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Adenocarcinoma, a molecular perspective
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introduction

Adenocarcinoma of the lung is currently the major histological
subtype in East Asia and the USA and is surpassing the
frequency of squamous cell carcinoma in some European
countries. Although in most instances it occurs in smokers or
former smokers, it develops more frequently than any other
histological subtype in patients who have never smoked. Based
on recent investigations into the nature of adenocarinoma of
the lung, it has become obvious that several distinct molecular
diseases are lumped together under this morphological entity.
This article reviews the molecular characteristics that may
influence clinical decision making in the future.

ras

The first molecular changes found to be associated with
adenocarcioma of the lung were mutations of the Kras
oncogene. The ras proteins are members of a large superfamily
of guanine tri-phosphate (GTP)-binding proteins involved in
signal transduction regulating cell growth. Knockout studies in
mice have demonstrated that Kras, but not Hras or Nras, is
required for normal mouse development [1]. The conditional
expression of mutated Kras in mice models resulted in the
formation of lung adenomas, thus confirming its importance in
lung tumorigenesis [2, 3]. Kras mutations have been identified
in 30% of lung adenocarcinoma [4]. Mutations of Kras codon
12 with G to T transversion were exclusively seen in patients
with tobacco-associated adenocarcinoma of the lung [5].
Patients with Kras-mutated tumours have a worse prognosis

after resection than patients with wild-type tumours [6, 7]. The
negative prognostic impact of ras mutations has been
demonstrated in several studies and confirmed in a recent
meta-analysis [8]. Mutations of ras may be predictive of
resistance to chemotherapy. The adjuvant trial JBR.10 stratified
patients according to the presence of ras mutations. In this trial
adjuvant chemotherapy did not seem to confer a survival
benefit in ras-mutated tumours; however, this was not
significant in the interaction analysis [9].
The stable localization of ras proteins to the plasma

membrane by the covalent attachment of a farnesyl isophenoid
group is an essential first step for the biologic activity of ras.
Thus inhibition of this farnesylation was an obvious target for
therapies directed to tumours with ras mutations. However,
clinical studies with farnesyltransferase inhibitors in lung
cancer gave disappointing results, most likely due to fact that
Kras can be modified by alternative enzymes.

Micro-RNAs are small non-coding RNAs that repress their
target RNAs by complimentary base pairing. Ras is regulated by
the let-7 microRNA family. In lung tumours let-7 expression is
lower than in normal lung tissue, while ras protein expression
is significantly higher, providing a potential role for let-7 in
lung cancer [10]. Low expression of let-7 RNAs was found to be
associated with poorer survival in lung adenocarcinoma [11].
However, these data on the potential role of microRNAs in
lung adenocarcinoma are preliminary and need confirmation.

epidermal growth factor receptor

For clinicians, interest in the molecular characterization of
lung adenocarcinoma has increased due to the finding that
mutations of the tyrosine kinase binding domain of the
epidermal growth factor receptor (EGFR) are associated with
dramatic responses and clinical benefits with the EGFR tyrosine
kinase inhibitors gefitinib and erlotinib. EGFR is one of the
four types of the family of ErbB receptors, together with HER2,
HER 3 and HER4. Up to now, 11 ligands of this receptor have
been identified, including epidermal growth factor (EGF) and
transforming growth factor alpha (TGFa) [12]. Mutations of
EGFR can be classified according to sensitivity to the presently
known EGFR tyrosine kinase inhibitors. The majority include
in-frame deletions of exon 19. The second most frequent are
point mutations, mostly L858R in exon 21, more seldomly
G719A/C in exon18, which are also associated with response to
EGFR tyrosine kinase inhibitors [13, 14]. Up until now, three
kinase domain mutations were found to be associated with
resistance to EGFR tyrosine kinase inhibitors, the most
common being the exon 20 point mutation T790M.
EGFR mutations are oncogenic in vitro and in vivo. This was

proven by transforming lung epithelial cells with mutated
EGFR [15] and by the use of transgenic mice models where
introduction of mutated EGFR into the lung epithelium did
lead to the formation of adenocarcinomas [16, 17].
Collective data from many investigators have demonstrated

