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ABSTRACT
The original formulation of Bayesian estimation applied to multiple species (BEAMS) showed
how to use a data set contaminated by points of multiple underlying types to perform unbiased
parameter estimation. An example is cosmological parameter estimation from a photometric
supernova sample contaminated by unknown Type Ibc and II supernovae. Where other methods
require data cuts to increase purity, BEAMS uses all of the data points in conjunction with
their probabilities of being each type. Here we extend the BEAMS formalism to allow for
correlations between the data and the type probabilities of the objects as can occur in realistic
cases. We show with simple simulations that this extension can be crucial, providing a 50 per
cent reduction in parameter estimation variance when such correlations do exist. We then go
on to perform tests to quantify the importance of the type probabilities, one of which illustrates
the effect of biasing the probabilities in various ways. Finally, a general presentation of the
selection bias problem is given, and discussed in the context of future photometric supernova
surveys and BEAMS, which lead to specific recommendations for future supernova surveys.

Key words: methods: data analysis – methods: statistical – supernovae: general – cosmolog-
ical parameters.

1 IN T RO D U C T I O N

Type Ia supernovae (SNeIa) provided the first widely accepted
evidence for cosmic acceleration in the late 1990s (Riess et al.
1998; Perlmutter et al. 1999). While they were based on relatively
small numbers of spectroscopically confirmed SNeIa, those results
have since been confirmed by independent analyses of other data
sets (Eisenstein et al. 2005; Percival et al. 2007, 2010; Fu et al.
2008; Giannantonio et al. 2008; Mantz et al. 2010; Komatsu et al.
2011).

Next-generation supernova (SN) surveys such as LSST will be
fundamentally different, yielding thousands of high-quality candi-
dates every night for which spectroscopic confirmation will prob-
ably be impossible. Creating optimal ways of using this excellent
photometric data is a key challenge in SN cosmology for the com-
ing decade. There are two ways in which one can imagine using
photometric candidates. The first approach is to try to classify the
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candidates into Type Ia, Ibc or II SNe (Johnson & Crotts 2006;
Kuznetsova & Connolly 2007; Poznanski, Maoz & Gal-Yam 2007;
Rodney & Tonry 2009) and then use only those objects that are
believed to be SNeIa above some threshold of confidence. This has
recently been discussed by Sako et al. (2011), who showed that
photometric cuts could achieve high purity. Nevertheless, it is clear
that this approach can still lead to biases and systematic errors from
the small contaminating group when used in conjunction with the
simplest parameter estimation approaches such as the maximum
likelihood method.

A second approach is to use all the SNe, irrespective of how likely
they are to actually be an SNIa. This is the approach exemplified
by the Bayesian estimation applied to multiple species (BEAMS)
formalism, which accounts for the contamination from non-Ia (nIa)
SN data using the appropriate Bayesian framework, as presented in
Kunz, Bassett & Hlozek (2007, hereafter referred to as KBH). In
KBH, two threads are woven: a general statistical framework and
a discussion of how it may be applied to SNeIa. As noted in KBH,
the general framework can be applied to any parameter estimation
problem involving several populations and indeed may have already
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been done so in other fields. In this paper, we take the same approach
as in KBH of keeping the notation general enough for application
to other problems, while discussing its relevance to SNe.

We will attempt to use the same notation as in KBH, but dif-
fer where we consider it necessary. For example, we write condi-
tional probability functions as f�|D(θ |d). The quantity f�|D(θ |d)�θ

should be interpreted as the probability that � lies in the interval
(θ, θ + �θ ), conditional on D = d (for small �θ ).

We preserve capital letters for random variables and lowercase
letters for their observed values. In the BEAMS framework, one
wishes to estimate parameter(s) � from N observations of the ran-
dom variable X. We will use the boldface X to denote a vector of
N such random variables: X = X1,...,N . An observation of X we
will denote by x, so that the full set of N observations is denoted
by x = x1,...,N . For SNe, the observations x are the photometric
data of the N SNe. As such, for SNe the probability density func-
tion (pdf) fX|�(x|θ ) is the likelihood of observing the photometric
data x assuming some cosmological parameters θ , which we will
discuss. The relationship between raw photometric data (X) and
the true cosmological parameters (�) is highly intricate, resulting
in a pdf which cannot realistically be worked with and so one first
reduces each observation x to a single feature d for which there is
a direct �-dependent model. For SNe, if the parameters � are for
example �� and �m, then d will consist of an estimated luminosity
distance and redshift. If the parameter of interest � is a luminosity
distance at a given redshift, then d will be simply a fitted distance
modulus. Unless stated otherwise, this is the case.

The correct treatment of redshifts will be important to BEAMS
as applied to future SN surveys. Future surveys will likely have only
photometric information for the SNe but will have a spectroscopic
redshift for the host galaxy obtained by chance (because of overlap
with existing surveys) or through a targeted follow-up programme.
The SDSS-II SN survey (Abazajian et al. 2009) is an example of
both of these. There were host redshifts available from the main
SDSS galaxy sample and there was also a targeted host follow-
up programme as part of the BOSS survey. Future large galaxy
surveys like SKA, Euclid or BigBOSS will likely provide a very
large number of host galaxy redshifts for free.

BEAMS is unique in that the underlying types of the observations
are not assumed known. In the case where there are two underly-
ing types (T ∈ {A, B}), each observation has an associated type
probability (P ) of being type A,

P
def= P (T = A|XP ),

where XP is a subset of features of X. In other words, XP is the
component of the raw data X on which type probabilities are con-
ditional. Note that we treat P as a random variable: while the value
of P is completely determined by XP , which in turn is completely
determined by X, X is a random variable and therefore so too is P .
The realizations of the type probabilities P of the N observations
are denoted by p = p1,...,N and we will call them τA-probabilities.
The τA-probability for an SN is thus the probability of being type
Ia, conditional on knowing the subset xP of the photometric data.
xP may be the full photometric time series, the earliest segment of
the SN’s light curve, a fitted shape parameter, or any other extracted
photometric information.

Finally, we mention that the type of the SN (T ) is a random vari-
able with realization denoted by τ . A summary of all the variables
used in the paper is given in Table 1.

Attempts to approximate τA-probabilities include those of
Poznanski et al. (2002), Newling et al. (2011) and Richards et al.
(2011) and as implemented in SALT2 (Guy et al. 2007). Note that

Table 1. A description of all the random variables used in this paper.

Random
variables Data Definition

P p
The probability of being type A conditional on
XP . We call P the τA-probability.

D d

A particular feature of an object whose
distribution depends directly on the parameter(s)
we wish to approximate using BEAMS. SNe: D

is luminosity distance.

T τ
The type of an object, T ∈ {A,B} SNe:
T ∈ {Ia, nIa}.

X x
All the features observed of an object. SNe: X is
the photometric data.

XF xF

That part of the features which affects
confirmation probability. SNe: XF are peak
apparent magnitudes.

XP xP

That part of the features used to determine the
τA-probability. SNe: XP could be any reduction
of X.

F f

Whether the object is confirmed or not. For SNe:
F = 1 if a spectroscopic confirmation is
performed.

P̄ p̄
This is exactly P if the object is unconfirmed
and 1 or 0 if confirmed, depending on type.

values obtained using these methods are only approximations of
τA-probabilities, as the algorithms are trained on only a handful of
spectroscopically confirmed SNe. Note also that there is no sense in
which one set of τA-probabilities is the correct set, as this depends
on what XP is. Obtaining unbiased estimates of τA-probabilities is
not easy and we will consider the problems faced in doing so in
Section 7. For SNe, the problem is made especially difficult by the
fact that spectroscopically confirmed SNe, which are used to train
τA-probability estimating algorithms, are brighter than unconfirmed
photometric SNe.

