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S U M M A R Y
Modern geoelectrical data acquisition systems allow large amounts of data to be collected
in a short time. Inversions of such data sets require powerful forward solvers for predict-
ing the electrical potentials. State-of-the-art solvers are typically based on finite elements.
Recent developments in numerical mathematics led to direct matrix solvers that allow the
equation systems arising from such finite element problems to be solved very efficiently. They
are particularly useful for 3-D geoelectrical problems, where many electrodes are involved.
Although modern direct matrix solvers include optimized memory saving strategies, their ap-
plication to realistic, large-scale 3-D problems is still somewhat limited. Therefore, we present
two novel techniques that allow the number of gridpoints to be reduced considerably, while
maintaining a high solution accuracy. In the areas surrounding an electrode array we attach
infinite elements that continue the electrical potentials to infinity. This does not only reduce
the number of gridpoints, but also avoids the artificial Dirichlet or mixed boundary conditions
that are well known to be the cause of numerical inaccuracies. Our second development con-
cerns the singularity removal in the presence of significant surface topography. We employ a
fast multipole boundary element method for computing the singular potentials. This renders
unnecessary mesh refinements near the electrodes, which results in substantial savings of grid-
points of up to more than 50 per cent. By means of extensive numerical tests we demonstrate
that combined application of infinite elements and singularity removal allows the number
of gridpoints to be reduced by a factor of ≈6–10 compared with traditional finite element
methods. This will be key for applying finite elements and direct matrix solver techniques to
realistic 3-D inversion problems.

Key words: Numerical solutions

1 I N T RO D U C T I O N

The introduction of multi-electrode data acquisition systems dur-
ing the 1980s and 1990s has simplified significantly geoelectri-
cal surveying, such that relatively large data sets can now be col-
lected with a moderate field effort (e.g. Griffiths & Turnbull 1985;
Stummer et al. 2002). This is certainly an important step towards
routine application of 3-D surveys, but despite the ever increasing
power of computers, realistic 3-D geoelectrical inversions remain
challenging. In particular, the solution of the forward problem, that
is, predicting electrical potentials using a particular conductivity
model, can be a very time-consuming task.

During the past few decades much effort has been put into the
development of numerical forward solvers. Among the methods
used, the finite difference method (FDM) (Mufti 1976; Dey &
Morrison 1979; Spitzer 1995; Zhao & Yedlin 1996; Wang et al.
2000), the finite element method (FEM) (Coggon 1971; Pridmore
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et al. 1981; Sasaki 1994; Bing & Greenhalgh 2001; Pain et al.
2002; Li & Spitzer 2002) are the most popular. Other methods pro-
posed include the boundary element method (BEM) (Hvozdara &
Kaikkonen 1998; Xu et al. 1998; Ma 2002) and the integral equa-
tion method (IEM) (Lee 1975; Dieter et al. 1969).

The FDM, first employed for geoelectrics by Mufti (1976) for
2-D and by Dey & Morrison (1979) for 3-D problems, has been the
method of choice in the geoelectric community for a long time due
to its easy and flexible implementation.

Unfortunately, finite difference calculations are generally re-
stricted to structured, orthogonal grids that do not allow local mesh
refinements. Only global refinements with respect to a single spa-
tial coordinate can be implemented. This results in an unnecessar-
ily large number of gridpoints. Furthermore, complicated topog-
raphy can not be handled by orthogonal grids, although attempts
have been made to circumvent this limitation (e.g. Loke & Barker
1996).

The FEM allows unstructured meshes to be used and is therefore
much more flexible. In particular, complicated topographies can be
implemented and the meshes can be almost arbitrarily coarsened
or densified in regions where necessary. For example, Rücker et al.
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(2006) presented a 3-D geoelectric forward solver based on tetra-
hedral unstructured elements that clearly show the advantages of
unstructured domain discretizations.

FDM and FEM are attractive options, when the subsurface con-
ductivity distributions are highly heterogeneous. For less compli-
cated subsurface structures, for example, a layered half-space with
a few simply shaped inclusions, application of the BEM or IEM
can be advantageous. For example, Ma (2002) provided BEM so-
lutions for 3-D inhomogeneous bodies buried in a layered earth
and Hvozdara & Kaikkonen (1998) used the BEM to calculate
the response of a rectangular prism embedded in a homogeneous
subsurface.

Due to its flexibility with regard to domain discretization and
model complexity, the FEM is in our view currently the most ap-
propriate method for 3-D geoelectrical inversion problems. Its im-
plementation results in a system of equations of the form

Ax = b, (1)

where matrix A represents the domain discretization and the con-
ductivity model, vector x includes the unknown potentials or poten-
tial differences and vector b characterizes the geoelectrical sources.
Matrix A is of the size n × n, where n is the number of gridpoints
in the finite element mesh. It can be very large (n is typically of the
order 104–106 or even larger), but it is also extremely sparse.

Such systems of equations can be solved most efficiently with iter-
ative solvers such as the preconditioned conjugate gradient method
(Hestenes & Stiefel 1952; Spitzer 1995). During geoelectrical in-
versions the forward problem needs to be solved at least ne times,
where ne is the number of electrodes employed. Typical 3-D surveys
may include several hundreds of electrode positions. It is important
to note that the finite element equations can easily be formulated
such that only the right-hand side b of eq. (1) changes for the in-
dividual electrode positions. This motivates application of direct
matrix solvers. Here, the matrix A is factorized in a lower and upper
triangular matrix using LU decomposition. Once the factorization is
performed, solutions for multiple right-hand side arguments b can
be obtained swiftly by simple backsubstitutions. Despite this very
attractive property, direct matrix solvers have been applied so far
rarely for the solution of FEM problems. Main reasons for that in-
clude the expensive matrix factorization and, more importantly, the
fact that the resulting triangular matrices are generally full, which
is prohibitive in terms of memory requirements for typical FEM
problems.

During the past few years significant new developments in sparse
direct matrix solver techniques emerged (Schenk et al. 2003). Mod-
ern implementations are based on matrix reordering strategies that
drastically reduce the memory consumption of the matrix factors.
Still, for large 3-D forward problems the memory requirements of
direct matrix solvers can be excessive. Fig. 1 illustrates advantages
and limitations of direct matrix solvers. We employed the state-of-
the-art ‘PARDISO’ solver (Schenk et al. 2001) for computing FEM
solutions for different grid sizes. A nested dissection reordering
strategy (Karypis & Kumar 1995) was chosen, which proved to be
most efficient for our purposes. For comparison, we recomputed the
solutions with an iterative preconditioned conjugate gradient solver.

For a single forward solution the direct and iterative solvers show
comparable performance, but for the solution including multiple
electrode positions, the direct matrix solver clearly outperforms the
iterative algorithm (Fig. 1a).

