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4Institut de Mathématiques de Bourgogne, CNRS UMR 5584, 9 avenue
Alain Savary, BP 47870, 21078 Dijon Cedex, France

Correspondence to be sent to: gborot@mpim-bonn.mpg.de

We derive the large-N, all order asymptotic expansion for a system of N particles with

mean field interactions on top of a Coulomb repulsion at temperature 1/β, under the

assumptions that the interactions are analytic, off-critical, and satisfy a local strict

convexity assumption.

1 Introduction

This article aims at giving a basic framework to study the large-N expansion of the

partition function and various observables in the mean field statistical mechanics of N

repulsive particles in 1d. This is one of the most simple form of interaction between

particles and constitutes the first case to be fully understood before addressing the

problem of more realistic interactions.
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An archetype of such models is provided by random N × N hermitian matrices,

drawn from a measure dM e−NTr V(M) [30, 44]. The corresponding joint distribution of

eigenvalues is
N∏

i=1

dλi e−NV(λi)
∏
i< j

|λi − λ j|β

with β = 2, that is, of the form e−E(λ), where E(λ) includes the energy of a 2d Coulomb

interaction of eigenvalues, and the effect of an external potential V . The large-N behav-

ior in those models—and for all values of β > 0—have been intensively studied: they are

called β-ensembles. On top of contributions from physics [1, 3, 4, 18–20, 25], many rigor-

ous results are available concerning the convergence of the empirical measure when N

is large [21, 47], large deviation estimates [5], central limit theorems or their breakdown

[15, 16, 33, 39, 46], and all order asymptotic expansion of the partition function and mul-

tilinear statistics [2, 15, 16, 24, 48]. The nature of the expansion depends on the topology

of the locus of condensation S of the eigenvalues. Besides, the asymptotic expansion up

to O(N−∞) is fully determined by a universal recursion, called “topological recursion”

[25, 29] (or “topological recursion with nodes” in the multi-cut case [26]), taking as initial

data the large-N spectral density and the large-N spectral covariance.

The models we propose to study are generalizations of β ensembles, with an

arbitrary interaction between eigenvalues (not only pairwise), but assuming pairwise

repulsion at short distance approximated by the Coulomb interaction already present

in β ensembles. Then, combining tools of complex and functional analysis, we provide

techniques showing that the theory for the all order large-N asymptotic expansion is

very similar to the one developed for β ensembles.

1.1 The model

1.1.1 The unconstrained model

Let A= ⋃̇g
h=0Ah be a closed subset of R realized as the disjoint union of g intervals

Ah—possibly semi-infinite or infinite. In this paper, we focus on the probability mea-

sure on AN defined by

dμAN = 1

ZAN

N∏
i=1

dλi

∏
1≤i< j≤N

|λi − λ j|β · exp

{
N2−r

r!

∑
1≤i1,...,ir≤N

T(λi1, . . . , λir )

}
. (1.1)

We assume β > 0 and ZAN is the partition function which ensures that
∫

AN dμAN = 1. The

function T represents an r-body interaction. Without loss of generality, we can assume
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T to be symmetric in its r variables; we call it the r-linear potential. The scaling in N

ensures that it contributes to the same order that the 2-body repulsive Coulomb interac-

tion when N is large. A common case is r = 2, that is, the eigenvalues undergo a pairwise

repulsion, which is approximated at short distance by a Coulomb repulsion. The r-linear

potential can possibly admit a large-N asymptotic expansion of the type

T(x1, . . . , xr)=
∑
p≥0

N−pT [p](x1, . . . , xr),

where T [p] are symmetric functions on Ar not depending on N. These functions have the

same regularity as T .

We do stress that the r-linear potential contains, as a specific example, the case

of growing r-body interactions, namely the substitution

T(x1, . . . , xr)=
∑

J⊆[[ 1 ; r ]]

(r − |J|)!T|J|(xJ) with

⎧⎪⎨⎪⎩
J = { j1, . . . , j|J|}

xJ = (xj1 , . . . , xj|J|)

(1.2)

recast the r-linear interaction term as

r∑
k=1

N2−k

k!

∑
1≤i1,...,ik≤N

Tk(λi1, . . . , λik).

The latter expression has a clear interpretation of a concatenation of 1,2, . . . , r body

interactions. In the latter case, it is convenient to include the 2-body Coulomb repulsion

in a total 2-body interaction:

T tot
2 (x, y)= β ln |x− y| + T2(x, y).

For β = 2, sending r →∞ would allow the description of a quite general form of

a U (N) invariant measure on the space of N × N hermitian matrices. Indeed, for β = 2,

(1.1) corresponds to the law of eigenvalues of a N × N random hermitian matrixΛ drawn

with (unnormalized) distribution:

dΛ exp
{

N2−r

r!
Tr T(Λ(1), . . . , Λ(r))

}
,

where dΛ is the Lebesgue measure on the space of Hermitian matrices, and Λ(i) is the

tensor product of r matrices, in which the ith factor isΛ and all other factors are identity

matrices. In particular, in any model of several random and coupled N × N hermitian

random matrices Λ1, . . . , Λs which is invariant by simultaneous conjugation of all Λi by

the same unitary matrix, the marginal distribution of Λi is U (N) invariant, thus of the
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form (1.1) with, possibly, r =∞ and a different dependence in N. Further, for simplicity,

we shall restrict ourselves to r-linear interactions between eigenvalues with r <∞.

1.1.2 The model with fixed filling fractions

In the process of studying the unconstrained model in the multi-cut regime, we need to

deal with the so-called fixed filling fraction model. Let g≥ 1, and recall that A= ⋃̇g
h=0Ah.

Let N =∑g
h=0 Nh be a partition of N into g+ 1 integers and N= (N0, . . . , Ng) a vector

built out of the entries of this partition. One can associate to such a partition a vector

λ ∈AN ≡∏g
h=0 ANh

h with entries ordered according to the lexicographic order on N
2

λ= (λ0,1, . . . , λ0,N0 , λ2,1 . . . , λg,1, . . . , λg,Ng).

The measure on AN associated with this partition reads

dμAN =
1

ZAN

∏
i∈I

{1Apr(i) (λi)dλi} ·
∏

i1<i2

|λi1 − λi2 |β exp

⎧⎨⎩N2−r

r!

∑
i1,...,ir∈I

T(λi1 , . . . , λir )

⎫⎬⎭ , (1.3)

where i and ik are elements of

I = {(a, Na) : a∈ [[ 0 ; g ]]},

< is the lexicographic order on I and pr is the projection on the first coordinate. Note

that the relation between the partition function of the unconstrained model and the

fixed filling fraction model is

ZAN =
∑

N0+···+Ng=N

N!∏g
h=0 Nh!

ZAN .

1.1.3 Observables

In this section, μS denotes the measure and ZS the partition function in any of the two

models, viz. S =AN or AN. The empirical measure is the random probability measure:

L N = 1

N

∑
i∈IS

δλi with IAN = [[ 1 ; N ]] and IAN = I.

We introduce the Stieltjes transform of the nth-order moments of the unnormalized

empirical measure, called disconnected correlators:

W̃n(x1, . . . , xn)= NnμS

[
n∏

i=1

∫
dL N(si)

xi − si

]
. (1.4)
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They are holomorphic functions of xi ∈C \ A. When N is large, for reasons related

to concentration of measures, it is more convenient to consider the Stieltjes trans-

form of the nth-order cumulants of the unnormalized empirical measure, called

correlators:

Wn(x1, . . . , xn)= ∂t1 · · · ∂tn ln ZS [T → T̃t1,...,tn]|ti=0 (1.5)

with

T̃t1,...,tn(ξ1, . . . , ξr)= T(ξ1, . . . , ξr)+ (r − 1)!

N

n∑
i=1

r∑
a=1

ti
xi − ξa , (1.6)

and we have explicitly insisted on the functional dependence of ZS on the r-linear

potential.

If J is a set, exactly as in (1.2) we denote by xJ the |J|-dimensional vector whose

components are labeled by the elements of J. The above two types of correlators are

related by

W̃n(x1, . . . , xn)=
n∑

s=1

∑
[[ 1 ;n]]=
J1∪̇···∪̇Js

s∏
i=1

W|Ji |(xJi ).

Above, the sum runs through all partitions of the set [[ 1 ; n]] into s nonempty, disjoint

sets J�.

We do stress that the knowledge of the correlators for a smooth family of poten-

tials {Tt} indexed by some continuous variable t determines the partition function up to

an integration constant. Indeed, let μTt
S denote the probability measure in any of the two

models and in the presence of the r-linear interaction Tt. Then, one has

∂t ln ZS [T → Tt]= N2

r!
μ

Tt
S

[∫
∂tTt(s1, . . . , sr)

r∏
i=1

dL N(si)

]
.

If ∂tTt is analytic in a neighborhood of Ar, we can rewrite

∂t ln ZS [T → Tt]= N2−r

r!

∮
Ar
∂tTt(ξ1, . . . , ξr)W̃r[T → Tt](ξ1, . . . , ξr)

r∏
i=1

dξi
2iπ

.

In both cases, the superscript Tt denotes the replacement of the r-linear potential by the

t-dependent one Tt.
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1.2 Motivation

In the context of formal integrals for β = 2, which is accurate for combinatorics, (1.1)

describes the generating series of discrete surfaces obtained by gluing along edges dis-

crete surfaces of any topology and with up to r polygonal boundaries. As special cases,

one obtains the enumeration of maps carrying any of the classical statistical physics

models: self-avoiding loop configurations [36], spanning forests [17], the Potts model

[10, 35, 50], the Ising model [34], the 6-vertex model [37], . . . It was shown in [13] for

r = 2, and [12] for arbitrary r that the correlators have a formal 1/N expansion, whose

coefficients are given by the topological recursion “with initial conditions”. Formal inte-

grals with β �= 2 are related to the combinatorics of nonorientable discrete surfaces and

has been much less studied. In that case, the coefficients of the 1/N expansion are given

for r = 1 by the β-topological recursion of [20], and this should extend to any r upon sim-

ilar additions of “initial conditions”. In the context of convergent integrals, the present

article gives conditions under which the existence of a large-N expansion asymptotic

expansion can be established. When this is 1/N asymptotic expansion, the coefficients

are the same as those of the formal integrals.

