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Abstract

Motivation: Cell fate decisions have a strong stochastic component. The identification of the under-

lying mechanisms therefore requires a rigorous statistical analysis of large ensembles of single

cells that were tracked and phenotyped over time.

Results: We introduce a probabilistic framework for testing elementary hypotheses on dynamic

cell behavior using time-lapse cell-imaging data. Factor graphs, probabilistic graphical models, are

used to properly account for cell lineage and cell phenotype information. Our model is applied to

time-lapse movies of murine granulocyte-macrophage progenitor (GMP) cells. It decides between

competing hypotheses on the mechanisms of their differentiation. Our results theoretically sub-

stantiate previous experimental observations that lineage instruction, not selection is the cause for

the differentiation of GMP cells into mature monocytes or neutrophil granulocytes.

Availability and implementation: The Matlab source code is available at http://treschgroup.de/

Genealogies.html

Contact: failmezger@mpipz.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cell fate decisions appear as robust phenomena on the tissue level.

However, the underlying mechanisms are hidden behind a large

variability on the level of individual cells. The deterministic and the

stochastic components of these decision processes can only be identi-

fied through the statistical analysis of a large number of cells. High

content live cell time-lapse imaging has become a major technique

for the investigation of cell behavior (Conrad and Gerlich, 2010;

Neumann et al., 2006, 2010; Schmid et al., 2013; Starkuviene and

Pepperkok, 2007). The amount of data produced by this method

requires automation at all stages, starting from cell identification

and tracking of cells, the extraction of relevant morphological fea-

tures from single cell images, up to the biological interpretation of

the results. Excellent bioinformatics tools have been developed for

the purpose of cell identification, cell tracking and feature extraction

(Buggenthin et al., 2013; Carpenter et al., 2006; Conrad et al.,

2011; Pau et al., 2010; Rajaram et al., 2012; Scherf et al., 2012). So

far, biological analysis of time-lapse movies focused on the detection

of abnormal cell phenotypes after introducing perturbations like

RNA interference (Failmezger et al., 2013a; Fuchs et al., 2010).
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This led to the development of hidden Markov models that, either in

a supervised or in an unsupervised fashion, classify cells according

to their morphology and their environmental context (Failmezger

et al., 2013b; Snijder et al., 2009; Zhong et al., 2012). In this work,

we develop a factor graph model, which provides a probabilistic

framework for testing the compatibility of biological hypotheses

with time-lapse imaging data.

Such data allow the tracking of individual cells, comprising all of

their progeny over extended time periods. For each cell image, fea-

tures like morphology, cell-cycle time, or motility can be extracted.

All these different pieces of information on cellular development,

divisional history and differentiation can be summarized into a pedi-

gree-like structure, termed cellular genealogy, in which the founder

cell represents the root, and the progeny are arranged in the

branches (Fig. 1A). To our knowledge, only two attempts have been

made to analyze such tree-structured data in a rigorous, probabilis-

tic way (Durand et al., 2001, 2005). Using genealogies as input data,

we develop a factor graph model (Kschischang et al., 2001), which

describes the genealogy by a random biological process with mean-

ingful and interpretable parameters. Factor graph models have been

tremendously successful in coding theory (Chung et al., 2001;

Tanner, 2006) because they give rise to highly efficient algorithms

for maximum likelihood estimation (MLE) and the calculation of

marginal probabilities (Kschischang et al., 2001). The time complex-

ity of these algorithms is linear in the number of nodes, given that

the number of neighbors of a node is bounded (by three in our case).

This allows us to run a Markov Chain Monte Carlo (MCMC) algo-

rithm for parameter learning. Our factor graph model for

genealogies requires only seven parameters. Simulations show that

these parameters can be identified accurately. To further assess the

robustness of our model, we analyze genealogies generated by a

mathematically different and considerably more complex model of

stem cell differentiation (Loeffler and Roeder, 2002; Roeder and

Loeffler, 2002). We are able to recover its relevant kinetic

characteristics.

