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We study the occurrence of the multiple steady states that flows in a collapsible
tube can develop under the effect of: (i) geometrical alterations (e.g. stenosis),
(ii) variations of the mechanical properties of the tube wall, or (iii) variations of
the external pressure acting on the conduit. Specifically, if the approaching flow is
supercritical, two steady flow states are possible in a restricted region of the parameter
space: one of these flow states is wholly supercritical while the other produces an
elastic jump that is located upstream of the variation. In the latter case the flow
undergoes a transition through critical conditions in the modified segment of the
conduit. Both states being possible, the actual state is determined by the past history
of the system, and the parameter values show a hysteretic behaviour when shifting
from one state to the other. First we set up the problem in a theoretical framework
assuming stationary conditions, and then we analyse the dynamics numerically in a
one-dimensional framework. Theoretical considerations suggest that the existence of
multiple states is associated with non-uniqueness of the steady-state solution, which
is confirmed by numerical simulations of the fully unsteady problem.

Key words: biological fluid dynamics, flow–vessel interactions, shallow water flows

1. Introduction
The human body is permeated by flexible tubes that transport different kinds of

biological fluids such as blood, air, lymph, cerebrospinal fluid and urine (Skalak,
O’zkaya & Skalak 1989; Grotberg 1994; Ku 1997; Grotberg & Jensen 2004). Almost
all the conduits transporting such fluids can be treated as passive elastic tubes
(Bertram 2004) in which interactions between the pressure of the fluid and compliant
walls determine velocity profiles and wall displacement patterns (Heil & Hazel 2011).
Some biological tubes work under distended conditions (e.g. arteries; Downing & Ku
1997), i.e. the cross-section is circular and the internal pressure is higher than the
external pressure. Conversely, there are other biological tubes for which the external
pressure is higher than the internal one (Shapiro 1977). Then, as in the case of veins,
the tube collapses to a flattened cross-section where the flow continues through it,
but the available cross-sectional area diminishes dramatically (Bertram 2004).

† Email address for correspondence: siviglia@vaw.baug.ethz.ch
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106 A. Siviglia and M. Toffolon

It is the complexity of the fluid–structure interactions that gives collapsible tubes
their specific dynamic features. Among them, flow limitations and self-excited
oscillations are the most peculiar. Choking occurs when a smooth transition connects
a subcritical to a supercritical flow. In this case a flow limitation occurs: given the
conditions upstream of the point where the flow becomes critical, there is a maximum
flow rate that the tube can convey independently of the difference between upstream
and downstream pressures (Shapiro 1977). This phenomenon is clearly visible during
forced expiration, when the maximal air outflow rate from the lung is independent of
the effort put forward by the patient: it is noteworthy that this phenomenon has been
modelled successfully within a one-dimensional framework (Elad, Kamm & Shapiro
1987, 1988). Self-excited oscillations occur in externally pressurized collapsible tubes.
In a classical experimental framework, used to mimic physiological systems (e.g.
Bertram, Raymond & Pedley 1990, 1991), a segment of floppy conduit is mounted
between two rigid tubes and enclosed inside a pressurized chamber. Several types
of unsteady behaviour are detected from the experiment, such as highly nonlinear
oscillations and hysteresis between the transition among different oscillatory regimes.
Also in this case, various hypotheses have been formulated by means of simple
one-dimensional models to explain the genesis of self-excited oscillations (e.g. Jensen
1990; Hayashi, Hayase & Kawamura 1998), but the current challenge of theoretical
work is towards a better representation of reality (Bertram 2004). Other analyses
suggest the possible existence of multiple steady flow states in collapsible tubes
(Kececioglu et al. 1981; Reyn 1987), which is the topic of this paper.

In a one-dimensional framework, the equations for the flow in collapsible tubes are
formally identical to those governing open channel flows (e.g. Shapiro 1977; Kamm
& Shapiro 1979; Pedley 2000). However, the closure for the pressure is more complex
and contains additional parameters (external pressure, stiffness, exponents of the tube
law), thus introducing a higher degree of complexity in the analysis of the flow in
collapsible tubes. A few studies have exploited the analogy between the two systems
to transfer some results obtained in the simpler case of open channel flows. A first
example is the development of roll waves that occur under supercritical conditions.
This aspect has been analysed by Brook, Falle & Pedley (1999), who investigated
numerically the circumstances under which roll waves form, develop and propagate in
collapsible tubes. A second example concerns the existence of multiple solutions of
the Riemann problem when geometrical discontinuities are present in a open channel
flow (Bernetti, Titarev & Toro 2007) or in collapsible tubes (Toro & Siviglia 2013).

