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ABSTRACT
Within a sufficiently large cosmic volume, conservation of baryons implies a simple ‘closed
box’ view in which the sum of the baryonic components must equal a constant fraction of
the total enclosed mass. We present evidence from RHAPSODY-G hydrodynamic simulations
of massive galaxy clusters that the closed-box expectation may hold to a surprising degree
within the interior, non-linear regions of haloes. At a fixed halo mass, we find a significant
anti-correlation between hot gas mass fraction and galaxy mass fraction (cold gas + stars),
with a rank correlation coefficient of −0.69 within R500c. Because of this anti-correlation, the
total baryon mass serves as a low-scatter proxy for total cluster mass. The fractional scatter of
total baryon fraction scales approximately as 0.02(�c/100)0.6, while the scatter of either gas
mass or stellar mass is larger in magnitude and declines more slowly with increasing radius.
We discuss potential observational tests using cluster samples selected by optical and hot gas
properties; the simulations suggest that joint selection on stellar and hot gas has potential to
achieve 5 per cent scatter in total halo mass.

Key words: methods: numerical – galaxies: clusters: general – cosmology: theory – X-rays:
galaxies: clusters.

1 IN T RO D U C T I O N

The abundance of galaxy clusters as a function of cluster mass
is sensitive to both the growth of structure and cosmic expansion,
providing not only stringent constraints on cosmological parameters
but also consistency checks for the theory of gravity (see e.g. Miller,
Nichol & Batuski 2001; Vikhlinin et al. 2009; Mantz et al. 2010a;
Rozo et al. 2010; Allen, Evrard & Mantz 2011; Benson et al. 2013;
Rapetti et al. 2013 for a review). In cluster cosmology, the key is to
accurately infer the mass of galaxy clusters from their observable
properties, including gas mass and temperature from X-ray emission
(e.g. Mantz et al. 2014), galaxy content from imaging and galaxy
dynamics from spectroscopy (e.g. Mamon, Biviano & Boué 2013;
Kravtsov, Vikhlinin & Meshscheryakov 2014), and strong and weak
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gravitational lensing effects (e.g. von der Linden et al. 2014). Each
of these mass proxies exhibits a certain amount of scatter around
the true mass; minimizing and characterizing this scatter is essential
for precision cosmology from galaxy cluster surveys (e.g. Lima &
Hu 2005; Wu, Rozo & Wechsler 2010).

To achieve accurate mass measurements, multi-wavelength ob-
servations have often been conducted for the same sample of
clusters; for example, the CLASH project includes comparison
between mass proxies from weak lensing, X-ray, and velocity
dispersion (Postman et al. 2012; Biviano et al. 2013; Donahue
et al. 2014); clusters observed by the South Pole Telescope using
the Sunyaev–Zeldovich effect have been followed up photometri-
cally and spectroscopically (Song et al. 2012; Ruel et al. 2014).
When multiple mass tracers are available for the same sample of
galaxy clusters, a joint selection can reduce the mass scatter. In
particular, the reduction of mass scatter is most effective when
two mass tracers are anti-correlated with each other at a given
mass (e.g. Cunha 2009; Stanek et al. 2010; Rozo et al. 2014b;
Evrard et al. 2014).
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Hydrodynamical simulations of galaxy clusters have been a pow-
erful tool for understanding mass proxies (e.g. Evrard, Metzler &
Navarro 1996; Kravtsov, Vikhlinin & Nagai 2006; Rasia et al. 2006;
Nagai, Vikhlinin & Kravtsov 2007; Stanek et al. 2010; Fabjan et al.
2011; Angulo et al. 2012; Rasia et al. 2012; Saro et al. 2013) and the
evolution of gas and stellar mass in clusters (e.g. Kravtsov, Nagai &
Vikhlinin 2005; Ettori et al. 2006; Puchwein et al. 2010; Young et al.
2011; Battaglia et al. 2013; Planelles et al. 2013). Recent results have
shown that it is necessary to include the feedback of active galactic
nuclei (AGN) in order to prevent catastrophic over-cooling in the
cluster core, thus bringing the star formation in massive galaxies
down to realistic levels and producing overall stellar mass fractions
in better agreement with observations (e.g. Springel 2005; Sijacki
et al. 2007; Booth & Schaye 2009; McCarthy et al. 2010; Teyssier
et al. 2011; Le Brun et al. 2014).

In this work, we study gas and stellar mass fractions in a new set
of hydrodynamical simulations of massive haloes. We find a sig-
nificant anti-correlation between gas and stellar mass fractions that
persists into the deeply non-linear regime. This anti-correlation does
not simply reflect the well-known trends in the mean component
fractions with total mass; the anti-correlation exists for deviations
about the mean trends, meaning it reflects statistical behaviour of
the component fractions at fixed halo mass.

The new set of simulations is selected from the N-body simulation
sample RHAPSODY (Wu et al. 2013a,b) and re-simulated with gas;
we thus name our new sample RHAPSODY-G. The original RHAPSODY

sample has been developed with the aim of understanding the im-
pact of formation history on various mass tracers of galaxy clusters.
In this paper, we focus only on the gas and stellar mass of the
RHAPSODY-G clusters; in companion papers (Hahn et al., in prepa-
ration and Martizzi et al., in preparation), we will present detailed
comparison between our simulations and observational results, in-
cluding the properties of the BCG and the stellar mass–halo mass
relation.

