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ABSTRACT

Motivation: A common problem in understanding a biochemical

system is to infer its correct structure or topology. This topology con-

sists of all relevant state variables—usually molecules and their inter-

actions. Here we present a method called topological augmentation to

infer this structure in a statistically rigorous and systematic way from

prior knowledge and experimental data.

Results: Topological augmentation starts from a simple model that is

unable to explain the experimental data and augments its topology by

adding new terms that capture the experimental behavior. This pro-

cess is guided by representing the uncertainty in the model topology

through stochastic differential equations whose trajectories contain

information about missing model parts. We first apply this semiauto-

matic procedure to a pharmacokinetic model. This example illustrates

that a global sampling of the parameter space is critical for inferring a

correct model structure. We also use our method to improve our

understanding of glutamine transport in yeast. This analysis shows

that transport dynamics is determined by glutamine permeases with

two different kinds of kinetics. Topological augmentation can not only

be applied to biochemical systems, but also to any system that can be

described by ordinary differential equations.

Availability and implementation: Matlab code and examples are

available at: http://www.csb.ethz.ch/tools/index.

Contact: mikael.sunnaker@bsse.ethz.ch; andreas.wagner@ieu.uzh.ch

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on May 31, 2013; revised on October 28, 2013; accepted on

October 31, 2013

1 INTRODUCTION

Cellular processes, for instance in metabolism, signaling or trans-

port, can often be modeled by sets of deterministic differential

equations that describe concentration changes in the molecular

species of interest over time. However, the kind of molecular

interactions and the specific biochemical form they take in a

cellular process are frequently uncertain. Such topological or

structural uncertainty has been previously tackled by defining a

set of candidate models (e.g. see Kuepfer et al., 2007; Toni and

Stumpf, 2010; Xu et al., 2010) that reflects different mechanistic

hypotheses. Each of these candidates could in principle encapsu-

late the process, and empirical data can be used to discriminate

between them using available methods for statistical inference

(Akaike, 1973; Kass and Raftery, 1995).

A severe limitation of evaluating all candidate models is that

their number grows exponentially with the number of uncertain-

ties in the model topology. To preselect a subset of candidate

models that is small enough to be analyzed, one can incorporate

all hypotheses into a single master model, which is then reduced

by elimination of hypotheses (Floettmann et al., 2008; Sunnåker

et al., 2013b). However, the resulting subset of models may

not contain any model that satisfactorily explains the experimen-

tal data. Furthermore, the number of model parameters

increases with the number of hypothetical mechanisms, and

model reduction may become infeasible due to the ‘curse of

dimensionality’ (Sunnåker et al., 2013a). If no satisfactory

model emerges from model reduction, or if the number of hypo-

thetical mechanisms is too large, it may be best to start the

inference process from a smaller model that is successively

extended and improved. However, there are few computational

methods available to extend a model by systematically identify-

ing missing terms in a differential equation, or by improving the

existing terms.
Kristensen et al. (2005) have suggested using stochastic differ-

ential equations (SDEs; Øksendal, 2003) instead of ordinary dif-

ferential equations (ODEs) for model construction. In addition

to deterministic terms as in ODEs, SDEs comprise stochastic

terms that account for uncertainty in the realization of trajec-

tories, and the equations’ solution takes the form of a probability

distribution. The method by Kristensen et al. (2005) exploits that

stochastic equation terms may fill the gap between the model

predictions and the experimental data, and point to the deter-

ministic part of a model’s equations that can be improved. This is

because the estimated level of uncertainty in the prediction of
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state variables dictates the impact of each data point on the
estimated model response. Model improvements result in a re-

duction of the estimated magnitude of the stochastic terms, and

the remaining stochastic terms can then be used to pinpoint

model deficiencies. We note that the incorporation of non-

measured variables is commonly used in (linear and discrete-

time) dynamic Bayesian network models used to study genetic

regulatory networks (Beal et al., 2005; Perrin et al., 2003; Wu
et al., 2004). However, the aim of these methods is rather to

compensate for unknown regulators than to infer unmodeled

parts explicitly. Other approaches based on a combined space

of parameters and model structures are computationally expen-

sive due to a combinatorial explosion in model terms (Nachman

et al., 2004; Schmidt et al., 2011).
Here, we propose a novel computational method for model

inference. We call it topological augmentation. It is based on the

ideas by Kristensen et al. (2005) on how to separate uncertainty

in model predictions from measurement noise. In contrast to

previous approaches, it bases conclusions about the system on
characterization of and integration over the parameter space.

The conclusions are not biased by a single parameter point,

but they are valid over a biologically meaningful range of par-

ameter values. The approach also naturally connects to Bayesian

methods for model inference, where the probability of different

hypotheses is based on prior knowledge, and can be iteratively

updated with experimental observations.