Another interesting phenomenon that has received attention in open channel flows
is the occurrence of the multiple states that the flow over a long obstacle can develop
within a certain range of parameters. In particular, two different locally steady flow
states are possible as a function of the Froude number, and the actual solution
depends on the manner in which the flow is established (that is, its history), thus
leading to a hysteretic behaviour. This phenomenon has been described by means
of analytical theories (Baines 1984), laboratory experiments (Baines & Davies 1980;
Baines 1984) and numerical investigations (Pratt 1983). The aim of this paper is to
study this problem in the context of collapsible tubes, which may lead to a peculiar
behaviour in biological processes. Thus, we develop an analytical theory and carry out
numerical simulations to identify the conditions under which this hysteretic behaviour
is possible for variations of the geometrical (i.e. stenosis) and mechanical (i.e. stiffer
or softer material) properties of the conduit, and of the external pressure. In particular,
we seek the solution in terms of the speed index S (Shapiro 1977) of the undisturbed
approaching flow: this dimensionless parameter represents the ratio between the flow
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Multiple states for flow through a collapsible tube 107

velocity and the celerity of the small perturbations and controls the flow conditions
(subcritical S< 1, supercritical S> 1).

The structure of the paper is the following. In § 2 we introduce the governing
equations of the one-dimensional mathematical model and the closure relationships.
In § 3 we develop a theoretical approach to describe the bistable region in the
parameter space assuming stationary conditions. Finally, in § 4 we perform some
numerical experiments in unsteady conditions to test the dynamic behaviour of the
system. Conclusions are addressed in § 5.

2. Formulation of the problem

The one-dimensional equations governing the flow in collapsible tubes are the usual
continuity and momentum equations

∂A
∂t
+ ∂Q
∂x
= 0, (2.1)

∂Q
∂t
+ ∂

∂x
(uQ)+ A

ρ

∂p
∂x
=−Ru, (2.2)

where t is time, x is the longitudinal axis, and R= 8πµ/ρ is the flow resistance in
the case of a laminar flow, with µ and ρ the dynamic viscosity and the density of
the fluid, respectively. The cross-sectional area of the elastic tube is A, the flow rate
is Q, the velocity is u=Q/A and the internal pressure is p. Dealing with collapsible
tubes, we assume the tube law

p= pe +K(αm − α−n), (2.3)

where pe is the external pressure, the coefficient K describes the elastic properties of
the vessel, α = A/A0 is the area ratio, with A0 the reference area for which p = pe,
and m and n are positive coefficients. For the analysis developed in § 3, we assume
R= 0 in order to derive simpler analytical relationships.

Two boundary conditions are to be imposed to determine the actual flow field. The
direction along which their influence is transferred depends on the celerity c of small
elastic perturbations with respect to flow velocity. This information is provided by the
speed index

S= u
c
, (2.4)

which is the analogue of the Froude number in open channel flows. In order to have
a well-posed problem, the first boundary condition is always set at the inlet of the
tube (in terms of the flow rate Q or an analogous quantity), while the position of the
second boundary condition is fixed either at the inlet (for a supercritical flow, S> 1)
or at the outlet (for a subcritical flow, S< 1). For the tube law (2.3), the speed index
can be calculated by means of the relationship

S2 = ρQ2

KA2
0α

2(mαm + nα−n)
. (2.5)

Siviglia & Toffolon (2013) showed that there is another dimensionless parameter
controlling the properties of the flow in collapsible tubes. This parameter emerges
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108 A. Siviglia and M. Toffolon

V F

A Q= uA

u P = u2

2
+ p
ρ

Q= uA M = u2A+ p
ρ

A− 1
ρ

∫
p dA

TABLE 1. The first three cases of the general equation (2.7) for the flow in collapsible
tubes with constant parameters K, A0 and pe.

from the non-dimensionalization of the governing equations (2.1) and (2.2), as
demonstrated in appendix A. It reads

χ = KA2
0

ρQ2
0
, (2.6)

where Q0 is a reference flow rate.
Adapting the analysis of Whitham (1974) of open channel flows to (2.1) and (2.2),

it is possible to demonstrate that an infinite number of equations in the form

∂V(u, A)
∂t

+ ∂F(u, A)
∂x

= 0 (2.7)

can be derived in this ideal frictionless case. The most important equations are
reported in table 1: it is easy to recognize that the flux F is given by the flow rate Q
in the first case, i.e. (2.1), the total pressure P (also known as stagnation pressure,
divided by ρ in this definition) in the second case, and the momentum flux M
(divided by ρ also in this case) in the third case, corresponding to the conservative
form of (2.2). Note that if p is also an explicit function of x and not only of A(x),
because of the variation of A0, K or pe, the momentum flux is not conserved and
additional source terms have to be included in (2.7), as shown for instance by Brook
et al. (1999). Other conservation equations can be derived by solving the two coupled
equations

∂F
∂u
= u

∂V
∂u
+ A

∂V
∂A

and
∂F
∂A
= 1
ρ

∂p
∂A
∂V
∂u
+ u

∂V
∂A
. (2.8a,b)

We refer to Whitham (1974) for the procedure to derive such relationships.