This paper is organized as follows. Section 2 introduces the sim-
ulations. In Section 3, we discuss the anti-correlation between gas
and stellar mass fractions, while in Section 4, we discuss using total
baryon mass as a low-scatter cluster mass proxy. We discuss the
observational implications in Section 5 and summarize our results
in Section 6.

Throughout this paper, we use radial and mass scales defined by
a spherical density contrast with respect to the critical density of the
Universe; e.g. R500c indicates the radius within which the average
density is 500 times the critical density at the redshift of interest.

2 SI M U L ATI O N S

The current RHAPSODY-G simulation suite includes 10 hydrodynam-
ical zoom-in simulations centred on massive haloes from the orig-
inal RHAPSODY sample. Nine are chosen to have similar final mass
of M200 ≈ 6 × 1014 M� and the tenth has M200 ≈ 1.3 × 1015 M�.
We use the adaptive mesh refinement code RAMSES (Teyssier 2002)
and incorporate cooling, star formation, and AGN feedback. We
describe here the simulation methods and recipes, as well as the
details of our sample selection.

2.1 Simulation methodology

First, we briefly summarize the methods used to generate and post-
process the simulations. We kindly refer the reader to Hahn et al.
(in preparation) for more details.

Precursor simulations. The galaxy clusters of the RHAPSODY-G
simulations are based on the RHAPSODY N-body simulations (Wu

et al. 2013a,b), which include 96 cluster-sized haloes of mass
Mvir = 1014.8±0.05 h−1 M� re-simulated with a mass resolution of
1.3 × 108 h−1 M�. These haloes have been identified at z = 0 in a
cosmological volume of 1 h−3Gpc3 from the LASDAMAS simulation
suite. The 10 RHAPSODY-G simulations presented here are selected
from the full RHAPSODY sample in such a way that three of the main
haloes have extreme concentration, two have an extreme number of
subhaloes, and five have approximately the median concentration
and typical number of subhaloes.

Initial conditions. We use the MUSIC code (Hahn & Abel 2011) to
generate the initial conditions of the hydrodynamical simulations,
at a starting redshift of 50. The MUSIC code implements the second-
order Lagrangian perturbation theory to generate displacements and
velocities of dark matter particles, and the local Lagrangian approx-
imation to generate a consistent initial density field of baryons on
the grid. The Lagrangian volumes for the zoom simulations have
been chosen to include a sphere of 8 h−1 Mpc centred on the clus-
ters at z = 0, which allows us to study a substantial cosmic volume
outside the main halo.

N-body and hydrodynamical methods. The RAMSES code is based
on the adaptive mesh refinement technique, which solves the hy-
drodynamical equations on progressively refined grids. The hydro-
dynamical solver is based on a second-order Godunov scheme for
ideal gases with an equation of state γ = 5/3. High-resolution dark
matter particles have a mass of 109 M�, and the highest spatial
resolution is physical 5 kpc (maximal refinement level 18), with a
mass-based quasi-Lagrangian refinement strategy. Due to the added
expense of modelling the baryons, this first set of RHAPSODY-G sim-
ulations has eight times lower mass resolution than the original
RHAPSODY N-body sample.

Cooling and star formation. Our simulations follow the subgrid
cooling model from Sutherland & Dopita (1993), implemented by
Teyssier et al. (2011) for RAMSES. The star formation rate follows
ρ̇∗ = ε∗(ρgas/tff ), with the star formation efficiency ε∗ = 0.03 and
the free-fall time tff = √

3π/(32Gρ), where ρ is the total mass
density.

AGN feedback. We modify the AGN feedback model in Martizzi
et al. (2012, 2014, hereafter M14), which was based on Booth &
Schaye (2009) and Teyssier et al. (2011). In this implementation,
supermassive black holes are modelled as sink particles, which grow
based on mergers and Bondi–Hoyle accretion with a boost factor α,
with an upper limit set by the Eddington rate. The thermal energy
associated with the accretion is not released until the temperature
reaches a certain threshold Tmin. We choose α = (nH/n∗)2 when
nH > n∗ = 0.1 H/cm3 (nH is the gas density) and α = 1 otherwise;
Tmin = 107 K. The AGN thermal energy is injected into a region of
four times the cell size. We do not implement kinetic AGN feedback
associated with jets; it has been shown in Dubois et al. (2012) that
the kinetic feedback does not significantly affect the bulk gas and
stellar mass.

In Teyssier et al. (2011), Martizzi et al. (2012) and M14, the feed-
back energy was distributed based on a volume-weighted approach,
whereas for RHAPSODY-G we adopt a mass-weighted approach. This
implementation results in an effect similar to the quasar mode
feedback provided by the radiation pressure of AGN (e.g. Debuhr,
Quataert & Ma 2012). In addition, we require that black holes form
at the centre of gas clumps with accretion rate >30 M� yr−1, and
we use the gas clump finding algorithm developed by Bleuler et al.
(2015). As we will show in Hahn et al. (in preparation), this imple-
mentation results in a halo mass–stellar mass relation in agreement
with Kravtsov et al. (2014).