In 2009, the Supernova Photometric Classification Challenge
(SNPCC) was run to encourage work on SN classification by light
curves alone (Kessler et al. 2010b). Performance of the classification
algorithms was judged according to the final purity and efficiency
of extracted Ia samples. While the processing of photometric data
is essential to the working of BEAMS for SNe, the classification of
objects is not required. It would be interesting to hold another com-
petition where entrants are required to calculate τA-probabilities for
SNe. Algorithms would then not only need to recognize SNeIa, but
would also need to provide precise, unbiased probabilities of the
object being an SNeIa.

In brief, this paper consists of three more or less independent
parts. In Section 2, we present an extension of BEAMS to the
case in which certain correlations, which were ignored in KBH, are
present. In Section 3, we discuss the relevance of τA-probabilities
in a broader context, and specifically their importance in BEAMS.
Then, in Sections 4–6, we perform simulations to better understand
the importance of sample sizes, nearness of population distributions,
biases of τA-probabilities and decisiveness of τA-probabilities (to
be defined). Finally, in Section 7 we present new ideas from the
machine learning literature describing when and how τA-probability
biases emerge and how to correct for them. This is then discussed
in the context of the SNPCC in Section 8.
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2 IN T RO D U C I N G A N D M O D I F Y I N G TH E
B E A M S E QUAT I O N S

The posterior probability on the parameter(s) �, given the data D,
is derived in section II of KBH as

f�|D(θ |d) ∝ f�(θ )

×
∑

τ∈[A,B]N

fD|�,T (d|θ, τ )
∏
τi=A

pi

∏
τj =B

(1 − pj ),
(1)

where the pi are τA-probabilities. The summation is over all of the
2N possible ways so that the N observations can be classified into
two classes. We will refer to the expression on the right-hand side
of equation (1) as the KBH posterior. When the N observations are
assumed to be independent, that is when

fD|�,T (d|θ, τ ) =
N∏

i=1

fDi |�,Ti
(di |θ, τi),

the KBH posterior reduces,

N∏
i=1

[
fDi |�,Ti

(di |θ,A) pi + fDi |�,Ti
(di |θ, B) (1 − pi)

]
. (2)

There is one substitution in the derivation of the KBH poste-
rior on which we would like to focus, as given in equation (5) of
KBH:

fT (τ ) =
∏
τi=A

pi

∏
τi=B

(1 − pi) . (3)

Equation (3) states that the left-hand side prior probability of the
SNe having types τ is given by the product on the right-hand side
involving τA-probabilities. We argue that this product should not be
treated as the prior fT , but rather as the conditional fT |P . In effect,
we argue that KBH should not use the τA-probabilities p unless P
is explicitly included as a conditional parameter. It is to this end
that we now rederive the posterior on �, taking f�|D,P (θ |d, p)
as a starting point, discussing at each line what has been
used:

f�|D,P (θ |d, p).

(i) We will first use the definition of conditional probability to obtain

= f�,D,P (θ, d, p)

fD,P (d, p)
.

(ii) The term in the numerator can be then written as the sum over
all 2N possible type vectors

=
∑

τ

f�,D,P,T (θ, d, p, τ )

fD,P (d, p)
.

(iii) The numerator is again modified using the definition of condi-
tional probability

=
∑

τ

fD|�,P,T (d|θ, p, τ )f�,P,T (θ, p, τ )

fD,P (d, p)
.

(iv) We will now assume that the probability of having τA-
probabilities and types p and τ , respectively, is independent of �.
As noted after following equation (4) of KBH, for SNe this assump-
tion rests on the fact that � (that is �m, ��) describes large-scale
evolution, while the SN types τ depend on local gastrophysics, with
little or no dependence on perturbations in dark matter:

=
∑

τ

fD|�,P,T (d|θ, p, τ )f�(θ )fP,T ( p, τ )

fD,P (d, p)
.

(v) Rearranging this, and again using the definition of conditional
probability, we obtain

= fP ( p)

fD,P (d, p)
f�(θ )

∑
τ

fD|�,P,T (d|θ, p, τ )fT |P (τ | p).

(vi) The first term on the above line is constant with respect to �,
and so is absorbed into a proportionality constant. We now make
one final weak assumption: fT |P (τ | p) = ∏N

i=1 fTi |Pi
(τi |pi). This

assumption will be necessary to make a comparison with the KBH
posterior. Making this assumption, we arrive at

∝ f�(θ )
∑

τ

fD|�,P,T (d|θ, p, τ )
∏
τi=A

pi

∏
τj =B

(1 − pj ). (4)

We will refer to the newly derived expression (4) as the full posterior.
Let us now consider the difference between the KBH posterior
(equation 1) and the full posterior, and note that in the full posterior,
the likelihood of the data D is conditional on �, P and T , whereas
in the KBH posterior, D is only conditional on � and T . This
is the only difference between the two posteriors, and so when
D|�, T is independent of P , the posterior (equation 4) reduces to
the KBH posterior (equation 1), making them equivalent. This is an
important result: when D|�, T and P are independent, the KBH
and full posteriors are the same.

Our results can be summarized as follows.

(1) As the posterior f�|D(θ |d) is not conditional on τA-
probabilities it should be independent of τA-probabilities and we
thus prefer to replace the KBH posterior in equation (1) by

f�|D(θ |d) ∝ f�(θ )

×
∑

τ∈[A,B]N

fD|�,T (d|θ, τ )
∏
τi=A

π
∏
τj =B

(1 − π ),

where π is an estimate of the global proportion of type A objects.
(2) f�|D,P (θ |d, p) is always given by the full posterior (equa-

tion 4). When D|�, T and P are independent, it reduces to the
KBH posterior (equation 1).

It is worth discussing for SNe the statement, ‘D|�, T and P
are not independent’. One incorrect interpretation of this statement
is, ‘given that we know the cosmology is �, observing1 P for an
SN of unknown type adds no information to the estimation of the
distance modulus’. Indeed it is difficult to imagine how this could
be the case: we know that SNeIa are brighter than other SNe, and
therefore obtaining a τA-probability close to 1 shifts the estimated
distance modulus downwards (towards being brighter).

A correct interpretation of the statement is, ‘given the cosmology
�, observing P of an SN of known type adds no information to
the estimation of the distance modulus’. It may seem necessarily
true that a τA-probability contributes no new information if the type
of the SN is already known, but this is not in general the case; it
depends on the method by which τA-probabilities are obtained.

Currently for SNe, fitted distance moduli and approximations
of τA-probabilities are frequently obtained simultaneously, using
for example SALT2 (Guy et al. 2007). This in itself suggests that
D|�, T and P will not be independent. In some cases however,
τA-probabilities are calculated from the early stages of the light
curves (Sullivan et al. 2006; Sako et al. 2008) while the distance
modulus is estimated from the peak of the light curve, and so the
dependence may be weak. As another example, in section 4.4 of

1 Of course, we mean ‘observing’ in the statistical sense, that is obtaining
the realization of the τA-probability (p) with some software.

C© 2012 The Authors, MNRAS 421, 913–925
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Newling et al. (2011) τA-probabilities are obtained directly from
a Hubble diagram. Objects lying in regions of high relative SNIa
density are given higher τA-probabilities than objects lying in low
relative SNIa density. As a result, at a given redshift, brighter nIa
SNe have higher τA-probabilities than faint nIa SNe. Similarly, at a
given fitted distance modulus (fitted assuming Type Ia), nIa will lie
on average at lower redshifts than Ia. Both of these cases, (distance
modulus | �, type) being correlated with P , and (redshift | �, type)
being correlated with P , are precisely when D|�, T and P are
dependent. In Section 6, a simulation illustrating this dependence
is presented.