3. Steady state: theoretical approach

Siviglia & Toffolon (2013) illustrated how variations of the geometrical or
mechanical properties can produce a transition through critical conditions (i.e. S= 1)
in both subcritical and supercritical flows for steady-state problems. In the present
analysis, we demonstrate that a bistable configuration (with two alternative solutions
whose occurrence depends on the history of the system) exists in the supercritical
region of the parameter space, similarly to what has been shown for open channel
flows (Baines & Davies 1980; Pratt 1983; Baines 1984, 1995). In order to identify
the bistable region, we consider steady-state frictionless conditions. When variations
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Multiple states for flow through a collapsible tube 109

of the parameters A0, K or pe are considered, F is not always conserved in (2.7). In
particular, Q and M , which for the tube law (2.3) reads

M = u2A+ KA
ρ

(
m

1+m
αm + n

1− n
α−n

)
, (3.1)

are conserved across stationary discontinuities of A (elastic jumps) if the parameters
are constant, while Q and P are conserved if A varies continuously also when the
parameters vary. In the first case, some energy is lost in the sudden expansion of the
flow, eventually dissipated by viscosity in a process that is analogous to that occurring
in hydraulic jumps. Consistently with the assumption of perfectly elastic walls, no
energy loss takes place in the tube wall (Cowley 1982).

Referring to the sketch in figure 1 for the case of a reference supercritical flow
(S> 1) as upstream boundary condition, we analyse two different configurations: (i) a
flow that remains supercritical while passing smoothly through a modified section
(with variation of A0, K or pe); and (ii) a transcritical flow for which an elastic jump
forms upstream of the modified region. We define the sections (a)–(c) as in figure 1: a
smooth passage always occurs from (b) to (c), while a sudden change of area occurs
from (a) to (b) in the transcritical configuration. Such a jump can move upstream or
downstream, so we assume steady-state conditions in a reference frame moving with
the speed cf of front propagation (assumed positive downstream).

For a subcritical flow (S< 1), the elastic jump will form in the downstream region,
with sections (a)–(c) defined symmetrically with respect to the modified region.
However, bistable states do not exist in this case, as will be demonstrated below.

3.1. General equations including the case of an elastic jump
For both subcritical and supercritical flows, introducing the tube law (2.3) we can
write the conservation equations (of flow rate and momentum flux in the moving
frame) between sections (a) and (b) as

(ua − cf )Aa = (ub − cf )Ab, (3.2)[
(ua − cf )

2 + K
ρ

(
m

m+ 1
αm

a −
n

n− 1
α−n

a

)]
Aa

=
[
(ub − cf )

2 + K
ρ

(
m

m+ 1
αm

b −
n

n− 1
α−n

b

)]
Ab, (3.3)

and the conservation equations (of flow rate and total pressure) between sections (b)
and (c) as

ubAb = ucAc, (3.4)
u2

b

2
+ pe

ρ
+ K
ρ
(αm

b − α−n
b )=

u2
c

2
+ pec

ρ
+ Kc

ρ
(αm

c − α−n
c ), (3.5)

where αc = Ac/A0c, and pec is the external pressure in section (c). Equation (3.3)
is also known as the Rankine–Hugoniot condition and (3.5) represents the Riemann
invariant preservation (e.g. Toro & Siviglia 2013). When no transition through critical
conditions occurs, no elastic jump exists, and we can simply set the equalities

ua = ub, Aa = Ab, (3.6a,b)
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110 A. Siviglia and M. Toffolon

Q

x

K

K

(a) (b) (c)

A0

pe

pe

cf

pec

Kc

Aa Ab Ac

A0
A0c

FIGURE 1. (Colour online) Sketch of a longitudinal section of half-tube and corresponding
notation: the thick solid grey line (red online) represents the vessel configuration when
an elastic jump is present, and the thick dashed grey line (red online) that when no
transition occurs. Three locations are identified and used in the text (with reference to
a supercritical flow, S> 1): (a) upstream boundary condition, (b) section with the possible
presence of an elastic jump travelling with a celerity cf , and (c) region with modified
external pressure (pec), geometrical (A0c) and mechanical (Kc) properties, where critical
conditions may occur.

instead of (3.2) and (3.3), implying that Q is constant in both time and space. It is
worth noting that equations (3.6) represent a trivial solution of equations (3.2) and
(3.3), which hence represent the general formulation of the problem that can always
be described by the four equations (3.2)–(3.5).

We can now impose the upstream boundary conditions ua and Aa (or, equivalently,
χ and αa in dimensionless form) and study the possible solutions. In the case without
transition, cf = 0 obviously, and the four unknowns (ub, Ab, uc and Ac) can be obtained
in a simple way exploiting relations (3.6) and reducing the problem to two equations
and two unknowns (uc and Ac).