Post-processing. We modify the phase-space halo finder ROCK-
STAR (Behroozi, Wechsler & Wu 2013) to include multi-resolution,
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Figure 1. Mass and redshift of the haloes used in this work. Each colour
represents one zoom-in simulation centred on a main halo with M500c ≈
6 × 1014 M� at z=0. We include three snapshots for each simulation: z = 0,
0.5, and 1.

multi-species particles and gas. We treat the leaf-cells of the adaptive
mesh refinement tree as pseudo-particles, thus allowing for direct
integration of all matter components in our haloes. In this work, we
use the dark matter density peak as the centre of the halo, which
closely coincides with the stellar mass density peak in most cases.
As we focus on the bulk cluster properties for radius >R2500c, the
choice of centre does not affect any of the results presented here.

We adopt the same flat �cold dark matter cosmology as in the
RHAPSODY simulation. The cosmological parameters in the sim-
ulations are as follows: 	M = 0.25; 	� = 0.75; 	b = 0.045;
h = 0.7. Our cosmic baryon fraction value is 	b/	M = 0.18, which
is slightly higher than the value recently reported by Planck (0.155,
see Planck Collaboration XVI 2014).

2.2 Sample selection

For this study, we include all haloes in the high-resolution region
having M500c > 5 × 1013 M� at output redshifts of z = 0, 0.5, and
1. These haloes all satisfy the condition that the mass fraction con-
tributed by low-resolution dark matter particles is below 10−3. Since
each simulation encompasses a high-resolution sphere of 8 h−1 Mpc
centred on the main halo at z = 0 and progressively larger high-
resolution regions at earlier times, we are able to include 92 haloes
in total.

Fig. 1 illustrates the masses of the haloes at the three redshifts.
Each colour represents a zoom-in simulation. For each simulation,
the main halo and its most massive progenitors are shown with larger
symbols, while other progenitors and nearby high-resolution haloes
above the mass threshold are shown with smaller symbols. The
three symbol types correspond to the three redshifts studied here.
The symbol styles will be repeated in the figures below. Table 1 lists
the numbers of haloes derived from the outputs of each simulation,
with the first column giving the original RHAPSODY halo ID.

2.3 Statistical error estimates

Our main sample consists of all haloes found in the high-resolution
regions of the 10 simulations at z = 0, 0.5, and 1. While the time

Table 1. Numbers of distinct haloes in the high-resolution regions
with M500c > 5 × 1013 M�. We sort the list by the concentration of
the main halo, c200 = R200/rs, at z = 0.

Main halo info (z = 0) No. of well-resolved haloes
ID c200 M500c[ M�] z = 0 z = 0.5 z = 1

572 7.03 5.66 × 1014 2 2 1
337 5.19 6.61 × 1014 1 2 1
377 4.79 4.91 × 1014 2 3 3
348 4.62 6.22 × 1014 4 4 3
653 4.47 3.77 × 1014 3 4 2
361 4.41 5.98 × 1014 5 5 5
448 4.40 5.81 × 1014 4 3 1
545 4.40 5.13 × 1014 1 2 1
211 3.65 5.13 × 1014 5 6 1
474 3.55 1.32 × 1015 3 6 7

Totals 30 37 25

spacing between these redshifts corresponds to several dynamical
times, we do not assume statistical independence among different
redshifts for a given halo. When estimating statistical errors in
quantities presented below, we treat the halo ensemble extracted
from each simulation as independent. To estimate uncertainties, we
jackknife resample using 10 degrees of freedom, eliminating one
ensemble of haloes at each round.

3 G A L A X Y C L U S T E R S A S N E A R LY C L O S E D
B OX E S FO R BA RYO N S

In the spherical collapse model of dark matter haloes, the turnaround
radius sets the scale within which the cosmic mix of baryonic and
cold dark matter should be conserved (Gunn & Gott 1972). Assum-
ing the influence of gravity and collisional shocks, Bertschinger
(1985) developed self-similar solutions for both collisionless and
collisional, ideal fluids, finding that both fluids approached similar
radial profiles when expressed in units of the turnaround radius.
Furthermore, the solution for the mixed case of a collisionless fluid
with a minority ideal gas component showed no radial separation;
the local interior baryon fraction reflects the cosmic mean value at
all radii.

Taking this model to its logical extreme, let us imagine spherical
collapse around a local perturbation consisting of radial shells made
of cold dark matter, galactic stars, and smooth intergalactic gas that
can shock but is unable to cool. Collapse of these shells would create
a cluster in which the local interior baryon fraction was unbiased at
all radii, and in which the mix of stars and gas interior to a given
radius would reflect the initial values imposed on the shell layers.

In this section, we show that this naive expectation is respected
to a surprising degree for the case in which baryons experience
complex astrophysical processes associated with galaxy formation
in a fully three-dimensional, hierarchical clustering environment.