The models we are studying are encountered for instance in three-dimensional

topology: the computation of torus knot invariants and of the SU(N) Chern-Simons par-

tition function in certain Seifert manifolds is of the form (1.1) for r = 2 [9, 43]. The results

of this article was used in [14] to establish a large N expansion of these partition func-

tion, as well as some analyticity results on perturbative knot invariants. Besides, it was

claimed in [31] that the SU(N) Chern-Simons partition function of 3-manifolds obtained

by filling of a knot in S3 should be described by (1.1) for r =∞. For related reasons, (1.1)

with r = 2 is also relevant in topological strings and supersymmetric gauge theories, see,

for example, [49], although our results would have to be generalized to complex-valued

T in order to be applied to such problems.

The strict convexity property (Hypothesis 3.2) of the interaction plays a central

role for our results: it requires that the energy functional (2.1) has a unique maximizer,

and its Hessian at the maximizer is definite negative. It is therefore a basic framework

where the maximizer is nondegenerate; beyond leading order when N →∞, more inter-

esting phenomena could occur when the maximizer is not unique, or when the Hessian

at maximizer is degenerate, but they are beyond the scope of this article. For r = 2, if the

singular operator with kernel T tot
2 (x, y) is definite negative, then Hypothesis 3.2 is satis-

fied. Very often, one encounters translation invariant interactions T tot
2 (x, y)= R(x− y),

so this operator is diagonalized in Fourier space, and it suffices to check that the

Fourier transform of ln R is negative. It is well known that the Fourier transform of
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ln R(u)= β ln |u| is negative [21], thus Hypothesis 3.2 holds for pure Coulomb interaction.

Here are a few other examples r = 2 where Hypothesis 3.2 also hold

• If f is a diffeomorphism,

T tot
2 (x, y)= (β/2){ln |x− y| + ln | f(x)− f(y)|}.

For β = 2, the corresponding random matrix model is determinantal, and

called “biorthogonal ensemble”. For f(x)= xθ , they were studied in detail in

[11, 45]. Since the second term is the pushforward of ln |x− y| by f , it also

has negative Fourier transform, and so does T tot
2 (x, y) as a sum of two terms

with negative Fourier transform. We remark that some results about the equi-

librium measure and the zeroes of the biorthogonal polynomials suitable

to those ensembles are established in [40], with some overlap with ours of

Section 2.

• The sinh interactions: for ψ(x)= sinh(x/2),

T tot
2 (x, y)= β ln |ψ(x− y)|.

• The U (N) Chern-Simons partition function of Seifert spaces [9, 43]: for a

d-uple of positive integers (p1, . . . , pd),

T tot
2 (x, y)= (2 − d) ln |ψ(x− y)| +

d∑
i=1

ln |ψ [(x− y)/pi]|.

The Fourier transform is computed in [14, Appendix A.1] and found to be neg-

ative (thus Hypothesis 3.2 holds) under the condition 2 − d+∑d
i=1 1/pi ≥ 0.

This includes as a particular case the sinh interaction above.

• The (q, t)-deformed interactions. For q �= 0 and t are real parameters between

−1 and 1, set

T tot
2 (x, y)= Rq,t(x− y)=

(
e2iπ(x−y),q

)
∞
(
e2iπ(y−x),q

)
∞(

t e2iπ(x−y),q
)
∞
(
t e2iπ(y−x),q

)
∞

= exp

(
−
∑
k≥1

1 − tk

1 − qk

2 cos(2πk(x− y))

k

)

Rq,t(u) is a 1-periodic function of u. As can be seen from the last expres-

sion, the operator with kernel ln Rq,t(x− y) is diagonalized in Fourier space

on [0,1], and the eigenvalues are all negative. Thus, Hypothesis 3.2 holds for

A⊆ [0,1].
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• The O(n) model: for |n| ≤ 2 and A⊆R+,

T tot
2 (x, y)= β{2 ln |x− y| − nln(x+ y)}.

The previous examples were related to AN−1 root systems. The analog of

the simplest Coulomb interaction for BC N root systems is the O(−2) model,

and the sinh, q and (q, t) cases also have a natural O(n) deformation. As a

matter of fact, one can define (q, t)-deformed interactions associated to any

pair of root systems, and they intervene in the orthogonality measures of

Macdonald polynomials [41]. They are relevant in SO(N) or Sp(2N) Chern-

Simons theory, but also in condensed matter. For instance, the two-body

interaction:

T tot
2 (x, y)= (β/2){ln |x− y| + ln |ψ(x− y)| + ln |x+ y| + ln |ψ(x+ y)|}

has been shown to occur between transmission eigenvalues in metallic wires

with disorder [6]. Hypothesis 3.2 for those type of models follows from [13,

Lemma A.1].

For r ≥ 3, it is in general complicated to check Hypothesis 3.2; yet, one can a priori use

the fact that, if the interactions are a small enough perturbation of better-known strictly

convex interactions, like the ones mentioned above, then Hypothesis 3.2 is satisfied.

The models cited above fall into the scope of our methods. This means that, to

apply our main Theorem 1.1 to a concrete example where T tot
2 satisfies Hypothesis 3.2,

one is left with the problem of determining the topology of the support of the equilib-

rium measure, and checking off-criticality assumptions. For r = 2, computing explicitly

the equilibrium measure usually requires solving a linear, scalar, nonlocal Riemann–

Hilbert problem (RHP) with jumps on an unknown support. It is a difficult problem

which is interesting per se, and only a handful of cases have been treated so far—like

a complete solution for the O(n) model with the methods of [27, 28], or a partial solu-

tion for a more general class of nonlocal RHP with the methods of [14]. For r ≥ 3, the

problem even becomes nonlinear, and thus explicit solutions seems beyond hope. So,

very often for r ≥ 2, one has to rely on general potential theory/perturbative approach

to obtain general qualitative information on the equilibrium measure to check if the

other assumptions of our main theorem hold. Monte-Carlo simulations of the equilib-

rium measure can provide some help in checking those assumptions numerically, see,

for example, [14, Section 9].
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1.3 Main result

Our main result Theorem 8.1 is an all order expansion for the partition function of our

model that we emphasize below. This in particular allows the study of fluctuations of

linear statistics in Section 8.2.

Theorem 1.1. Assume Hypothesis 2.1, T holomorphic in a neighborhood of Ar, and μeq

in the (g+ 1)-cut regime and off-critical. Then, the partition function in the AN model

admits the asymptotic expansion:

ZAN = N(β/2)N+γ exp

(∑
k≥−2

N−kF [k]
ε

)

×

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑
m≥0

∑
�1,...,�m≥1

k1,...,km≥−2∑m
i=1 �i+ki>0

N−∑m
i=1(�i+ki)

m!

(
m⊗

i=1

F [ki ],(�i)
ε

�i!

)
· ∇⊗(∑m

i=1 �i)
v

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭Θ−Nε (F
[−1],(1)
ε | F [−2],(2)

ε ).

(1.7)
�

The various terms appearing in Theorem 1.1 are defined in Sections 7 and 8.

Here, we briefly comment on the structure of the asymptotic expansion. F [k],(�) ∈ (Rg)⊗�

are tensors independent of N. Θν(w|T) is the Siegel theta function depending on a g-

dimensional vector w and T is a definite positive quadratic form in R
g. ∇ is the gra-

dient operator acting on the variable w. This Theta function is Z
g-periodic function of

the vector ν. Since it is evaluated to ν =−Nε in (1.7), the partition function enjoys a

pseudo-periodic behavior in N at each order in 1/N. We mention that the definite posi-

tive quadratic form in the Theta function is evaluated at

T = F [−2],(2)
ε =−Hessianε=εE [μεeq],

where E and με
eq are defined at the beginning of Section 2. The exponent γ =∑g

h=0 γh only

depends on β and the nature of the edges, it was already determined in [15]:

• γh = 3+β/2+2/β
12 if the component Sh of the support has two soft edges;

• γh = β/2+2/β
6 if it has one soft edge and one hard edge;

• γh = −1+β/2+2/β
4 if it has two hard edges.

Note that, in the 1-cut regime (g= 0), the Theta function is absent and we retrieve a 1/N

expansion (established in Corollary 7.2).
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1.4 Method and outline

We stress that in general (1.1) is not an exactly solvable model even for β = 2—with the

exception of the aforementioned biorthogonal ensembles—so the powerful techniques

of orthogonal polynomials and integrable systems cannot be used. In principle, at β = 2

one could analyze the integral within the method developed in [38]. For such a purpose,

one should first carry out the Riemann–Hilbert analysis of a general multiple integral

with T = T1 (cf. (1.2)) and then implement the multideformation procedure developed

in [38]. Here, we rather rely on a priori concentration of measures properties, and the

analysis of the Schwinger-Dyson equations of the model what allows us, in particular,

to treat uniformly the case of general β.

In Section 2, we establish the convergence of the empirical measure L N =
1
N

∑
i∈IS δλi in the unconstrained model (S =AN ), and in the model with fixed filling

fractions (S =AN), to an equilibrium measure μeq. We study the properties of μeq in

Section 2.3, showing that the results of regularity of μeq compared with the Lebesgue

measure, and squareroot behaviors at the edges—which are well known for pure

Coulomb two-body repulsion—continue to hold in the general setting. We give a large

deviation principle in Section 3.1 allowing, as a particular case, a restriction to A

compact.

We prove in Section 3 the concentration of the empirical measure around μeq,

modulo the existence of an adapted functional space H. Such adapted spaces are con-

structed in Section 4, thanks to the existence of the inverse of a linear operator T . This

inverse is explicitly constructed in Appendix A.4 by invoking functional analysis argu-

ments. All these handlings lead to rough a priori bounds on the correlators. In Section 5,

we improve those bounds by a bootstrap method using the Schwinger-Dyson equations

in the fixed filling fraction model, and obtain the asymptotic expansion of the corre-

lators in this model. The bootstrap method is based on the existence of a continu-

ous inverse for a linear operator K, which relies on basic results of Fredholm theory

reminded in Appendix A.3. In Section 6, we deduce the asymptotic expansion of the par-

tition function in the fixed filling fraction model by performing an interpolation to a

model with r = 1, for which we can use the result of [15] relating the partition function

to asymptotics of Selberg β integrals, again by interpolation. In the one-cut regime, this

concludes the proof. In the multi-cut regime, we prove that the coefficients of expan-

sion depend smoothly on the filling fractions. This allows in Section 7 to establish the

asymptotic expansion of the partition function for the unconstrained model in the multi-

cut regime, and to study the convergence in law of fluctuations of linear statistics in

Section 8.2.
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1.5 Notations and basic facts

1.5.1 Functional analysis

• L p(X) is the space of real-valued measurable functions ϕ on X such that |ϕ|p
is integrable. Unless specified otherwise, the space X is endowed with its

canonical measure (Lebesgue measure for a subset of R, curvilinear measure

for a Jordan curve, etc.).