In our application, the factor graph model decides between alter-

native hypotheses concerning the mechanisms of hematopoietic pro-

genitor cell (HPC) differentiation. It is under debate (Endele et al.,

2014; Glauche et al., 2009; Morrison et al., 1997; Rieger et al.,

2009; Sarrazin and Sieweke, 2011) whether cytokines instruct the

differentiation of progenitor cells into specific cell types, or whether

they select lineage committed cells types by allowing their prolifer-

ation or survival. Looking merely at the relative cell abundances at

the end of the differentiation process, all scenarios lead to

Fig. 1. Conversion of a time lapse video into a factor graph. (A) Image processing. Left: Cell entities are identified on a series of consecutive pictures of the same

area on a cell culture plate. They are linked to their respective predecessor on the previous image. Right: The topological information on cell fates is represented

as a genealogy, a forest of rooted binary trees. Nodes represent cells at a certain time point, and edges indicate the parent-offspring relation from top to bottom.

The vertex color informally indicates phenotypic information assigned to each cell, such as the presence or absence of fluorescent cell type markers. (B)

Construction of the factor graph. Each node of the genealogy is represented by a hidden variable node (empty circle), and the probability of an event linking cells

between consecutive time points is represented by a hidden factor node (empty square). The cell image data are represented by observable variable nodes

(shaded circles). An observable factor node (black square) links each observable variable node to its corresponding hidden variable node, and it encodes the

probability of observing the image data, given the hidden cell state. The factor graph encodes the model’s likelihood function, the product of all factor nodes. (C)

Specification of the local probability functions assigned to the factor nodes. We assume that each cell can be in one of three states (blue:progenitor cell state, red/

green: differentiated states). Left: Each edge in the graph represents one of four events that can occur: persistence of the cell, cell division, differentiation, and

apoptosis. The edges are labeled with the (unknown) probabilities for the respective event, which determine the probability functions of the hidden factor nodes.

Right: The functions related to the observable factor nodes are conditional probability distributions of the single cell image data, given the cell’s state
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indistinguishable outcomes, namely the dominance of one cell type.

We construct a reversible-jump MCMC algorithm, which is able to

identify the most realistic scenario as well as the corresponding lin-

eage specific differentiation, proliferation and cell death rates. Our

analysis of a HPC time-lapse imaging experiment (Rieger et al.,

2009) identifies unequal proliferation as the driving force for the

asymmetric differentiation of murine granulocyte-macrophage pro-

genitors (GMPs) cells into either mature monocytes or neutrophil

granulocytes.

2 Methods

2.1 Data acquistion
The data in Rieger et al. (2009) consist of genealogies generated

from live cell imaging of murine GMPs cells in the presence of only

macrophage- or granulocyte colony-stimulating factor. Cells con-

tained a LysM::GFP marker, expressing enhanced green fluorescent

protein (GFP) from the lysozymeM gene locus as an early molecular

reporter for unilineage commitment. Weak lysozymeM::GFP expres-

sion is found in undifferentiated GMPs, whereas its expression is

drastically up-regulated in differentiated cells. At the end of the ex-

periment, stainings were performed according to standard immuno-

fluorescence procedures (see Methods in Rieger et al., 2009). Cell

morphology and Anti-Ly-6G (Miltenyi Biotech) and anti-F4/80

(eBioscience) were used for the identification of granulocytes and

macrophages, respectively. Absence or presence of a marker was as-

sessed manually by an expert. Potential discretization errors when

converting a continuous fluorescence signal to a binary signal were

accounted for in Equation (5) of the main text. To avoid biases from

incomplete tracking, cell division events in which only one daughter

cell could be tracked were discarded by cutting the tree above the

event.

2.2 Modeling of genealogies as factor graphs
Time-lapse movies encode two principally different types of infor-

mation. Apart from single-cell image data at each time point, movies

track cellular genealogies, i.e. they record the history of a cell popu-

lation at the individual cell level. Let V be the set of all single cell

images that have been acquired. Image analysis yields a set of statis-

tical features ov, o ¼ fovjv 2 Vg, derived from each single cell

image. Additionally, through cell tracking, we obtain a collection C
of rooted binary trees with node set V. An edge v! w is drawn

whenever v and w are cell images in consecutive frames of the mov-

ie, and if w shows either the same cell as v or an offspring of v (see

Fig. 1A). For an edge v! w, v is called a parent of w, and w is call-

ed a child or offspring of v. The (possibly empty) set of children of a

node v is denoted by ch(v).