the association of mutations with lung adenocarcinoma,
absence of smoking history, East Asian ethnicity and female
gender [13, 14]. Investigations of EGFR mutations in tumour
samples from 617 patients mostly from East Asia, and
a minority from Australia and the USA, identified EGFR
mutations in 21%, virtually all in adenocarcinomas. Mutations
were more frequently in never smokers (51 versus 10%), East
Asian ethnicity (30 versus 8%) and females (42 versus 14%)
[13, 18]. Kras mutations were detected in 8%, but not in any
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tumour with EGFR mutations. This and other investigations
suggested that two distinct molecular pathways lead to lung
adenocarcinoma, tobacco exposure resulting in Kras-mutated
tumours and exposure to another unknown carcinogen to
EGFR-mutated tumours [19–21].
Available data on the prognostic value of EGFR mutations

are conflicting. While the molecular analysis of patients treated
in the TRIBUTE and INTACT trials suggested a prolonged
survival in patients with mutations [22, 23], no significant
differences were found in patients undergoing resections of
non-small cell lung cancer [18] or lung adenocarcinomas [24].
In contrast, there is no doubt about the predictive value of
EGFR mutations in tumour response, which ranged between
65–92% in patients with mutations and 9–13% in patients
without mutations [25].

HER2

Binding of ligands to the EGFR receptor results in the
formation of homo- and heterodimers, including HER2, which
has no ligand-binding capacity, as partner. In cell lines
overexpression of HER2 as been shown to confer sensitivity to
EGFR tyrosine kinase inhibitors [26] and results of clinical
investigations point in a similar direction [27]. Mutation of
HER2 has been identified in 4% of 120 primary lung tumours
and, among adenocarcinomas, the frequency was 10% [28].
Subsequent investigations demonstrated that in lung
adenocarcinoma HER2 mutations, EGFR and Kras mutations
were mutually exclusive [29]. In vitro studies also documented
that cells carrying HER mutations remain sensitive to HER2
inhibitors such as lapatinib but become resistant EGFR
inhibitors [30].

BRAF

RAF is a serine-threonine-specific protein kinase that is
activated downstream of the ras protein. It activates the MAP
kinase pathway. Somatic activating mutations of BRAF were
identified in human cancers, in particular in melanoma where
it occurs in up 70%. Missense mutation in the kinase domain
has also been identified 11% of 35 in lung adenocarcinoma cell
lines [31] and in 2 of 127 lung adenocarcinoma tissues [32].
From the available data it appears that mutations of BRAF,
EGFR and Kras are also mutually exclusive.

expression profiling

Unsupervised hierarchical clustering in expression profiling
allows in molecular classification of tumours based on the
similarity of gene expression. Several groups of investigators
have examined lung carcinomas using this methodology. A
common feature of all studies was that the gene expression
profile recapitulated the known histological subtypes [33] and
that lung adenocarcinomas fell into distinct subclasses [24,
34–37]. These studies suggest the development of lung
adenocarcinoma to occur in at least two different pathways,
with one including Clara cell or terminal respiratory unit
differentiation, the other being of a more poorly differentiated

nature. EGFR mutations were found to be more common in
tumours with the terminal respiratory unit differentiation
whereas Kras mutations were more common in tumours of the
poorly differentiated subgroup [24].
Using supervised analysis, several independent studies have

identified gene expression profiles associated with outcome
after surgery. These include studies including all histologies of
non-small cell lung cancer [38, 39], as well as studies restricted
to lung adenocarcinoma [37, 40]. A recent meta-analysis of
gene expression signatures from several datasets identified 64
genes whose expression was significantly related with survival
after surgery for stage I non-small cell lung cancer [41].

conclusion

Adenocarcinoma of the lung comprises several molecular
entities that are currently being defined. Available evidence
suggests a least two major pathways of development to lung
adenocarcinoma; one associated with Kras mutation, another
with EGFR or to a lesser extent HER2 or BRAF mutation.
Mutations of Kras are associated a smoking history. They

are mutually exclusive with EGFR mutations, Her2 mutations
and BRAF mutations, which have been identified in
adencarcinomas of non-smokers.
With the availability of EGFR tyrosine kinase inhibitors in

the clinic, the need for the identification of the molecular
characteristics of the tumour of an individual patient is
becoming increasingly accepted by investigators in the field and
might become standard in the near future. The molecular
characteristics of adenocarcinoma will need to be taken into
account for the development of additional therapeutic
approaches. Gene expression arrays are likely to become an
integrated part of clinical decision making.
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