2 METHODS

2.1 Topological augmentation

We consider deterministic models in the form of systems of ODEs, where

the state variables describe the concentrations of molecules. Such a

model, which we refer to as MðhÞ, takes the form as follows:

MðhÞ ¼
dxðtÞ
dt ¼ fðxðtÞ, uðtÞ, hÞ ¼MrðxðtÞ, uðtÞ, hÞ
yk ¼ hðxðtkÞÞ þ ek, ek � Nð0,SkÞ

�
ð1Þ

with the state variables xðtÞ 2 R
n (i.e. there are n state variables; other

variable numbers are similarly defined), the potentially time-varying

inputs uðtÞ 2 R
m and the vector of model parameters h 2 R

d. The function

fð�Þ (where the dot abbreviates the function arguments) is, in general, a

non-linear vector field that describes the dynamics of the state variables,

and may also be expressed as the stoichiometric matrixM 2 Z
n�� (integer

entries) times the reaction vector rð�Þ 2 R
� . The model output yk 2 R

l at

time point tk, k ¼ 1, . . . ,K is generated by a non-linear function hð�Þ of the

system state variables xðtÞ and an additive contribution of measurement

noise ek 2 R
l. Furthermore, themeasurement noise is normally distributed

with covariance matrix Sk 2 R
l�l. The available experimental data are

denoted byY ¼ ½Y1, . . . ,YK�, where the subscript denotes the observation

time point. Topological augmentation aims at inferring the form of fð�Þ,

given a (biological) system, from a set of experimental data. Note that fð�Þ

represents the form of the interactions (e.g. chemical reactions) between

the state variables. Correctly modeled interactions are characterized by a

small difference between model predictions and experimental data, and

this difference is reduced through successive improvements of fð�Þ.

Models can contain two main sources of uncertainty, commonly

referred to as system noise and measurement noise. System noise can

be further decomposed into two parts, intrinsic noise and topological

uncertainty. Intrinsic noise stems from non-determinism (e.g. random

effects due to small numbers of particles). Topological uncertainty reflects

an incomplete understanding of system components and their inter-

actions, which leads to model components that are poorly specified or

missing. This uncertainty results in model predictions that conflict with

experimental observations, e.g. when an indispensable negative feedback

in an oscillating signaling pathway is unknown to the modeler. System

noise can then be incorporated into model predictions, to represent all

processes that are not explicitly described by the ODE model, by formu-

lation of an SDE model. Figure 1A illustrates the different noise sources

revealed by simulation of an SDE model. The ODE solution (smooth

trajectory), which describes the concentration of a hypothetical molecule,

may after incorporation of system noise take the form of the SDE solu-

tion (fluctuating trajectory) for a particular realization. The asterisks in-

dicate the other major source of noise in the data, i.e. measurement noise,

which we added to the SDE model solution to generate in silico a re-

sponse corresponding to experimental measurements.

To infer system properties, it is important that we can separate the

signal (information) from noise, but to identify targets for model im-

provements the system noise must also be separable from measurement

noise. Assume that both types of noise are present at each measurement

time point. The optimal estimate of the molecule concentration in the

system then neither coincides with the average model predictions (due to

system noise) nor with the average experimental measurements (due to

measurement noise). To compute an accurate estimate, we therefore need

to balance the incorporation of information from the model predictions

to the information from the experimental data. If parts of the system are

unmodeled, the concentration of the molecule is better estimated by in-

corporation of system noise. The influence of each experimental data

point on the estimates is then stronger than without the system noise

A B

Fig. 1. Flow chart for the computational method. (A) Simulation of a

linear ODE model with one compartment of the form: dx=dt ¼ �0:2x

(smooth trajectory), as well as the corresponding SDE model:

d ~xk ¼ �0:2 ~xkdtþ 5d!k, d!k � Nð0, jtk � tk�1jÞ (fluctuating trajectory).

In both models the initial condition x0 ¼ ~x0 ¼ 100, the output

yk ¼ ~xk þ ek and ek � Nð0, 0:05 ~x2kÞ (time index: k ¼ 0, . . . , 10).

Artificial data yk are denoted by stars. (B) The method, and model in-

ference process, starts from a basic model with a minimal set of mech-

anisms. If the basic model is not sufficient, the ODEs are reformulated as

SDEs, and the SDE model is explored. The distribution of viable param-

eter points and (optionally) an extended SDE model for detailed predic-

tions are used to guide improvements of the ODE model. The procedure

is repeated for each generated model until a sufficiently descriptive model

has been constructed
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(see Supplementary Data, section 2). If the system noise does not stem

from intrinsic noise, we can infer that the ODE model is missing a part,

which leads to incorrect estimation of the molecule’s concentration.