3.1 Correlations among baryon mass fractions

For each halo in the sample listed in Table 1, we identify all material
within a sphere that encompasses a total mass density contrast �c

with respect to the critical density. We measure the mass in cold
dark matter and in all baryonic components to derive the total mass.
We examine the six baryon mass fractions listed in Table 2. Hot and
cold gas phases are defined using a temperature cut of kT = 0.1 keV,
which is approximately the threshold of X-ray emission. At z = 0,
the cold gas fraction fc is generally very small.
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Table 2. Notation used for baryon mass components. The first three
quantities are derived from the RAMSES output; the rest are derived
from these quantities. All fractions are relative to the total mass
within some chosen density contrast.

Symbol Quantity Mean (R500c)

f∗ Stellar mass fraction 0.023
fh Hot gas mass fraction (kT > 0.1 keV) 0.149
fc Cold gas mass fraction (kT ≤ 0.1 keV) 0.005

fg Gas mass fraction, fg = fc + fh 0.154
fc∗ Galactic mass fraction, fc∗ = f∗ + fc 0.028
fb Baryon mass fraction, fb = f∗ + fh + fc 0.177

Fig. 2 shows the behaviour of different baryon mass fractions
measured within R500c. The point colouring and styling is the same
as used in Fig. 1. In each panel, the dashed line gives the sim-
ple expectation in which the sum of the two components plotted
equals the cosmic mean, 	b/	m (component correlation coefficient
of −1).

The left panel plots gas mass fraction, fg, against stellar mass frac-
tion, f∗. The two components have a rank correlation −0.72 ± 0.02,
where the error bar is calculated by jackknife resampling by re-
moving one of the simulation sets in turn. In the right panel,
we shift the mass in cold gas within R500c to the stellar compo-
nent, and plot the hot gas fraction, fh, against the total galactic
fraction, fc∗. This split, which more closely represents material in-
side and outside of galaxies, leads to a stronger anti-correlation of
−0.79 ± 0.02.

These anti-correlations are not entirely surprising, given that the
cold gas and stellar mass originated from the cooled hot-phase gas.
Nevertheless, we note that fg and f∗ differ by almost an order of
magnitude, and that the dynamics within R500c are strongly non-
linear and different for collisional and collisionless components.
Therefore, such a high degree of correlation is a non-trivial finding.

Some of this anti-correlation is driven by trends in mean baryonic
content with halo mass. Massive clusters are observed to have higher
fg and lower f∗ than lower-mass systems, reflecting a lower star
formation efficiency in higher mass haloes (e.g. Gonzalez, Zaritsky
& Zabludoff 2007; Giodini et al. 2009; Andreon 2010; Zhang et al.
2011; Lin et al. 2012; Gonzalez et al. 2013; Chiu et al. 2014). As we
will show below for our simulations, models with AGN feedback
are capable of reproducing these trends (also see e.g. McCarthy
et al. 2011; Planelles et al. 2013; Le Brun et al. 2014).

We fit the mean dependence of fg and f∗ with halo mass and
remove these trends to examine correlations between the residuals,
δfg = fg − 〈fg|M〉 and δf∗ = f∗ − 〈f∗|M〉. The mean behaviour is
derived from a logarithmic fit. The correlation coefficients within
R500c decline slightly, to −0.63 ± 0.02 and −0.69 ± 0.01 for the
left and right panels of Fig. 2, respectively. In Table 3, we list
rank correlation coefficients at various scales with the mass trends
removed.

It is interesting to ask whether fg is also correlated with other
galaxy properties. We define the stellar mass associated with in-
dividual galaxies as the mass within the isophotal contour of 25
mag arcsec−2 in the V band, measured along the direction of the
angular momentum. In our simulations, the total stellar mass inside
R500c is strongly correlated with the stellar mass of the brightest
central galaxy (BCG). Therefore, unsurprisingly, fg and the stel-
lar mass of the BCG are also significantly anti-correlated, with a
slightly weaker coefficient of −0.67 ± 0.03.

On the other hand, the number of galaxies, or specifically the
ratio between galaxy number and cluster mass (Ngal/Mtot), has a
much weaker anti-correlation with fg (r = −0.42 ± 0.04). Here Ngal

is the number of galaxies with stellar mass above 1011 M� within
R500c; we have tested galaxy stellar mass thresholds between 1011

and 1012 M�, and the correlation stays approximately constant. The
main reason is that the lower-mass haloes in our sample are more
strongly dominated by the BCG; that is, although they have higher
stellar mass fraction, their Ngal/Mtot is still low. Nevertheless, if

Figure 2. Anti-correlation between gas and stellar mass fractions. Left: the gas mass fraction using both hot and cold phases, fg, and stellar mass fraction, f∗,
within R500c exhibit an anti-correlation, r = −0.72 ± 0.02. Right: the hot (kT > 0.1 keV) gas fraction, fh, and galactic (cold gas and stellar) mass fraction,
fc∗, exhibit a stronger anti-correlation, r = −0.79 ± 0.02. The symbol styles are the same as used in Fig. 1. The dashed line in each panel shows the perfect
anti-correlation case for which the sum of the two components plotted equals the assumed cosmic mean baryon fraction, 0.18.
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Table 3. Correlation coefficients between gas and stellar mass fraction (second column), between
hot gas and galactic baryon mass fraction (third column), as well as the fractional scatter in gas
mass (fourth column), stellar mass (fifth column), and baryon mass (sixth column) fractions, at radii
characterized by different overdensities.