On the other hand, the case of transcritical flow with an elastic jump contains five
unknowns (ub, Ab, uc, Ac and cf ) and hence one degree of freedom. However, critical
flow conditions (i.e. S = 1) occur in the modified section (c) when the elastic jump
forms because the transition from subcritical to supercritical is located there (see
Siviglia & Toffolon (2013) for further details), yielding the additional equation

ρu2
c

Kc(mαm
c + nα−n

c )
= 1, (3.7)

and closing the system.
It is worth making the problem dimensionless in order to highlight the parameters

controlling the solution. We introduce the definitions

κ = Kc

K
, δ = A0c

A0
, η= pec − pe

K
, σ = cf

Q/A0
, (3.8a−d)

where K and A0 refer to the unmodified part of the tube (sections (a) and (b), see
figure 1). Reducing the four equations to two by solving (3.2) and (3.4) for ub and
uc, we obtain

αm
b − α−n

b +
1

2χα2
b
[1+ σ(αb − αa)]2 = κ(αm

c − α−n
c )+ η+

1
2χδ2α2

c

[1+ σ(αb − αa)]2
(3.9)
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Multiple states for flow through a collapsible tube 111

from (3.5) and

(αb − αa)(1− σαa)
2

χαaαb
= m

m+ 1
(αm+1

b − αm+1
a )− n

n− 1
(α−n+1

b − α−n+1
a ) (3.10)

from (3.3). It is easy to see that αb=αa is the trivial solution of (3.10) corresponding
to the absence of an elastic jump.

In addition, the critical condition (3.7) for the transcritical case reads

[1+ σ(αb − αa)]2 = χκδ2α2
c (mα

m
c + nα−n

c ). (3.11)

Moreover, the speed index can be expressed as a function of the dimensionless
boundary conditions (αa, χ ) by

S2 = 1
χα2

a(mαm
a + nα−n

a )
. (3.12)

3.2. Marginal surfaces and the bistable region in the parameter space
In order to analyse the multiple states of the system and delimit the region of the
parameter space where they can occur, we define two different surfaces in the space
defined by the variables χ , αa, δ, κ and η. The first surface is identified by the
solution of (3.9) with αb = αa and the critical condition (3.11), which represents the
limit for the existence of a flow state without transition through critical conditions.
The second surface is delimited by the marginal condition σ = 0, which characterizes
a steady elastic jump. Both surfaces can be determined by solving the following
equations:

αm
b − α−n

b +
1

2χα2
b
= κ(αm

c − α−n
c )+ η+

1
2χδ2α2

c

, (3.13)

(αb − αa)

χαaαb
= m

m+ 1
(αm+1

b − αm+1
a )− n

n− 1
(α−n+1

b − α−n+1
a ), (3.14)

1= χκ δ2α2
c (mα

m
c + nα−n

c ). (3.15)

Note that the two surfaces in the parameter space are determined on the basis of the
two families of solutions of (3.14): (i) the trivial solution αb=αa, and (ii) the solution
that considers the presence of the elastic jump (αb 6= αa).

For assigned values of χ and αa, a solution of the system (3.13)–(3.15) can be
obtained for the two unknowns (αb and αc) and for one of the modified parameters
(δ, κ or η) while fixing the other two. This allows one to plot the marginal curves and
define the regions in a two-parameter space. In this case, the solution of the system
(3.13)–(3.15) identifies two curves in the parameter space: (i) the transcritical curve
(αb = αa with S(αc)= 1), and (ii) the curve for a stationary elastic jump (i.e. σ = 0).
Figure 2 shows an example of these two marginal curves considering variations of δ,
κ and η (independently) as a function of the boundary condition expressed in terms
of αa (a–c) or S(αa) (d–f ), for a given value of χ , with m= 0.5 and n= 0. We will
demonstrate below that: (i) in the region delimited by the transcritical curve, all flow
states must pass through critical conditions in section (c), thus producing an elastic
jump; and (ii) the elastic jump tends to move far away from section (c) within the
region delimited by curve obtained for σ = 0. As a consequence, we will show that
the shaded region of figure 2 is the bistable region, and that multiple states exist only
for supercritical flows.
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FIGURE 2. (Colour online) Bistable region (shaded) defined by the marginal curve for
transcritical conditions and the curve for a steady elastic jump (σ = 0) in different
parameter spaces, as a function of α ≡ αa (a–c) and S (d–f ) and for χ = 0.5, m = 0.5
and n= 0 (χce = 2) in the case of variations of: (a,d) the reference area δ (κ = 1, η= 0),
(b,e) the mechanical properties of the tube κ (δ= 1, η= 0), and (c, f ) the external pressure
η (δ= 1, κ = 1). All variables are dimensionless. The horizontal dashed line at δ= 0.6 in
(d) represents the section examined in figure 3.

In order to understand how the flow conditions change in the different regions, we
examine the details of the solution along one section of figure 2(d), identified by the
dashed line, as a function of S(αa). Hence we fix all the parameters (i.e. δ= 0.6, κ= 1
and η = 0) and one of the two boundary conditions (χ = 0.5, which can be seen as
the dimensionless flow rate): figure 3 shows the solution of the system as a function
of the other boundary condition S(αa). We can now describe the interplay between the
necessary condition for the onset of the elastic jump and the condition for its enduring
presence in the system.