Topological augmentation systematically quantifies and reduces topo-

logical uncertainty by identifying correct deterministic system components

in an iterative fashion (Fig. 1B). In step 1, we construct an initial ODE

model based on well-known core components of the studied system; no

hypothetical mechanisms are included in themodel at this stage. Typically,

elementary reactions derived from basic kinetic principles, such as mass

action kinetics, will be incorporated in such an initial ODE model.

In step 2, we evaluate the ODE model defined previously by investi-

gating whether the model is compatible with the available experimental

data. We have previously defined a formal viability criterion for param-

eter points in ODE models based on the expected log-likelihood for a

model with a parameterization that captures all regularities in the data:

Eðh,Y,MiÞ � ln e�
ffiffi
�
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�eÞ�jSj

q� �
ð2Þ

where parameter point h is viable in model Mi if Equation (2) is satisfied,

� is the acceptable deviation in number of standard deviations for par-

ameter viability, � ¼ K� l is the number of data points and S 2 R
��� is a

diagonal covariance matrix for the measurement noise with the block

matrices Sk, k ¼ 1, . . . ,K in the diagonal [see Sunnåker et al. (2013b)

and Supplementary Data, section 3]. Aspects of the model predictions

not captured by the viability criterion should also be checked, e.g. that the

model predictions do not systematically over- or underestimate the ob-

servations. We characterize the part of a model’s parameter space that is

compatible with experimental data instead of assessing model quality at a

single (optimal) parameter point. This is particularly important if the

model parameter values are not uniquely identifiable because different

parameter points may render different predictions of unobserved vari-

ables. If the model fit is satisfactory, there is no reason to further improve

the model structure until new incompatible observations have been

obtained.

Step 3 involves reformulation of the ODEmodel from step 1 [Equation

(1)] as a system of SDEs:

dxðtÞ ¼ fðx, u, hÞdtþ rdx ¼MrðxðtÞ, uðtÞ, hÞdtþ rdx ð3Þ

where r 2 R
n�n quantifies the uncertainty in the model predictions and

x 2 R
n is a Wiener process, a time-continuous stochastic process whose

variance increases linearly with time (x0 ¼ 0 and xtk � xtk�1 �

Nð0, jtk � tk�1jIÞ). The SDEs are written in differential form, as dx
dt

cannot be treated analytically (Overgaard et al., 2005). The model in

Equation (3) reduces to the form of the ODE models in Equation (1) if

r vanishes. The additional term rdx represents the system noise, i.e. the

combined effect of inherent noise and topological uncertainty. The system

noise can only be completely eliminated through model improvements if

the inherent noise is assumed to be negligible (i.e. for a large number of

molecules). The system noise term of an SDE is commonly referred to as

the diffusion term, whereas the deterministic term fð�Þdt is referred to as

the drift term. If the coefficients of the Wiener process (r) cannot be

experimentally measured, they can instead be parameterized and esti-

mated from the experimental data.

Step 4 explores the parameter space of the SDE model. The SDEs in

Equation (3) comprise three types of tunable parameters: ODE model

parameters h, elements of the matrix r and elements of the set of meas-

urement covariance matrices S ¼ fS1, . . . ,SKg, and we denote the set of

all potential parameters by q ¼ fh, r,Sg. Parameter points of ODE

models are typically evaluated based on objective functions that rely on

the (least squares) distance between model predictions and experimental

data. However, the elements of r and S cannot be estimated by compar-

ing model simulations to data, as the generated state trajectories are dif-

ferent for each simulation of the SDE model. Following Overgaard et al.

(2005), we surmount this issue with an extended Kalman filter modified

for SDEs (Kristensen et al., 2005) (see Supplementary Data, section 2).

Based on the entries of S and r, the Kalman filter assigns ‘weights of trust’

to the experimental data and to the simulations at the experimental time

points, separating noise from signal in the experimental data. For negli-

gible values of S (and non-negligible values of r), the Kalman filter pre-

dictions coincide with the experimental measurements. On the other hand,

for negligible values of r (and non-negligible values of S) the Kalman

filter’s predictions equal the ODE model predictions. Therefore, we can

estimate S and r by varying the corresponding parameters.