Our key concept is to model dynamic cellular processes as prob-

abilistic transitions between discrete ‘states’ S of a cell. Because the

cell states typically cannot be observed directly, we call these states

hidden. For HPC differentiation, e.g. we assume that each cell at a

given time point is either in a undifferentiated (blue) cell state, or it

is in one of two (red respectively green) differentiated cell states

(Fig. 1A). Hypotheses on the differentiation mechanism can be easily

formulated in terms of these states: do red cells die faster than green

cells? Do blue cells preferentially develop into green cells rather than

red cells? In each time interval between two images, i.e. along each

edge of the genealogy, one of the following events can occur: most

likely, a cell will persist in its current state. Alternatively, the cell

may divide, die, or, in case of a progenitor cell, differentiate into a

red or a green cell. Each of these events has its own, unknown

probability (Fig. 1C). We have only indirect information on a cell’s

state, given by the features extracted from its cell image, such as the

fluorescence intensity of a progenitor cell marker. Those features

provide evidence for or against a certain cell state, since each cell

state has a characteristic feature distribution. The learning of the un-

known event probabilities from uncertain information is a standard

task in statistical learning. If the genealogies were linear, i.e. if the

cells never divided, the classical approach to our problem would be

a hidden Markov model (Held et al., 2010). However, cell fate and

cellular decision making are intimately linked to cell division events,

for which reason we need to model non-linear genealogies. Our fac-

tor graph model can be viewed as a generalization of the hidden

Markov model to network topologies. Noteworthy, our factor

graph model does not belong to the class of Bayesian networks, as

Bayesian networks require cell states of two daughter cells to be con-

ditionally independent given their parent cell’s state. This property

is often violated in practice, asymmetric cell division in

Saccharomyces cerevisiae being a well-known example (Lord and

Wheals, 1980).

The factor graph assigned to a genealogy consists of two node

types, variable nodes and factor nodes (Fig. 1B). To each cell image

v 2 V, we define a variable node Hv representing the cell’s hidden

state. A parent cell v and its daughter cell(s) ch(v) are linked by a

factor node fv which encodes a probability function of its adjacent

variable nodes (Fig.1C). Here, fvðHchðvÞ;Hv; hÞ is the probability

that a cell v of type Hv 2 S ¼ fblue; green; redg will give rise to 0,

1 or 2 offspring of type HchðvÞ in the next time step. Here, h denotes

the parameters of our model. Motivated by the fact that the cell

states S cannot be observed directly, we call this part of the model

the hidden layer, and its nodes are called the hidden nodes. The se-

cond, observable layer consists of (observable) variable nodes Ov,

v 2 V, which represent the image features extracted from v. The ob-

servable node Ov is linked to its corresponding hidden node Hv by a

factor node gv encoding a probability function of its adjacent vari-

able nodes (Fig. 1C). Here, the emission function gvðOv;Hv; hÞ en-

codes the probability of observing the image features Ov, given that

the hidden state of cell v is Hv. The graph we have constructed is bi-

partite in the sense that factor nodes are connected to variable nodes

only, and vice versa. Let H ¼ ðHvÞv2V , O ¼ ðOvÞv2V . We assume

that the joint probability of O, H and C decomposes according to

the factor graph topology, i.e. it is the product of its factor nodes gv

and hv:

PðO;H; hÞ ¼ PðOjH; hÞ � PðH; hÞ

¼
Y
v2V

PðOvjHv; hÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼:gvðOv ;Hv ;hÞ

�
Y
v2V

PðHw;w 2 chðvÞjHv; hÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:fvðHchðvÞ ;Hv;hÞ

(1)

We point out that the factor graph representation of the joint

probability in Equation (1) does not agree with the factorization

induced by the interpretation of the genealogy as a Bayesian net-

work and its subsequent canonical conversion into a factor graph

(see Kschischang et al., 2001, Section B)