Assuming that no transition occurs (i.e. no elastic jump, thus αb = αa), (3.10) is
automatically satisfied and the solution αc can be obtained from (3.9). Figure 3(a)
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FIGURE 3. (Colour online) The solution for the relative area ratios αb and αc in the
case of: (a) absence of the elastic jump (thus αb = αa when possible), and (b) for an
elastic jump moving with dimensionless front speed σ (c), as a function of S(αa) for
χ = 0.5, δ = 0.6, κ = 1, η = 0, m = 1

2 and n = 0. Dots in (a,b) indicate the limits of
the transcritical region. Squares in (b,c) indicate the limits of the region in which the
elastic jump, identified by the relative area αb ( 6=αa), tends to go away from the obstacle,
thus sustaining its own existence. Solid and dashed lines in these panels indicate the two
possible solutions with the elastic jump, which can be located either upstream (when S>1)
or downstream (S<1) of the obstacle. Triangles orientated with different directions in (a,b)
identify the flow conditions highlighted in figure 5(a) (S = 2.2); the four-pointed star in
(c) identifies the front speed in the same figure.

shows the behaviour as a function of S: it clearly appears that the solution αb = αa
exists only outside of the so-called transcritical region delimited by two values of Stc
(S<Stc1 and S>Stc2, where subscript tc stands for transcritical). We refer to Siviglia &
Toffolon (2013) for a deeper analysis of this case. Conversely, an elastic jump forms
for all values of S within the transcritical region (Stc1 < S< Stc2): this is a necessary
condition since no solution exists that does not pass through critical conditions in the
modified region (c). However, the elastic jump can exist also outside the transcritical
region, but its front will not, in general, be stationary. The solution with the presence
of a moving elastic jump is investigated in the following paragraph.

The solution of the equations (3.9)–(3.11), accounting for a moving elastic jump
and critical conditions in section (c), is shown in figure 3(b), with the dimensionless
speed σ of the jump plotted in figure 3(c). In this case two different configurations
are possible (indicated with solid and dashed lines, respectively): a jump located
downstream of the obstacle (i.e. section (c) of the tube) for subcritical flow (S < 1)
and upstream of it for supercritical flows (S > 1). A special case is that of the
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steady elastic jump (σ = 0): we can consequently identify three regions delimited by
two characteristic values of S (Sbs1 and Sbs2, where subscript bs stands for bistable).
Looking at the signs of the front speed, we can argue that the elastic jump tends to
go away from the obstacle that produced it in the region Sbs1 < S< Sbs2. For instance,
in supercritical conditions the jump is located upstream and its speed is negative
(thus moving it further upstream) for values of S < Sbs2. In this case, if the jump
is produced in the transcritical region, it will stably remain in the system also for
values of S outside such a region. On the other hand, for S > Sbs2 the elastic jump
is moving downstream (σ > 0, i.e. towards the obstacle) and will tend to disappear
unless it is not re-created in the transcritical region (Stc1 < S < Stc2). Therefore, a
bistable region can be identified for supercritical flows in the region Stc2 < S < Sbs2:
here, if the solution is smooth (wholly supercritical) it will remain such, while if a
transition with an elastic jump is somehow produced, it will not disappear. For the
sake of clarity, we note that in figure 3 the bistable region is defined by the range
2 . S . 3 approximately.

On the other hand, in subcritical conditions the elastic jump is located downstream
of the obstacle, and the region in which it will move away from the obstacle
(i.e. further downstream, σ > 0) is for S> Sbs1. However, since Sbs1 > Stc1, this region
is already included in the transcritical region. Conversely, for S< Stc1 the elastic jump
is always moving upstream (σ < 0), thus precluding its persistent existence outside
of the transcritical region where it is formed. This implies that multiple solutions do
not exist in the subcritical case.

It is worth noting that the extent of the bistable region, which is quite large in
figure 2, actually depends on the value of χ and of the tube law parameters m and n.
Using for instance different values, highly nonlinear, such as those that have been used
for veins (e.g. Brook et al. 1999; Müller & Toro 2014), i.e. m= 10 and n= 1.5, the
shape of the marginal curves and of the bistable region changes significantly (figure 4).
Moreover, the location and the area of the curves in the parameter space depends
on the difference between χ and χce = (m+ n)−1 (Siviglia & Toffolon 2013), and is
especially evident for variations of κ . When χ > χce, as in figure 2, the transcritical
region is centred on values of α > 1 and draws a closed region in the semi-plane
κ > 1, thus defining an upper boundary. When χ < χce, as in figure 4, the region is
centred on α < 1 and transition occurs in the range κ = 0–1. Finally, we note that
only positive values of the excess of external pressure (η > 0) can induce transcritical
conditions, and hence the presence of the bistable region, when the other alterations
are not present.

4. Numerical experiments

Numerical experiments have been performed in order to analyse the bistable
behaviour of the solution identified in the previous section. We developed a code
that numerically solves the system of governing equations (2.1) and (2.2), including
the friction term and using the mathematical approach described in Toro & Siviglia
(2013). The numerical solution is then obtained using the finite volume method of
the path-conservative type developed by Müller & Toro (2013), which is first-order
accurate.