The superiority of the direct matrix solver comes at the expense
of memory usage. Despite the application of sophisticated matrix
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Figure 1. Comparison of the solution time and memory consumption of a
preconditioned conjugate gradient solver (PCG, solver tolerance: 1 × 10−8)
and a direct matrix solver (Pardiso). For the tests the geoelectric problem
has been solved with the FEM on a series of meshes.

reordering strategies, its memory consumption is still about a factor
of 10 higher compared with the iterative solver (Fig. 1b). Solutions
of 3-D FEM problems including more than 106 nodes may thus
require excessive amounts of memory.

In this paper we present two novel techniques that allow the
number of gridpoints of FEM meshes to be reduced significantly.
These developments thus allow very large 3-D geoelectrical forward
problems to be solved with direct matrix solvers, which results in a
considerable efficiency improvement of the corresponding inverse
problem. The first technique is devoted to the reduction of nodes
that are introduced to move the mesh boundaries (open boundaries
within the subsurface) sufficiently far away from the model region
of interest. This is achieved with the application of so-called infinite
elements (Astley et al. 1998). Our second development concerns the
mesh refinements near the electrode positions. Refinements are re-
quired to achieve a high solution accuracy near the singularities of
the electrical potentials. Lowry et al. (1989) showed that the singu-
larities at the electrodes can be removed by splitting the electrical
potential in a singular part that can be computed analytically and a
non-singular part that needs to be determined numerically. Unfor-
tunately, analytical solutions for the singular potential exist only for
special cases such as homogeneous or layered half-spaces without
surface topography. We employ a fast multipole BEM technique
(Hackbusch & Nowak 1989) that allows the singular potential for a
homogeneous half-space with arbitrary topography to be computed
efficiently.

In the first part of the paper we briefly review the fundamentals
of the geoelectrical forward problem, the singularity removal tech-
nique and the finite element approximation to the governing partial
differential equations. Then, we present the open boundary handling
with infinite elements followed by a description of the fast multipole
BEM technique that we employ for the singularity removal. The per-
formance of these new developments is demonstrated with a series
of numerical experiments. In particular, we show that the number
of gridpoints can be reduced significantly without degrading the
solution accuracy.
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2 3 - D G E O E L E C T R I C F O RWA R D
M O D E L L I N G

2.1 Boundary value problem

The geoelectric forward problem is governed by the Poisson equa-
tion

∇ · (σ∇U ) = −I0δ(|r − rs |) in � (2)

which results from the equation of continuity for a current strength
I 0 injected at a source position r s into a domain � with an arbi-
trary conductivity distribution σ . Here, we restrict the discussion to
single current injection electrodes (pole–pole configuration). Com-
monly used 4-point electrode configurations can be obtained by
superposition of pole–pole potentials.

The domain boundary � of � can be subdivided into a surface
part � s and a subsurface part �g . Since no current can flow into the
air, the Neumann boundary condition

∂U

∂n
= 0 on �s, (3)

has to be applied on �s(n is the outward pointing normal vector
on � s). The ground boundary �g is introduced only for numerical
purposes to keep � finite. No exact boundary conditions along � g

exist. Mixed boundary conditions

∂U

∂n
+ βU = 0 on �g (4)

have proved to be a reasonable option for � g , whereby the factor β

has to be chosen to be β = n · r/|r|2 for electrodes placed on � s .
Vector r represents the distance between the source electrode and
the boundary �g .

2.2 Singularity removal

The solutions of the geoelectric forward problem contain singular-
ities at the source electrode positions due to the δ-function on the
right-hand side of eq. (2). Near these singularities the electrical po-
tential U varies rapidly. To obtain a numerically stable solution of
eq. (2), a very fine spatial sampling around the electrodes is required,
which is computationally inefficient. Lowry et al. (1989) presented
an alternative approach in which the singularities are removed prior
to the numerical solution. This is achieved by splitting the electrical
potential U into a singular part U s and a non-singular part U n : In
the absence of significant topography the singular potential can be
expressed by an analytical homogeneous half-space solution

U s
h = I0

2πσ0

1

|r − rs | (5)

with σ 0 equal to the mean subsurface conductivity, as originally
proposed by (Lowry et al. 1989), or, for a more accurate singularity
removal, equal to the conductivity at the source electrode position
(Zhao & Yedlin 1996).

Conceptually, more complex background conductivity models
σ 0(x , y, z), for which analytical or numerical solutions to eq. (2)
exist, may be considered. For example, Li & Spitzer (2002) em-
ployed horizontally layered earth and vertical contact conductivity
models for evaluating the singular potentials U s .

Formally, the singularity removal is achieved by substituting
U = U s + U n on the left-hand side of eq. (2), and substituting

∇ · (σ0∇U s) = −I0δ(|r − rs |) (6)

on the right-hand side of eq. (2). Rearranging terms leads to a
modified Poisson equation

∇ · [σ (r)∇U n] = −∇ · {[σ (r) − σ0] ∇U s} , (7)

where the δ-function in the right-hand side has vanished. The prob-
lem is reduced to determining only the non-singular potential field
that results from subsurface conductivities not equal to the back-
ground conductivity σ 0. Once the non-singular potential U n is
found, U s is added to obtain the total electrical potential U .

When the singularity removal technique is applied, mixed type
boundary conditions for U n are not beneficial, because an approx-
imate expression of the non-singular potential field is not known
along the ground boundaries. Zhao & Yedlin (1996) suggest appli-
cation of Dirichlet boundary conditions, that is, U n should be forced
to be zero along �g .

2.3 Finite element equations

In the finite element method the domain � is subdivided in small
subregions, which are referred to as finite elements. Within each
element the unknown potential U n (eq. 7) is approximated by a
linear combination of so called shape functions αk

U n(x, y, z) =
p∑

k=1

αk(x, y, z)un
k , (8)

where P denotes the number of nodes associated with a single ele-
ment and un

k the unknown potential values at the nodes. Appropriate
approximations for U n should minimize the integral∫

�

[∇ · [σ (r)∇U n] + ∇ · {[σ (r) − σ0]∇U s} ωd�, (9)

where ω is a weighting function. If the weighting functions are
chosen to be equal to the shape functions αk , the Galerkin solution
is obtained (Zienkiewicz 1977). In order to employ linear shape
functions, it is necessary to remove the second derivatives with
respect to the potential U n . This is achieved by applying Green’s
first identity to eq. (9), which results in the weak or variational form∫

�

σ∇U n · ∇ωd� −
∫

�

σω
∂U n

∂n
d�

= −
∫

�

∇ · {[σ (r) − σ0]∇U s} ωd�. (10)

Note that the corresponding expression for the total potential U
(eq. 2) takes a similar form, but contains the δ-function under the
volume integral on the right-hand side. After discretization by finite
elements, eq. (10) leads to a linear system of equations. Since only
the right-hand side of eq. (10) includes source electrode dependent
terms, the system(s) of linear equations can be suitably solved with
direct matrix solvers.