The quality of a model with a certain parameterization is measured by

a cost function EðqjYÞ [see Supplementary Data and Equation (5)]. The

evaluation of a given parameter point with the Kalman filter maps to a

unique value of the cost function (despite the use of SDEs). Each eval-

uated parameter point is classified as viable or non-viable, for a given cost

function cutoff value, and we refer to the union of the regions of viable

parameter points as the viable space. Because the viability criterion for

ODE models [Equation (2)] is not valid for SDE models, we instead

define a viability cutoff based on the distance to the optimal parameter

point (for details see Supplementary Data, section 3). We then use the

method by Zamora-Sillero et al., 2011 to sample the parameter space and

to characterize the viable space. In the first part of this method, the par-

ameter space is sampled as broadly as possible with a variant of the

Metropolis–Hastings Markov chain Monte Carlo method that is de-

signed for this purpose. The high-likelihood regions identified in the

first step are then characterized in detail in the second step, with an

approach based on ellipsoid expansions [see Supplementary Data, section

4 and Zamora-Sillero et al., 2011 for details].

In step 5, we investigate the viable parameter distribution to identify

model parts with potential for improvements. Small entries of r in the

viable region of parameter space indicate that fð�Þ correctly represents the

underlying system. In contrast, large entries of r indicate room for model

improvements. Because each entry of r corresponds to one specific SDE

in the model, one can pinpoint specific equations that are sensible can-

didates for modifications. We identify non-negligible entries of r by visual

inspection, but heuristics may be used to automatize the process.

In step 6, we extend the SDE model based on the analysis in step 5 to

predict missing model parts in step 7. This step is optional, intended to

provide additional support for the decision process in step 7. The SDE

model extensions should be incorporated as additional state variables in

rð�Þ, or by extending rð�Þ with additional reactions for entries of r that are

non-negligible. For the additional state variables, xA, we define the fol-

lowing SDEs:

dxA ¼ rAdxA ð4Þ

where the trajectories of the state variables xA are determined solely by

the diffusion terms. In models for which there are reasons to suspect that

a particular parameter is not constant, it may be useful to reformulate

that parameter into a state variable [together with an SDE in the form of

Equation (4)]. After exploring the parameter space of the extended SDE

model, the SDE’s behavior is simulated for viable parameter points to

infer the trajectories of the additional state variables xA. The Kalman

filter used for parameter space explorations can also be used to infer the

trajectories of xA in time because rA and the drift term of the SDE model

from step 3 together determine how the state variables evolve. The add-

itional terms xA may improve the SDE model by compensating for miss-

ing model parts (despite the unknown mathematical form of the drift

term).

In step 7, we make an informed decision about reaction terms to be

added to the ODEmodel based on the information from step 5 (reactions

to which these terms should be added) and step 6 (form of the reaction

terms). In accordance with Occam’s razor, we add reaction terms that are

as simple as possible. For example, the term xA1
¼ k1x

k2þx
, where k1 and k2

are parameters, is reasonable if xA1
becomes saturated over time (where

the increasing state variable xA1
is a function of x).
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After step 7, we return to step 2 to evaluate the extended ODE model.

If this model is satisfactory, the model construction process is complete, if

not, steps 3–7 are repeated. Once a satisfactory model has been con-

structed it can be useful to compare the performance of the ODE

models (and potentially SDE models) that were generated in the process.

To compare two models Mi and Mj, given experimental data Y and

known measurement noise S, we compute the Bayes factor (Kass and

Raftery, 1995):

Bij ¼
pðYjMiÞ

pðYjMjÞ
¼

R
�i
pðY j h, MiÞ pðh jMiÞ dhR

�j
pðY j h, MjÞ pðh jMjÞ dh

ð5Þ

where �i and �j are the parameter spaces for modelsMi andMj, respect-

ively. Bayes factors estimate the relative plausibility of two models, and

they directly relate to the ratio of posterior model probabilities by:

pðMi j YÞ

pðMj j YÞ
¼ Bij

pðMiÞ

pðMjÞ
ð6Þ

For equal prior model probabilities, pðMiÞ ¼ pðMjÞ, the Bayes factor

equals the ratio of the posterior model probabilities.

2.2 Pharmacokinetic model

To illustrate the workflow of topological augmentation, we reinvestigate

a pharmacokinetic model for the absorption of an orally administered

drug into the bloodstream (Kristensen et al., 2005). The model has two

state variables that represent the availability of the drug in the gastro-

intestinal tract (Q, mg) and in the blood plasma (C, mg/l):

dQ

dt
¼ �

VmaxQ

KM þQ

dC

dt
¼

1

V

VmaxQ

KM þQ
�

1

V
CLC ð7Þ

The model’s four parameters are Vmax (maximal transport rate from the

gastrointestinal tract to the blood plasma), KM (the concentration of Q

that gives a half-maximal reaction rate), CL (clearance rate of the drug in

the blood plasma) and V (volume of the blood plasma). We assume that

C can be measured at K discrete time points, and we use a proportional

measurement error model as Kristensen et al. (2005):

yk ¼ Ckð1þ ekÞ, ek � Nð0,SÞ, k ¼ 1, . . . ,K ð8Þ

to generate an in silico set of 20 data points (for details see Supplementary

Data, section 5).