• F denotes the Fourier transform which, defined on L1(A), reads F [ϕ](k)=∫
A eik·xϕ(x)dr x.

• Hs(Rr) is the Sobolev space of functions ϕ ∈ L2(Rr) such that

‖ϕ‖Hs =
∫

Rr
|F [ϕ](k)|2

(
1 +

r∑
i=1

k2
i

)s

drk<+∞.

• More generally, W1;p(A) denotes the space of measurable functions ϕ on A

such that

‖ϕ‖p = ‖ϕ‖L p(A) + ‖ϕ′‖L p(A) <+∞.

• If b> 0 and ϕ is a real-valued function defined on a subset X of a normed

vector space, we agree upon:

κb[ϕ]= sup
x,y∈X

|ϕ(x)− ϕ(y)|
|x− y|b ∈ [0,+∞].

In the case when X⊂C
p, | · | stands for the sup-norm. The space of b-Hölder

functions corresponds to

Hob(X)= {ϕ ∈ C0(X), κb[ϕ]<+∞}

and the space of Lipschitz functions to Ho1(X).

1.5.2 Complex analysis

• If A is a compact of R and m≥ 1, H m(A) denotes the space of holomorphic

functions f in C \ A, so that f(x) ∈ O(1/xm) when x→∞. If f is a function in

C \ A, we denote f · H m(A)= { f · ϕ, ϕ ∈H m(A)}.
• We can define similarly a space H m(A, r) for functions of r variables. In that

case, the asymptotics in each variables take the form f(x1, . . . , xr) ∈ O(1/xm
p ),

with a O that is uniform with respect to the other variables satisfying

d(xk, A) > η, for some η > 0.
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• If A is a collection of segments, we denote
∮

A, the integral over a counterclock-

wise contour surrounding each connected component of A exactly once.

• If Γ is a Jordan curve (hereafter called contour) surrounding A in C \ A,

we denote Ext(Γ )⊆C \ A the unbounded connected component of C \ Γ , and

Int(Γ ) the other connected component. If Γ and Γ ′ are two contours, we say

that Γ ′ is exterior to Γ if Γ ′ ⊆Ext(Γ ) and we denote Γ ⊂ Γ ′. We denote Γ [1]

an arbitrary contour in C \ A exterior to Γ , and more generally (Γ [i])i≥0 with

Γ [0]= Γ an arbitrary sequence of contours in C \ A so that Γ [i + 1] is exterior

to Γ [i]. Γ [−1] denotes a contour interior to Γ , etc.

• We can equip H m(A) (respectively, H m(A, r)) with the norm:

‖ϕ‖Γ = sup
x∈Γ

|ϕ(x)| = sup
x∈Ext(Γ )

|ϕ(x)|
(

respectively, ‖ϕ‖Γ r = sup
x∈Γ r

|ϕ(x)|
)
.

• O(A) is the space of holomorphic functions in a neighborhood of A.

• Given a contour Γ in C and a holomorphic function f on C \ Γ , we denote by

f± its boundary values (if they exist) when a point z∈C \ Γ approaches a point

x∈ Γ from the + (i.e., left) side or − (i.e., right) side of Γ and nontangentially

to Γ . The convergences of f(z) to f±(x) are given in terms of a norm (L p, C0, . . .)

appropriate to the nature of f±.

1.5.3 Probability

• 1X denotes the indicator function of a set X.

• M1(A) denotes the space of probability measures on A. M0(A) denotes the set

of differences of finite positive measure with same mass.

• C0
b(A) denotes the space of bounded continuous functions on A. M1(A) and

M0(A) are endowed with the weak-* topology, which means that

limμn=μ∞ ⇐⇒ ∀ f ∈ C0
b(A), lim

n→∞

(∫
A

f(x)dμn(x)
)
=

∫
A

f(x)dμ∞(x).

If A is compact, Prokhorov theorem ensures that M1(A) is compact for this

topology.

• If ν ∈M0(A), the Vasershtein norm is defined as:

‖ν‖ = sup
ϕ∈Ho1(A)
κ1[ϕ]≤1

∣∣∣∣∫
A
ϕ(x)dν(x)

∣∣∣∣ .
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• Given the representation as a disjoint union A= ⋃̇g
h=0Ah and ε = (ε0, . . . , εg)

a g+ 1-dimensional vector with entries consisting of nonnegative real num-

bers summing up to 1, we denote Mε(A) the set of probability measures μ on

A such that μ[Ah]= εh, h= 0, . . . , g. We recall that Mε(A) is a closed, convex

subset of M1(A).

• If X is a union of segments or a Jordan curve, �(X) denotes its length.

• The notation O(N−∞) stands for O(N−k) for any k≥ 0.

• c,C denote constants whose values may change from line to line.

2 The Equilibrium Measure

In this section, we assume the following:

Hypothesis 2.1.

• (Regularity) T ∈ C0(Ar).

• (Confinement) If ±∞∈A, we assume the existence of a function f so that

T(x1, . . . , xr)≤−(r − 1)!
∑r

i=1 f(xi), when |x| is large enough, and

lim inf
x→±∞

f(x)

β ln |x| > 1.

• In the fixed filling fraction model, let ε = (ε0, . . . , εg) ∈ [0,1]g+1 be such that∑g
h=0 εh = 1, and N = (N0, . . . , Ng) be a vector of integers whose components

depend on N and satisfy the constraint
∑g

h=0 Nh = N and Nh/N → εh.

• (Uniqueness of the minimum) The energy functional E—defined in (2.1)—has a

unique global minimum on M1(A) (in the unconstrained model, denoted μeq),

or on Mε(A) (in the fixed filling fraction model, denoted με
eq). �

2.1 Energy functional

We would like to consider the energy functional:

E [μ]=−
∫

Ar

⎛⎝T(x1, . . . , xr)

r!
+ β

r(r − 1)

∑
1≤i �= j≤r

ln |xi − xj|
⎞⎠ r∏

i=1

dμ(xi). (2.1)

Because of the singularity of the logarithm, E assumes value in R ∪ {+∞}, and it is well

known that E is lower semi-continuous. Let us introduce the level sets:

EM = {μ ∈M1(A), E [μ]≤ M}, E<∞ = {μ ∈M1(A), E [μ]<∞}.
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We know that E<∞ is not empty. Let M′ be a closed subset of M1(A) which intersect

E<∞. By standard arguments [7, 21, 47], E has compact level sets EM in M′, has a min-

imizing measure μ∗ on M′, and E [μ∗] is finite. M′ can be either M1(A) or Mε(A), and

Hypothesis 2.1 guarantees in either case that μ∗ is unique. Following [7] (see also [5]), we

can prove the following large deviation principle.

Theorem 2.1. Assume Hypothesis 2.1. Then, the law of L N = 1
N

∑
i∈IS δλi under the prob-

ability measure (1.1) (respectively, (1.3)) satisfies a large deviation principle on M1(A)

(respectively, Mε(A)) with speed N2 and good rate function J = E − infM1(A) E (respec-

tively, E − infMε (A) E ) . �

Proof. The case where r = 1 and A=R was proved in [7] (see also [5, Section 2.6.1]).

The case r ≥ 1, A=R and T − T1 bounded then follows by Varadhan’s Lemma [22,

Theorem 4.3.1] as μ→ ∫
(T − T1)(x1, . . . , xr)dμ(x1) · · ·dμ(xr) is then bounded continu-

ous on M1(R). In fact, the proof of the general case is very close to the case r = 1

given in [5, 7]. Let us briefly outline the arguments. First, one notes that E is a good

rate function, that is, it has compact level sets. Indeed, one can write E(μ)= Ek(μ) :=∫ · · · ∫ k(x1, . . . , xr)dμ(x1) · · ·dμ(xr) with the function

K(x1, . . . , xr)=− 1

r!
T(x1, . . . , xr)− β

r(r − 1)

∑
i �= j

ln |xi − xj|.

By the monotone function theorem, K is the increasing limit of bounded continuous

functions KM—obtained by replacing ln |x| by max(−M, ln |x|)—hence E is the increasing

limit of bounded continuous functions EM. Therefore, E is lower semi-continuous, that

is, has closed level sets. Moreover, as K goes to infinity when any of the xi goes to

infinity—since the potential goes to minus infinity faster than β ln |x|—we deduce that

its level sets are included in compact sets, hence are compact. For the same reason,

one can check that the law of L N is exponentially tight, so that it is enough to prove a

weak large deviation principle [22, Lemma 1.2.18]. Namely, recalling that ‖ · ‖ denotes

the Vasershtein norm, it is enough to prove that for any probability measure μ ∈M1(A),

if we let dνS = ZS dμS , we have

−E(μ)≤ lim inf
δ→0

lim inf
N→∞

1

N2
ln νS (‖L N − μ‖ ≤ δ)

≤ lim sup
δ→0

lim sup
N→∞

1

N2
ln νS (‖L N − μ‖ ≤ δ)≤−E(μ).

To prove the upper bound, it is enough to bound the term ln |λi − λ j| by max(−M,

ln |λi − λ j|). Up to an error eNM created by the addition of the diagonal terms, we
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have bounded from above the density of νS by e−N2EM(L N ). As EM is continuous, we

obtain the upper bound −EM(μ). We finally can let M going to infinity to conclude. To

derive the lower bound, the idea is to localize each λi in a tiny neighborhood around

the ith quantile of μ. This amounts to repeating the proof of Lemma 3.11 when μ

has a smooth density. The latter assumption can be removed by approximations, see,

for example, [7]. �

2.2 Convergence of the empirical measure

As a consequence of the previous large deviation principle, we can state the following

convergence.