2.3 Parametrization of the factor graph model
First, we need to choose the number jSj of cell states, one for each cell

type, and then define the possible events (cell division, differentiation,

apoptosis, no event) that may occur between two observation time

points (Fig. 1B). The probabilities for these events are encoded in the

functions fvðHchðvÞ;Hv; hÞ ¼ PðHw; w 2 chðvÞjHv; hÞ. Formally, this

requires jSj; jSj � ðjSj � 1Þ, and jSj � ðjSj2 � 1Þ parameters for respect-

ively jchðvÞj ¼ 0; 1; 2 daughter cells of a cell v. In our application,

S has three elements, which amounts to 32 parameters. However,
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prior knowledge can reduce this number substantially. The probabil-

ity of an apoptosis event (chðvÞ ¼ ;) is given by

fvðHv ¼ s; hÞ ¼ apops ; s 2 S (2)

We set apopblue ¼ 0, because we do not observe progenitor cell

death events during the observation period. If fv represents a cell div-

ision event (jchðvÞj ¼ 2Þ,

fvðHchðvÞ ¼ ðs1; s2Þ; Hv ¼ s; hÞ ¼
divides if s1 ¼ s2 ¼ s

0 else

(
(3)

In Equation (3), we are assuming that the daughter and parent

cells in cell division events are in the same state. If fv represents per-

sistence or differentiation (jchðvÞj ¼ 1Þ, we let

fvðHchðvÞ ¼ t; Hv ¼ s; hÞ

¼

difft if s ¼ blue; t 6¼ blue

1� diffred � diffgreen �divideblue� apopblue
if s ¼ blue; t ¼ blue

1� divides � apops if s ¼ t 6¼ blue

0 else

8>>>>>>>><
>>>>>>>>:

(4)

The latter choice is motivated by the fact that only progenitor

cells (blue state) are able to change their state into one of the differ-

entiated cells. Altogether, the hidden layer of our factor graph model

is determined by only seven parameters, h ¼ fdivideblue; dividet;

apopt;difft; t ¼ red; greeng.
Second, we have to relate the cell states to the image data.

Several techniques have been developed to identify these states either

by in vivo fluorescence staining or by immunostaining after fixation.

All these methods have their drawbacks: the marker might not work

with equal efficiency in all cells. Fluorescence intensity is a continu-

ous marker, and converting it to a discrete signal can cause discret-

ization errors. The information provided by these markers may be

incomplete, e.g. in the case of the Lysm marker in our experimental

data (Rieger et al., 2009), the upregulation of Lysm fluorescence sig-

nal merely indicates that the cell is no longer in the progenitor cell

state, but it does not tell whether it has become a red or a green cell.

The second marker (F4/80) is detectable only if the cell is a mono-

cyte, but it does not distinguish between progenitor cells and gran-

ulocytes. Using the combination of both markers, we have a ternary

yet error-prone readout indicating the state of each cell. We model

this by letting

gvðov;Hv; hÞ ¼ PðovjHv; hÞ

PðovjHv; hÞ ¼
0:8 if readout ov is indicative of state s; and Hv ¼ s

0:1 if readout ov not indicative of state s; and Hv 6¼ s

8<
:

(5)

We verified that the concrete choice of the numerical values in

Equation (5) is of minor importance and does not influence our final

model decision qualitatively (data not shown).

2.4 Parameter estimation and hypothesis testing
It is crucial that the factor nodes encode ‘local’ probability functions

in the sense that they depend only on their respective neighboring

variable nodes. Because the hidden states are unknown, we are inter-

ested in calculating the marginal likelihood,

LðhÞ ¼ PðO; hÞ ¼
X

h

PðO;H ¼ h; hÞ (6)