2.4 Domain discretization

We employ unstructured finite element meshes, which provide an
enormous flexibility with regard to the mesh density inside � and
the shape of the boundary �. In particular, this facilitates local mesh
refinements in critical areas and allows straightforward implemen-
tation of arbitrary complicated surface topography. Fig. 2 illustrates
our meshing procedure. At first the mesher is enforced to include
nodes at the electrode positions [see label (1) in Fig. 2a]. The surface
topography (e.g. measured via GPS in the field) is then discretized
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Figure 2. (a) Model description: 1: Electrode positions, 2: discretized sur-
face topography, 3: optional internal boundaries, 4: inversion region (domain
�i ). (b) The resulting finite element mesh.

by a triangular mesh (2). Internal boundaries, for example to repre-
sent boreholes, geological layers or conductivity model boundaries
can optionally be defined (3). Inside the computational domain we
choose a tetrahedron-based discretization. To ensure solution accu-
racy, a maximum size constraint for all tetrahedrons is specified in
the region �i below the electrode array (4). The inner region �i is
surrounded by an outer region �o, whose extent is defined by the
distance R. In our experience (and in accordance to Rücker et al.
2006) R should be approximately 5–10 times the size of the largest
electrode spacing. Within �o the mesh density decreases towards
the model boundaries, whereby the growth rate of the finite elements
is controlled by the maximum element aspect-ratio. The larger the
ratio is, the more elongated the elements may be, hence the faster
the element size can grow towards the boundary. Besides defining
the element growth rate, the aspect-ratio constraint ensures rea-
sonably well-shaped mesh elements. Badly shaped elements, that
is, having a too large aspect-ratio, may degrade the solution accu-
racy (Wang et al. 2000). Fig. 2(b) shows an example of a suitably
designed mesh.

Once the initial meshing is completed, local refinements can be
applied (e.g. close to the source electrodes) by inserting additional
nodes into the mesh. During the remeshing procedure the maximum
aspect-ratio constraint is re-enforced, which automatically leads to
a local refinement around the additional nodes. Optionally the finite
element mesh can be converted to a second order finite element
mesh. This is achieved by adding one additional node in the middle
of each element edge. For our tetrahedron discretization this results
in ten instead of four nodes per element. Quadratic shape functions
are used to approximate the solution on second order finite elements
(see eq. 8).

2.5 Open source FEM libraries

Our modelling algorithms are based on several public domain li-
braries that we modified for our purposes. In particular, we employed

‘Triangle’ (Shewchuk 1996) for discretizing the surface topography
and the quality mesher ‘Tetgen’ (Si & Gaertner 2005) for performing
the volume discretization. The matrix equation assembly routines
rely on the finite element library ‘Libmesh’ (Kirk et al. 2006) and
the resulting equations were solved with the direct matrix solver
‘Pardiso’ (Schenk et al. 2001). Furthermore, we used the FM-BEM
classes in the numerical library ‘Concepts’ (Frauenfelder & Lage
2002) for the singularity removal.

3 O P E N B O U N DA RY H A N D L I N G V I A
I N F I N I T E E L E M E N T S

The artificial ground boundaries �g that appear in the finite element
formulation to the Poisson equation are introduced only to keep the
computational domain � finite. This inherently introduces errors in
the numerical solution of eq. (2). To alleviate the problem, the outer
domain �o must be made very large, but this requires a significant
number of additional elements and nodes, which would increase the
computational costs unnecessarily.

Infinite elements, originally developed in the field of acoustic
radiation (Bettes 1987), provide a cost-effective and elegant alter-
native to deal with open boundary problems. Instead of truncating
the domain at a certain distance away from the electrode array,
the outer domain is modelled by infinite elements. We employ the
so-called ‘Astley–Leys’ elements, originally developed by Astley
et al. (1998) and later-on refined for an improved conditioning
of the resulting linear system of equations by Dreyer & Estorff
(2003).

The infinite elements are attached to the subsurface boundary � g

as shown in Fig. 3(a). In contrast to the traditional approach using
mixed-type or Dirichlet boundary conditions, the extent of �o can
be much smaller, that is, the distance R in Fig. 2(a) needs to be
equal to only about half the largest electrodes spacing (compared to
a factor of 5–10 for the traditional approach). A single pole inside
the FE mesh is chosen at point r p for all infinite elements to define
the infinite elements radial directions (Fig. 3a). We choose r p in
the horizontal directions to coincide with the geometric mean of
all source electrode positions because the potential fields decrease
radially outwards from the source electrodes. The vertical location
of r p is given by the zero level of the topography to assure a well-
shaped continuation of the finite element domain by the infinite
elements.

The prismatic-shaped infinite elements are made-up of nine
nodes. The first three nodes coincide with the triangular faces on
the boundary �g [nodes 1,2 and 3 located at ri

1 (i = 1, . . . , 3)] and
the outer three nodes (4, 5 and 6) are located at positions ri

2 = ri
1 +

(ri
1 − r p) as shown in Fig. 3(a). The last three nodes ri

3 are located
at an infinite distance away from rp in direction of ni = ri

2 − ri
1

and are thus not displayed in Fig. 3(a). The infinite extend of the
infinite elements in the radial direction allows the potential field to
be approximated up to infinity instead of truncating it at the domain
boundaries �g .

A coordinate transformation from the global (x , y, z)-coordinate
system to the local (ξ , η, ν)-coordinate system is used to perform
the integration necessary to set up the FEM equations:

ri (ν) = −2ν

1 − ν
ri

1 + 1 + ν

1 − ν
ri

2. (11)

As shown in Fig. 3, this transformation maps the nodes located at
ri = {ri

1, ri
2, ∞ ·ni} to the coordinates ν = {−1, 0, 1} in the local

(ξ , η, ν)-coordinate system, where the integration can be carried
out efficiently with standard Gaussian quadrature rules.
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744 M. Blome, H. R. Maurer and K. Schmidt

Figure 3. (a) A sample infinite element attached at the ground boundary �g of a FE mesh. The infinite elements are constructed by choosing a common
pole that defines their radial direction. The geometry of the infinite elements is defined by projecting rays from the pole through the triangular boundary faces
outwards. The outermost three nodes that lie at infinity, are not displayed in this figure. (b) In local coordinates the infinite elements are mapped to a finite
extent, where the numerical integration is carried out.