Theorem 2.2. Assume Hypothesis 2.1 in the unconstrained model, that is, S =AN . When

N →∞, L N = 1
N

∑N
i=1 δλi under the law μAN converges almost surely and in expectation to

the unique minimizer of μeq of E on M1(A). μeq has a compact support, denoted S. It is

characterized by the existence of a constant C such that

∀x∈A, β

∫
A

ln |x− ξ |dμeq(ξ)+
∫

Ar−1

T(x, ξ2, . . . , ξr)

(r − 1)!

r∏
i=2

dμeq(ξi)≤ C , (2.2)

with equality μeq-almost surely. �

Theorem 2.3. Assume Hypothesis 2.1 in the model with fixed filling fractions, that is,

S =AN. Then, L N = 1
N

∑N
i∈I δλi under the law μAN converges almost surely and in expec-

tation to the unique minimizer μeq of E on Mε(A). μeq has a compact support, denoted

by S. It is characterized by the existence of constants C ε
h such that

∀h∈ [[ 0 ; g ]], ∀x∈Ah, β

∫
A

ln |x− ξ |dμeq(ξ)+
∫

Ar−1

T(x, ξ2, . . . , ξr)

(r − 1)!

r∏
i=2

dμeq(ξi)≤ C ε
h, (2.3)

with equality μeq-almost surely. �

In either of the two models, we define the effective potential as

Teff(x)= β
∫

A
ln |x− ξ |dμeq(ξ)+

∫
Ar−1

T(x, ξ2, . . . , ξr)

(r − 1)!

r∏
i=2

dμeq(ξi)−
⎧⎨⎩C ,

1Ah(x)C
ε
h,

(2.4)

if x∈A, and Teff(x)=−∞ otherwise. It is thus nonpositive and vanishes μeq-almost

surely.
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We wait until Section 7.3 and Proposition 7.3 to establish that if E has a unique

global minimum on M1(A), and if we denote εh =μeq[Ah], then for ε close enough to ε,

E has a unique minimizer over Mε(A). In other words, Hypothesis 2.1 for the uncon-

strained model implies Hypothesis 2.1 for the model with fixed filling fractions close

to ε. Although the full Proposition 7.3 is stated for T holomorphic, the aforementioned

statement is valid under weaker regularity, for example, T ∈ Cm(Ar) with m>min(3,2r).

2.3 Regularity of the equilibrium measure

In this section, we shall be more precise about the regularity of equilibrium measures,

using the first Schwinger-Dyson equation.

Lemma 2.4. Assume Hypothesis 2.1 and T ∈ Cm(A) with m≥ 2. Then, μeq has a Cm−2

density on S̊. Let α ∈ ∂S.

(i) If α ∈ ∂A (hard edge), then dμeq

dx (x) ∈ O(|x− α|−1/2) when x→ α.

(ii) If α /∈ ∂A (soft edge) and T ∈ C3(Ar), then dμeq

dx (x) ∈ O(|x− α|1/2) when x→ α.�

Lemma 2.5. Assume Hypothesis 2.1 and T holomorphic in a neighborhood of A in C.

Then, S is a finite union of segments which are not reduced to a point, and the equilib-

rium measure takes the form:

dμeq(x)= 1S(x)dx

2π
M(x)σ0(x)

∏
α∈∂S\∂A

|x− α|1/2
∏

α∈∂S∩∂A
|x− α|−1/2, (2.5)

where M is holomorphic and positive (a fortiori nowhere vanishing) on A, and σ0(x) is a

polynomial assuming nonnegative values on S. �

Proof of Lemma 2.4. As soon as T ∈ C1(Ar), we can derive a Schwinger-Dyson equation

for the model μS . It is an exact equation, which can be proved by integration by parts,

or by expressing the invariance of the integral ZS by change of variables preserving A.

It can be written: for any x∈C \ A,

μS

[
N

∫
A
∂ξ

(
(1 − β/2)σA(ξ)

x− ξ
)

dL N(ξ)+ N2
∫

A2

β

2(ξ1 − ξ2)
(
σA(ξ1)

x− ξ1 − σA(ξ2)

x− ξ2

)
dL N(ξ1)dL N(ξ2)

+ N2
∫

Ar

∂ξ1 T(ξ1, ξ2, . . . , ξr)

(r − 1)!

σA(ξ1)

x− ξ1
r∏

i=1

dL N(ξi)

]
= 0. (2.6)
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Here, we have defined

σA(x)=
∏

a∈∂A
(x− a).

We insist that it takes the same form for the unconstrained model S =AN and in the

model with fixed filling fractions S =AN, see Section 1.1 for the definitions. We do not

attempt to recast this Schwinger-Dyson equation in the most elegant form; this is the

matter of Section 5.

For any fixed x∈C \ A, the functions against which the empirical measure are

integrated are continuous. Therefore, since L N converges to μeq (Theorems 2.2 or 2.3),

the first term is negligible in the large N limit, and we obtain

∫
S2

β

2(ξ1 − ξ2)
(
σA(ξ1)

x− ξ1 − σA(ξ2)

x− ξ2

)
dμeq(ξ1)dμeq(ξ2)

+
∫

Sr

∂ξ1 T(ξ1, . . . , ξr)

(r − 1)!

σA(ξ1)

x− ξ1
r∏

i=1

dμeq(ξi)= 0. (2.7)

This equality only involves analytic functions of x∈C \ S and is established for x∈C \ A.

Thus, it is also valid for x∈C \ S. The first term can be rewritten partly in terms of the

Stieltjes transform of the equilibrium measure:

β

2
σA(x)W

2
eq(x)+U (x)+ P (x)= 0, (2.8)

with:

Weq(x)=
∫

S

dμeq(ξ)

x− ξ ,

U (x)=
∫

Sr
σA(ξ1)

∂ξ1 T(ξ1, . . . , ξr)

(r − 1)!(x− ξ1)
r∏

i=1

dμeq(ξi),

P (x)=
∫

S2

β

2(ξ1 − ξ2)
(
σA(ξ1)− σA(x)

x− ξ1 − σA(ξ2)− σA(x)

x− ξ2

)
dμeq(ξ1)dμeq(ξ2).

Since σA(x) is a polynomial (of degree g+ 1), P (x) is also a polynomial. Since T ∈ C2(Ar),

U (x) admits continuous ± boundary values when x∈ S̊. Therefore, σA(x)W2
eq(x)—and a

fortiori Weq(x)—also admits continuous ± boundary values when x∈ S̊. Then, (2.8) at

x∈ S̊ leads to

σA(x)

(
W2

eq;±(x)− V ′(x)Weq;±(x)+ P̃ (x)

σA(x)

)
= 0 (2.9)
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with:

V(x)=−2

β

∫
Sr−1

T(x, ξ2, . . . , ξr)

(r − 1)!

r∏
i=2

dμeq(ξi), (2.10)

P̃ (x)= 2

β
P (x)−

∫
S

σA(x)V ′(x)− σA(ξ)V ′(ξ)
(x− ξ) dμeq(ξ). (2.11)

Since we assume T ∈ C2(Ar), we also find V ∈ C2(S), hence P̃ ∈ C0(S). We also remind that

the equilibrium measure is given in terms of its Stieltjes transform by

2iπ
dμeq

dx
(x)= Weq;−(x)− Weq;+(x). (2.12)

Therefore, solving the quadratic equations (2.9) for Weq;±(x), we find

dμeq

dx
(x)= 1S(x)

2π

√
4 P̃ (x)− σA(x) (V ′(x))2

σA(x)
. (2.13)

From (2.13), we see that the only possible divergence of dμeq/dx is at α ∈S ∩ ∂A, and the

divergence is at most a O((x− α)−1/2), hence (i). If α ∈ ∂S \ ∂A, we have σA(α) �= 0 but the

density of the equilibrium measure must vanish at α. If T ∈ C3(Ar), we find that P̃ ∈ C1(A)

and thus the quantity inside the squareroot is C1. So, it must vanish at least linearly in

α, which entails (ii). �

Proof of Lemma 2.5. LetΩ be an open neighborhood of A such that T is holomorphic in

Ωr. Then, V(x) and P̃ (x) defined in (2.10)–(2.11) are well-defined, holomorphic functions

of x∈Ω. So, the limiting Schwinger-Dyson equation (2.7) can be directly recast for any

x∈Ω \ A:

W2
eq(x)− V ′(x)Weq(x)+ P̃ (x)

σA(x)
= 0.

Its solution is

Weq(x)= V ′(x)
2

± 1

2

√
σA(x) (V ′(x))2 − 4 P̃ (x)

σA(x)
. (2.14)

By continuity of Weq(x), the sign is uniformly + or uniformly − in each connected com-

ponent of Ω. From (2.12), the equilibrium measure reads

dμeq

dx
(x)=±1S(x)dx

2π

√
R(x), R(x)= σA(x) (V ′(x))2 − 4 P̃ (x)

−σA(x)
. (2.15)

The support S is the closure of the set of x∈A for which the right-hand side is positive.

The function R is meromorphic inΩ ∪ A and real-valued on A ; further, its only poles are
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simple and all located in ∂A. Hence, given a compact Ω ′ ⊆Ω neighborhood of A, R can

be recast as R= R0 · M2. In such a factorization, R0(x) is a rational function having the

same poles and zeroes as R(x) on Ω ′ while M2 is a holomorphic function on Ω that is

nowhere vanishing onΩ ′ and that keeps a constant sign on A. We shall denote its square

root by M. According to the formula (2.15), R0(x) can only have simple poles that occur

at the edges of A. Thence, the edges of S must be either its poles or its zeroes. Therefore,

we may factorize further the zeroes of even order and write

dμeq

dx
(x)= 1S(x)M(x)

2π
σ0(x)

∏
α∈∂S\∂A

|x− α|1/2
∏

α∈∂S∩∂A
|x− α|−1/2

for some polynomial σ0(x). Since dμeq/dx is a density, σ0(x) has constant sign on S. If

we require that it is nonnegative and has dominant coefficient ±1, σ0(x) is uniquely

determined. �

Definition 2.6. We speak of a (g0 + 1)-cut regime when S is the disjoint union of g0 + 1

segments, and we write

S=
⋃̇g0

h=0
Sh, Sh = [α−h , α

+
h ].

We speak of an off-critical regime when σ0(x)= 1. �

3 Concentration Around Equilibrium Measures

3.1 Large deviation for the support of the spectrum

As in [15, 16], we can prove the following.

Lemma 3.1. Assume Hypothesis 2.1. We have large deviation estimates: for any F⊆A

closed and Ω ⊆A open,

lim sup
N→∞

1

N
lnμS [∃i λi ∈ F]≤ sup

x∈F
Teff(x),

lim inf
N→∞

1

N
lnμS [∃i λi ∈Ω]≥ sup

x∈Ω
Teff(x).