L(h) is obtained by summation of the full likelihood over all pos-

sible hidden state combinations h ¼ ðhvÞv2V ; hv 2 S. Factor graphs

give rise to efficient algorithms for MLE (max-sum algorithm) and the

calculation of marginal probability distributions (sum-product algo-

rithm) which are linear in the number of nodes see, e.g. (Bishop,

2006, Chapter 8) as long as the number of neighbors of a factor nodes

is bounded. The processing of genealogies with thousands of variables

with the standard algorithms is numerically unstable. The calculations

were therefore implemented in log space (see Niederberger et al.,

2012) Supplementary Material Section S2). There are two main strat-

egies for parameter estimation: Point estimation methods, foremost

MLE, and sampling methods like MCMC sampling. Point estimation

methods typically are fast, yet they suffer from the danger of getting

trapped in a local maximum of the likelihood function. Moreover, it

is not easy to construct an MLE estimator for factor graph models

(e.g. using Expectation-Maximization (Dempster et al., 1977). We

therefore implemented a Metropolis-Hastings MCMC approach

(Supplemental Methods S2.1 and S2.2), which generates a sequence

H ¼ ðh; h2; :::; hTÞ of parameter values drawn according to the likeli-

hood function L(h). For T large enough, the empirical distribution of

H is representative of L(h), i.e. it converges in the weak sense towards

the distribution defined by L(h). In our applications, we chose T¼20

000, and trace plots were used to verify the convergence of the

Markov chain (Fig. 2C).

Although parameter estimates alone can already provide useful

information, the strength of our model lies in the opportunity to for-

mulate biological hypothesis in terms of these parameters. A biolo-

gical hypothesis H can be compatible or incompatible with the

parameter sample h. In our application, we address the question

whether asymmetric differentiation of progenitor cells (blue state)

into two different mature cell types (green and red state) is achieved

by selection or instruction. In a hypothetical selective scenario Hsel,

progenitor cells divide into red and green state cells with roughly the

same probability, but the apoptosis rate of green and red state cells

may differ. As an alternative hypothesis, in an instructive scenario

Hinst, apoptosis rates of the mature cells are approximately equal,

but the probability for progenitor cells to differentiate into a green

or red state cell may differ. Both hypotheses can be formulated in

terms of the factor graph model parameters. In the selective scenario

Hsel, we assume dividered ¼ dividegreen, whereas in the instructive

scenario Hinst, we assume and apopred ¼ apopgreen. Thus, the space

Hinst of parameters compatible with Hinst is different from the par-

ameter space Hsel compatible with Hsel. We use a reversible jump

MCMC algorithm for the sampling h1; h2; ::: from Hinst [Hsel (see

Supplementary Material S2.3), which can switch between the two

parametrizations Hinst respectively Hsel of the factor graph

model.The decision between two competing hypotheses is based on

the ratio log
jfhj jhj2Hinstgj
jfhj jhj2Hselgj

� �
. Large values provide evidence for the in-

structive, small values provide evidence for the selective scenario.

The code for the sum-product algorithm and for the reversible jump

MCMC algorithm Supplemental Methods S2.3.

3 Results

3.1 Parameters can be identified from a moderate

number of genealogies
Given the experimental data ðO;CÞ, our goal is to identify the model

parameters (the unknown probabilities characterizing cell-type spe-

cific behavior) with sufficient precision to draw biological conclu-

sions from it. The success of the method depends on its

discriminatory power and on the amount of available data. We have

addressed both issues in an extensive simulation study. We check

whether a ‘true’ set of parameters can be recovered from data, which
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Fig. 2. Parameter sampling and hypothesis discrimination by reversible jump MCMC in a simulation of an instructive scenario (left-hand side) and a selective

scenario (right-hand side). (A) For each scenario, we simulated experiments with different numbers of trees (1, 5, 10, 20, 30, 40, 50). Boxplots of the predicted dif-

ferentiation, apoptosis and division probabilities, as well as the proportions of the predicted scenario depending on the number of trees are shown. The horizon-

tal lines depict the simulated (‘true’) parameter values which were used for the generation of these simulated genealogies. On the x-axis the numbers of trees

used for the predictions are depicted in increasing order whereas each dataset is a subset of the next one in size. The barplot at the top pictures the scenario pro-

portion, where instructive is colored in brown and the selective in yellow. The boxplots are divided into three subgroups according to the predicted probabilities

for differentation (top), apoptosis (middle) and division (bottom) whereas the used colors correspond to the three different lineages. Note that for jtreesj ¼1 the

boxplot boxes may exceed the displayed range of values. (B) Simulated trees for selective scenario and instructive scenario, which are used for the prediction