The infinite elements are endowed with standard linear or second
order finite element shape functions Si in the ξ , η-plane and with
special shape functions in the radial direction (ν) that are based on
Jacobi polynomials P (2,0)

i . The order of the Jacobi polynomials can
be chosen between 3 and 14, where higher radial orders will give rise
to additional degrees of freedoms (indicated by the small black dots
in Fig. 3). In our experience a radial order of 5 yields sufficiently
accurate results. Finally, the approximation of the potential U inside
the infinite elements is given by:

U =
∑

i

Ui φ̃i with φ̃i = 1/2Si (ξ, η)(1 − ν)P (2,0)
i (ν) (12)

Modified test functions are chosen to improve the conditioning of the
resulting equations (Dreyer & Estorff 2003). The resulting element
matrices are slightly different to the ones obtained for conventional
finite elements (compare to eq. 10):

An
i, j =

∫
�n

σn∇φ̃i · (̃φ j∇ D j + D j∇φ̃ j )d�n . (13)

Here φ̃i are the infinite elements shape functions as defined in
eq. (12) and D(ν) = [(1 − ν)/2]2 are additional radial weights.

In contrast to conventional finite element matrices, the matrices
An are asymmetric (due to the radial weight functions D). There-
fore, infinite elements lead to slightly asymmetric system matrices.
Consequently, we choose either a preconditioned ‘quadratic mini-
mum residual’ iterative solver or the LU direct solver implemented
in ‘Pardiso’ to solve the resulting system of equations.

Performance of infinite elements is demonstrated in Fig. 4, which
shows the non-singular potential field caused by a cuboid-shaped
anomaly. The singularity removal technique leads to sources in-
side the conductivity anomaly that can physically be interpreted as
charges accumulating along the conductivity contrasts (Mendonca
2003). These charges create a potential field with a dipolar charac-
ter. As shown in Fig. 4, the dipolar field is continued properly into
the area of the infinite elements. If Dirichlet boundary conditions
would have been applied, the potential lines at �g would have been
forced to be parallel to the domain boundaries. This unphysical
constraint would certainly have led to errors in the potential field
computations.

Figure 4. Non-singular potential field for a prismatic-shaped anomaly em-
bedded in a homogeneous background. The potential field is accurately
continued beyond the boundaries of the finite element mesh (region �o).

4 S I N G U L A R P O T E N T I A L E VA LUAT I O N
U S I N G A FA S T M U LT I P O L E B E M

As discussed in Section 2.2, the singularity removal technique al-
lows computation of electrical potentials without excessive grid
refinements around the electrodes, but it requires the singular po-
tential to be calculated separately. Unfortunately, no analytical so-
lution exists for homogeneous half-spaces with significant surface
topography, but the principal features of the BEM (Xu et al. 1998;
Ma 2002) make this method very suitable for this purpose. In the
following, we restrict ourselves to surface electrodes, but the same
formulation with minor modifications is applicable to buried elec-
trodes.

4.1 Boundary integral equation

When solving the singular potentials with the BEM, the Poisson
equation⎧⎪⎨⎪⎩

σ0∇2U s = −I0δ(r − r0) in �

∂U s/∂n = 0 on �s

U s = 0 on �g

(14)
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needs to be transformed into a Laplace equation with modified
boundary conditions. Note that the choice of the ground bound-
ary conditions in eq. (14) (Dirichlet type in this case) is arbitrary,
because the BEM allows the artificial ground boundaries to be
eliminated anyway. The transformation to the Laplace equation is
achieved by splitting the singular potential solution U s into a ho-
mogeneous part Us

h and an inhomogeneous part U s
i :

U s = U s
i + U s

h with U s
i (r) = I0

2πσ0

1

|r − r0| (15)

and solving only for the homogeneous part of the solution under
modified boundary conditions⎧⎪⎨⎪⎩

σ0∇2U s
h = 0 in �

∂U s
h /∂n = −∂U s

i /∂n on �s

U s
h = −U s

i on �g.

(16)

After the solution Us
h has been found with the BEM, the inhomo-

geneous solution is added to yield the total singular potential U s .
Due to the linearity of eq. (16) with respect to σ 0, U s can be esti-
mated for an arbitrary value of σ 0 and later scaled to meet the true
conductivity at the source electrode. In this way, the singular poten-
tials need to be estimated only once prior to an inversion process.
In the following discussion we assume σ 0 = 1.

As for the finite element equations we use Galerkin’s criterion to
derive the boundary integral equation corresponding to eq. (16):∫

�

∇2U s
h (r)G(r, r′) d� = 0. (17)

Here G(r, r′) denotes the Green’s function to the Laplace opera-
tor ∇2. Applying Green’s first identity twice yields the boundary
integral equation:∫
�

U s
h (r)∇2G(r, r′) d�

︸ ︷︷ ︸
k U s

h (r′)

+
∫

�

U s
h (r)

∂G(r, r′)
∂n

dSr

=
∫

�

∂U s
h (r)

∂n
G(r, r′) dSr,

{
k = 1 for r′ in �

k = 1/2 for r′ on �. (18)

In contrast to the FEM approach, where local basis functions
are chosen as the weighting function, full space Green’s functions
G(r, r′) are employed in the BEM. Usually homogeneous subsur-
face solutions are used, but in general Green’s functions for arbi-
trary background conductivity models may be employed, though
expressions for these functions can be hard to find or may not ex-
ist at all. Ma (2002), for instance, demonstrated the use of layered
background conductivity models in BEM calculations. The Green’s
functions are fundamental solutions to the Laplace operator, there-
fore the volume integral in eq. (18) reduces to simple function
evaluations. Only boundary integrals remain to be evaluated and
consequently only the boundary of the domain � needs to be dis-
cretized. The dimensionality of the problem is reduced from 3-D
to 2-D, resulting in a substantial reduction of the number of un-
knowns in the equations to be solved. For evaluation points r′ on
� eq. (18) leads to an integral equation that relates Us

h on � to
integral expressions over � and therefore can be used to solve for
the singular potentials along the boundary of the domain. Subse-
quently, by choosing evaluation points r′ in �, eq. (18) can be used
to evaluate the singular potentials inside the domain. Mathemati-
cal analysis (e.g. Sauter & Schwab 2004) shows that in the first
case eq. (18) is valid for k = 1/2 whereas in the latter case k = 1
results.

(a)

(b)

Figure 5. (a) A typical surface mesh used in the BEM (only the inner, that
is, topographic part is shown here). (b) By moving the ground boundaries
to ∞, only the inner part of the surface � s needs to be discretized.

The absence of volume integrals in the BEM allows for a very
natural handling of the unbounded domain that occurs during the
computation of the singular potentials. Fig. 5(b) depicts a sketch of
the integration principle. Instead of truncating the domain at a cer-
tain distance away from the source electrodes the ground boundaries
�g are moved to infinity. As U s

i , and therefore, Us
h approaches 0 at

an infinite distance away from the source electrode, the boundary
integrals along �g vanish. Along � s the integration can be trun-
cated after a certain distance away from the source (≈5–10 times
the largest electrode distance) when ∂Us

h/∂n = − ∂U s
i /∂n ≈ 0 and

thus only an inner part of � s needs to be discretized. Fig. 5(a) shows
an example triangular mesh used for the BEM (for clarity, the outer
part of the mesh is not shown).

