Z = Z; where Z, contains all the explanatory variables of the /th
equation (both endogenous and exogenous) and Zr-, = —yh the explained
variable. Therefore, we get:

0, = FdZfQXWQXr'X'QZ,] -]Z;QX(X'QX)-'X'Qy, + n, (4.23)

which is seen to be identical (for the non-constrained coefficients) to the
2SLS covariance estimator, see (3.3). Hence, the first iteration gives the 2SLS
solution. At the second iteration, if we keep the initial values for Ef', E j ' ,
LJ', and Q4, and compute E4 according to (4.11), then we obtain a 3SLS
estimator of the covariance type (which is a particular case of our G3SLS
with D~] replaced by IM®Q)-

The Limiting Distribution

As in the case of the reduced form, the requirements for the application
of Vickers' theorems are fulfilled and, therefore, the FIML estimators are
asymptotically normally distributed. The moments of the limiting distribu-
tion of these estimators are easily obtained from the inverse of the limit of
the bordered information matrix. See Appendix B for the computation of the
information matrix and its inverse. We obtain that 4NT\tc(QML — 0) has
a limiting normal distribution with zero mean and covariance matrix equal to

lF', (4.24)

where F is a matrix of orthonormal vectors such that FF' = I — /?'(/?/?')"'
R and D is given by

D= \nj]s[W], S = \imj^X'QX. (4.25)
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We can write (4.24) in the following form:

F\F'[l® F : M(i:r1®S)(/® [I1/])F| F. (4.26)H ® ["'])
Now, when the a priori restrictions are just the zero restrictions and the nor-
malization rule, then

F'(l®

where P is defined in (3.12) and the formula in (4.26), for the unconstrained
coefficients, is equal to the covariance matrix of the limiting distribution of
the G3SLS estimator. It follows that the FIML estimator and the G3SLS
estimator are asymptotically equivalent.

For the ML estimators of the variance components, we have the follow-
ing limiting distributions:

, - E J ~ N ( 0 , / / 2 2 ) ,

- EJ ~ N ( 0 , - (7+P)(2EM®EJ - (7+P)) ,

,^ (7+P)(2EX ® Ex) ^ (I+P)),

where

7722 = i (7 + PK2E,, ® EJ X- (7 + P)

'(27® 7,(9' / .)-%) ^ ( 7 + P ) .

5. CONCLUSION

The maximum likelihood approach developed in this paper for the case of
a system of simultaneous equations with error component structure is both
conceptually simple and operationally interesting. The elegant solution pro-
posed by Pollock for the classical case still holds in the present context with
only a moderate increase in the complexity of the analytical expressions and
in the computational burden.

In addition, the approach permits a unified study of the different full
information estimators available and establishes the asymptotic equivalence
between the ML estimator and the G3SLS estimator. Finally, although no
explicit proof is given in this paper, it can be shown in the present context
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238 P. BALESTRA and J. VARADHARAJAN-KRISHNAKUMAR

also that the limited information maximum likelihood (LIML) estimator is
equal to the FIML estimator of a reduced system consisting of the structural
equation in question and the reduced form equations for its explanatory
endogenous variables.

NOTES

1. This is an alternative approach to the one based on the elimination matrix as adopted, for
instance, by Magnus and Neudecker [14] and Balestra [3] or on the equivalent vech operator
(which stacks the columns of a symmetric matrix starting each column at its diagonal element)
as in Henderson and Searle [10]. Our procedure is inspired by an article by F.J.H. Don [8].

2. See Magnus [12] for the use of the differentia! technique.
3. In the case of only individual effects, we will have a zigzag iterative procedure whose con-

vergence to a solution of the ML first-order conditions may be proved using similar assump-
tions as in [15] and [9]. However, in the presence of both effects, the iterative procedure
suggested here, as well as the one proposed later for the FIML estimation of the structural form,
are of a more complex nature, as direct maximization of the log-likelihood function with respect
to the covariance parameters given the coefficient parameters is not possible. In this case, the
problem of convergence needs further investigation and the authors are currently examining it
in greater detail.