Let us now assume that the absorption kinetics described by the

model’s non-linear term is unknown. A reasonable first representation

of the drug kinetics is a linear uptake term modeled with mass action

kinetics, in combination with a linear term for the degradation of the drug

concentration in the blood plasma. However, this model cannot describe

the observational data well: it tends to systematically overestimate or

underestimate the synthetic data (see Fig. 2A).

The SDE model, in step 3, takes the form [Equation (3)] as follows:

dQ

dC

� �
¼

1 0

0 1
V

 !
�1 0

1 �1

� �
r1

r2

� �
dtþ . . .

�1 0

� 1
V �1 �2

 !
d!1

t

d!2
t

 ! ð9Þ

where the two reactions in the linear model are as follows:

r1 ¼ kAQ ð10Þ

with parameter kA, and the internal drug degradation reaction:

r2 ¼ CLC ð11Þ

The initial linear ODEmodel corresponds to setting �1 ¼ 0 and �2 ¼ 0. If

the initial conditions and measurement noise S are known then five model

parameters are unknown (kA, CL, V, �1 and �2).

We explored the parameter space of the SDE model over a broad

range of values (eight orders of magnitude) for all five unknown param-

eters (step 4). The cost function Figure 2B (yellow region) shows the

projections of the viable parameter points to �1 and �2. The viable par-

ameter space is visualized in logarithmic space in all figures.

In step 5, we investigate the organization of the viable space. Its pro-

jection onto the axes �1 and �2 has roughly the shape of a boomerang

(Fig. 2B). Importantly, there is no viable parameter point for which the

values of both �1 and �2 are negligible simultaneously. Kristensen et al.

(2005), who analyzed the same model with a method based on a single

parameter set, concluded that �1 (but not �2) is necessary to explain the

observational data. Topological augmentation shows that this assertion is

correct only in some regions of the parameter space (the lower right part

of the boomerang-shaped region) but incorrect in other regions (the

upper left part). This illustrates the importance of characterizing a

model’s behavior for a large set of parameters.

The distribution of viable parameter points indicates that the ODE

model needs to be improved, but it is not immediately clear which of the

two reactions should be targeted because inclusion of either �1 or �2 is

sufficient to explain the data, depending on the region of the parameter

space. Because only C is measured, �1 cannot be used to correct for

misspecifications in r2; this would introduce an error in r1 through the

first SDE. However, �2, which only appears in the second SDE, can be

used to correct r1 without introducing additional structural errors. To

illustrate this idea, we fixed CL ¼ 1 (CL ¼ 0:05 for the data). The viable

parameter points projected onto �1 and �2 in Figure 2B (red region)

A B

C D

Fig. 2. Pharmacokinetic model. (A) Fit of the linear pharmacokinetic

model to the synthetic data (stars) for state variable C. To save compu-

tational time, the prediction was based on a randomly drawn subset

(10 000 points) of all identified viable parameter points. (B) Projection

of the six-dimensional parameter space onto the plane formed by param-

eters �1 and �2 in the interval ½�4, 0� (log-space), for the linear model

(yellow), final MM model (blue) and the MM model with CL ¼ 1 (red).

The scale bar shows the negative log-likelihood of � given Y for the viable

parameter points (indicated by the color). (C) Projections of the viable

space into �1, �2 and �3 for the linear three state variables pharmacoki-

netic model (viability threshold: –31.5). (D) Predicted evolution of state

variable kA in the linear three state variables pharmacokinetic model. The

shaded regions correspond to the (likelihood) weighted model predictions

mean plus/minus one weighted standard error (Gatz and Smith et al.,

1995) of C (A) and kA (D), respectively
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indicate that �1, but not �2, can be eliminated. Hence, reaction r1, as

defined in Equation (10), should be improved. However, this can not

be inferred directly from parameter optimizations, or explorations of

the viable parameter space.

We attempt to determine the correct form of reaction r1 by creating an

extended SDE model (step 6) where parameter kA in r1 is considered as a

state variable (Kristensen et al., 2005):

dkA ¼ �3!3 ð12Þ

This reformulated SDE model defined by Equations (9) and (12) enables

us to evaluate whether and how reaction r1 can be improved. The pro-

jections of the viable parameter space (Fig. 2C) show that it is necessary

and sufficient to include �3: there are viable parameters close to the axes

for �1 and �2, but not for �3. Hence, if we can find the correct form of kA,

the corresponding ODE model will be compatible with the observational

data. To determine the form of kA, we use the extended Kalman filter to

predict the trajectory of state variable kA. Although kA increases to sat-

uration (Fig. 2D), the external drug concentration decreases until deple-

tion in the same time interval (Supplementary Fig. S1). Therefore, a

reasonable expression for kA is as follows:

kA ¼
Vmax

KM þQ
ð13Þ

where Vmax and KM are additional model parameters.