For completeness, we mention that in the case of independent
observations, that is when

fD|�,P,T (d|θ, p, τ ) =
N∏

i=1

fDi |�,Pi ,Ti
(di |θ, pi, τi),

the full posterior (equation 4) reduces to

f�|D,P (θ |d, p) ∝
N∏

i=1

[
fDi |�,Pi ,Ti

(di | θ, pi, A)pi

+ fDi |�,Pi ,Ti
(di |θ, pi, B) (1 − pi)

]
.

(5)

In Section 7, we will make suggestions as to what functional form
may be chosen for fDi |�,Pi ,Ti

when using BEAMS for independent
SNe. Finally, we mention an extension where whether or not a SN
is followed-up is included in the cosmology posterior, with details
in Appendix A. As an additional supplement to this section, in
Appendix B we derive the posterior type probabilities.

3 R ATIN G τA-PRO BA BILITIES

An object’s τA-probability is the expected proportion of other ob-
jects with its features which are type A. In other words, if an object
has features x, its τA-probability is the expected proportion of ob-
jects with features x which are type A. Suppose that the global
distribution of P is fP , then the expected total proportion of type A

objects is

P (T = A) = 〈P 〉 =
∫ 1

0
pfP (p) dp. (6)

In some circumstances, it is necessary to go beyond calculating τA-
probabilities and commit to an absolute classification, as was the
case in the SNPCC. In such cases, the optimal strategy moving from
a τA-probability to an absolute type (A or B) is to classify objects
positively (A) when the τA-probability is above some threshold
probability (c). The false positive rate (FPR) using such a strategy
is

FPR(fP ) = P (P > c|T = B)

=
∫ 1

c
(1 − p)fP (p) dp∫ 1

0 (1 − p)fP (p) dp
, (7)

and the false negative rate (FNR) is

FNR(fP ) = P (P < c|T = A)

=
∫ c

0 p fP (p) dp∫ 1
0 p fP (p) dp

. (8)

For SNe, the FPR is the proportion of nIa SNe which are mis-
classified, while the FNR is the proportion of SNeIa which are
misclassified (missed).

Intuition dictates that for classification problems, a useful fP will
be one whose mass predominates around 0 and 1. That is, an fP

Figure 1. Two τA-probability distributions, both with means of 0.5. Using
a threshold of 0.6, we have on the left-hand side FPR = 0.17 and FNR =
0.45, and on the right-hand side FPR = 0.15 and FNR = 0.28.

which with high probability attaches decisive2 τA-probabilities to
observations. To minimize the FPR and FNR this is optimal, as
illustrated in Fig. 1.

We will be presenting a simulation illustrating how the deci-
siveness of τA-probabilities affects the parameter estimation of
BEAMS. To simplify our study of the effect of the decisiveness
of τA-probabilities on BEAMS, we introduce a family of distribu-
tions. For each P ∈ [0.5, 1], we have the distribution

f P (p) = 1

2
(δP (p) + δ1−P (p)) , (9)

where δP and δ1−P are δ-functions centred at P and 1 −P , respec-
tively. It is worth mentioning that we will be drawing probabilities
from this distribution, which is potentially confusing. Drawing an
observation of P from equation (9) is equivalent to drawing it from
{1 − P,P} with equal probability:

P (P = p) =
{

0.5, if p = P,

0.5, if p = 1 − P.

If P1 is more decisive than P2, we say that the distribution f P1

is more decisive than f P2 .
KBH (p. 5) stated that the expected proportion of type A objects

(equation 6) determines the expected error in estimating a parameter
which is independent of population B. Specifically, they present the
result that the expected error, when estimating a parameter μ with
N objects using BEAMS, is given by

σμ ∝
√

〈P 〉 N. (10)

It should be noted that the result from KBH (equation 10) is
an asymptotic result in N . For small N , the decisiveness of the
probabilities plays an important part. If equation (6) were the only
factor determining the expected error (σμ), then f 0.5 would be
equivalent to f 1 in terms of the expected error. This would mean
that perfect type knowledge does not reduce the error, which would
be surprising. An example in Section 4.1 illustrates that decisiveness
does play a role in determining the error.

KBH (p. 8) mentioned that the effect of biases in τA-probabilities
on BEAMS can be catastrophic. They consider the case in which
there is a uniform bias (a) of the τA-probabilities. That is, if obser-
vation i has a claimed τA-probability pi of being type A, then there
is a real probability pi − a that it is type A. KBH show how, by
including a free global shift parameter, such a bias is completely
removed. However, it is not clear what to do if the form of the bias
is unknown. For example, it could be that there is an ‘overconfi-
dence’ bias, where to obtain the true τA-probabilities, one needs to

2 We say p1 is more decisive than p2 if |p1 − 0.5| > |p2 − 0.5|.
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transform the claimed priors (p̃) by

p = 0.2 + 0.6 p̃. (11)

Introducing a bias such as the one defined by equation (11) will
have no effect on the optimal FPR and FNR, provided the probability
threshold is chosen optimally. This is because equation (11) is a one-
to-one biasing, and so a threshold (c̃) on biased probabilities results
in exactly the same partitioning as a threshold in the unbiased space
of 0.2 + 0.6c̃. However, introducing a bias such as equation (11)
does have an effect on BEAMS parameter estimation, as we show
in Section 5. In Section 7 we discuss how to guarantee that the
τA-probabilities are free of bias.

4 EFFECTS O F D ECISIVENESS AND SAMPLE
SIZE ON BEAMS

In this section, we will perform simulations to better understand the
key factors in BEAMS. The data generated will have the following
cosmological analogy: �, a distance modulus at a given redshift z0

and d, the fitted distance moduli of SNe at z0. Furthermore, D|�, T
and P will be independent, such that the KBH and full posterior are
equivalent.

4.1 Simulation 1: estimating a population mean

This simulation was performed to see how the performance of
BEAMS is affected by the decisiveness of τA-probabilities and by
the size of the data set. The two populations (A and B) were chosen
to have distributions

fD|T (d, τ ) = Normal(μτ , 1), (12)

where μA = −1 and μB = +1, as illustrated in Fig. 3. The τA-
probability distribution is chosen to be f P , so that about half of
the observations have a τA-probability of P , with the remaining
observations having τA-probabilities of 1 − P . By varying P, we
vary the decisiveness.

Let us make it clear how the data for this simulation are generated.
First, a τA-probability (p) is selected to be either P with probability
0.5 or 1−P with probability 0.5, that is according to f P . Secondly,
the type of the observation is chosen; with probability p it is chosen
as A, and with probability 1 − p it is chosen as B. Finally, the data
(d) are drawn from equation (12). Note that D|T is independent of
P and so the KBH posterior is equivalent to the full posterior.

In this simulation, we only estimate μA, with all other parameters
known. We use the following figure of merit (FoM) to compare the
performance with different sample sizes (N ) and decisiveness (P):

h(N,P) = 1

〈μ̂A − μA〉2 ,

where μ̂A is the maximum likelihood estimate of μA using the KBH
posterior on a sample of size N with τA-probabilities from f P and
〈·〉 denotes an expectation. Values of h were obtained by simulation,
illustrating in Fig. 2 the performance of BEAMS for various (N,P)
combinations. A good approximation to the FoM h in Fig. 2 appears
to be

h(N,P) ≈ N

(
0.32 + 1.44

(
P − 1

2

)3
)

, (13)

although this is an ad hoc observation. One interesting observation
is that h(N,P = 1) ≈ h(1.5N,P = 0.5) in the region illustrated
in Fig. 2. This says that given a completely blind sample (P = 0.5),

Figure 2. Contour plot of h(N,P). The solid lines are approximations to
lines of constant h of the form (13).

and the option to either double its size (N → 2N ) or to discover
the hidden types (P : 0.5 → 1); doubling its size will provide more
information about μA. It is important to reiterate that, according to
previously mentioned result of KBH, in the limit of N → ∞ we do
not expect P to play any part in determining h(N,P). That is, for
N sufficiently large, the FoM will be independent of P .