We consider in particular the effect of a stenosis inducing a transition in a
supercritical flow. Thus, we consider a segment of a collapsible tube, characterized by
homogeneous mechanical properties (uniform K) and external pressure (uniform pe),
with a local variation of the geometrical reference area A0. We note that this is

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ity
 o

f B
as

el
 L

ib
ra

ry
, o

n 
30

 M
ay

 2
01

7 
at

 2
1:

19
:4

7,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

4.
63

5

https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2014.635


Multiple states for flow through a collapsible tube 115

0.5 1.0 1.5 2.0 2.5

1.2

1.0

0.8

0.6

0.4

0.2

0 0.5 1.0 1.5 2.0 2.5

1.2

1.0

0.8

0.6

0.4

0.2

0.5 1.0 1.5 2.0

0 0.5 1.0 1.5 2.0

1.2(a) (d)

(b) (e)

(c) ( f )

1.0

0.8

0.6

0.4

0.2

0 0.5 1.0 1.5 2.0

3

2

1

0

–1
0

3

2

1

0

–1
0

S

1.2

1.0

0.8

0.6

0.4

0.2

0 0.5 1.0 1.5 2.0 2.5

Transcritical

FIGURE 4. (Colour online) Bistable region (shaded) in the same plots as in figure 2, but
for χ = 1, m= 10 and n= 1.5 (χce = 0.087).

only one of the possible configurations. In fact, similar analyses can be performed
for mechanical variations (i.e. local change of K) or for alterations of the external
pressure pe: the general analysis discussed in § 3 provides in any case a theoretical
background to interpret the results of these cases.

Focusing on the case of a local variation of A0 and referring to the undisturbed
value of A0 to identify the intrinsic scale, we describe a stenosis by means of the
dimensionless equation

δ(x∗)= 1− λ sin2

[
π

(
x∗ − x∗1
x∗2 − x∗1

)]
, (4.1)

where λ is the maximum reduction factor and x∗ = x/D is defined as in appendix A.
For the numerical experiment, we choose λ= 0.4 (hence δ= 0.6) to analyse the same
case as in figure 3. The tube has a nominal diameter D=6.0 mm and a length L=3D,
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FIGURE 5. (Colour online) Alternative flow configurations in a uniform tube with a
stenosis as in (4.1), for χ = 0.5, m = 0.5 and n = 0. The speed index S (a), the
dimensionless area α (b) and the variation of the reference area δ (c) are shown for the
frictionless case. Labels in (a) indicate the dimensionless times t∗= t/T , with T defined as
in appendix A. Triangles with different orientations refer to the flow conditions determined
in figure 3, as well as the four-pointed star representing the speed of the elastic jump. The
effect of considering friction is shown in (d–f ) considering a longer domain.

and we locate the stenosis between x∗1 = 2 and x∗2 = 2.5. The tube law is described by
m= 0.5 and n= 0, with K= 125 Pa and pe= 0. The fluid density is ρ= 1050 kg m−3.
Since we reproduce an undisturbed supercritical flow, both boundary conditions are
set at the inlet: we impose χ = 0.5 (which fixes the flow rate Q) and S= 2.2 (which
provides the value of α and hence p).

For the numerical solution, we assume at the outlet transparent (or transmissive)
boundaries. This is achieved numerically by imposing boundary conditions that allow
the passage of waves without any effect on them. The domain is described by 150
cells and numerical stability is enforced imposing a Courant–Friedrichs–Lewy number
CFL= 0.95.

Figure 5 illustrates the dynamics of the bistable solution in the frictionless case
(R= 0, see figure 5a–c). The curves labelled with 0 in panels (a) and (b) show the
steady state of the flow conditions expressed in terms of S and α. The speed index of
the undisturbed flow is S= 2.2, which is in the bistable region shaded in figure 2(d)
(δ = 0.6, χ = 0.5). Hence, two different configurations are theoretically possible. In
this initial setting, the flow does not show any transition through critical conditions
and would indefinitely maintain this state if the system is not perturbed.
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FIGURE 6. (Colour online) Hysteretic behaviour produced by a variation of the
dimensionless external pressure ηc in the section with a stenosis ( f ). The sequence of
flow states is indicated by numbers reporting dimensionless times as in ( f ): the speed
index S (a,d), the dimensionless area α (b,e) and the variation of the reference area δ
(c, f ) are shown for the frictionless case with χ = 0.5, m= 0.5 and n= 0.