In step 7, we use this expression for kA to construct a new SDE model

on the form of Equation (9) but with r1 ¼
VmaxQ

KMþQ
(r2 ¼ CLC). The projec-

tion of the model’s viable parameter points onto �1 and �2 (Fig. 2B, blue

region) shows that now both parameters are negligible, as viable points

exist in the lower left corner of the parameter region. The posterior

probabilities [Equations (5) and (6)] for the eight models (M1–M8) that

can be constructed by eliminating combinations of �1 and �2 from the

linear SDE model and from the non-linear SDE model (see

Supplementary Table S3) indicate that the final non-linear ODE model

M8 is 41015 times more probable to be correct than the initial linear

model M4. M8 has the form of Equation (7), which is also the model

we used to generate the in silico data.

2.3 Glutamine transport in yeast

Environmental perturbations may provoke global changes in the regula-

tion of a cell’s metabolome and transcriptome (Moxley et al., 2009). In

particular, yeast (Saccharomyces cerevisiae) cells respond to the availabil-

ity of nitrogen sources in the environment with clear preferences.

Nitrogen-rich sources such as glutamine or ammonium directly activate

the so-called nitrogen catabolite repression (NCR) mechanism (via Gln3,

Gat1, Dal80 and Gzf3), which is not activated for poor nitrogen sources

such as proline or urea (Hofman-Bang, 1999). However, nitrogen-limited

conditions trigger a response in the target-of-rapamycin pathway, which

concomitantly activates the NCR-repressed genes via the Gln3 transcrip-

tion factor (Georis et al., 2009).

Four glutamine permeases are known in S.cerevisiae: Gap1 (Risinger

et al., 2006), Gnp1 (Zhu et al., 1996), Agp1 (Schreve et al., 1998) and

Dip5 (Regenberg et al., 1998). Transport can occur against a glutamine

gradient due to an antiport mechanism that expels Kþ ions. Regulation

and transport capabilities of the permeases are heterogeneous. Cells re-

press the expression of Gap1 and Agp1 under nitrogen-rich conditions,

but not of Gnp1 or Dip5. Furthermore, permease affinities for glutamine

are in the millimolar range for Gnp1, Agp1 and Dip5, but in the micro-

molar range for Gap1. Such complexity is required for the homeostasis of

amino acids in the cell. The lack of regulation of the corresponding

permeases leads to inhibition of cell growth and lethal cytotoxic effects

due to amino acid imbalance (Risinger et al., 2006).

To infer the relevance and roles of individual glutamine permeases

during a metabolic shift, we grew a S. cerevisiae batch culture on a

medium with both glutamine and proline as nitrogen sources (see

Supplementary Data, section 6). During the initial steady state growth

the culture consumes the preferred nitrogen source glutamine exclusively,

and on glutamine depletion a metabolic shift to proline consumption

occurs. We studied this dynamic transition by recording 14 and 23 data

points for intracellular and extracellular glutamine concentrations, re-

spectively (Fig. 3A).

The permeases’ functional diversity complicates the search for a cor-

rect dynamic model of glutamine transport. Therefore, we applied topo-

logical augmentation to infer a model of the yeast glutamine uptake

process. In our starting simplistic transport model, all of the four per-

meases are functionally identical and the single glutamine uptake reaction

is described byMichaelis–Menten (MM) kinetics (see also Supplementary

Data, section 7.1):

dQ
dt
dC
dt

 !
¼

� U
Vf
r1�

1
Vc
r1 � r2

�
0
@

1
A ¼ � U

Vf
0

1
Vc

�1

 !
r1
r2

� �
ð14Þ

where x ¼ ðQ C ÞT with Q and C the glutamine concentrations in the

medium and in an average cell, respectively, U represents the number of

cells at a given time (Supplementary Fig. S4) and Vc and Vf are the cellular

and the culture medium volumes, respectively. The single glutamine uptake

reaction has the rate r1 ¼
V
T1
maxQ

K
T1
M
þQ

, where VT1
max is the maximum rate of glu-

tamine transport and KT1

M is the concentration of external glutamine for

which the transport rate is half-maximal. The intracellular glutamine deg-

radation reaction has the form r2 ¼ DC, where D is the rate parameter for

the degradation of C (Supplementary Data, section 7.1).