−Teff(x) defined in (2.4) is thus the rate function. �

Proof. We simply outline the arguments, as the main points are discussed in details in

[15, 16]. Let us consider a subset B of Ah and let Λ= {λ1, . . . , λNh} be the eigenvalues in
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Ah. Then, as μS is symmetric in the eigenvalues Λ,

μS [λ1 ∈B]≤μS [∃i λi ∈B]≤ NhμS [λ1 ∈B].

On the other hand

μS [λ1 ∈B]= C N

∫
dλ1

∫
dμ̃S(λ2, · · · ,dλN)1B(λ1)

×
N∏

j=2

|λ1 − λ j|β e
N2−r

(r−1)!

∫
T(λ1,x2,...,xr)dL N−1(x2)···dL N−1(xr),

where μ̃S is the law μS with N − 1 particles and potential [(N − 1)/N]r T instead of T ,

L N−1 = 1
N−1

∑N
i=2 δλi , C N is a normalization constant. Noting that under μ̃S , L N−1 is very

close to μeq with overwhelming probability with respect to the exponential scale, we

see that if we neglect the singularity of the logarithm, the density of the law of λ1 is

approximately C N exp{NTeff(λ1)}. The result then follows from Laplace method. The main

point is therefore to deal with the singularity of the logarithm, which can be done exactly

as in [15, 16]. �

It is natural to supplement the conclusion of this lemma with an extra

assumption:

Hypothesis 3.1 (Control of large deviations). Teff(x) < 0 outside S= suppμeq. �

Lemma 3.1 along with Hypothesis 3.1 allows one the simplification of the form of

A. First of all, we can always assume the domain of integration A to be compact. Indeed,

a noncompact domain A would only alter the answer obtained for the correlators or the

partition function in the case of the compact domain A[M] =A ∩ [−M ; M ] with M suf-

ficiently large, by exponentially small in N terms. Secondly, when the control of large

deviations holds, for the price of the same type of exponentially small in N corrections

(see [16, Proposition 2.2 and 2.3] for more precise statements), we may restrict further

the domain of integration to any fixed A′ ⊆A such that A′ \ S is as small as desired. For

instance, in the (g0 + 1) cut regime, one can always restrict A to be a disjoint union of

(g+ 1)= (g0 + 1) closed compact intervals A′
h ∩ A, such that A′

h contains an open neigh-

borhood of Sh in Ah for any h∈ [[ 0 ; g0 ]].

Therefore, from now on, we shall always assume A to be a disjoint union of

(g+ 1) closed compact intervals Ah, such that Sh ⊆Ah for any h∈ [[ 0 ; g ]] as above. In

particular, we do not continue distinguishing g from g0.
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3.2 Pseudo-distance and adapted spaces

In view of showing concentration of the empirical measure around the equilibrium mea-

sure μeq in either of the two models, we add two assumptions:

Hypothesis 3.2 (Local strict convexity). For any ν ∈M0(A),

Q[ν]=−β
∫

A2
ln |x− y|dν(x)dν(y)−

∫
Ar

T(x1, . . . , xr)

(r − 2)!
dν(x1)dν(x2)

r∏
i=3

dμeq(xi) (3.1)

is nonnegative, and vanishes iff ν = 0. �

We observe that for any measure with zero mass:

Q[ν]= βQC [ν] +QT [ν], QC [ν]=−
∫

A2
ln |x1 − x2|dν(x1)dν(x2)=

∫∞
0

|F [ν](k)|2
k

dk∈ [0,+∞],

(3.2)

whereas the other part QT is always finite since T ∈ C0(Ar) and A is compact. There-

fore, Q[ν] is well-defined and takes its values in R ∪ {+∞}. Hypothesis 3.2 requires it to

assume values in [0,+∞].

The model gives us a quadratic functional Q, which defines a natural pseudo-

distance. We will control deviations of the empirical measure from the equilibrium mea-

sure with respect to this pseudo-distance. This control does not imply a control of the

multilinear statistics for arbitrary test functions. The following notion of adapted space

of test functions summarizes our minimal needs in order to derive bounds for multilin-

ear statistics.

Definition 3.2. A vector subspace H⊆ C0(R) is then called an adapted space if there

exists a norm ‖ · ‖H on H and a continuous function χA which assumes values 1 on A and

0 outside of a compact, and such that

• there exists c0 > 0 such that

∀ν ∈M0(A), ∀ϕ ∈H,
∣∣∣∣∫

A
ϕ(x)dν(x)

∣∣∣∣≤ c0 Q1/2[ν] ‖ϕ‖H.

• there exists c1 > 0 and an integer m≥ 0 called the growth index such that,

for any k∈R, the function ek(x)= χA(x) eikx belongs to H and one has ‖ek‖H ≤
c1 (|k|m + 1). �

We show in Section 4 how to construct an adapted space H provided Hypothe-

sis 3.2 holds. We show that adapted spaces can be at least found among Sobolev spaces,
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but in that construction we are not optimal, and later on we do not use the particu-

larities of Sobolev spaces but only the properties of Definition 3.2. Depending on the

structure of Q in a given example, one may construct by a refined analysis larger spaces

of test functions adapted to Q.

We will often encounter multilinear statistics, and we use both Vasershtein norm

and Q in their estimation. The following technical lemma appears useful.

Lemma 3.3. Let l, l ′ ≥ 0 be integers, l ′′ ≤ l ′ be another integer, and m′ > (m − 1)l ′′ + 2l ′ + l.

Then, given an adapted space H, for any ϕ ∈ Cm′
(Al+l ′), any ν1, . . . , νk ∈M0(A) and

μ1, . . . , μl ∈M1(A), one has the bounds:∣∣∣∣∣∣
∫

Al+l′
ϕ(x1, . . . , xl+l ′)

l ′∏
i=1

dνi(xi)

l+l ′∏
j=l ′+1

dμ j(xj)

∣∣∣∣∣∣≤ c0 Cl,l ′,l ′′ [ϕ]
l ′′∏

i=1

Q1/2[νi]
l ′∏

i=l ′′+1

‖νi‖ (3.3)

for some finite nonnegative constant C [ϕ]. �

Proof. We may extend ϕ ∈ Cm′
(Al ′+l) to a function ϕ̃ ∈ Cm′

(Rl ′+l). Then, we may write

X[ϕ]=
∫

Al′+l
ϕ(x1, . . . , xl ′+l)

l ′∏
i=1

dνi(xi)

l ′+l∏
j=l ′+1

dμ j(xj)

=
∫

Rl′+l
ϕ̃(x1, . . . , xl ′+l)

l ′∏
i=1

dνi(xi)

l ′+l∏
j=l ′+1

dμ j(xj)

=
∫

Rl′+l

dl ′+l k
(2π)l ′+l

F [ϕ̃](k)
l ′′∏

i=1

(∫
R

eki (xi)dνi(xi)

) l ′∏
i=l ′′+1

(∫
R

eikj xj dν(xj)

) l ′+l∏
j=l ′+1

×
(∫

R

eikj xj dμ j(xj)

)
,

where we could introduce the function ek(x)= χA(x) eikx since νi are supported on A. We

bound the first group of integrals for i ∈ [[ 1 ; l ′′ ]] by c0 Q1/2[νi] · ‖eki‖H, the second group

for i ∈ [[ l ′′ + 1 ; l ′ ]] with the Vasershtein norm by |ki| · ‖νi‖, and the remaining by the obvi-

ous bound 1 since μ j are probability measures.

|X[ϕ]| ≤ cl ′′
0

(
l ′′∏

i=1

Q1/2[νi]
l ′∏

i=l ′′+1

‖νi‖
) ∫

Rl′+l

dl+l ′ k
(2π)l+l ′ |F [ϕ̃](k)|

l ′′∏
i=1

‖eki‖H
l ′∏

i=l ′′+1

|ki|.

Since ϕ̃ is Cm′
, the integral in the right-hand side converges at least for m′ > l + 2l ′ +

(m − 1)l ′′, and gives the constant Cl,l ′,l ′′ [ϕ] in (3.3). �



Large-N Expansion for Mean Field Models 10473

3.3 Concentration results

The next paragraphs are devoted to the proof of:

Theorem 3.4. Assume Hypothesis 2.1, 3.1, and 3.2, an adapted space with growth index

m, and T ∈ Cm′
(Ar) with m′ > 2m + r + 1. Denote μeq the equilibrium measure in one of

the two models (1.1) or (1.3) and L̃u
N the regularization of L N defined in Section 3.4. There

exists constants c> 0 and C ,C ′, such that

μS [Q[L̃u
N − μeq]

1
2 ≥ t]≤ exp

{
C N ln N − N2t2

4

}
+ C ′ exp{−cN2}. �

As in [15], we easily derive in Section 3.6.

Corollary 3.5. Under the same assumptions, let b> 0. There exists finite constants C ,C ′

and c> 0 such that, for N large enough, for any ϕ ∈H ∩ Hob(A), we have

μS

[∣∣∣∣∫ ϕ(ξ)d(L N − μeq)(ξ)

∣∣∣∣≥ cκb[ϕ]

N2b
+ c0t‖ϕ‖H

]
≤ exp

{
C N ln N − 1

4
N2t2

}
+ C ′ exp{−c′N2}.

�

As a special case, we can obtain a rough a priori control on the correlators:

Corollary 3.6. Let wN =√
N ln N and ψx(ξ)= 1A(ξ)/(x− ξ). For N large enough, and there

exists c, c1 > 0 such that

|W1(x)− NWeq(x)| ≤ c

Nd(x,A)2
+ c1‖ψx‖HwN .

Similarly, for any n≥ 2 and N large enough, there exists cn> 0 such that

|Wn(x1, . . . , xn)| ≤ cn

n∏
i=1

[
c

Nd(x,A)2
+ c1‖ψx‖HwN

]
. (3.4)

�

We recall that we are in a (g+ 1)-cut regime with g≥ 1 and that Ah is a partition

of A in (g+ 1) segments so that Ah is a neighborhood of Sh in A. For any configuration

(λ1, . . . , λN) ∈AN , we denote Ñh the number of λi’s in Ah, and Ñ= (Ñ0, . . . , Ñg). Let

Nε = (Nε0, . . . , Nεg) with εeq =
∫

Sh

dμeq(ξ).