While this simulation is too simple to make extrapolations about
cosmological parameter estimations from, it may suggest that the
information contained in unconfirmed photometric data may be
currently underestimated.

4.2 Simulation 2: estimating two population means

The two population distributions for this simulation are the same as
those presented in simulation 1 and as illustrated in Fig. 3. In this
simulation, we leave both the population means as free parameters
to be fitted for. 20 objects are drawn from the types A and B, with
the τA-probabilities drawn from f P . The simulation is done with
five different P values. The τA-probabilities are illustrated in Fig. 4,
and the approximate shape of the posterior marginals of μA for each
P value is illustrated in Fig. 5 by MCMC chain counts.

There are two interesting results from this simulation. First, there
is a negligible difference in the performance of P = 1 and 0.7, so
that having a 30 per cent type uncertainty for all objects as opposed
to absolute type knowledge does not weaken the results. Secondly,
as P approaches 0.5, BEAMS still correctly locates the population
means but is unsure which mean belongs to which population.

Figure 3. Above are the population A (left) and population B (right) distri-
butions, with (for simulation in Section 4.2) the observed values of D drawn
from these distributions shown as vertical lines beneath.

C© 2012 The Authors, MNRAS 421, 913–925
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Figure 4. For values of P from 1 (above) to 0.5 (below), a τA-probability
of P or 1 − P is attached to each observation.

Figure 5. MCMC chain counts, approximating the posterior distributions
of μA for the different values of decisiveness, P .

5 EFFECTS O F τA-PRO BA BILITIES BIAS O N
B EAMS

In the previous section, we considered the effect of the decisiveness
of τA-probabilities on the performance of BEAMS. In this section,
we will consider the effect of using incorrect τA-probabilities. We
will again be estimating μA and μB where they are −1 and 1,
respectively, and the population variances are again both known to
be 1. The true τA-probability distribution will be f 0.8, that is

P (P = p) =
{

0.5, if p = 0.8,

0.5, if p = 0.2.

Recall that we are drawing probabilities from a probability dis-
tribution, an unusual thing to do. To generate a τA-probability from
this distribution, one could flip a coin and return p = 0.2 if H and
p = 0.8 if T . We consider the effect of biasing τA-probabilities
generated in such manner as follows.

(i) P −+⇒ {0, 1}. Here the decisiveness of the τA-probabilities is
overestimated, so that p = 0.8 → p = 1 and p = 0.2 → p = 0.

(ii) P +−⇒ {0.4, 0.6}. Here the decisiveness of the τA-probabilities
is underestimated, so that p = 0.8 → p = 0.6 and p = 0.2 →
p = 0.4.

Figure 6. The 99 per cent posterior confidence regions using the five biasing
numbers of the τA-probabilities, as described in Section 5.

(iii) P −−⇒ {0, 0.6}. Here the τA-probabilities are underestimated
by 0.2, so that p = 0.8 → p = 0.6 and p = 0.2 → p = 0.

(iv) P ++⇒ {0.4, 1}. Here the τA-probabilities are overestimated
by 0.2, so that p = 0.8 → p = 1 and p = 0.2 → p = 0.4.

(v) P σ⇒ U . Here, to each τA-probability a uniform random
number from [−0.2, 0.2] is independently added.

The 99 per cent posterior confidence regions obtained using these
biased τA-probabilities in a simulation of 400 points are illustrated
in Fig. 6. The underestimation of decisiveness (item ii) has little
effect on the final confidence region, but overestimating the τA-
probability decisiveness (item i) results in a 6σ bias. Note that
overestimating decisiveness results in the estimate (μ̂A, μ̂B ) being
biased towards (μB, μA). This is caused by type B objects which
are too confidently believed to be type A, which pull μ̂A towards
μB , and type A objects which are too confidently believed to be
type B, which pull μ̂B towards μA.

The contrast in the effect between underestimating and overes-
timating the decisiveness of τA-probabilities is interesting, and not
easy to explain. One suggestion we have received is to consider the
cause of the observed effect as being analogous to the increased
contamination rate induced by overestimating the decisiveness in
the case BEAMS is not used. With an increased contamination rate
comes an increased bias, precisely as observed in Fig. 6. Note that
underestimating the decisiveness is not entirely without effect, as
simulations with more pronounced drops in P (0.95 → 0.55) result
in noticeable increases in the size of the 99 per cent confidence
region.

The effect of the flat τA-probability shifts (items iii and iv) in-
troduces biases larger than 4σ . This case was considered in KBH
where, as already mentioned, it was shown that simultaneously fit-
ting for this bias completely compensates for it. While this is a
pleasing result, one would prefer to know that the τA-probabilities
are correct, as one cannot be sure what form the biasing will
take.

One phenomenon which is observed in this simulation, as was
the case in simulations summarized in table II of KBH, is that a flat
τA-probability shift in confidence towards being type B (item iii)
does not bias the estimate of μA as much as it does the estimate of
μB , and vice versa. In other words, underestimating the probabili-
ties that objects are type A will result in less biased population A

parameters than overestimating the probabilities. This result may
also be understood in light of an analogy to increased contamination
versus reduced population size in the case in which BEAMS is not
used.
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Finally, we note that in this simulation the addition of unbiased
noise to the τA-probabilities (item v) has an insignificant effect. This
suggests that systematic biases should be the primary concern of
future work on the estimation of τA-probabilities.

6 W H E N G I V E N T Y P E , TH E DATA A R E S T I L L
D E P E N D E N T O N τ -PRIORS

In this section, we consider for the first time a simulation in which
the data are not drawn from fD|T , but from fD|T ,P , so that there is
a dependence of the data on the τA-probability even when the type
is known. The conditional pdfs are shown in Fig. 7. To clarify the
difference between this simulation and the previous ones, prior to
this data were simulated as follows:

P → T |P → D|T ,

where at the last step, the data were generated with a dependence
only on type. Now it will be simulated as

P → T |P → D|P , T .

More specifically, to generate data, we start by drawing a τA-
probability from f 0.7,

P (P = p) =
{

0.5, if p = 0.7,

0.5, if p = 0.3.

Note that the above distribution guarantees that P (T = A) =
1/2. When the τA-probability (p) has been generated, we draw a
type (τ ) from {A, B} according to

P (T = τ ) =
{

p, if τ = A,

1 − p, if τ = B.

Once we have p and τ , we generate d . The marginals
fD|P ,T (d|p, τ ) have been chosen such that we have

fD|T (d|A) = Normal (−1, 1) (14)

and

fD|T (d|B) = Normal (1, 1), (15)

as before. The marginal fD|P ,T (d|0.7, A) is composed of the halves
of two Gaussian curves with different σ values, chosen such that
the tail away from the B population is longer than the one towards
the B population. Specifically,

fD|P ,T (d|0.7, A)

=
{

K exp − 1
2 (d + 1)2, if d < −1,

K exp − 100
32 (d + 1)2, if d > −1,

Figure 7. Plots of fD|P ,T (d|p, τ ) (filled curves) for p = 0.7 (light) and p =
0.3 (dark), and for type A (left) and type B (right). Overlying are fD|T (d|A)
(light) and fD|T (d|B) (dark).