(here: jtreesj ¼10). The colors correspond to the one in (A) where progenitor cells are blue and the two different lineages are red and green. (C) Trace plots for all

predicted parameters and the jumps between the two scenarios (here:jtreesj ¼10), to ensure convergence of the Markov chain. Note that only the beginning and

the end of the 20 000 MCMC iterations are shown. The barplot (top) describes the reversible jump between selective and instructive by depicting the respective

scenario for each given iteration step. The colors for the jump representation and the trace plots as well as for the parameters correspond to those in (A). Grey in-

dicates that the corresponding parameter is the same for both lineages in the currently selected model class. The horizontal dashed lines visualize the simulated

(‘true’) parameter values
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has been simulated using these parameters. We generated data sets

of different sizes and ran the MCMC estimation procedure, which

gave us credible intervals for the individual parameters. As expected,

the accuracy of parameter estimation increased with the amount of

data. It turned out that for realistic parameter choices (see Fig. 2 and

Supplementary Figs. S2 and S3), a moderate number of about 20

genealogies was sufficient for accurate parameter identification and

a reliable decision between the instructive and the selective scenario.

This is substantially less than the �200 genealogieswith an average

of 12 cell division events in the experimental data.

The simulation also allowed us to exclude severe estimation

biases resulting from our MCMC procedure. By mixing genealogies

from a selective and an instructive scenario at different ratios, we

verify that the estimation procedure is robust. It generally tends to

decide for the scenario from which the majority of the genealogies

were taken from (see Fig. 3). The results also revealed that the esti-

mation procedure is slightly biased towards the selective scenario.

This has to be taken into account when evaluating the results from

experimental data.

Hypothesis discrimination in realistic models of cell

differentiation
So far, we merely verified the reliability of our method in the ab-

sence model bias, i.e. if the data used for parameter learning was

generated from the factor graph model itself. However, our model is

a gross simplification of the real biological processes. We therefore

tested the performance, in particular the model bias, in a more real-

istic model of hematopoietic stem cell organization (Loeffler and

Roeder, 2002; Roeder and Loeffler, 2002; Glauche et al., 2007). In

this model, stem cell differentiation is described as a temporally ex-

tended process with a progressive restriction in lineage potential, in

which the decision process is intrinsically random, albeit tuneable

by lineage instruction or selection. Applying our analysis to a set of

model-generated genealogies, we observe that the true scenario

(selective/instructive) can be recovered from merely 10 trees in

�90% of all cases. Again, we mixed genealogies generated by the

two scenarios at different ratios and monitored the decision of our

method. The results confirmed a slight bias towards the selective

scenario (Supplementary Fig. S3). The most likely explanation is

that selective scenarios can be recognized by a combination of fluor-

escence signal and topological information (shorter branches in the

tree are indicative of apoptosis events), while evidence for instruct-

ive scenarios arises merely from the fluorescence signal. Because the

Loeffler/Roeder/Glauche model predicts uneven apoptosis probabil-

ities for the two differentiated cell types, even in an instructive scen-

ario, this leads to the observed bias. We emphasize that our

biological conclusions in the subsequent application are unaffected,

because they point in opposite direction, towards an instructive

scenario.

Preferential differentiation of murine GMPs into

monocytes or neutrophil granulocytes cells is achieved

by an instructive mechanism
It is still under debate how the commitment of multipotent HPCs to

single lineages is controlled (Endele et al., 2014; Morrison et al.,

1997; Glauche et al., 2009; Rieger et al., 2009). Cytokines are

known to influence cell fates, but the driving mechanism is still un-

clear: Is lineage commitment achieved only in a selective manner, by

allowing the survival and proliferation of cells belonging to one lin-

eage, or are they able to directly instruct lineage commitment?