Although viable parameter points exist for this model (Supplementary

Fig. S5), the dynamics of the intracellular glutamine concentration is sys-

tematically underestimated (Fig. 3A). Therefore, we reformulated the

ODE model into an SDE model (see Supplementary Data, section 7.1).

A B

C

Fig. 3. Yeast glutamine transport. (A) Experimentally determined intra-

cellular (red circles) and extracellular (blue circles) glutamine concentra-

tions andMMmodel trajectories (lines). The metabolic shift starts at time

point 0min. The weighted mean and the (small) weighted standard error

(Gatz and Smith et al., 1995) of the trajectories are shown. (B) Projection

of the viable space for the SDE version of the MM model into �1 and �2
(parameter points whose likelihood is within five orders of magnitude

from the most likely parameter point are considered viable). (C)

Weighted mean prediction of state variable kA (black curve) for the ex-

tended SDE version of the MM model, where the gray area is the

weighted standard error of the mean for the viable parameter points
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The organization of this SDE model’s viable space (Fig. 3B) reveals

that a non-negligible �1 improves the model, whereas �2 can be elimi-

nated. The distribution of viable values for �1 indicates an inconsistency

between reaction r1 and the corresponding reaction in the system. Hence,

the model may not yet capture the different functions of the permeases

well. Gap1 is subject to tight dynamic regulation (Risinger et al., 2006),

which reinforces the idea of introducing an additional term in the MM

model. Quantitative experimental data by Risinger et al. (2006) showed

that the reversible activation of Gap1 is due to amino acid depletion.

Therefore, we constructed an extended model version (step 6) with a

new state variable W:

dW ¼ �3d!3 ð15Þ

where �3 is a parameter. Reaction r1 contains a new hypothetical term,

rhyp, in a modified form:

r1 ¼
VT1

maxQ

KT1

M þQ
þ rhyp ¼

VT1
maxQ

KT1

M þQ
þ KWQ ð16Þ

Initially, the variable K ¼ 0 and K ¼ 1 whenever Q5�a, where

parameter �a is inferred from experimental data (Supplementary

Data, section 7.1). With this choice of K, we anticipated that the

extra reaction term becomes important for small external glutamine

concentrations. We then explored the viable parameter space for the

extended SDE model and simulated the trajectories for W (Fig. 3C;

see also Supplementary Fig. S6 illustrating that individual parameter

points may be less predictive). Strikingly, the model predicts that the

contribution of rhyp is negligible until W rapidly increases �15–20 min

after the metabolic shift starts. It continues to increase gradually, but

more slowly for around 100min, which resembles a previously

observed activation pattern for glutamine permeases under NCR con-

trol (Supplementary Fig. S7). Afterwards, W saturates and it remains

constant until the end of the experiment. However, the SDE model is

not the final result but a step in the process to infer a proper ODE

model.

Next, we constructed an extended model of cellular glutamine uptake

(step 7). We used the predictions of the extended SDE model to con-

struct a regulated MM (rMM) model consisting of two MM terms that

account for two independent transport regimes, with and without NCR

control (see Supplementary Data, section 7.2). Gnp1 and Dip5, which

are not subject to NCR regulation, have millimolar affinities

(Regenberg et al., 1998; Zhu et al., 1996). Of the regulated terms only

Agp1 has an affinity in the millimolar range, but not Gap1, whose

affinity is in the micromolar range. To discriminate between the roles

of Agp1 and Gap1, we first investigated both glutamine affinity par-

ameters of the rMM model in the millimolar range. The descriptive

power of the rMM model is notably improved compared with the

MM model (Fig. 4A).

To investigate whether the rMM model (with affinities in the millimo-

lar range) could be further improved or not, we reformulated the ODE

model as an SDE model. Its viable space, shown in Fig. 4C, suggests that

�1 and �2 can be simultaneously eliminated, which means that the r

parameters cannot guide further modeling efforts. However, as yeast

cells harbor four different glutamine permeases, we also investigated

two extended ODE models that incorporate additional glutamine

uptake reactions. Model e1rMM is based on the rMM model, but an

additional MM term accounts for the activity of a third permease (in the

millimolar range). This model accounts for the potentially different roles

of Gnp1 and Dip5. Model e2rMM incorporates yet another regulated

MM term (in the micromolar range corresponding to Gap1) to allow for

different roles for all four permeases (see Supplementary Data, section 7.3

and Figs S9 and S10).