Figure 8. Posterior distributions on the parameters (μA, μB ) using the
correct posterior (equation 4) (solid) and the KBH posterior (equation 1)
(dashed). The KBH posterior assumes independence between D|T and P .
Plotted are the 80, 95 and 99 per cent confidence levels. The true param-
eters (orange point) lie within the 95 per cent confidence regions of both
posteriors.

where K is a normalizing constant. The marginal fD|P ,T (d|0.3, A)
is then constructed to guarantee (14). The above construction guar-
antees that the population of A objects with low τA-probabilities
(0.3) lies on average closer to the B mean than that with high (0.7)
τA-probabilities. The marginals of the B population are constructed
to mirror exactly the A population marginals, as illustrated in Fig. 7.

To compare the use of the KBH BEAMS posterior (equation 2)
with the full conditional posterior (equation 5), we randomly draw
40 data points from the above distribution and construct the respec-
tive posterior distributions, as illustrated in Fig. 8. Observe that the
KBH posterior is significantly wider than the full posterior. Indeed,
approximately half of the interior of the 80 per cent region of the
KBH posterior is ruled out to 1 per cent by the full posterior. Note
that while the KBH posterior is wider than the full posterior, it is
not biased. This result goes against our intuition; we believed that
the KBH posterior would result in estimates for μA and μB which
exaggerated |μA − μB |. Whether it is a general result that no bias
exists when the KBH posterior is used, or if there can exist depen-
dencies between P and D for which the use of equation (1) leads
to a bias, remains an open question.

Fig. 8 illustrates one realization from the distribution we have de-
scribed, but repeated realizations show that on average, the variance
in the maximum likelihood estimator using the KBH posterior is ∼3
times larger than the variance using the modified posterior. While
these simulations are too simple to draw conclusions about cosmo-
logical parameter estimation from, they do suggest that where cor-
relations between τA-probabilities and distance moduli exist within
a class of SNe, it may be worthwhile accounting for it by using the
modified posterior. Currently, it is most common when modelling
SNe for cosmology, to assume that the likelihood fD|�,T (d|θ, τ ) is
a Gaussian with unknown mean and variance,

D|θ, P , T = Normal(μ(θ, T ), σ (T )2).

If one wishes to include the τA-probabilities in the likelihood,
one could include a linear shift in P for the mean or variance. That
is,

D|θ, P , T = Normal(μ(θ, T ) + c1P , σ (T )2 + c2P ).

Of course, this is just one possibility and one would need to
analyse SN data to get a better idea of how P should enter into the
above equation.
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7 O BTAINING UNBIASED τA-PRO BA BILITIES

In this section, we investigate likely sources of τA-probability biases
such as those presented in Section 5, and discuss how to detect and
remove them. For SNe, one source of τA-probability bias could
be the failure to take into account the preferential confirmation of
bright objects. This type of bias has been considered in the machine
learning literature under the name of selection bias, and we here
present the relevant ideas from there. We end the section with a
brief discussion on how one could model the pdfs fD|�,P,T and
fD|�,F,P,T , which are the likelihoods appearing in the extended
posteriors introduced in Section 2.

7.1 Selection bias

With respect to classification methods, selection bias refers to the sit-
uation in which the confirmed data are a non-representative sample
of the unconfirmed data. A selection bias is sometimes also referred
to as a covariate shift, although the two are defined slightly dif-
ferently, as described in Bickel, Brückner & Scheffer (2007). With
selection bias, the confirmed data set is first randomly selected from
the full set, and then at a second stage it is non-randomly reduced.
Such is the situation with a population census, where at a first stage,
a random sample of people is selected from the full population,
and then at a second stage, people of a certain disposition cooperate
more readily than others, resulting in a biased sample of respondees.

A form of selection bias which is well known in observational
astronomy is the Malmquist bias, whereby magnitude-limited sur-
veys lead to the preferential detection of intrinsically bright (low
apparent magnitude) objects. In the case of SN cosmology, the bias
is also towards the confirming of bright SNe. A reason for this bias
is that the telescope time required to accurately classify an SN is in-
versely proportional to the SN’s brightness. It is therefore relatively
cheap to confirm bright objects and expensive to confirm faint ones.

If the SN confirmation bias is ignored, certain inferences made
about the global population of SNe are likely to be inaccurate. In
particular, estimates of a classifier’s false positive and false negative
rates will be biased, and the estimated τA-probabilities will be biased
in certain circumstances, as we will discuss in the following section.

7.1.1 Formalism

Following where possible the notation of Fan et al. (2005), in what
follows we assume that variables (X, T , F ) are drawn from X ×
T × F , where

(i) X is the feature space,
(ii) T = {A,B} is the binary type space, and
(iii) F = {0, 1} is the binary confirmation space, where F = 1

if confirmed (F for f ollowed-up).

A realization (x, τ , f ) lies in either the test set or in the training
sets, defined, respectively, as

test set
def= {(x, τ, f ) s.t. f = 0},

training set
def= {(x, τ, f ) s.t. f = 1}.

For SN cosmology, it could be that X ,T and F are, respectively,

(i) X is the space of all possible photometric data, where an SN’s
photometric data consist of apparent magnitudes and observational
standard deviations in four colour bands over several nights;

(ii) T = {Ia, nIa}, type Ia and nIa SNe; and
(iii) F = {0, 1}, where F = 1 if the SN has been spectroscopi-

cally confirmed and thus has its type known.

By having a training set be unbiased we mean that it is a repre-
sentative sample of the test set, specifically that F is independent of
both X and T . That is, the probability of confirmation is independent
of features and type:

P (F = 1|X = x, T = τ ) = P (F = 1). (16)

When the training set is unbiased, the training set and test set
objects are drawn from the same distribution over X × T . This
distribution over X × T can be estimated from the training set, so
directly providing an estimate of the more useful test set distribution.

There are three important ways in which the independence re-
lation (16) can break down, resulting in a biased training set, as
described in Zadrozny (2004) and listed below. By removing bias
from a training set, we mean re-weighting the training points such
that the training set becomes unbiased.

(i) Confirmation is independent of features only when condi-
tioned on type: F | T and X are independent. This is the simplest
kind of biasing, and there are methods for correcting it (Bishop
1996; Elkan 2001). This is not the bias which exists in SN data.

(ii) Confirmation is independent of type only when given features
F |X and T are independent. If the decision to confirm is based on
X and perhaps some other factors which are independent of T , this
is the bias which exists. This is probably the bias which exists in
SN data, and there are methods for correcting it, as we will discuss.

(iii) Confirmation depends on both features and type simultane-
ously. In this case, it is not possible to remove the bias from the data
unless the exact form of the bias is known.

The decision to confirm an SN can be dictated by different features,
examples include Sullivan et al. (2006) and Sako et al. (2008), all
of which are contained in the photometric data X. Such was the
also case in the SNPCC, where the probability of confirmation was
based entirely on the peak magnitude in the r and i bands, as we
will discuss in Section 8. In reality, there are other factors which
affect the confirmation decision such as the weather and telescope
availability, but these are independent of SN type. Therefore, the
type (ii) bias above is the bias which exists in the SN data. Thus,
for the remainder of this section, we will assume the type (ii) bias,
that is

P (F = 1|X = x, T = τ ) = P (F = 1|X = x). (17)

The assumption of the type (ii) bias can be made stronger. The
decision to confirm an object does not, in general, depend on all of
X but only on a low-dimensional component (XF ) of it, and so we
have

P (F = 1|X = x, T = τ ) = P (F = 1|XF = xF ), (18)

where XF is contained in X. For SNe, XF could be the peak apparent
magnitude in certain colour bands.

In the following subsection, we will describe how to correctly
obtain τA-probabilities under the assumption of a bias described by
equation (18).