We can derive an estimate for large deviations of N′ away from Nε:
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Corollary 3.7. Assume a (g+ 1)-cut regime with g≥ 1, and let Ñ be as above. Then, there

exists a positive constant C such that, for N large enough and uniformly in t:

μAN [|Ñ − Nε|> t
√

N ln N]≤ exp{N ln N(C − t2)}. �

3.4 Regularization of LN

We cannot compare directly L N to μeq with Q, because of the logarithmic singularity in

QC and the atoms in L N . Following an idea of Maı̈da and Maurel-Segala [42], we associate

to any configurations of points λ1 < · · ·<λN in A, another configuration λ̃1 < · · ·< λ̃N by

the formula:

λ̃1 = λ1, λ̃i+1 = λ̃i + max(λi+1 − λi, N−3).

It has the following properties:

∀i �= j, |λ̃i − λ̃ j| ≥ N−3, |λi − λ j| ≤ |λ̃i − λ̃ j|, |λ̃i − λi| ≤ (i − 1)N−3.

Let us denote L̃ N = 1
N

∑N
i=1 δλ̃i

the new counting measure, and L̃u
N its convolution with

the uniform measure on [0, N−7/2]. Let us define a regularized version of the energy func-

tional EΔ = (β/2) EΔC + ET with:

EΔC [μ]=−
∫

x1 �=x2

ln |x1 − x2|dμ(x1)dμ(x2),

ET [μ]=−
∫

Ar

Tr(x1, . . . , xr)

r!

r∏
i=1

dμ(xi).

As in [42] (see also [15]), we have the following.

Lemma 3.8.

EΔC [L N ] − EΔC [L̃u
N ]≥ 1

3N4
− 7 ln N

2N
. �

It is then straightforward to deduce the following.

Corollary 3.9. There exists constants c, c′ > 0 such that

EΔ[L N ] − E [L̃u
N ]≥ c

ln N

N
+ c′

κ1[T ]

N3
. �

We also have the following:
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Lemma 3.10. There exists c> 0 such that, for any f ∈Hob(A), we have∣∣∣∣∫
A

f(ξ)d(L N − L̃u
N)(ξ)

∣∣∣∣≤ cκb[ f ]

N2b
. �

3.5 Concentration of L̃u
N (Proof of Theorem 3.4)

We would like to estimate the probability of large deviations of L̃u
N from the equilib-

rium measure μeq. We first need a lower bound on ZS similar to that of [7], obtained by

localizing the ordered eigenvalues at distance N−3 of the quantiles λcl
i of the equilibrium

measure μeq, which are defined by

λcl
i = inf

{
x∈A,

∫ x

−∞
dμeq(x)≥ i/N

}
.

Lemma 3.11. Assume Hypothesis 3.2 with T ∈ C3(A). Then, there exists a finite constant

c so that

ZS ≥ exp{−cN ln N − N2E [μeq]}. �

Proof. According to Lemma 2.4, T ∈ C3(A) implies that μeq has a C1 density in the inte-

rior of S, and behaves at most like the inverse of a squareroot at ∂S. This ensures the

existence of c0 > 0 such that

|λcl
i+1 − λcl

i | ≥ c0 N−2 (3.5)

for any i ∈ [[ 0 ; N ]], where by convention λcl
0 =min {x : x∈S} and λcl

N+1 =max {x : x∈A}.
The proof of the lower bound for ZS is similar to [15], we redo it here for sake of being

self-contained. It can be obtained by restricting the integration over the configurations

{λ ∈ S, |λi − λcl
i | ≤ N−3}, where S =AN or =AN depending on the model. For any such λ,

one has

|λi − λ j| ≥ |λcl
i − λcl

j |
(

1 − 2

c0N

)
|T(λi1, . . . , λir )− T(λcl

i1 , . . . , λ
cl
ir )| ≤

κ1[T ]

N3

and this implies that

ZN ≥ (1 − N−1)N(N−1)β/2 exp
(
κ1[T ]

r! N

)
N−3N

∏
1≤i< j≤N

|λcl
i − λcl

j |β exp

×
(

N2−r

r!

∑
1≤i1,...,ir≤N

T(λcl
i1 , . . . , λ

cl
ir )

)
. (3.6)
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Then, for any i, j such that j + 1≤ i − 1, we have, by monotonicity of the logarithm:

ln |λcl
i − λcl

j | ≥ N2
∫λcl

i

λcl
i−1

∫λcl
j+1

λcl
j

ln |ξ1 − ξ2|dμeq(ξ1)dμeq(ξ2).

For the remaining pairs {i, j}, we rather use the lower bound (3.5), and we find after

summing over pairs:

β
∑
i< j

ln |λcl
i − λcl

j | ≥−βN2EC [μeq] + c1 N ln N. (3.7)

If ϕ : A→R is a function with finite total variation TV[ϕ], we can always decompose it

as the difference of two increasing functions, the total variation of each of them being

TV[ϕ]. And, if ϕ> is an increasing function:

1

N

N−1∑
i=0

ϕ>(λ
cl
i )≤

∫
A
ϕ>(ξ)dμeq(ξ)≤ 1

N

N∑
i=1

ϕ>(λ
cl
i ). (3.8)

Therefore, we deduce that∣∣∣∣∣ 1

N

N∑
i=1

ϕ(λcl
i )−

∫
A
ϕ(ξ)dμeq(ξ)

∣∣∣∣∣≤ 2TV[ f ]

N
.

This can be generalized for functions defined in Ar by recursion, and we apply the result

to T , which is C1, hence is of bounded total variation with TV[T ]≤ �(A) κ1[T ]:∣∣∣∣∣ 1

Nr

∑
1≤i1,...,ir≤N

T(λcl
i1 , . . . , λ

cl
ir )−

∫
Ar

T(ξ1, . . . , ξr)
r∏

i=1

dμeq(ξi)

∣∣∣∣∣≤ c2 κ1[T ]

N
. (3.9)

Combining (3.7)–(3.9) with (3.6), we find the desired result. �

Now, the density of probability measure in either of the models (1.1) or (1.3) can

be written

dμS =
⎡⎣∏

i∈IS

dλi

⎤⎦ exp{−N2EΔ[L N ]}.

With the comparison of Corollary 3.9, we find that, for N large enough:

dμS ≤
⎡⎣∏

i∈IS

dλi

⎤⎦ exp{cN ln N − N2E [L̃u
N ]}.

We can then compare the value of the energy functional at L̃u
N and μeq by a Taylor-

Lagrange formula to order 3. The existence of the order 3 Fréchet derivative of E is here
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guaranteed since E is polynomial. Setting νN = L̃u
N − μeq, we find

E [L̃u
N ]= E [μeq] −

∫
A

Teff(ξ)dνN(ξ)+ 1

2
Q[νN ] +R3[νN ] (3.10)

and we compute from the definition of E :

R3[νN ]=
∫1

0

dt (1 − t)2

2
E (3)[(1 − t)μeq + tL̃u

N ] · (νN, νN, νN),

E (3)[μ] · (ν1, ν2, ν3)=−
∫

Ar−3

T(ξ1, . . . , ξr)

(r − 3)!

3∏
i=1

dνi(ξi)

r∏
j=4

dμ(ξ j).

(3.11)

Since the νi have zero masses, E (3)[μ] · (ν1, ν2, ν3) vanishes if there are only 1 or 2 body

interactions. In other words, the remainder R3[ν] is only present in the case where there

are at least r ≥ 3 body interactions. Since Teff(x) is nonpositive and vanishes μeq-almost

surely, we have for the linear term:

−
∫

A
Teff(ξ)dνN(ξ)=−

∫
A

Teff(ξ)dL̃u
N(ξ)≥ 0.

Therefore, combining with the lower bound of Lemma 3.11, we find

dμS
ZS

≤
[

N∏
i=1

dλi

]
exp

{
cN ln N − N2

2
(Q[νN ] + 2R3[νN ])

}
. (3.12)

By using Lemma 3.3 with (l, l ′, l ′′)= (r − 3,3,2) and the fact that T is Cm′
for m′ > 2m +

r + 1, we obtain, for some T-dependent constant C :

|R3[νN ]| ≤ C [T ]Q[νN ] ‖νN‖.

Note that, in the above bound, we have used the existence of an adapted space, as is

inferred in Section 4. So, if we restrict to configurations realizing the event {‖νN‖ ≤ ε} for

some fixed but small enough ε > 0, we have |R3[νN ]| ≤Q[νN ]/4. Integrating (3.12) on this

event, we find

μS [{Q1/2[νN ]≥ t} ∩ {‖νN‖ ≤ ε}]≤ exp
{

C N ln N − N2t2

4

}
.

On the other end, since {ν ∈M0(A), ‖ν − μeq‖ ≥ ε} is a closed set which does not contain

μeq, and since L N − L̃u
N converges to zero uniformly for the weak-* topology as N goes

to infinity, uniformly on configurations of λi’s according to Lemma 3.10, we find by the



10478 G. Borot et al.

large deviation principle of Theorem 2.1 that there exists a positive constant cε such that

μS [{‖νN‖ ≥ ε}]≤ e−cεN2
.

This concludes the proof of Theorem 3.4.

3.6 Proof of Corollaries 3.5–3.7

Proof of Corollary 3.5. We decompose
∫

A
ϕ(ξ)d(L N − μeq)(ξ)=

∫
A
ϕ(ξ)dνN(ξ)+

∫
A
ϕ(ξ)d(L N − L̃u

N)(ξ).

As shown in Section 4, Hypothesis 3.2 ensures the existence of an adapted space, viz.∣∣∣∣∫
A
ϕ(ξ)dνN(ξ)

∣∣∣∣≤ c0Q1/2[νN ]‖ϕ‖H with νN = L̃u
N − μeq

and the second term is bounded by Lemma 3.10. Therefore,

μS

[∣∣∣∣∫
A
ϕ(ξ)d(L N − μeq)(ξ)

∣∣∣∣≥ cκb[ϕ]

N2b
+ c0t‖ϕ‖H

]
≤μS [Q[νN ]1/2 ≥ t] (3.13)

so that the conclusion follows from Theorem 3.4. �

Proof of Corollary 3.6. We have set ψx(ξ)= 1A(ξ)/(x− ξ), and we have

N−1 W1(x)− Weq(x)=μS

[∫
ψx(ξ)d(L N − dμeq)(ξ)

]

=μS

[∫
ψx(ξ)dνN(ξ)+

∫
ψx(ξ)d(L N − L̃u

N)(ξ)

]
, (3.14)

where νN is as defined in (3.13). The function ψx is Lipschitz with constant κ1[ψx]=
d−2(x,A). In virtue of Lemma 3.10, it follows that∣∣∣∣∫

A
ψx(ξ)d(L N − L̃u

N)(ξ)

∣∣∣∣≤ c

N2d2(x,A)
. (3.15)

In what concerns the first term in (3.14), we set tN = 4
√|C | ln N/N in Theorem 3.4 to find,

for N large enough:

μS

[∣∣∣∣∫ ψx(ξ)d(L̃u
N − μeq)(ξ)

∣∣∣∣]≤ c0tN‖ψx‖H + 2μS [Q1/2[νN ] ≥ tN ]

d(x,A)

≤ c0tN‖ψx‖H + c′′ e−3|C | N ln N

d(x,A)
. (3.16)
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And, for x bounded independently of N, and N large enough, the last term in (3.16) is

o(N−2d−2(x,A)). So, combining (3.15) and (3.16), we obtain the existence of constants

c, c1 > 0 such that

|N−1W1(x)− Weq(x)| ≤ c

N2d2(x,A)
+ c1 ‖ψx‖H

√
ln N

N
.