To compare the performance of all four candidate models, we com-

puted the posterior probabilities for the models (see Fig. 4D). This let us

conclude that the rMM model is the best model. It has two MM terms

that correspond to two transport regimes, both operating in the millimo-

lar range. They represent a constitutively active transport mechanism and

the action of a permease that is specifically regulated for low external

glutamine concentrations, respectively. A straightforward interpretation

of these results is that the second transport mechanism is dominated by

Agp1 rather than Gap1 under our experimental conditions. Additionally,

the rMM model predicts that the activity of the second transporter is

triggered by low levels of external glutamine, at �4mM (h�ai ¼ 4:2 mM

in Supplementary Fig. S8A). Finally, we conclude that topological aug-

mentation helped us to infer these aspects of glutamine transport, and

therefore is likely to prove useful for inference of various other aspects of

biochemical systems.

3 DISCUSSION

Topological augmentation is a method designed to infer bio-

chemical models in the face of uncertainties about their structure.

It classifies and quantifies topological uncertainties that emerge

from experimental observations. The method starts from an

(usually too simple) ODE model, which it reformulates with

SDEs, and relies on the distribution of viable parameter points

obtained from random sampling to reveal the presence and the

form of missing or incomplete reactions. Motivated by current

gaps in the biological understanding of glutamine transport in

yeast, we developed a model for glutamine transport and gener-

ated experimental data for topological augmentation.

Interestingly, this analysis indicated a subsidiary role of Gap1

A B

C D

Fig. 4. The rMM model results. (A) Experimental data for external (blue

dots) and intracellular (red dots) glutamine concentrations and model

simulations [weighted mean (solid lines) and weighted standard error

(Gatz and Smith et al., 1995) (shaded regions) of the predicted trajectories

constructed from the uniformly sampled viable space]. (B) The six-

dimensional viable space projected into three structural parameters. We

uniformly sampled the region that contains viable parameter points. The

cost function value associated with each parameter point, Eð�jYÞ
[Supplementary Data, Equation (5)], is mapped onto a color scale. (C)

Projection of viable points (within five orders of magnitude from the most

likely parameter point) to �1 and �2 for the SDE version of the rMM

model. (D) Posterior probabilities for glutamine transport models

(number of parameters in parentheses; for convergences see

Supplementary Fig. S11)
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in the glutamine uptake process under the studied experimental

conditions. In contrast to most other methods for model infer-

ence, we use observational data to explicitly guide the attention

of the modeler to mechanisms for which there is room for im-

provements. Related, earlier SDE-based approaches evaluate an

SDE model at a single parameter point (Kristensen et al., 2005).

Predictions based on a single parameter point can be misleading,

as demonstrated by our pharmacokinetics application, even in

combination with a local sensitivity analysis. Our extended ap-

proach that incorporates a distribution of viable parameter

points provides substantially more information about potential

model improvements. We showed that it can not only pinpoint

missing reaction terms but also help finding the mathematical

form of the missing terms.
We see five potential limitations of topological augmentation:

first, sampling parameter spaces is computationally more costly

than identifying a single optimal parameter point; this limita-

tion could be overcome by future more efficient methods to

characterize viable parameter spaces. Second, each model has

to be evaluated individually, which limits the number of models

that can be evaluated. However, with the distribution of r

guiding model identification, topological augmentation can

reduce the number of candidate models. Third, characterizing

noise in complex biochemical systems with multiple variables

can be difficult. The organization and geometry of viable par-

ameter spaces may prevent identification of a single best model

improvement. In this case, one can iteratively evaluate add-

itional or modified reaction terms, based on biological know-

ledge and on information from the distribution of r in a viable

space. Fourth, topological augmentation may not be applicable

to systems with much inherent noise (e.g. involving molecules

with a low copy number). It is impossible to separate such noise

from topological uncertainty. Finally, two steps of topological

augmentation are currently not automatized and require some

degree of human expertise and judgment in the execution. In

step 5, we visually inspect the parameter space to identify non-

negligible system noise terms (entries of r). However, this step

could be automatized with the topological filtering method pro-

posed in Sunnåker et al. (2013b), which uses a parameter space

exploration in combination with investigations of the effect of

eliminated parameters. By identification of essential system

noise parameters, it is possible to point to model parts with a

potential for improvements in an automated fashion. In (the

optional) step 6 of topological augmentation, additional terms

are added to the SDEs, and a (potentially non-unique) mapping

of the inferred temporal profiles of the unknown mechanisms

to new ODE model terms is applied. It is important to keep in

mind that the selected reaction terms must have a biological

interpretation, and one approach would therefore be to con-

struct a dictionary with biologically feasible reactions. Only

terms that are specified in the dictionary are then candidates

for incorporation into the model, e.g. based on symbolic regres-

sion (Schmidt et al., 2011).
These limitations notwithstanding, topological augmentation

can help to construct models systematically and rigorously in

biochemistry and systems biology, but not only in these fields.

It can be applied to infer the structure of any model based on

ODEs.
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