7.2 Correctly obtaining τA-probabilities

Let us remind the reader as to how we defined τA-probabilities in
Section 1:

τA-probability
def= P (Ti = A|XP,i = xP,i) = pi, (19)

where XP,i is an observable feature of the ith object, extracted from
Xi . Estimates of pi values can be obtained using several methods, of
which those mentioned previously are Poznanski et al. (2002), Guy
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et al. (2007), Newling et al. (2011) and Richards et al. (2011). Recall
that these different methods attempt to estimate different probability
functions, as they each condition on different SN features. Thus,
there is no sense in which one set of τA-probabilities estimates is
the correct set.

We now make an adjustment to definition (19), to take into ac-
count that a biased follow-up may result in an additional conditional
dependence on F :

τA-probability
def= P (Ti = A|Fi = fi, XP,i = xP,i) = Pi. (20)

The most informative τA-probabilities one could use would be
those conditional on all of the features at one’s disposal,

XP = X : pi = P (T = A|F = 0, X = x). (21)

However, when X is a high-dimensional non-homogeneous
space, as is the case with photometric SN data, it can be diffi-
cult to approximate equation (21) accurately. It is for this reason
that it is necessary to reduce the features to a lower dimensional
quantity XP ∈ XP , so that the τA-probabilities are calculated from
a subspace (XP ) of the full feature space, as described by equa-
tion (20). The subspace XP should be chosen to retain as much type
specific information as possible while being of a sufficiently low
dimension. In the SNPCC, Newling et al. (2011) chose XP to be a
20-dimensional space of parameters obtained by fitting light curves.

The job of obtaining estimated τA-probabilities for test set objects
(F = 0) is one of obtaining an estimate of the type probability mass
function,

fT |F,XP
. (22)

Again, for equation (22) we prefer not to use the standard mass
function notation, in order to neaten certain integrals which follow.
The τA-probability of a test set object can now be expressed in the
following way:

P (T = A|F = 0, XP = xP ) = fT |F,XP
(A|0, xP ).

Using kernel density estimation, boosting or any other method
of approximating a probability function, one can construct an ap-
proximation (f̂ ) of the type probability function for training set
objects,

f̂ (xP ) ≈ fT |F,XP
(A|1, xP ). (23)

Using the estimate f̂ in equation (23), one can estimate the τA-
probabilities for the training set objects:

P (T = A|F = 1, XP = xP ) ≈ f̂ (xP ). (24)

The estimate (24) is not directly important as the training set
object types are known exactly. But it is only through the training
set objects that we can learn anything about the types of the test set
objects.

How f̂ from the training set is related to fT |F=0,XP
(equation 22)

depends on the relationship between XF (the data which determine
confirmation probability) and XP (the data used to calculate τA-
probabilities). There are two cases to consider. The first, which we
write as XF ⊂ XP , is when the data which determine confirmation
probabilities are completely contained in the data used to calculate
τA-probabilities. That is,

XF ⊂ XP
def↔ P (F = 1|XP = xP ) = P (F = 1|XF = xF ).

The second case, when XF �⊂ XP , is when not all confirmation
information is contained in XP ,

XF �⊂ XP
def↔ P (F = 1|XP = xP ) �= P (F = 1|XF = xF ).

In the case of XF ⊂ XP , it can be shown that

P (F = 1|T = τ, XP = xP ) = P (F = 1|XF = xF ). (25)

7.2.1 XF ⊂ XP

We will show that in the case of XF ⊂ XP , a type probability
function approximating the training population (f̂ ) is an unbiased
approximation for the type probability function of the test popula-
tion (F = 0). To show this, we start with the type probability of a
test object:

P (T = τ |F = 0, XP = xP ).

(i) Using Bayes’ theorem, we have

= P (F = 0|T = τ, XP = xP )P (T = τ |XP = xP )

P (F = 0|XP = xP )
.

(ii) Then, using equation (25), we have

= P (F = 0|XF = xF ) · P (T = τ |XP = xP )

P (F = 0|XF = xF )

= P (T = τ |XP = xP ). (26)

(iii) Using the same steps as above but in reverse and with F = 1,
we arrive at

= P (T = τ |F = 1, XP = xP ).

(iv) This is the type probability function for training set objects, and
it can be approximated as

≈ f̂ (xP ). (27)

This is a useful result, as it says that f̂ is an approximation of
the type probability function not only of the training data but also
of the test set. Thus, f̂ should provide unbiased τA-probabilities for
the test set when XF ⊂ XP .

It should be noted that for f̂ to be a good approximation for the
test set, it is necessary that the training set covers all regions of XP

where there are test points. That is, if there are values of xP for
which P (XP = xP |F = 1) = 0 and P (XP = xP |F = 0) �= 0, then
the approximation f̂ will not converge to fT |F=0,XP

as the training
set size grows. One can refer to Fan et al. (2005) for a full treatment
of this topic.

With respect to SNe, the requirement of the preceding paragraph
is that, if an SN is too faint to be confirmed and to enter the training
set, it should not enter the test set either. We will return to this point
again in Section 8.

One important question which we do not attempt to answer here
is, how many SNe of different apparent magnitudes should be con-
firmed to obtain as rapid as possible convergence of f̂ to fT |F=0,XP

.
An interesting method for deciding which SNe to confirm may be
the one based on the real-time approach proposed in Freund et al.
(1997), where the decision to add an object to the training set is
based on the uncertainty of its type using the currently fitted f̂ . In
Section 8, we discuss this further.

7.2.2 XF �⊂ XP

If XF �⊂ XP , we will not be able to use f̂ to estimate the τA-
probabilities in the test set, as equation (27) required XF ⊂ XP .
In addition to this problem of not being able to use f̂ to obtain
unbiased τA-probabilities for the test set objects, if XF �⊂ XP , then

P (T = τ |XP = xP ) �= P (T |XP = xP , XF = xF ).
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This tells us that there is additional type information to be ob-
tained from XF , and so by not including XF one is wasting type
information. For this reason, we recommend reconstructing the τA-
probabilities based on redefined features, XP ← (XF ,XP ).

However, it is possible that one explicitly does not want to use
XF in calculating τA-probabilities. This may be the case if one
wishes to reduce the dependence between D and P , as presented
in Section 2. For SNe, this may involve obtaining τA-probabilities
from shape alone, independent of magnitude, so that XP is a space
whose dimensions describe only shape and not magnitude. In this
case, as we cannot use f̂ , we need to use the relationship derived in
Shimodaira (2000),

P (T = τ |F = 0, XP )

=
∫
XF

fT ,XF |F,XP
(τ, xF |1, xP ) · w(xF , xP ) dxF ,

(28)

where the weight function is defined as

w(xF , xP ) = fF |XF
(0|xF )fF |XP

(1|xP )

fF |XF
(1|xF )fF |XP

(0|xP )
. (29)

Note that if XF ⊂ XP , then w(xF , xP ) = 1 and so equa-
tion (28) reduces to the type probability function for training set
objects, approximated by f̂ as expected from equation (27). When
w(xF , xP ) �= 1, the training set type probability function f̂ cannot
be used directly as an approximation to the test set type probabil-
ity function. However, if each training set object is weighted using
equation (28), then an unbiased test set type probability function
approximation can be obtained.

The weight function (equation 29) does not require any type in-
formation and so can be estimated as a first step. This additional step
of estimation introduces an additional error into the final estimate of
equation (22), a theoretical analysis of which is presented in Cortes
et al. (2008). An alternative to the two-stage approach would be
to fit the two terms in equation (28) simultaneously, as suggested
and described by Bickel et al. (2007). The use of equation (29) was
first suggested in Shimodaira (2000), where a detailed analysis of
the asymptotic behaviour of its approximation is given. Therein, it
is suggested that equation (29) be approximated by kernel density
estimation.