4. For the case of no time effects, the log-likelihood function in (4.1) must be replaced by:

— E m , i o g | E , | + - j v r i o g | z / e | 2 - -tT^
2 1,4 2 2 i.4

with m, = N, m2 = N( T - 1), M, = A /T, and MA = / - M,. In this case the solution of the
normal equations is much simpler, since an explicit solution can be found for E, and E4 in
terms of 6 . Equations (4.9) and (4.10) remain the same, but with W defined as

1.4

on the other hand, for the covariance matrices we have (instead of (4.11)-(4.13)):

1 1
E4 = — Q'Z'M4ZQ and £, = — Q'Z'MXZQ,

together with the definition fl4 = (r")~'E4r~'.
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APPENDIX A: THE BORDERED
INFORMATION MATRIX OF THE

REDUCED FORM AND ITS INVERSE

The second-order differential of log L is:

1 4

d2 logL = - Y. m,tr Of'(</0/)0f'(rfO/)
2 /=i

4

+ £ t r K'A/,(rfK)Of'crO.-Of'

/=!
4

4

f 'tr V'Mi(dV)nr'(rfOy)Of'. (A.I)
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The negative of its expectation, noting that E{y'M,dV) = 0 and E(V'M,V) = /n,fi,,
is:

1 4

E(-d2\ogL) = - E>,trnfV«/)OfVn,)

4

£ - (A.2)

Using the familiar vec-trace relationship in conjunction with the formulas (2.9)
to (2.12) and ordering the parameters as [(vec II)', (vecfij', (vecfi^)', (vecfix)'].
the information matrix ¥ is easily obtained as the symmetric matrix A, given on
p. 241.

As noted by Amemiya [1] for the single equation model, we cannot simply take
the limit of ¥ when divided by NT, but instead we must take the limit of t/ * TJ where

/, -7=/ , - 7= / , partitioned appropriately.
\IN y/T I

Noting the following limits (as both N and T tend to infinity)

— X MAX->S,

n,-'-o, /= 1,2,3

we obtain the bordered information matrix:

H=

® s
0

0

0

0

0

0

0

hn,-'®":1)
0

0

c
0

0

0

0

i(n;'®o-'
0

0

c
0

0

0

) 0

I (Ox"1® «x~')

0

0

c

0

c
0

0

0

0

0

0

0

C"

0

0

0

0

0

0

0

c
0

0

0

Due to its particularly simple form, the first block on the main diagonal of its
inverse is obviously given by the inverse of the corresponding block. For the next
three blocks on the main diagonal of the inverse of the information matrix, each
block is the first block of the inverse of
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According to the usual inversion rule (see for instance Balestra [4, p. 10]), this can
be expressed as

F\F'^ ( f i / 1 ® ! ) / 1 ) / F, (A.3)

for Fsuch that FF' = / - C'C = I - \ (/ - P)i (/ + P), where P is the commuta-
tion matrix. Note that \(I + P) is idempotent.

From the properties of the commutation matrix it is easily established that

FF' (2fi, ® Qj)FF' = FF'(2Qj ® fiy). (A.4)

Therefore, we obtain successively:

FF (2Qj ®

FF' (20, ® f2,)F IF' Q 0/1 ® fi/1 jFj = ^

FF'(2ttj ® ny)F = FF"(J 00 / '

i (/ + P)(2fi, ® n;) 1 (/ + p> = F | F ' Q Q/1 ® O-'JFI F.

The left-hand side of the above formula is the one used in the text.

APPENDIX B: COMPUTATION OF THE
BORDERED INFORMATION MATRIX

OF FIML AND ITS INVERSE

The second-order differential of the log likelihood function is

cf2log£. = - EmitTLr'dLiLf'dLi - NTu(Q'L)-t(de)'L(e'L)-lL'de

- - tr£ (deyZ'M/ZdeLr' + - tr£
2 i 2 j

- - tT^l(.de)'Z'MiZdeZ-1 + - tT^
2 , 2 ,
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+ - t r£ (de)Z'MiZeZ-1 dLit'1 + -
2 , 2

- -
2

Noting that

= m,e'z.n,z/e = £,,

and that

and using the notation:

we can write:

Em/trE-'dE/Er'tfE/ + NTtT(e'L)-i(d9)'L(Q'L)L'de
2. i

+ - t r
2 /

+ - t r £ (dQ)'(Di + nt/LiliL^deLT1 - - tr
2 / 2

- - tr'£lmi(de)'L(e'L)-i dt/Zr1 - - t rS
2 , 2 /

+ -tr2'"/(^/)E-1dE,Er1 + -trEfME/Er1 dZ,!.^.
2 / 2 ;

Thus, the information matrix * is the symmetric matrix B, given on p. 241.