Summary of correlation and scatter for gas, stellar, and baryon mass fractions

Rank correlation Fractional scatter
(δfg, δf∗) (δfh, δfc∗) fg f∗ fb

R2500c −0.63 ± 0.02 −0.69 ± 0.01 0.19 ± 0.005 0.38 ± 0.007 0.11 ± 0.002
R500c −0.66 ± 0.02 −0.69 ± 0.02 0.08 ± 0.002 0.34 ± 0.005 0.047 ± 0.002
R200c −0.66 ± 0.02 −0.75 ± 0.02 0.062 ± 0.002 0.32 ± 0.005 0.038 ± 0.001
R50c −0.92 ± 0.02 −0.92 ± 0.01 0.024 ± 0.002 0.26 ± 0.02 0.01 ± 0.0007
R10c −0.89 ± 0.03 −0.980 ± 0.003 0.015 ± 0.001 0.22 ± 0.02 0.0047 ± 0.0003

we focus on a narrow mass range, Ngal/Mtot is expected to corre-
late with f∗ and thus anti-correlate with fg. When we consider the
most-massive haloes in each snapshot, we find a slightly stronger
correlation (r = −0.49 ± 0.07).

We note that the stellar mass unassociated with individual galax-
ies, the intracluster light (ICL), is difficult to observe, because
it requires observations with high sensitivity at very low sur-
face brightness. Here we consider the stellar mass associated only
with the BCG and satellite galaxies, within the 25 mag arcsec−2

isophote mentioned above. When we sum all the stellar mass asso-
ciated with galaxies with stellar mass >1011.5 M� inside R500c, we
still find a significant anti-correlation between fg and this ICL-
excluded f∗ (−0.69). This anti-correlation also weakly depends
on the galaxy stellar mass threshold. However, we find that this
anti-correlation is largely driven by the BCG; when we exclude
the stellar mass of BCG, this anti-correlation is largely diminished
(−0.3).

We caution that the hydrodynamic and gravitational resolution
of ∼5 kpc in our simulations is insufficient to reliably model
the ICL component. Using the 25 mag arcsec−2 threshold, we
find an average ICL mass fraction of 55 per cent of the stellar
mass. This fraction is generally higher than observed, reflecting
our models’ inability to resolve the half-light radii of all but the
brightest galaxies. A simulation suitable for studying ICL will re-
quire higher spatial resolution. Nevertheless, the consistency of
the gas–stellar correlation coefficients derived with and without
the ICL indicates that our results are not being driven by the ICL
component.

3.2 Scale dependence

We expand the results shown in Fig. 2 to explore the scale de-
pendence of baryon component correlations. We compute statistics
within radii that encompass overdensities of �c = 2500, 500, 200,
50, and 10. For the two lowest overdensities, we use only the most
massive progenitor halo in each simulation to avoid contamination
from low-resolution particles.

Fig. 3 shows the correlation coefficients as a function of density
contrast (large radii are towards the right). The circular symbols
give the correlation between fg and f∗, while the triangular symbols
correspond to the correlation between fh and fc∗. The left panel gives
the raw correlation before removing the mass trends, while the right
panel removes the effect of the mass trends. In Table 3, we list
values of the latter.

The anti-correlation between hot phase and galactic (cold gas and
stars) components is stronger than that between gas and stars at all

radii. In both panels, the former is very close to −1 at �c = 10.
At low density contrasts, the influence of trends with halo mass
is weak. At higher density contrasts, the trends with halo mass are
more important, and correcting for them dilutes the raw correlations
by ∼0.1. Still, within R2500c the correlation between hot and total
galactic baryon residuals is −0.71 ± 0.02. This strong covariance
indicates that the simple closed-box model remains approximately
valid even at radii where complex galaxy formation physics is at
play.

3.3 Dependence on the astrophysical treatment

We caution that the anti-correlation between fg and f∗ presented
above is based on one particular astrophysical treatment of star
formation and feedback. To test whether these results are sensitive to
this treatment, we employ a set of 51 cluster simulations from M14.
These simulations are based on the same code and methods as used
here, but they employ a volume-weighted AGN energy injection
model as opposed to the mass-weighted model in RHAPSODY-G (see
Section 2). With the volume-weighted feedback, energy injection
within the core is more efficient and the BCG star formation is more
strongly suppressed compared to mass-weighted feedback.

The M14 sample reproduces many of the trends presented in
this paper, but there are some differences. In particular, the stellar
mass fraction, while similar in the mean to that of RHAPSODY-G,
has a factor of 2 smaller scatter at a fixed halo mass (17 per cent in
M14 compared to 34 per cent in RHAPSODY-G at R500c). The observed
value reported by Kravtsov et al. (2014) of 0.29 ± 0.09 (fractional
scatter, not dex) slightly favours the latter but is marginally consis-
tent with both.