To obtain accuracy and stability of the solution we employ a weak
formulation of the boundary integral eq. (18):

1

2

∫
�s

U s
h (r′)φ(r′) dSr′ +

∫
�s

∫
�s

U s
h (r)

∂G(r, r′)
∂n

φ(r′) dSr dSr′

=
∫

�s

∫
�s

∂U s
h (r′)
∂n

G(r, r′)φ(r′) dSr dSr′ .

(19)

After discretization by unstructured triangular elements with linear
shape functions φ i eq. (19) leads to a linear system of equations

Aus
h = Bq (20)

with the matrix entries given by

Ai j = 1/2
∫

�s

φi (r)φ j (r
′) dSr′

+
∫

�s

∫
�s

φi (r)
∂G(r, r′)

∂n
φ j (r

′) dSr dSr′ (21)

Bi j =
∫

�s

∫
�s

φi (r)G(r, r′)φ j (r
′) dr dSr′ , (22)

and the Neumann boundary condition values

qi = ∂U s
h,i/∂ni . (23)

Eq. (20) yields the unknown potential values us
h on the nodes of

the surface mesh. Subsequently, eq. (18) needs to be re-evaluated
in a second step to obtain the potential solution inside the volume
(i.e. at all nodes of the corresponding FE mesh).

C© 2008 The Authors, GJI, 176, 740–752

Journal compilation C© 2008 RAS



746 M. Blome, H. R. Maurer and K. Schmidt

4.2 The fast multipole BEM

The BEM matrices A and B in eqs (21) and (22) are fully populated
due to the coupling of the Green’s function G(r, r′). Consequently,
the computational costs, memory consumption and solution time,
scale as ∼ O(N 2) for the BEM while they scale as ∼O(M) for the
FEM, for which system matrices are usually extremely sparse (here
N and M denote the number of unknowns in the BEM, respectively
the FEM equations). This imposes a serious limitation on the ap-
plicability of the BEM, because especially the unfavorable memory
consumption may easily render the BEM inefficient compared to
the FEM.

To account for this major drawback of the standard BEM, fast
multipole boundary element methods (FM–BEM) where introduced
(Hackbusch & Nowak 1989). These methods employ the fast multi-
pole method originally developed by (Greengard & Rokhlin 1987)
by expanding the Green’s function G(r, r′) in the farfield by a func-
tion series such that the variables r and r′ are separated. With this
kernel expansion the matrix assembly and the solution times are
considerably reduced by combining the effects of Green’s function
evaluation points in the farfield to so-called multipole moments. In
the nearfield, that is, where r and r′ are close-by, standard Green’s
function evaluations are used. Effectively, this scheme leads to an ap-
proximation of the fully populated BEM matrix by a sparse nearfield
matrix and a sum of low-rank farfield approximation matrices. The
FM–BEM employs a multilevel scheme to exploit the use of mul-
tipole moments as efficiently as possible. The computational costs
for matrix vector products needed when solving the resulting sys-
tem of equations with iterative solvers is reduced from ∼ O(N 2)
to ∼ O[N logα(N )]. We employ a variant of the FM–BEM called
‘Panel Clustering Method’ implemented by (Lage 1995) to solve
for the singular potentials efficiently. Details about the method used
can be found in Appendix A.

5 N U M E R I C A L T E S T S

5.1 Test models

Numerical simulations were carried out for 3 different conductivity
models: (i) a homogeneous conductivity model, (ii) a model includ-
ing a single prismatic anomaly within the homogeneous host rock
(Fig. 6a) and (iii) an embedded stack of two layers (Fig. 6b). All
three models included a mound-shaped topography on which 50
electrodes were placed. For each model we performed calculations
on a series of 18 meshes with increasing numbers of unknowns. The
mesh size was increased by moving the ground boundaries outwards
and at the same time increasing the mesh density in the inner part

Figure 6. (a) Cuboid model (b) Layered block model (c) The mesh size is increased by moving the subsurface boundaries outwards and increasing the mesh
density in the inner part �i .

�i (Fig. 6c). In the outer part of the mesh �o, the increasing mesh
size towards the boundaries was controlled by a maximum aspect
ratio constraint as described in Section 2.4. The meshes were chosen
such that the numbers of unknowns were roughly equidistant on a
logarithmic scale to cover a wide range of problem sizes. Meshing
was performed such that all mesh elements lied entirely within
a region of constant conductivity to avoid model discretization
errors.

5.2 Potential field calculations

Computations were carried out for each conductivity model, elec-
trode position and mesh size. Moreover, all computations were
performed with both, first and second order finite elements. The
entire suite of these simulations were repeated using (i) stan-
dard FEM with mixed-boundary conditions, (ii) infinite elements,
(iii) numerical singularity removal using FM–BEM and (iv) com-
bined application of infinite elements and numerical singularity re-
moval. Computations with infinite elements did not require the outer
space �o to be meshed (R = 0.2 was chosen such that its bound-
aries were sufficiently far away from the conductivity anomalies
and the outermost electrodes). Since the quality mesher employed
created already a very efficient grid in �o, this saved only 5–10
per cent of the unknowns, but it was expected that the properties
of the infinite elements would generally lead to improved accuracy.
Computations involving numerical singularity removal did not re-
quire mesh refinements near the electrodes, which led to a ≈10–
65 per cent reduction of the unknowns. Finally, combined appli-
cation of infinite elements and numerical singularity removal was
expected to provide the best ratio of accuracy and number of un-
knowns.

Unfortunately, no analytical solution exists for estimating the ac-
curacy of the different simulations. Therefore, we compared our
results with reference solutions that were obtained by the finite ele-
ment forward solver described in (Rücker et al. 2006). These refer-
ence solutions were calculated on extremely dense meshes equipped
with second-order shape functions (each including more than 1 mil-
lion unknowns). Mixed boundary conditions were applied and a
preconditioned conjugate gradient solver with a solver tolerance of
1 × 10−9 was used.

Initial inspection of the simulation results revealed that the so-
lution accuracy was comparable for all electrode positions. For the
sake of simplicity, we therefore, restricted our further analysis to the
results obtained with an injection electrode at the top of the mound
shaped topography (vertical arrows in Fig. 6). Simulation results are
summarized in Fig. 7. It displays the median errors of all gridpoints
relative to the corresponding reference solutions as a function of
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Figure 7. Numerical results of the forward solver for three different conductivity models and the new forward solver techniques. Each subplot shows the
median relative solution errors (in per cent) together with the 25 and 75 percentiles (error bars) estimated for a series of meshes with increasing number of
unknowns. Results are displayed for first order (filled dots) and second order finite element approximations (blank dots). Labels: FEM: SD FEM calculations,
IFEM: SD FEM with infinite elements, NSR: Numerical singularity removal.

the mesh sizes. Additionally, the 25 and 75 percentiles (error bars)
are shown for a robust estimate of the error variability. We have
chosen a target median relative error of 1 per cent as an acceptable
solution. This target value is marked with a solid horizontal line in
the panels of Fig. 7.