Let us give the blocks of the above * the obvious notations Vy, where ij = 1,2,3,4.
Now we have to take the limit of TJ'¥IJ where

= d i a g [ VTVT 7 ~m' IN 7 if 7J • partitioned

Noting the following limits:
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X'MAX = X'QX^S,
NT NT *
E - ' - O , i = l , 2 , 3

N
7TJ1 -» (E,, + Ex)" ' , assuming >\

N1 -> (E,, + E x ) - \ assuming • 1

1
T ' ~*

1

1

N 3~*

1
- 3 -

we find

1

NT "

where L

Now,

0 , ,

fix,

ty, •+

fiM -+

that:

- [

- fix, assuming

• fix, assuming

I
L0) Z, ®L(0,

n;}smn.
by writing

N

N

L ) f ) P

(B.3)

x [ E ; 1 ® (Z,'0)-'L'J

=
and

Z'1 ® Lfi.L' = E71

= [E;1

and calling

) - 1 ] , (B.4)

we get

j ^ : • „ - E71 ® £> + //12(2E, ® £,) ^ - ^ //,'2 mHn. (B.5)
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Using the limits given by (B.3), it is straightforward that

' 27' - #22. (B.6)7^
NT

2

(B.7)

(B.8)

and that all the remaining blocks tend to zero when divided by the appropriate factor.
Therefore, ordering the parameters as vec 0, vec £„ vec £„, and vec Ex, the infor-

mation matrix (in limit), bordered by the linear restrictions on 0 and the symmetry
conditions on the covariance matrices, is:

ffu

H'M

0

0

R

0

0

0

Hu

H22

0

0

0

c
0

0

0

0

0

0

0

C

0

0

0

0

HM

0

0

0

C

R'

0

0

0

0

C"

0

0

0

0

C"

0

0

0

0

0

c

Let us denote by HiJ the corresponding block of the inverse of H. Then, as in the
case of the reduced form, we have:

/ /» = - (/ + PH2Z, ® £„) - (/ + P),

P)(2EX

(B.9)

(B.10)

For the first four blocks of H~l, we notice that they are equal to the first four
blocks of the inverse of the following matrix A:

A =

# 1 1

# 1 2

R

0

# . 2

# 2 2

0

C

R'

0

0

0

0

C

0

0

/4, G'

G 0
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Construct the following matrix F.

F 0

0 F

where F is a matrix of orthonormal vectors such that FF' = / - / ? ' (RR')~lR and F
is a matrix of orthonormal vectors such that FF' = f — C'C = \ (/ + P). It is eas-
ily checked that FmF* = /— G'(GG')~*G. Therefore, the inverse corresponding to
A t, say A', is given by

A1 =FAF;A1F.)~1F;.

Let us now compute the above matrix. First, we write:

F'HUF F'H12F]

F'H{2F F'H22F\

and notice that the block F'H22F'\s nonsingular. Therefore, using the inversion rule
for partitioned matrices and upon pre-multiplication by Fm and post-multiplication
by F,', we obtain:

/ / " =FS~iF',

Hn = F S l l

H22 = F(F'H22F)~i [I +

where

S = F'HnF- F'Ht2F(F'H22F)-lF'H{2F,

= F'HUF- F'Hl2FF'H2-2
xFF'H[2F,

= F'(Z;'<g)D)F.

Therefore, we can simplify the above results, to obtain:

Hn =F[F'(L-l®D)F]-lF', (B.ll)

Hn=F[F'(HTl ® D)F)-lF'Hl2FF'H2-2
iFF', (B.12)

H22 = F(F'//2 2F)-'(F' + FH;2F[F'(L:1 <g) D)F] ~lF'Hl2FF'H22FF'),

= FF'H22
lFF' + FF'H22'FF'Hi2F[F'(E71 ® D)F]-tF'Hi2FF'H22*FF',

= FF'H^FF' + FF'H22
>Hi2F[F'(L:l®D)F)-iF'Hi2H22

lFF',

x [F'(E7'(g)£>)F]-1F'(2/(8)L(e'Z,)-1El,)-(/+P). (B.13)
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