Along with the smaller scatter in f∗ at R500c, the anti-correlation
between fg and f∗ at a given mass in the M14 sample is also
reduced by a factor of 2, to r = −0.35. The anti-correlation
thus persists qualitatively, but the M14 sample behaves somewhat
less like ‘closedboxes’ within their non-linear regions than do the
RHAPSODY-G sample.

The small f∗ scatter in the M14 sample is associated with the
implementation of the AGN feedback. The exact value of the cor-
relation coefficient between fg and f∗ thus depends on how AGN
feedback is modelled. Uncertainties in predicting stellar masses in
simulations (e.g. M14; Ragone-Figueroa et al. 2013) imply concur-
rent uncertainties in the correlation between fg and f∗. Measuring
the anti-correlation between hot gas and galactic mass fractions,
discussed in Section 5, thus offers a means to constrain details of
the feedback model.
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Figure 3. Anti-correlations between gas and stellar mass fractions as a function of overdensity �c. Small �c (large radius) is to the right. At large radius (low
�c), the anti-correlation is significantly stronger, but it remains robust at small radius. The anti-correlation is stronger between δfh–δfc∗ (green) than between
δfg–δf∗ (blue); δf is defined as f − 〈f|M〉, i.e. with the mass dependence subtracted.

Figure 4. Scaling relations of gas mass fraction (left), stellar mass fraction (middle), and their sum (right) with total halo mass at z = 0, 0.5, and 1. The symbol
styles are the same as used in Fig. 1. The general trends with mass are consistent with those observed, while the exact values of the slopes may differ from
those observed because our sample is incomplete at the low mass end.

4 BARYO N MASS A S A LOW-SCATTER PROX Y
O F TOTA L MA S S

The anti-correlations in baryonic components shown above reflect
the fact that the sum of these components has lower scatter with
respect to total halo mass than does each component. Fig. 4 shows
scaling relations for gas mass, stellar mass, and baryon mass frac-
tions as a function of total halo mass, measured within R500c. The
left panel shows that fg is very tightly correlated with the total mass,
with a scatter of 8 per cent and a slope of 0.08. We note that this scat-
ter is slightly lower than previously reported using a wider range of
halo masses; e.g. Kravtsov et al. (2006) reported a fractional scatter
of 0.107 (based on R500c, see their table 2). On the other hand, our
scatter is similar to the observed value recently reported by Mantz
et al. (2014). For a sample of 40 relaxed clusters observed with
Chandra, they have found 7 per cent scatter in fg within a shell of
0.8–1.2R2500c.

The middle panel shows that f∗ has a much larger scatter of
34 per cent (0.13 dex) and a slope of −0.21. In observations,
Kravtsov et al. (2014) recently reported that the M∗–M500c relation
has a similar scatter (0.11 ± 0.03 dex). The right panel shows that
when fg and f∗ are combined to form fb, the scatter is 4.7 per cent,
which is smaller than using either fg or f∗ alone. The overall trends
with mass reflect that low-mass haloes have higher efficiency of
turning gas into stars, but at the same time they tend to have larger
baryon depletion.

In Fig. 5 we show the fractional scatter of the different baryon
mass components as a function of scale. The fractional scatter of M∗
is the largest. The scatter in Mg is smaller and declines more rapidly
with increasing radius. The fractional scatter in the overall baryon
mass, Mb, is typically a factor of 2 smaller than that of the gas mass,
declining to 0.5 per cent at �c = 10. Overall, the baryon fraction
scatter scales approximately as 〈(δfb/fb)2〉1/2 � 0.018(�c/100)0.58.

MNRAS 452, 1982–1991 (2015)



1988 H.-Y. Wu et al.

Figure 5. Scatter in baryon mass proxies as a function of radius defined by
the enclosed overdensity, �c. The Mb–M� relation has the lowest scatter at
all radii, falling to 0.5 per cent at �c = 10.

The reduced scatter in the total baryon mass can also be under-
stood in the context of joint property selection. Under the assump-
tion of a joint lognormal distribution for two observables at a fixed
halo mass, the scatter of halo mass obtained by joint selection in
these observables is given by (Evrard et al. 2014)

σ 2
joint = 1 − r2

σ−2
1 + σ−2

2 − 2rσ−1
1 σ−1

2

, (1)

where σ 1 and σ 2 are the fractional scatter in the two observables
at a fixed mass, r is their correlation coefficient, and σ joint is the
resultant scatter in halo mass under joint selection. Evaluating this
expression using σ 1 = 0.08, σ 2 = 0.34, and r = −0.72, we obtain
σ joint = 0.047, which matches the fractional scatter we have found
in Mb.

5 O B S E RVAT I O NA L I M P L I C ATI O N S

In this work, we predict a significant anti-correlation between gas
and stellar mass fractions in the virial regions of galaxy clusters.
Here, we discuss a few possible approaches that could be applied
to current and future observations to test for this signature. The
fundamental challenge lies in understanding sources of noise that
would drive the measured covariance away from the intrinsic value.