In the case where F and XP are independent, the weight function
reduces to one of only XF ,

w(XF = xF ) = P (F = 0|XF = xF )P (F = 1)

P (F = 1|XF = xF )P (F = 0)
. (30)

This reduction in dimension may be valuable in approximating
the weight function.

7.3 Detecting and removing biases in τA-probabilities

In the previous section, we presented the correct way in which to
estimate τA-probabilities in the case XF �⊂ XP . In this section, we
will present an example illustrating this process, but in the context
of bias removal.

Suppose that we have a program which outputs scalar values (p̃),
which are purported τA-probabilities. We believe that the output
values have some unspecified bias, which we wish to remove. An
assumption we make is that the p̃ values are calculated in the same
way for training and test sets. That is, the program does not process
cases F = 0 and F = 1 differently. It may seem strange to be
interested in what the program does when F = 1, but as already
mentioned, it is only from the training set that we can learn anything
about the test set. The idea now is to treat the received p̃ values as

Figure 9. Realizations of a training set (left-hand panel) containing type A

(red pluses) and type B (blue points) objects and a test set (right-hand panel),
drawn according to equation (31). Overlaid are faint lines delineating the
discrete regions described by equation (31).

the xP values from the previous section, and not directly as τA-
probabilities.

For this example, we choose XF = [0, 1]. To now transform a
test set value p̃ ∈ [0, 1] into an unbiased τA-probability using equa-
tion (28), one needs to estimate certain probability functions using
kernel density estimation. The necessary functions we see from
equations (28) and (29) are fT ,XF |F,XP

(τ, xF |1, p̃), fF |XF
(1, xF ),

fF |XP
(0, p̃), fF |XF

(0, xF ) and fF |XP
(0, xP ).

It is an interesting and important question as to how accurately
these probability functions can be approximated with few data
points, but for this example we assume them known,

fT ,XF |F,XP
(A, xF |1, p̃) =

⎧⎪⎨
⎪⎩

xF , if 1
2 x2

F < p̃ < 1 − 1
2 x2

F ,

2xF , if p̃ > 1 − 1
2 x2

F ,

0, if p̃ < 1
2 x2

F ,

fF |XF
(0, xF ) = (1 − xF ),

fF |XF
(1, xF ) = xF ,

fF |XP
(1|p̃) = fF |XP

(0|p̃) = 1

2
. (31)

Realizations from the above distribution are illustrated in Fig. 9.
By integrating xF out of fT ,XF |F,XP

(A, xF |1, p̃) in equation (31),
we have

P (T = A|F = 1, XP = p̃) = p̃. (32)

That is, in the training set, p̃ is an unbiased estimate of a τA-
probability. The τA-probabilities for objects in the test set we esti-
mate using equation (28),

P (T = A|F = 0, XP = p̃)

=
∫
XF

fT ,XF |F,XP
(τ, xF |0, xP ) dxF

=
∫
XF

fT ,XF |F,XP
(τ, xF |1, xP ) w(xF , p̃) dxF

=
∫
XF

fT ,XF |F,XP
(τ, xF |1, xP )

1 − xF

xF

dxF

=
{ √

2 p̃ − p̃, if p̃ < 0.5,

2 − p̃ − √
2 − 2p̃, if 0.5 < p̃. (33)

The τA-probabilities (32) and (33) are plotted in Fig. 10, where
we see that p̃ provided accurate τA-probabilities for the training set,
but not for the test set. This is not unexpected in reality, where the
program providing the τA-probabilities may have been trained only
on the biased training data. Note that this bias should only arise
when XF �⊂ XP .
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Figure 10. Corrected τA-probabilities. The disproportionately large number
of training SNe with decisive τA-probabilities (as depicted in Fig. 9) causes
p̃ values to be too confident as test set τA-probability estimates.

8 SU P E R N OVA S U RV E Y S A N D T H E SN P C C

The SNPCC provided a simulated spectroscopic training data set
of approximately 1000 known SNe. The challenge was then to
predict the types of approximately 20 000 other objects3 from their
light curves alone. At the end of the competition, the types of all
the simulated SNe have been released, making a post-competition
autopsy relatively easy to perform. From the results of Kessler et al.
(2010a) we see that the probability that an SN was confirmed was
based on the r-band and i-band quantities,

εband
spec = ε0

(
1 − xl

)
x

def= mband
peak − Mband

min

mband
lim − Mband

min

,

where mband
peak is the band-specific apparent magnitude of an SN, and

Mband
min and mband

min are constants. In Kessler et al. (2010a), it is given
that for the r and i bands,

εr
spec = ε0

(
1 − x5

)
, x

def= mr
peak − 16.0

5.5
,

εi
spec = ε0

(
1 − x6

)
, x

def= mi
peak − 21.5

2.0
,

(34)

where ε0 is some constant. Once εi
spec and εr

spec have been calculated,
if a [0 → 1] uniform random number is less than either of them,
confirmation is performed. As confirmation depends only on εi

spec

and εr
spec, we have from equation (26) that

P
(
T = τ |F = 0,mi

peak,m
r
peak

)
= P

(
T = τ |F = 1, mi

peak, m
r
peak

)
.

(35)

Equation (35) can be interpreted as saying that the ratio Ia:nIa is the
same in a given mi

peak, m
r
peak bin. The manner in which the follow-up

was simulated should of course guarantee that equation (35) holds.
In theory, one should be able to deduce the verity of equation (35)
from Fig. 11, but the redshift bins with large numbers of confirmed
SNe are too sparsely populated by unconfirmed SNe to check that
the Ia:nIa is invariant. To be in a position where equation (35) can
be checked is in general an unrealistic luxury, as without the types
of the test objects this is impossible.

In terms of obtaining accurate τA-probabilities, a disturbing fea-
ture of Fig. 11 is the absence of training SNe with high apparent
magnitudes. With no training SNe with i-band apparent magni-
tudes greater than 23.5, we cannot infer the types of test SNe with
apparent magnitudes greater than 23.5. Indeed, there would be no
non-astrophysical reason not to believe that all SNe with apparent
magnitudes greater than 23.5 are nIa. As already mentioned in Sec-
tion 7.1, in situations where the training set does not span the test

3 These light curves are available at http://sdssdp62.fnal.gov/sdsssn/
SIMGEN_PUBLIC/

Figure 11. Counts of confirmed (left-hand panels) and not confirmed (right-
hand panels) SNe, Ia (dashed) and nIa (solid) as a function of mr

peak (above)

and mi
peak (below).

set, one should ignore unrepresented test objects from all analyses.
All test SNe other than those for which there are training SNe of
comparable peak apparent magnitudes in the r and i bands should
be removed from a BEAMS analysis, unless there is a valid as-
trophysical reason not to do so. This entails ignoring about 95 per
cent of unconfirmed SNe, which is an enormous cut. We therefore
consider it important to confirm more faint SNe.

In Newling et al. (2011), a comparison is made between training
a boosting algorithm on the non-representative spectroscopically
confirmed SNe and a representative sample, randomly selected from
the unconfirmed SN set. Therein, the authors use 20 fitted light-
curve parameters, including fitted apparent magnitudes in the r and
i bands. This corresponds to the situation discussed in Section 7.2.1,
where XP ⊂ XF . For this reason, the pdf f̂ in equation (24),
as estimated by their boosting algorithm, should be an unbiased
estimate for fT |F=0,XP

. But being unbiased does not guarantee low
error, and when trained on the confirmed SNe, regions of parameter
space corresponding to high apparent magnitude had no training
SNe with which to learn, and so the approximation of equation (22)
was poor. However, when trained on the representative set, every
region of populated parameter space was represented by the training
set, and the approximation of equation (22) was greatly improved.