Using the standard FEM with mixed boundary condition and the
coarsest mesh (with the least number of unknowns) provided solu-
tion accuracies of about 4 per cent (Figs 7a–c), but it required 28 000
gridpoints for the homogeneous model and a much larger number
of unknowns for the single prism model to approach the target accu-
racy of 1 per cent. Only solutions involving second order elements
yielded acceptable solutions for the layered block model (Fig. 7c).
Unfortunately, even the coarsest second order mesh includes already
≈100 000 gridpoints. Further coarsening by reducing the number
of elements would have resulted in discretization errors above the
1 per cent line of acceptance.

Enhanced solutions could be obtained, when the mixed-boundary
conditions are replaced by infinite elements. The target accuracy

could be reached with only 17 000 gridpoints for the homoge-
neous model (Fig. 7d) and with 29 000 points for the single prism
model (Fig. 7e). As for the standard FEM, the first order ele-
ment solutions performed unsatisfactorily for the layered block
model (Fig. 7f), and the computationally more expensive sec-
ond order elements had to be used for achieving the accuracy
required.

Substantial improvements were observed, when the FM-BEM nu-
merical singularity removal was applied. For the homogeneous case
(Fig. 7g), the errors were almost zero, but it should be noted that this
represents only the accuracy of the singular potential computed with
the FM-BEM method (the right-hand side of eq. 7 is zero for ho-
mogeneous models). Numerical singularity removal led to marked
improvements for the single prism and layered block models. Only
8 900 and 16 500 gridpoints, respectively, were required to achieve
the target accuracy (Figs 7h and i). As expected, combined appli-
cation of infinite elements and numerical singularity removal led to
further slight improvements of the results (Figs 7j–l).
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Figure 8. Synthetic Wenner electrode data calculated for the layered block conductivity model with our new forward solver techniques applied. Each subplot
shows the relative solution error (in per cent) displayed in the form of the Wenner pseudo-sections. Results are shown for four different mesh sizes (column-wise)
and our new forward solver techniques applied (row-wise). Labels: FEM: SD FEM calculations, IFEM: SD FEM with infinite elements, NSR: Numerical
singularity removal.

5.3 Pseudo-sections

Electrical potentials computed along the surface are particu-
larly important, because they are required for predicting mea-
surements with surface electrodes. Therefore, we inspect the
accuracy of these potentials in more detail. For that pur-
pose we construct Wenner pseudo-sections by superposing the
pole–pole type simulation results discussed in the previous
subsection. From the resulting apparent resistivities we sub-
tract the corresponding values from the reference solutions and
compute relative errors. Only first order finite elements are
considered.

Fig. 8 shows the relative error pseudo-sections for the different
computational methods and some selected mesh sizes. Only the
results for the most challenging layered block model are displayed.
For the conventional FEM calculations (Figs 8a–d), large relative
errors occur especially in the first 5 levels of the pseudo-section. As
the first levels correspond to short source–receiver distances, these
errors are most-likely related to the singularities in the potential
solutions. Although a local mesh refinement close to all source
electrodes has been applied, the mesh density is apparently still
too coarse for approximating the electrical potentials with sufficient
accuracy. As expected, the errors decrease for larger meshes (see
also Fig. 7).

Similar error distributions are obtained for the calculations in-
volving infinite elements (Figs 8e–h), though the errors are slightly
smaller for the calculations on the smallest and the medium sized
meshes (Figs 8e and f).

When the singularity removal is applied (Figs 8i–l), the overall
error decreases noticeably, such that the calculation with 14 000
unknowns (Fig. 8i) may be already sufficiently accurate to be used
within an inversion algorithm. Note that for the conventional FEM
calculations (with or without infinite elements) the same accuracy
level is not even reached with the largest mesh size (140 000 un-
knowns). Only minor improvements (compared with the numerical
singularity removal) are observed, when both infinite elements and
numerical singularity removal are applied (Figs 8m–p).

6 C O N C LU S I O N S

Efficient inversion procedures for the large amount of data produced
by modern geoelectrical multi-electrode arrays require appropriate
3-D geoelectrical forward solvers. Finite element techniques are
currently the most powerful option. They allow straightforward im-
plementations of arbitrarily complicated topographies, and they en-
able application of unstructured meshes. The latter is in our view
the key element for achieving computational efficiency. It has to be
made sure that an optimized meshing algorithm is employed before
any other refinements, such as those presented in this contribution,
are envisaged. The literature on meshing algorithms is vast and
excellent open source algorithms are available.

The computationally most expensive part of any finite element
solver includes the solution of a large and sparse system of equa-
tions. Recent developments in mathematical research resulted in
direct matrix solvers that allow relatively sizeable systems of equa-
tions to be solved. Direct matrix solvers are particularly useful, when
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equation systems with many right-hand side arguments are involved,
which is the case for 3-D geoelectrical inversion problems. Despite
substantial improvements in direct matrix solver techniques, com-
puter memory requirements for realistic 3-D problems remain a
problematic issue. Therefore, it is important to minimize the num-
ber of unknowns within a finite element mesh, while maintaining a
high solution accuracy.

Replacing the traditional Dirichlet or mixed boundary conditions
with infinite elements is an attractive option to simultaneously im-
prove the solution accuracy and reduce the number of gridpoints
in a finite element mesh. Truncating or fixing the electrical poten-
tial at the computational boundaries is well known as a significant
source of numerical inaccuracies. Infinite elements provide a more
physical and thus more accurate alternative by continuing the elec-
trical potentials to infinity. The subsurface volume surrounding an
electrode layout does not need to be meshed with finite elements,
which additionally results in savings of gridpoints.

Besides the artificial boundary conditions the surface and sub-
surface areas near the electrodes represent the second major cause
of numerical problems. Since the electrical potentials vary rapidly
near the current injection points, the finite elements meshes need
to be very dense in these areas, which results in a large number
of gridpoints. Singularity removal techniques proposed by (Lowry
et al. 1989) are a powerful option to alleviate the problem, but they
require the singular potential to be computed separately. So far, this
was achieved by considering analytical solutions, but in the pres-
ence of topography this is not possible. We propose application of
a fast multipole boundary element method for computing the sin-
gular potentials. This technique includes the principal advantages
of the traditional boundary element method and overcomes some
of their disadvantages, such as their fully populated system matrix.
To our knowledge, this is the first application of the fast multipole
boundary element method in geophysics, and we believe that this
technique may be an attractive option for other numerical modeling
problems.