5.1 Individual measurements of fg and f∗

A direct approach is to measure gas, stellar, and total masses for an
ensemble of clusters and examine the correlations in the component
fractions. Ideally, the noise in such measurements would be smaller
than the intrinsic scatter, which is approximately 10 per cent for Mg

and 30 per cent for M∗.
Gas masses can be determined fairly reliably; Rozo et al. (2014a)

showed that, after accounting for aperture biases driven by total
mass errors, gas mass estimates of individual clusters deviate in
the mean by just a few per cent across three independent observing

teams using different X-ray telescopes and analysis methods. Sta-
tistical uncertainties from photon statistics can be made small for
estimates at �c ≥ 500 in low-redshift clusters.

Deriving the stellar mass of clusters from optical images is more
difficult. Stellar masses of bright galaxies are sensitive to the sur-
face brightness profiles fit to the photometry (e.g. Bernardi et al.
2013), and the revised fits by Kravtsov et al. (2014) pushed BCG
stellar masses of SDSS galaxies up by factors of 2–4. Systematic
uncertainties in cluster membership assignment can produce er-
rors in the stellar mass contributed by satellite galaxies (e.g. Lin,
Mohr & Stanford 2004), and uncertainties in the stellar population
synthesis models can also contribute (e.g. Conroy, Gunn & White
2009). Finally, measuring and defining intracluster light involve ad-
ditional uncertainties (e.g. Lin & Mohr 2004; Gonzalez et al. 2007;
Budzynski et al. 2014).

These additional uncertainties would dilute the measured cor-
relation. Adding random fractional error, σ 0, to the stellar mass
estimates alone would decrease the correlation coefficient by a fac-
tor of σ∗/

√
σ 2

0 + σ 2∗ , where σ ∗ is the intrinsic scatter of roughly
30 per cent (Table 3). For σ 0 = σ ∗, the correlation coefficient would
reduce to ∼−0.5.

Statistical error of a few tens of per cent is expected in total mass
estimates of individual clusters derived from either X-ray hydro-
static equilibrium (e.g. Rasia et al. 2006; Nagai et al. 2007; Rasia
et al. 2012, 2014; Nelson et al. 2014) or weak gravitational lensing
(e.g. Becker & Kravtsov 2011; Oguri & Hamana 2011; Bahé, Mc-
Carthy & King 2012; Rasia et al. 2012). However, Donahue et al.
(2014) have provided evidence that combined strong and weak grav-
itational lensing models reduce the scatter in total mass estimates.
Since error in total mass induces a shift of the same sign for fg and f∗,
such errors would smear out the trend seen in Fig. 2 by introducing
scatter perpendicular to the anti-correlation. A potential alternative
is to avoid total mass estimates and select instead on a low-scatter
mass proxy, such as X-ray temperature or the product between gas
mass and X-ray temperature (YX). One could then examine how Mg

and M∗ within fixed metric apertures covary within that sample.
This approach would take advantage of the relatively weak radial
dependence of the correlations exhibited in Fig. 3.

Fig. 6 compares our results with several observed clusters in the
literature. Our simulations are represented by the grey histogram in
the background (the same data points as in the left panel of Fig. 2).
We include observed clusters with M500c > 5 × 1013 M� published
in Laganá et al. (2011) and Gonzalez et al. (2013). We note that these
data sets are based on different mass calibration techniques. Laganá
et al. (2011) used a Mg–M500c relation to calculate M500c and used
the Schechter function for M∗; Gonzalez et al. (2013) used a TX–
M500c relation to calculate M500c and carefully accounted for ICL
when calculating M∗.

In our simulations, 	b/	m = 0.18, which is higher than the value
of 0.155 recently constrained by the Planck satellite (Planck Col-
laboration XVI 2014). To account for this difference, we normalize
the simulated component fractions by our 	b/	m, and the observed
fractions by the Planck value. As shown in Fig. 6, the statistical er-
ror bars on fg and f∗ are fairly large, and there are systematic effects
that we cannot correct for. Setting these caveats aside, the simulated
and observed trends in Fig. 6 are roughly consistent.

5.2 Multi-property scaling relations

Since directly measuring the correlation between fg and f∗ is chal-
lenging, a practical alternative is to consider statistical effects on
scaling relations for property-selected samples. The basic idea is as
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Figure 6. Comparison of component mass fractions in our simulations
(grey 2D histogram) with observed clusters from Laganá et al. (2011) and
Gonzalez et al. (2013). The component fractions are normalized to the
universal baryon fraction, fb, univ ≡ 	b/	m, which for our simulations is
0.18. For the observations, we use the recent Planck satellite value of 0.155.

follows: if we select a subset of clusters based on property Sa, then
the mean and scatter of a second property, Sb, will depend on how
Sa and Sb are correlated at a given mass. Following the formalism
of Evrard et al. (2014), we assume a power-law mass–observable
scaling, so that

〈sa|μ〉 = πa + αaμ, (2)

where sa = ln Sa, μ = ln M, and πa gives the normalization in the
chosen units. Denoting the scatter in sa at a given mass by σ a, then
the scatter in μ at a given sa is σμ|a = σ a/αa.

The mass scaling of the second observable, Sb, follows similar
notation. Let rab be the correlation coefficient of sa and sb at a fixed
mass. Finally, the convolution from mass to observed signal requires
knowledge of the mass function, which can be approximated as
n(M) = Ae−βμ, with −β the local logarithmic slope of the mass
function.