In order to produce the transition to the alternative state, we impose a sudden
increase of external pressure η= 0.5 in the region of the stenosis, and then restore the
initial value after a short time (0.02 s, corresponding to 1.6 dimensionless time units).
As a consequence of the perturbation, the system shifts to the second alternative state,
characterized by an elastic jump propagating upstream. The evolution is depicted in
figure 5(a) (where labels refer to the dimensionless time t∗ = t/T): the elastic jump
moves, producing local subcritical conditions (S< 1, a necessary condition to have an
upstream movement) without being deformed and with a constant speed σ . It is worth
noting that the flow conditions of this frictionless case are exactly predicted within
the theoretical framework of § 3. The values of α indicated by triangles with different
orientations in figure 5(b) correspond to the same symbols in figure 3(a) (initial state
without transcritical flow) and figure 3(b) (migrating elastic jump). Moreover, the
speed of the elastic jump is correctly estimated by the value of σ in figure 3(c) (see
the four-pointed star).

Interestingly, a further perturbation of the external pressure (with an opposite sign
with respect to the one that produced the elastic jump) may be able to restore the
initial wholly supercritical state (figure 6). As a consequence, it is possible to create a
periodic shift between the two alternative states, whereby the flow conditions oscillate
following a hysteresis cycle. The actual occurrence of this hysteretic behaviour
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depends on both the intensity of the perturbation and the timing, but its existence
can be easily predicted on the basis of the theoretical framework proposed in § 3.

The undisturbed upstream migration of the elastic jump is obviously possible only
in the idealized frictionless case. In the real world, friction is always present, though,
and it is necessary to understand the implications of the energy dissipation on the
flow field. Figure 5(d–f ) shows the effect of introducing the friction term R, which
has been evaluated using a dynamic viscosity µ= 4× 10−3 Pa s, in (2.2). In order to
illustrate the complete dynamics, a much longer domain has been adopted for this
specific case (L = 10D). As in the analysis of the previous case, the line labelled
with 0 indicates the steady state, which is characterized by variations of S and α
due to the total pressure drop along the tube. The upstream boundary condition has
been set, imposing different values of S (but the same χ = 0.5) to obtain S' 2.2 just
upstream of the stenosis, with the aim to have a fair comparison with the frictionless
case. Similarly to that case, also in the new setting the shift to the alternative flow
state (with transcritical flow conditions) is produced by the same temporary alteration
of the external pressure. As a consequence, the elastic jump starts moving upstream
with a speed that is initially very similar to that of the frictionless case, and reduces
only at a relatively long distance from the stenosis (and for a much longer time, as
indicated by the labels on the curves). Differently from the frictionless case, if energy
dissipation is considered the elastic jump stops; this occurs when the momentum flux
is balanced by the local flow conditions (which change along the tube), and eventually
a stationary condition is reached. It is important to recognize that the effect of friction
depends on the velocity. As can be noted by figure 5(d), the variation of S is mild
in the subcritical region of the elastic jump, where the velocity is lower than in the
undisturbed part of the tube. Therefore, the influence of friction on the transcritical
flow caused by the stenosis is virtually negligible in many cases, thus supporting the
frictionless theoretical framework developed in § 3.

However, the unaltered propagation of the elastic jump in the frictionless case (or
the long displacement necessary to reach the stationary condition in the frictional
case) poses the relevant question of understanding what happens within a finite-length
collapsible tube. In this case the bistable elastic jump travelling in the upstream
direction may interact with internal boundary conditions such as variations of the
tube properties, junctions or confluences. In order to illustrate these effects, we
consider a sequence of two segments in a domain of length L= 3D and we impose
a change of A0 at a distance x∗ = 1 from the inlet. The downstream segment (where
the stenosis is located) is chosen to be representative of the reference values, and the
values of the parameters in the upstream segment is varied accordingly. We consider
two cases: a narrowing (figure 7c) and a widening (figure 7f ).

For the sake of clarity in the analysis, we focus on the frictionless case and impose
an upstream boundary condition that produces S= 2.2 in the part of the tube with the
stenosis (see figure 7a,d). As in the standard case, a transcritical flow is triggered by
the temporary variation of external pressure and the system shifts towards the second
state. Hence, the elastic jump propagates upstream until it reaches the modified
upstream segment. In the case of downstream narrowing (i.e. the migrating jump
experiences a widening), the elastic jump is able to pass through (figure 7b) the
geometrical discontinuity because the momentum flux of the elastic jump is higher
than the momentum flux of the flow corresponding to the narrowing. An acceleration
of its speed can be noticed (see the time labels in figure 7a). In the absence of
friction, the elastic jump will continue the migration indefinitely.

The case of downstream widening (i.e. a narrowing for the migrating jump) is more
complex, because the propagation of the elastic jump is stopped (figure 7d) and a
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FIGURE 7. (Colour online) Alternative flow conditions for a sequence of two tube
segments with variation of the reference area A0 (the dimensionless variable δ is reported
in (c) for a narrowing and in ( f ) for a widening), for χ = 0.5, m= 0.5 and n= 0. The
speed index S (a,d), the dimensionless area α (b,e) and the variation of the reference area
δ (c, f ) are shown for the frictionless case. Labels in (a,d) indicate the dimensionless times
t∗ = t/T .

reflected wave is generated between the internal boundary condition and the stenosis,
producing another type of stationary condition. The small variation of the value of α
(figure 7e) is caused by the fact that the flow rate becomes uniform along the whole
tube when the steady state is reached everywhere. The inclusion of friction does not
alter the picture unless the distance between the stenosis and the transition between
the tube segments is long enough to significantly change the hydrodynamic conditions
of the local flow or of the elastic jump.