Extensive numerical tests proved the usefulness of infinite ele-
ments and numerical singularity removal using the fast multipole
boundary element method. Combined application of both tech-
niques allowed the number of gridpoints to be reduced by a factor
of ≈6–10 compared with standard finite element techniques. This
enables application of direct matrix solvers for realistic 3-D geo-
electrical inversion problems, which will improve the computational
efficiency dramatically. We hope that these new developments will
facilitate 3-D inversion problems to be carried out directly in the
field in the near future.

A C K N OW L E D G M E N T S

This work was partly supported by the ETH grant 0-20191-04. We
thank Prof. Schwab (‘Seminar of Applied Mathematics’) for helpful
advice on the boundary element method and Thomas Günther for
helpful discussions on meshing and finite element techniques. We
would also like to thank Carsten Rücker and Thomas Günther for
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Schenk, O., Röllin, S. & Hagemann, M., 2003. Recent Advances in Sparse
Linear Solver Technology for Semiconductor Device Simulation Matrices,
in Proceedings of the 2003 International Conference on Simulation of
Semiconductor Processes and Devices, pp. 103–108.

Shewchuk, J.R., 1996. Triangle: engineering a 2D quality mesh genera-
tor and delaunay triangulator, in Applied Computational Geometry: To-
wards Geometric Engineering,Vol. 1148, pp. 203–222, eds Lin, M.C. &
Manocha, D., Springer-Verlag, Berlin (From the First ACM Workshop on
Applied Computational Geometry.)

Si, H. & Gaertner, K., 2005. Meshing piecewise linear complexes by con-
strained delaunay tetrahedralization. Proceedings of the 14th Interna-
tional Meshing Roundtable, San Diego, CA, pp. 147–163.

Spitzer, K., 1995. A 3-d finite-difference algorithm for dc resistivity mod-
eling using conjugate-gradient methods. Geophys. J. Int., 123(3), 903–
914.

Stummer, P., Maurer, H., Horstmeyer, H. & Green, A., 2002. Optimization
of dc resistivity data acquisition: real-time experimental design and a
new multielectrode system. Geosci. Remote Sens., IEEE Trans., 40(12),
2727–2735.

Wang, T., Fang, S. & Mezzatesta, A., 2000. Three-dimensional finite-
difference resistivity modeling using an upgridding method. Geosci. Re-
mote Sens., IEEE Trans., 38(4), 1544–1550.

Xu, S.-Z., Zhao, S. & Ni, Y., 1998. A boundary element method for 2-d
dc resistivity modeling with a point current source. Geophysics, 63(2),
399–404.

Zhao, S. & Yedlin, M.J., 1996. Some refinements on the finite-difference
method for 3-d dc resistivity modeling. Geophysics, 61(5), 1301–
1307.

Zienkiewicz., 1977. The Finite Element Method, McGraw Hill, London.

A P P E N D I X A : PA N E L C LU S T E R I N G
M E T H O D

As described in Section 4.1, the boundary integral equation em-
ployed for calculating the singular potentials leads to a linear system
of equations Aus

h = Bq with the element integrals

Ai j = 1/2
∫

�s

φi (r)φ j (r
′) dSr′

+
∫

�s

∫
�s

φi (r)
∂G(r, r′)

∂n
φ j (r

′) dSr dSr′ (A1a)

Bi j =
∫

�s

∫
�s

φi (r)G(r, r′)φ j (r
′) dSr dSr′ . (A1b)

The Green’s function, respectively, its normal derivative in the dou-
ble integrals in eqs (A1a) and (A1b) couple each degree of freedom
on the surface mesh located at node i (position r) to all other de-
grees of freedoms at nodes j (positions r′) and thereby lead to fully
populated matrices A and B. This is in contrast to finite element
formulations for which only locally defined shape functions, re-
spectively, their gradients appear in the element integrals and hence
very sparse system matrices result. As a consequence, the compu-
tational costs, memory consumption and solution time, for conven-
tional BEM formulations exhibit an unfavorable scaling behavior
proportional to ∼O(N 2) where N is the number of unknowns. In

Figure A1. Example of two cluster σ and s on a typical 3-D surface mesh
used for the BEM. diam (s) or diam (σ ) denote the cluster diameters and
dist(x , y) denotes the distance of two clusters towards each other.

the ‘Panel Clustering Method’, whose basic principles are explained
in the following, an approximation of the Green’s function and its
normal derivative is employed to account for this major drawback.

A1 Green’s function approximation on cluster-pairs

The Green’s function that is needed when solving the 3-D Poisson
equation for the singular potentials takes the form

G(r, r′) = 1

4πσ0 |r − r′| . (A2)

It varies rapidly for short r to r′ distances but shows only slight
variations for larger r to r′ distances. Therefore, it is beneficial to
distinguish between a nearfield, where the double integrals in eqs
(A1a) and (A1b) are evaluated exactly and a farfield where these
integrals are approximated. The farfield-approximation employed
in the panel clustering method relies on the idea of ‘multipole
moments’ originally developed by (Greengard & Rokhlin 1987).
Fig. A2 depicts a sketch of the underlying basic idea. In the conven-
tional BEM for each Green’s function source point r the coupling
to all other Green’s function points r′ are evaluated exactly when
calculating the double integrals which yields numerical costs of the
order ∼ O(N 2) (Fig. A2a). In the panel clustering method Green’s
function evaluation points are grouped in the farfield into clus-
ters such that the combined effect of all Green’s function points
r′ belonging to one cluster are subsumed into multipole moments.
Subsequently only the coupling of the Green’s function source point
r to the multipole moment needs to be evaluated (Fig. A2b). The
same approximation can be applied locally around the Green’s func-
tion source points to yield an algorithm with numerical costs that
scale as ∼O[N logα(N )] (Fig. A2c). This scheme requires an ap-
proximation of the Green’s function on cluster pairs (s, σ ) where
the variables r and r′ are separated:

G(r, r′) ≈ G̃(r, r′) =
∑
(	μ,	ν)

K	μ,	ν �σ (r)�s(r′). (A3)

Here K	μ,	ν is a k × k-matrix of expansion coefficients defined for the
cluster pair (s, σ ). �σ and � s are the expansion functions defined
on cluster s, respectively, cluster σ . Different Green’s function ex-
pansions can be employed, for example, an expansion into the three
spatial coordinates by Taylor series, or, as is used within this work,
a multipole expansion based on spherical harmonics (see Sauter &
Schwab 2004, for more details).