(Rieger and Schroeder 2009) tracked the development of murine

GMPs (blue state) into mature monocytes (M, red state) or neutro-

phil granulocytes (G, green state) on the single-cell level (Rieger

et al., 2009). We applied our factor graph model to genealogies

Fig. 3. Hypothesis discrimination between selective and instructive scenarios. Discrimination on simulated data from the factor graph model (upper row) and

from the model in (Loeffler and Roeder, 2002; Roeder and Loeffler, 2002) (lower row) (A). 10 trees were used in each of 100 MCMC runs. The 10 trees consisted of

j¼10, 8, 5, 2, 0 (left column to right column) trees taken from a selective scenario, and 10� j trees from a selective scenario. The illustration shows the percentage

of cases in which the MCMC algorithm preferred the selective (yellow) or the instructive scenario (brown). Examples of simulated genealogy trees for the instruct-

ive scenarion (upper row, j¼10) and the selective scenario (lower row, j¼ 5) are shown in (B)
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from this data set to shed light onto the driving mechanism (see e.g.

Supplementary Fig. S4). Our genealogy consists of 200 trees con-

structed from data as provided by the authors of the study (Rieger

et al., 2009). This amount of data could not be processed by our

method as a whole. The data were randomly split into 10 disjoint

data sets with 20 trees each. Consistent with the findings obtained

by visual inspection in (Rieger et al., 2009), the factor graph model

identifies an instructive mechanism as the cause of a strong preferen-

tial differentiation into monocytes or granulocytes, respectively. The

reversible jump MCMC favors the instructive scenario over the se-

lective scenario in 88% (Fig. 4B). Recall that our model has a slight

estimation bias towards selective scenarios, so we can exclude bias

as the cause for our findings. In the instructive scenario, the prob-

ability for the differentiation of a progenitor cell into a granulocyte

is estimated as 0.012 per time step (median of all sampled probabil-

ities) versus 0.007 per time step for monocytes (Fig. 4A). This differ-

ence becomes even more evident in Figure 4C, which shows a

scatterplot of the two differentiation probabilities along four

MCMC chains. The sampled values of diff2 exceed the correspond-

ing values of diff1 in all but very few exceptions. The probability

of going into apoptosis is estimated as 0.002 (median of sampled

probabilities) and thus substantially smaller than the differentiation

probabilities. Further, the cell type specific growth speed, i.e. the

division rate was remarkably similar (Fig. 4A).

4 Conclusion

High throughput time-lapse imaging poses new challenges to compu-

tational biology. The analysis of cellular genealogies requires the de-

velopment of statistical methods that are able to test hypotheses on

data with a branched dependency structure. The most advanced

method so far that deal with this kind of data is Markov tree models

(Durand et al., 2001, 2005). They can be cast as factor graph models,

in which the fate of the children is assumed independent of each

other, given the (state of the) parent cell. This assumption has the ad-

vantage that Markov trees allow the straightforward generalization

of the Baum-Welch algorithm for parameter learning. However in

cases when diverging daughter cell fates are coupled, this model is not

appropriate. We have developed a simplistic, but efficient factor

graph model, which can test the compatibility of basic biological

hypotheses with this kind of data. The factor graph model has an

intuitive parametrization of its factor nodes, which reflects key prop-

erties of the cellular system (differentiation, proliferation, apoptosis).

Biological hypotheses can be formulated in terms of parameter restric-

tions. The local factor nodes and their parametrization can be

exchanged very easily in this framework. Thus, our model can be eas-

ily adapted to model high-dimensional readouts from each cell image,

or to model other cell states (aneuploidy, cancerosity, quiescence).

We perform hypothesis discrimination and parameter estimation

using a reversible jump MCMC algorithm. More efficient algorithms

for parameter estimation such as an EM-algorithm would be conveni-

ent; they are currently under development. Due to its flexibility, we

expect the factor graph framework to have a wide range of applica-

tions, in particular because advances in microscopy allow the investi-

gation of cell-to-cell (state) variability at the subcellular level.

The factor graph model can be extended to account for the

micro-environment of a cell, given by cell contacts, cell wall turgor,

local concentration of signaling molecules, or concentration gradi-

ents. Such variables might be included into the observations vector

ov for each cell image v. A promising application will be the model-

ing of multicellular organism development. For example, plant em-

bryos can be tracked, and at the same time chemo-physical

properties of each cell can be measured (Kierzkowski et al., 2012),

which can reveal to which extent lineage, mechanical forces or loca-

tion within a tissue determine cell fate.
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