Multiplying by N entails the result.

For n≥ 2, N−nWn(x1, . . . , xn) is the μS expectation value of a homogeneous

polynomial of degree n having a partial degree at most 1 in the quantities∫
A ψxi (ξi)d(L N − μeq)(ξi) and μS [

∫
A ψxi (ξi)d(L N − μeq)(ξi)]. The coefficients of this poly-

nomial are independent of N. A similar reasoning shows that, for any subset I of [[ 1 ; n]],

and if xi is bounded independently of N and N is large enough:

μS

[∏
i∈I

∫
A
ψxi (ξi)d(L N − μeq)(ξi)

]
≤
∏
i∈I

[
c

N2d2(xi,A)
+ c1 ‖ψx‖H

√
ln N

N

]
.

Multiplying back by N |I | gives the desired result. �

Proof of Corollary 3.7. We have Ñh − Nεh = N
∫

A 1Ah(ξ)d(L N − μeq)(ξ). Let us choose

(A′
h)0≤h≤g to be a collection of pairwise disjoint segments, such that A′

h is a neighbor-

hood of Sh in Ah, and denote A′ =⋃g
h=0 A′

h. We would like to consider the model μS or μS ′

where eigenvalues are integrated over A, or over A′. More precisely,

• in the unconstrained model, S =AN and S ′ = (A′)N ;

• in model with fixed filling fractions subordinate to the vector N= (N0, . . . , Ng),

A is already partitioned as
⋃g

h=0 Ah, and this induces a new partition

A′ = (A0 ∩ A′, . . . ,Ag ∩ A′), and we define S =AN and S ′ =A′
N.

In either case, we stress that Ñh = ÑS
h is computed for the model S. We also observe that

Weq is the same in the models μS and μS ′ . We write

Ñh − Nεh =
∮
Γ ′

h

dξ

2iπ

(
N∑

i=1

1

ξ − λi
− N Weq(ξ)

)
,

where Γ ′
h is a contour surrounding Ah, and observe that if there is no eigenvalues in

A \
◦
A′ the function ϕ(x)= 1A(x)

∮ dξ
2iπ(ξ−x) with Γ ′

h as integration contour is Lipschitz and

with finite ‖ · ‖H norm. Therefore, we can apply Corollary 3.5 and the large deviations of
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Lemma 3.1 to deduce that if Λ= {∃ i, λi ∈B=A \
◦
A′},

μS [|Ñh − Nεh| ≥ t]≤μS [Λ] + μS

[{∣∣∣∣N ∫
A
ϕ(ξ)d(L N − μeq)(ξ)

∣∣∣∣≥ t
}
∩Λc

]

≤ exp

⎧⎨⎩N sup
x∈A\

◦
A′

Teff(x)

⎫⎬⎭+ exp
{

C N ln N − 1

4
N2s2

}
+ C ′ exp{−c′N2},

(3.17)

where we have set t= N(cκb[ϕ]/N2b + c0s‖ϕ‖H). By construction of A′
h and Hypothesis 3.1,

the sup is negative. Therefore, after rescaling t, we obtain the existence of C ′ > 0 so that,

for N large enough:

μS [|Ñh − Nεh| ≥ t
√

N ln N]≤ eN ln N(C ′−t2). �

4 Construction of Adapted Spaces

4.1 Example: translation invariant two-body interaction

The construction of adapted spaces as described in Definition 3.2 can be easily

addressed in the case of two-body interactions (r = 2) depending only of the distance.

We shall consider in this paragraph:

T(x, y)=u(x− y)+ v(x)+ v(y)
2

.

The functional Q introduced in Section 3.2 takes the form:

Q[ν]=
∫

q(x− y)dν(x)dν(y)=
∫

R

F [q](k) |F [ν](k)|2 dk, with q(x)=−β ln |x| − u(x).

Lemma 4.1. Assume u∈ C1(R) is such that k �→F [q](k), with F [q] understood in the sense

of distributions is continuous on R
∗ and positive everywhere, and |k|b F [q](k)≥ c for

some c> 0 and b≥ 1 when |k| is small enough. Then, H= ιA(Hb/2(R)) equipped with its

Sobolev norm, and growth index m= 0 is an adapted space. Here, ιA is the operation of

restriction of the domain of definition to A. �



Large-N Expansion for Mean Field Models 10481

Proof. Let ν ∈M0(A) and ϕ ∈ Hb/2(R). Then∣∣∣∣∫
A
ϕ(x)dν(x)

∣∣∣∣= ∣∣∣∣∫
R

F [ϕ](−k) · F [ν](k)dk

∣∣∣∣
≤
(∫

R

F [q](k) |F [ν](k)|2 dk
)1/2 (∫

R

|F [ϕ](k)|2
F [q](k)

dk
)1/2

≤Q1/2[ν]
(∫

R

|k|b |F [ϕ](k)|2 dk

|k|b F [q](k)

)1/2

.

We observe that |k|b F [q](k)= β|k|b−1 − |k|b F [u](k). Since u is C1 and b≥ 1, we have

|k|b F [q](k)≥ 1 when |k|→∞. And, by assumption, we have |k|b F [q](k) > c when |k| is

small enough. Since, furthermore, F [q](k) > 0, there exists c′ > 0 so that |k|b F [q](k) > c′

for any k, and ∣∣∣∣∫
A
ϕ(x)dν(x)

∣∣∣∣≤ 1√
c′
Q1/2[ν] ‖ϕ‖Hb/2 .

Eventually, for some ε > 0, we can always find a function χA ∈ C(b+1+ε)/2(R) with compact

support and assuming values 1 on A. Then

F [ek0 ]=F [χA](k+ k0), lim
|k|→∞

|k|(b+1+ε)/2 F [χA](k)= 0.

Therefore, ‖ek‖Hb/2 remains bounded when k∈R. �

In many applications, F [q](k) can be explicitly computed. In such cases, it is

relatively easy to check its positivity and extract its k→ 0 behavior, which is related to

the growth of q(x) when |x|→∞.

4.2 Space adapted to Q

We now present a general construction of adapted spaces thanks to functional analy-

sis arguments. It applies in particular to 2-body interactions which are not translation

invariant (i.e., do not have a simple representation in Fourier space) or to more general

r-body interactions.

Theorem 4.2. Let q> 2 and assume that Q defined as in (3.1) satisfies to Hypothesis 3.2.

Then, the space W1;q(A) equipped with its Sobolev norm ‖ · ‖q is an adapted space. It has

a growth index m= 1. �
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Proof. Let 2> p≥ 1 be conjugate to q (viz. 1/p+ 1/q = 1) and define the integral opera-

tor T : L p
0 (A) �→ L p

0 (A) with

L p
0 (A)=

{
f ∈ L p(A) :

∫
A

f(x)dx= 0
}

by

T [ f ](x)=−β
∫

A
ln |x− y| f(y)dy−

∫
A
τ(x, y) f(y)dy+

∫
A2
(β ln |x− y| + τ(x, y)) f(y)dydx,

where

τ(x, y)=
∫

Ar−2

T(x, y, x1, . . . , xr−2)

(r − 2)!

r−2∏
a=1

dμeq(xa).

The functional Q is strictly positive definite by Hypothesis 3.2. Given ϕ ∈ Lr
0(A), ϕ �= 0

and r > 1, it is clear from the fact that A is compact that T [ϕ] ∈ Lr
0(A) as well. Hence,

∫
A
ϕ(x)T [ϕ](x)dx=Q[νϕ ]> 0 with dνϕ = ϕ(x)dx∈M0(A).

In particular, T defines a continuous positive definite self-adjoint operator on L2
0(A). By

functional calculus on its spectrum, one can define any power of the operator T as an

operator on L2
0(A). Further, observe that given ϕ ∈ L2

0(A) and any 1≤ p< 2

∫
A
T 1

2 [ϕ](x) T 1
2 [ϕ](x)dx=

∫
A
ϕ(x) T [ϕ](x)dx≤ ‖ϕ‖L p(A) ‖T [ϕ]‖Lq(A) ≤ C‖ϕ‖2

L p(A), (4.1)

where q is conjugated to p. To obtain the last inequality, we have used that ‖T [ϕ]‖Lq(A) ≤
C ‖T [ϕ]‖L∞(A) since A is compact. And, since the integral kernel T of T is in Lq

uniformly—provided q<∞—for p given by 1/p+ 1/q = 1 we can bound:

‖ T [ϕ] ‖L∞(A) ≤ C sup
x∈A

‖T (x, •)‖Lq(A) ‖ϕ‖L p(A).

From (4.1), we deduce that T 1
2 extends into a continuous operator T 1

2 = L p
0 (A) �→ L2

0(A)

for any 1≤ p< 2. Further, it is established in the appendix, see Proposition A.3, that

T −1 : W1;q(A) �→ L p
0 (A) is continuous. Thus, given ϕ1 ∈ L2

0(A) and ϕ2 ∈ W1;q(A), one has

that∣∣∣∣∫
A
ϕ1(x) · ϕ2(x)dx

∣∣∣∣= ∣∣∣∣∫
A
ϕ1(x) · T 1

2 ◦ T 1
2 [T −1[ϕ2]](x)dx

∣∣∣∣= ∣∣∣∣∫
A
T 1

2 [ϕ1](x) · T 1
2 [T −1[ϕ2]](x)dx

∣∣∣∣
≤ (Q[νϕ1 ])

1
2

(∫
A
T 1

2 [T −1[ϕ2]](x) · T 1
2 [T −1[ϕ2]](x)dx

) 1
2

.
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In the first line, we have used that T −1 ◦ T −1 = idW1;q(A). In order to obtain the second

equality, we have used that T 1
2 [T −1[ϕ2]] ∈ L2(A), T 1

2 is a continuous self-adjoint operator

on L2(A) and that ϕ1 ∈ L2(A).