5. Conclusions

We have presented an analytical theory to predict the conditions for the occurrence
of multiple flow states in collapsible tubes. In fact, two alternative states (so that we
term the corresponding region in the parameter space as ‘bistable’) can exist for a
range of values of the speed index S bordering on the transcritical values identified
by Siviglia & Toffolon (2013): one solution is smooth and without transition through
critical conditions, which are defined by S = 1, while the other is characterized by
the presence of an elastic jump, which always develops when the flow is forced to
pass from super- to subcritical conditions. The occurrence of these multiple solutions
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can be triggered by variations in the conduit that can be thought of as local obstacles,
like the presence of geometrical alterations (i.e. stenoses), variations of mechanical
properties of the tube wall, or variations of the external pressure.

In order to delimit the bistable region, we analytically derived the two marginal
curves that are defined by: (i) the condition for which a smooth flow (i.e. without
transition) becomes critical when passing through the obstacle (this condition defines
the ‘transcritical’ region as in Siviglia & Toffolon (2013)), and (ii) the condition for
which the elastic jump, which develops within the transcritical region, is not moving.
Such a bistable region exists only for supercritical flows (S > 1), when the elastic
jump is located upstream of the obstacle and the propagation of its front is directed
upstream outside of the transcritical region. Since the latter condition does not occur
for S< 1 (where the front forms downstream of the obstacle and should move further
downstream in order to remain in the system when outside of the transcritical region),
no bistable region exists for subcritical flows.

We exploited the theoretical relationships to investigate a wide range of conditions
in terms of the dimensionless number χ , defined by (2.6), of the dimensionless area
ratio α (or equivalently the speed index S), and of the dimensionless parameters
describing the obstacle (δ, κ , η). Thus we were able to determine the extent of
the bistable region, which depends crucially on the exponents of the tube law. The
hysteretic behaviour is more likely to occur in compliant tubes such as the veins,
in which waves travel slowly and the fluid flow speed may reach and overcome
the reduced wave speed and supercritical conditions may occur (Pedley, Brook &
Seymour 1996; Bertram 2004).

While the theoretical analysis was conducted by assuming steady-state conditions,
we investigated the dynamic behaviour of the system by means of a numerical
model. Numerical results confirm the predictions of the analytical theory, showing
that in supercritical flow conditions a temporary perturbation (for instance of the
external pressure acting on the tube) is sufficient to make the solution shift between
the two steady states predicted by the theory. We performed different numerical
experiments. In two runs we considered a collapsible tube characterized by constant
wall mechanical properties and a stenosis. We showed that the bistable elastic jump
(triggered by a perturbation of external pressure) travels indefinitely upstream in
the inviscid case, while it stops at certain distance upstream from the stenosis
if frictional losses are taken into account. In other two runs we investigated the
inviscid propagation of the bistable elastic jump within a collapsible tube of finite
length. The results show that the upstream migration of the elastic jump can be
stopped by the presence of an internal boundary condition (between tube segments
with different geometrical or mechanical properties) imposing flow conditions for
which the momentum flux is higher than the one associated with the approaching
elastic jump. This eventually produces a steady configuration characterized by a stable
immobile elastic jump located at the transition between the tube segments. Conversely,
if the momentum flux characterizing the bistable elastic jump has a larger value than
the one imposed by the internal boundary condition, the elastic jump can pass through
and propagate indefinitely further upstream. The presence of friction losses spatially
limits this propagation.

The existence of alternating states with elastic jumps and smooth flows, and the
possible effects of the hysteretic behaviour on the physiology of human beings
and animals (e.g. the giraffe, see Pedley et al. (1996)) are still waiting for proper
investigation.
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Appendix A. Dimensionless formulation for a tube with uniform properties
If the geometrical (A0) and mechanical (K) properties do not change, the frictionless

problem can be cast in dimensionless form by introducing the following scaling:

Q=Q∗Q0, x= x∗D, t= t∗T, {p, pe} = {p∗, p∗e}K, (A 1a−d)

where D = 2
√

A0/π is a nominal diameter of the tube, Q0 is a reference flow rate,
T =DA0/Q0 is the time scale chosen to respect the balance in the continuity equation,
and ∗ denotes dimensionless variables. Thus, (2.1)–(2.3) become

∂α

∂t∗
+ ∂Q∗

∂x∗
= 0, (A 2)

∂Q∗

∂t∗
+ ∂

∂x∗

(
Q∗2

α

)
+ χ α∂p∗

∂x∗
= 0, (A 3)

p∗ = p∗e + (αm − α−n), (A 4)

and the problem is characterized by the single dimensionless parameter χ .
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