Whether a pair of basis functions belongs to the farfield or to the
nearfield and hence the degree to which the BEM system matrices
are approximated is controlled by a parameter η:

η dist(σ, s) ≥ max(diam σ, diam s). (A4)

Here diam σ and diam s are the diameters of the two clusters and dist
(σ , s) is their distance towards each other. For each possible cluster
pair (s, σ ) a Green’s function approximation according to eq. (A3)
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Figure A2. Sketch of the basic idea of the multipole method. Three different approaches of evaluating the Green’s function G(r, r′) for a set of evaluation
points ri and r ′

j on a BEM surface mesh are shown. (a) leads to an algorithm with computational costs ∼ O(N 2) whereas (c) results into an algorithm whose
computational costs scale as ∼ O(N ).

is employed if eq. (A4) is valid, otherwise all pairs of basis functions
(φ i , φ j ) with φ i ∈ σ and φ j ∈ s are part of the nearfield, that is,
the corresponding matrix entries Ai j are calculated exactly. The
scheme by which potential cluster pairs are constructed is outlined
in Section A3. By choosing η carefully the error introduced due to
the panel-clustering method can be limited to a range which is in
the order or smaller than the discretization error due to the surface
triangulation. Within this work we use η = 0.5.

A2 Matrix representation and matrix vector
multiplication

The Green’s function approximation (eq. A3) does not only reduce
the computational costs, but also allows the system matrices A and
B to be approximated. This results in a significant reduction of the
overall memory requirements. In the following we denote all nodes
belonging to cluster s with I s and similarly all nodes belonging
to cluster σ with I σ . While the matrix entries for all elements
belonging to the nearfield are calculated exactly, all matrix entries
Ai j for i ∈ I s and j ∈ I σ can be approximated by a product of three
matrices Lσ , K and (Rs)�:

Ai j ≈ Ãi j :=
∫

�

∫
�

φi (r) G̃(r, r′) φ j (r
′) dSrdS′

r

=
∑
(	μ,	ν)

Lσ
i,	νK	ν,	μRs

j,	μ = [
Lσ · K · (Rs)�

]
i j (A5)

with

Lσ
i,	ν :=

∫
�

φi (r) �s(r′) dSr′ , Rs
j,	μ :=

∫
�

φ j (r) �σ (r′) dSr.

For simplicity the approximation is demonstrated here only for ma-
trix A. Fig. A3 shows a sketch of the structure of Ã: The exact
nearfield matrix entries close to the diagonal of Ã are highlighted
together with one matrix block that is approximated by a Green’s
function expansion on a pair of clusters. Note that the nodes indices
I σ and I s for a cluster pair (σ , s) are in general distributed across
the matrix but for simplicity they are shown in the form of a rect-
angular block. Each of the approximated matrix blocks consists of
a multiplication of three matrices as in eq. (A5). If we denote the
number of nodes in the clusters s and σ by N s , respectively N σ ,
then the three matrices have the dimensions N σ × k, k × k and k ×
N s , as shown in Fig. A3. Here k denotes the number of expansion
coefficients, which is significantly smaller than N σ and N s .

Figure A3. Sketch of the structure of the approximated system matrix Ã.
For all pairs of basis functions (φ i , φ j ) in the farfield, exact nearfield entries
result into Ã whereas for all pairs of basis functions that are in the farfield
an approximation is performed on pairs of clusters. For each cluster pair the
corresponding matrix entries Ãi j are given by a product of three matrices
Lσ , K and Rs .

The system matrices A and B are not given explicitly in the panel-
clustering method but are defined in terms of the approximation
scheme as outlined above. When solving the BEM equations with
iterative matrix solvers, only matrix vector products are needed. The
panel-clustering method provides a fast way of evaluating these
products. The computational savings become obvious if we look
at the matrix-vector multiplication of the matrix block Ãi j with a
vector u:

(Ãu)i =
∑
j∈Is

Ãi j u j =
∑

	ν
Lσ

i,	ν
∑

	μ
Kb

	ν,	μ
∑
j∈Is

u j R
s
j,	μ, (A6)

Clearly this product needs considerably less floating point oper-
ations than a full matrix vector multiplication with the matrix
block Ai j .

A3 Multilevel scheme

In the previous sections the Green’s function approximation on a
single cluster pair was described and it was outlined that such an ap-
proximation results in a significant improvement on the performance
of the BEM. The question remains, how the set of cluster pairs can
be constructed in an optimal fashion. The panel-clustering method
employs a multilevel scheme in which a hierarchic tree structure of
clusters T is generated.
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The root of the cluster tree T is constructed by a minimal axis-
parallel cuboid that encloses the entire surface mesh � s . The root
of T consists of all basis functions or nodes in � s . Subsequently
the cuboid is subdivided in eight congruent cuboids. The nodes of
the surface mesh that are contained in these cuboids form the eight
children of the root of T . This subdivision is repeated recursively
for all children until the smallest cluster consists of a predefined
minimum number of nodes.

The resulting cluster tree T is used to construct a set of cluster
pairs P far for which the Greens function approximation (eq. A3) is
applied, and a set of cluster pairs Pnear for which exact evaluations
are used. Eq. (A4) is used to decide whether a cluster pair belongs
to Pnear or P far.

The process starts with a cluster pair (σ , s) where σ and s are both
the root of T , that is, both contain all nodes of � s . If eq. (A4) is true
for (σ , s), which is obviously not the case for the root clusters, then
(σ , s) belongs to P far, otherwise the process is continued recursively
for the children cluster pairs. Thereby, the children cluster pairs of
(σ , s) are all combinations (σ ′, s ′), where σ ′ is one of the children
of σ in T and correspondingly s′ is one of the children of s in T .
Cluster pairs (σ , s), for which eq. (A4) is not true, will only be
appended to Pnear if they have no children, that is, if both clusters
σ and s are not further subdivided in T .

Finally each pair of basis functions (φ i , φ j ) [corresponding
to a pair of surface mesh nodes (i , j)] belongs either to the
farfield P far or to the nearfield Pnear. For all (φ i , φ j ) ∈ Pnear

exact calculations are performed resulting into nearfield entries
Ai j as sketched in Fig. A3 whereas for all pairs of basis func-
tions (φ i , φ j ) ∈ P far approximations on cluster pairs as performed
as outlined above. Since the expansion functions �σ , � s in any
cluster pair (σ , s) can be written as a combination of functions
on the cells, all operations are performed on triangles and then
‘raised’ to higher levels in the cluster tree. Altogether, the panel-
clustering method results into a boundary element implementa-
tion for which the computational costs scale as ∼ O[N log5(N )]
instead of the ∼ O(N 2) scaling for conventional BEM
implementations.

For the singularity removal technique described in Section 2.2
the singular potentials may be required not only along the surface
� s , but also inside the volume at all nodes of the finite element
mesh. Once the surface solution is found with the panel-clustering
method, the same technique can be employed for evaluating the
volume solution values. For this purpose, an additional cluster tree
Tvol is constructed for the finite element mesh and the clustering
algorithm described above is applied to pairs of clusters (σ , s) with
σ ∈ T and s ∈ Tvol.
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