For a sample selected on observable sa, the mean value of sb is
given by

〈sb|sa〉 = πb + αb[〈μ|sa〉 + β rab σμ|a σμ|b], (3)

where 〈μ|sa〉 is the mean halo mass selected by sa. The variance of
sb is given by

σ 2
b|a = α2

b

[
σμ|a2 + σμ|b2 − 2 rab σμ|a σμ|b

]
. (4)

These expressions show that if rab < 0, then the mean of sb will be
biased low, and its scatter will be larger compared to the case of no
correlation.

The effect on the mean will generally be small. For example,
if the two observables have 20 per cent mass scatter, and β � 2.5,
then the final term in equation (3) is a shift of 0.1rab in ln M. Such

small shifts, below 10 per cent in mass, are currently challenging
to measure, since the systematic errors in mass are of similar or
larger magnitude. In addition, measuring this shift requires accurate
knowledge of the observable–mass normalization, πb, as well as the
mean selected mass.

Analysing the variance is a potentially simpler alternative. If
properties a and b have comparable mass scatter, then all the terms
on the right-hand side of equation (4) will be of the same order. As an
example, we consider recent observational results involving galaxy
richness (as Sa) and gas mass (Sb) in Rozo & Rykoff (2014), which
are summarized in their table 2. The mass scatter at a fixed richness
is approximately σμ|a = 0.25 (Rykoff et al. 2012), while the mass
scatter at a fixed Mg is approximately σμ|b = 0.1 (Mantz, Allen &
Rapetti 2010b; Mantz et al. 2014). Based on matching existing X-
ray data to the optically selected redMaPPer cluster sample, Rozo &
Rykoff (2014) report a scatter in gas mass at a fixed galaxy richness
of σ b|a = 0.212 ± 0.032, and report a slope for the Mg–M� relation
of αb = 0.72 ± 0.12.

Evaluating equation (4) with these values gives rab = −0.28, a
slight hint of an anti-correlation. However, the exact value of rab

sensitively depends on the slope αb, which is poorly constrained.
Decreasing the slope by its one sigma uncertainty, to αb = 0.65,
leads to an estimate of rab = −0.68. Similar exercises based on
larger samples of homogeneously determined mass estimates will
offer a more robust means to test for non-zero covariance in stellar
and hot gas mass fractions.

A related test is to probe the variance in total halo mass under
joint property selection (see equation 1). Using optical and X-ray
samples for which both M∗ and Mg are accurately measured, one
could first use lensing total masses to estimate the scatter in M�

for each property selection. Fitting the lensing masses in the joint
selection of both properties would provide a fundamental plane with
variance reduced by an amount given by equation (1). Selection
effects would need to be carefully modelled in such a study.

6 SU M M A RY

We present an analysis of the various baryonic mass components
– stars, hot and cold gas – in a sample of ∼100 massive haloes
derived from the RHAPSODY-G cosmological hydrodynamic simu-
lations. These simulations include state-of-the-art models for gas
cooling and star formation, as well as for energy injection through
supernovae and AGN. Our findings can be summarized as follows.

(i) At a fixed total halo mass, stellar and gas mass fractions are
significantly anti-correlated in the non-linear regions of haloes, with
r = −0.66 ± 0.02 at R500c. This correlation is further enhanced if
we split gas into hot and cold gas, and correlate the hot gas fraction
with the cold gas plus stellar mass fraction (r = −0.69 at R500c).

(ii) Due to this anti-correlation, total baryon mass has a scatter
with respect to the total halo mass that is lower than either gas
mass or stellar mass. At R500c, the baryon mass has approximately
5 per cent scatter, suggesting that joint cluster selection using accu-
rate gas and stellar mass measurements can achieve up to 5 per cent
selection in total mass.

(iii) With increasing radius, the anti-correlation between fg and
f∗ approaches −1, the closed box expectation, and the baryon mass
scatter declines to 0.5 per cent at �c = 10.

It is currently challenging to accurately measure the anti-
correlation between fg and f∗ in observations. Scaling laws with
well-measured slopes, intercepts, and standard deviations are re-
quired for large samples. To obtain empirical constraints on this
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correlation in massive clusters, joint survey studies that combine
gas mass and stellar mass selection with lensing masses and/or
additional independent mass proxies (from X-ray temperatures, YX,
caustic masses, galaxy velocity dispersions, etc.) are needed.

Comparison to RAMSES simulations that use a different AGN
feedback scheme indicates that the results are qualitatively robust
but quantitatively dependent on the feedback method. In light of the
different simulation results from different implementations of AGN
feedback (e.g. M14; Ragone-Figueroa et al. 2013) and between
adaptive mesh refinement and smoothed-particle hydrodynamics
methods (e.g. Frenk et al. 1999; Rasia et al. 2014; Sembolini et al.
2015), it is important to address the anti-correlation found here using
different simulation techniques, more detailed physical models, and
different subgrid models for feedback processes. The closed-box
result must hold at sufficiently large radii, but the detailed scale
dependence of the covariance in baryon components is likely to
exhibit model-dependent features.
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