In their paper, Richards et al. (2011) describe their entry in the
SNPCC and report how a semisupervised learning algorithm per-
forms better with a few faint training SNe than with many bright
ones. The comparison was performed while keeping the total con-
firmation time constant. Thus, their conclusion was the same as
ours, that it is important to obtain a more representative SN training
sample.

9 C O N C L U S I O N S A N D R E C O M M E N DAT I O N S

In this paper, we discussed BEAMS and extended the KBH posterior
probability function to the case when D|T (distance modulus | type)
and P (type probability) are dependent. In Section 6 we considered
an example where the dependence between D|T and P is strong,
and observed a large reduction in the posterior width using the
extended posterior as opposed to the KBH posterior. No bias is
observed when using either the extended or the KBH posterior.

In Section 4 we considered examples where the KBH posterior
is valid, that is when D|T and P are independent. We performed
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tests to ascertain the importance to BEAMS of (i) the decisiveness
of the τA-probabilities (observations of P ) and (ii) sample size. In
one test (Section 4.1), we observed how doubling a sample size
reduces error in parameter estimation more than obtaining the true
type identity of the objects does. In another test (Section 4.2), we
observed how BEAMS accurately locates two population means,
but fails to match each mean to its population.

We looked at the effects of using biased τA-probabilities in Sec-
tion 5. The result of KBH, that τA-probability biases towards popu-
lation A affect the population’s parameter estimates less than biases
in favour of population B, was observed. A similar result which is
uncovered is that biases towards high decisiveness are more damag-
ing than biases towards low decisiveness. In other words, it is better
to be conservative in your prior type beliefs than too confident.

Our recommendations for BEAMS may thus be summarized
as follows. First, the inclusion in the likelihood function of τA-
probabilities can dramatically reduce the width of the final posterior,
providing tighter constraints on cosmological parameters. Secondly,
a conservative estimation of τA-probabilities is less harmful than too
decisive an estimation. Thirdly, it is possible to remove biases in
τA-probabilities using the techniques described in Section 7.

In Section 7 we considered the problem of de-biasing τA-
probabilities. Interpreting recent results from the machine learning
literature in terms of SN cosmology, we discussed the different ways
in which training sets can be biased and how to remove such biases.
The key to understanding and correcting biases is the relationship
between XF and XP , where XF are object features which deter-
mine confirmation probability, and XP are those features which
determine τA-probabilities. In brief, when XP contains XF , τA-
probabilities should be unbiased, but if this is not the case, there are
sometimes ways for correcting the bias.

With respect to future SN surveys, we emphasize the importance
of an accurate record as to what information is used when deciding
whether or not an SN is confirmed. Using this information, one
should in theory be able to remove all the affects of selection bias
when XF �⊂ XP . In other words, using all the variables which are
considered in deciding whether to follow-up an SN, it will always
be possible to obtain unbiased τA-probabilities, irrespective of what
the τA-probabilities are based on. Such follow-up variables may
include early segments of light curves, χ2 goodness of fits, fit prob-
abilities, host galaxy position and type, expected peak apparent
magnitude in certain filters, etc.

Our second recommendation for SN surveys is that more faint
objects are confirmed. While it is not necessary for most machine
learning algorithms to have a spectroscopic training set which is
exactly representative of the photometric test set, it is necessary
that the spectroscopic set at least covers the photometric set. Thus,
having large numbers of faint unconfirmed objects without any
confirmed faint objects is suboptimal.
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A P P E N D I X A : A D D I T I O NA L C O N D I T I O N I N G
O N T H E C O N F I R M AT I O N O F SU P E R N OVA
TYPE

In this paper, we did not distinguish between the contributions of
unconfirmed and confirmed objects to the posterior. While we can
calculate approximate τA-probabilities for confirmed objects, these
values should not enter the posterior, but be replaced by 0 (if type B)
or 1 (if type A). Let us introduce the random variable F to denote
whether an object is confirmed, so that F = 1 if confirmed and
F = 0 if unconfirmed. With this introduced, we wish to replace the
τA-probabilities p by p̄, where

p̄i =

⎧⎪⎨
⎪⎩

pi, if fi = 0,

1, if fi = 1 and τi = A,

0, if fi = 1 and τi = B.

We must be careful to let the new information which we introduce
in p̄ be absorbed elsewhere in the posterior. To this end, as we
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did in Section 6, we start afresh the posterior derivation, explic-
itly including the vector ( f ) which describes which objects have
been followed-up. Doing this, we arrive at the following posterior
distribution:

f�|D,F,P (θ |d, f , p) ∝ f�(θ )

×
∑

τ

fD|�,F,P,T (d|θ, f , p, τ )
∏
τi=A

p̄i

∏
τj =B

(1 − p̄j ). (A1)

The new information ( f ) has been absorbed into the likelihood,
fD|···. For a particular application, one may now ask if the addi-
tion of F in fD|··· is necessary. We have already mentioned that for
SNe D|θ, T is unlikely to be independent of P . It is also unlikely
that D|θ, T is independent of F, as bright SNe, which have lower
fitted distance moduli at a given redshift, are confirmed more reg-
ularly than faint ones. However, it is possible that by additionally
conditioning D on P this confirmation dependence is broken, so
that D|θ, P, T and F are independent. We leave this as an open
question.

In the case of independent SNe, the posterior (equation B1) re-
duces to

f�|D,F,P (θ |d, f , p) ∝
N∏

i=1

[ fDi |�,Fi ,Pi ,Ti
(di |θ, fi, pi, A) p̄i

+ fDi |�,Fi ,Pi ,Ti
(di |θ, fi, pi, B) (1 − p̄i)]. (A2)

APPENDIX B: POSTERIOR TYPE
PROBABILITIES

We here derive the posterior type probabilities based on the modifi-
cations of Section 2. The posterior type probability will be derived,
conditional on D and P . This derivation can be easily extended to
posterior type probabilities conditional on D, F and P :

fTi |D,P (A|d, p)

=
∫

θ

fTi |�,D,P (A|θ, d, p)f�|D,P (θ |d, p) dθ

=
∫

θ

fTi |�,Di ,Pi
(A|θ, di, pi)f�|D,P (θ |d, p) dθ,

(i) assuming that the objects are independent, we have

=
∫

θ

fDi |�,Pi ,Ti
(di |θ, pi, A)fTi |�,Pi

(A|θ, pi)

fDi |�,Pi
(di |θ, pi)

× f�|D,P (θ |d, p) dθ,

(ii) using Bayes’ theorem, we have

=
∫

θ

(
Ai

Ai + Bi

)
f�|D,P (θ |d, p) dθ, (B1)

where Ai = P (di |θ, pi, Ti = A)pi , Bi = P (di |θ, pi, Ti = B)(1 −
pi), and we have assumed using that fTi |�,Pi

(A|θ, pi) = pi .
If the posterior f�|D,P confines θ to a region sufficiently

small such that Ai and Bi are approximately constant, then
the posterior type probability (equation A1) is well approxi-
mated by Ai(θ̂)/[Ai(θ̂ ) + Bi(θ̂)], where θ̂ is the maximum like-
lihood estimator of f�|D,P (θ |d, p). Furthermore, the posterior odds
ratio,

posterior odds ratio
def= fTi |D,P (A|d, p)

fTi |D,P (B|d, p)
,

can be shown to be given by the prior odds ratio multiplied by the
Bayes factor,

posterior odds ratio =
(

pi

1 − pi

)
×

(
fDi |�,Pi ,Ti

(di |θ̂ , pi, A)

fDi |�,Pi ,Ti
(di |θ̂ , pi, B)

)
.
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