For x �∈A, let σA(x)= (
∏

a∈∂A(x− a))1/2, where the square root is taken so that

σA(x)∼ xg+1 when x→∞. It is readily checked on the basis of the explicit expression

given in (A.17), that for any ε > 0, the function

Φε(x)= |σ 1/2
A,+|ε(x) T −1[ϕ2](x)−

∫
A
|σ 1/2

A,+|ε(ξ) T −1[ϕ2](ξ)dξ

belongs to L2
0(A) and converges in L p

0 (A), 1≤ p< 2, to T −1[φ]. Thus,

∫
A
T 1

2 [T −1[ϕ2]](x) · T 1
2 [T −1[ϕ2]](x)dx=

∫
A

lim
ε→0+

{T 1
2 [Φε](x) · T 1

2 [Φε](x)}dx

= lim
ε→0+

{∫
A
T 1

2 [Φε](x) · T 1
2 [Φε](x)dx

}

= lim
ε→0+

{∫
A
Φε(x) · T [Φε](x)dx

}
=

∫
A
Φ0(x) · T [Φ0](x)dx.

Above we have used the continuity of T 1
2 on L p

0 (A), the dominated convergence, the self-

adjointness of T 1
2 : L2

0(A)→ L2
0(A) and, finally, dominated convergence and the fact that

T [Φε](x) ∈ L∞
0 (A) uniformly in ε.

Thus, all in all, we have shown that∣∣∣∣∫
A
ϕ1(x) · ϕ2(s)dx

∣∣∣∣≤ (Q[νϕ1 ])
1
2

(∫
A
ϕ2(x) · T −1[ϕ2](x)dx

) 1
2

.

For any ϕ2 = φ ∈ W1;q(A) and ν ∈M0(A) such that Q1/2[ν], we apply this bound to ϕ1;m =
(ν ∗ Gm)/dx∈ L2

0(A) for Gm a centered Gaussian distribution with variance 1/m. Then,

noting that

lim
m→∞Q1/2[ϕ1;m]=Q1/2[ν],

by an argument similar to [8, Lemma 2.2], we obtain

∣∣∣∣∫
A
φ(x)dν(x)

∣∣∣∣≤Q1/2[ν]
(∫

A
φ(x) · T −1[φ](x)ds

) 1
2

.

The claim follows from Hölder’s inequality and invoking the continuity of T −1.
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5 Schwinger-Dyson Equations and Linear Operators

5.1 Hierarchy of Schwinger-Dyson equations

To write the Schwinger-Dyson equations in a way amenable to asymptotic analysis, we

require

Hypothesis 5.1. Hypothesis 2.1 and T is holomorphic in a neighborhood of A. �

Lemma 2.5 is therefore applicable. It is convenient for the asymptotic analysis

to introduce:

σhd(x)=
∏

α∈∂S∩∂A
(x− α), σS(x)=

∏
α∈∂S

(x− α), (5.1)

and

σ [1]
hd(x, ξ)=

σhd(x)− σhd(ξ)

x− ξ , σ [2]
hd(x; ξ1, ξ2)=

σ [1]
hd(x, ξ1)− σ [1]

hd(x, ξ2)

ξ1 − ξ2 . (5.2)

Then, for any n≥ 1 and I a set of cardinality n− 1, we derive the Schwinger-Dyson equa-

tions in Appendix 1, and they take the form

(
1 − 2

β

)
∂xWn(x, xI )+ Wn+1(x, x, xI )+

∑
J⊆I

W|J|+1(x, xJ)Wn−|J|(x, xI\J)

− 2

β

∑
a∈∂A
\∂S

σhd(a)

σhd(x)

∂a Wn−1(xI )

x− a
+ 2

β
N2−r

∮
Ar

drξ

(2iπ)r
σhd(ξ1)

σhd(x)

∂ξ1 T(ξ1, . . . , ξr)

(r − 1)! (x− ξ1)

× Wr;n−1(ξ1, . . . , ξr | xI )

+
(

1 − 2

β

) ∮
A

dξ

2iπ

σ [2]
hd(x; ξ, ξ)
σhd(x)

Wn(ξ, xI )+ 2

β

∑
i∈I

∮
A

dξ

2iπ

σhd(ξ)

σhd(x)

Wn−1(ξ, xI\{i})
(x− ξ)(xi − ξ)2

−
∮

A

d2ξ

(2iπ)2
σ [2]

hd(x; ξ1, ξ2)
σhd(x)

{Wn+1(ξ1, ξ2, xI )+
∑
J⊆I

W|J|+1(ξ1, xJ)Wn−|J|(ξ2, xI\J)} = 0. (5.3)

There, xI is as defined in (1.2) and we have made use of the semi-connected correlators:

Wr;n(ξ1, . . . , ξr | x1, . . . , xn)= ∂t1 . . . ∂tnW̃r(ξ1, . . . , ξr)[T → T̃t1...tn]|t1,...,tn=0,
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where T̃t1...tn is as defined in (1.6). For instance

W2;2(ξ1, ξ2|x1, x2)= W4(ξ1, ξ2, x1, x2)+ W3(ξ1, x1, x2)W1(ξ2)

+ W2(ξ1, x1)W2(ξ2, x2)+ W2(ξ1, x2)W2(ξ2, x1)+ W1(ξ1)W3(ξ2, x1, x2).

(5.4)

We also use the convention W0 = ln Z .

5.2 The master operator

Upon a naive expansion of the Schwinger-Dyson equation around W1 = NWeq + o(N),

there arises a linear operator K : H m(A)→H 1(A). This operator depends on the Stielt-

jes transform Weq of the equilibrium measure and on T and is given by

K[ϕ](x)= 2Weq(x) ϕ(x)− 2
∮

A2

d2ξ

(2iπ)2
σ [2]

hd(x; ξ1, ξ2)
σhd(x)

ϕ(ξ1)Weq(ξ2)

+ 2

β

∮
Ar

drξ

(2iπ)r
σhd(ξ1)

σhd(x)

∂ξ1 T(ξ1, . . . , ξr)

(r − 1)! (x− ξ1) {ϕ(ξ1)Weq(ξ2)+ (r − 1)Weq(ξ1)ϕ(ξ2)}

×
[

r∏
i=3

Weq(ξi)

]
. (5.5)

It is then necessary to invert K in a continuous way in order to study the corrections

to the leading order of the correlators via the Schwinger-Dyson equations. The two lem-

mata below answer this question, and are the key to the bootstrap analysis of Section 5.

Let us introduce the period map Π : H m(A)→C
g+1 as

Π [ϕ]=
(∮

A0

dξ ϕ(ξ)

2iπ
, . . . ,

∮
Ag

dξ ϕ(ξ)

2iπ

)
.

We denote H m
0 (A)=KerΠ .

Lemma 5.1. Assume the local strict convexity of Hypothesis 3.2, the analyticity of

Hypothesis 5.1, and that μeq is off-critical (Definition 2.6). Let m≥ 1. Then, the restric-

tion of K to H m
0 (A) is invertible on its image J m(A)=K[H m

0 (A)]. �

Lemma 5.2. J 2(A) is a closed subspace of H 1(A), and for any contour Γ surrounding

A in C \ A, and Γ [1] exterior to Γ , there exists a constant c> 0 so that

∀ψ ∈J 2(A), ‖K−1[ψ ]‖Γ [1] ≤ c‖ψ‖Γ . �

The remaining of this section is devoted to the proof of these results.
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5.3 Preliminaries

We remind that, in the off-critical regime, according to the definitions given in (5.1) and

in virtue of Lemma 2.5, one has the representation:

dμeq

dx
(x)= 1S(x)

2π
M(x)

∣∣∣∣∣σ
1/2
S (x)

σhd(x)

∣∣∣∣∣
with M holomorphic and nowhere vanishing in a neighborhood of A. Equivalently, in

terms of the Stieltjes transform:

Weq;−(x)− Weq;+(x)=
M(x)σ 1/2

S;−(x)

σhd(x)
. (5.6)

And, from the formula (2.14) for the Stieltjes transform:

2Weq(x)− V ′(x)= M(x)
σ

1/2
S (x)

σhd(x)
, (5.7)

V ′(x)=−2

β

∮
Sr−1

dr−1ξ

(2iπ)r−1

∂xT(x, ξ2, . . . , ξr)

(r − 1)!

r∏
i=2

Weq(ξi), (5.8)

There σ 1/2
S (x) is the square root such that σ 1/2

S (x)∼ xg+1 when x→∞. To rewrite K in a

more convenient form, we introduce four auxiliary operators. We refer to Section 1.5 for

the notations of functional spaces. Let m≥ 1:

• O : H m(A)→O(A) is defined by

O[ϕ](x)= 2

β

∮
Ar−1

dr−1ξ

(2iπ)r−1

∂xT(x, ξ2, . . . , ξr)

(r − 2)!
ϕ(ξ2)

[
r∏

i=3

Weq(ξi)

]
.

• L : H m(A)→H g+2(A) is defined by

L[ϕ](x)=
∮

A

dξ

2iπ

σ
1/2
S (ξ)

σ
1/2
S (x)

O[ϕ](ξ)

2(x− ξ) .

As a matter of fact, since O[ϕ] is holomorphic in a neighborhood of A, the con-

tour integral in the formula above can be squeezed to S, and ImL⊆H g+2(S).

• P : H m(A)→H m(A) is defined by

P[ϕ](x)= Res
ξ→∞

σ
1/2
S (ξ) ϕ(ξ)dξ

σ
1/2
S (x) (x− ξ)

.
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By construction, P is a projector with:

KerP =H g+2(A), ImP = σ−1/2
S · Cg+1−m[x]⊆H m(S).

• I : H 1(A)→H 1(A) is defined by

I[ψ ](x)=
∮

A

dξ

2iπ

σhd(ξ) ψ(ξ)

M(ξ) (x− ξ) .

Its kernel is the space of rational functions with at most simple poles at

hard edges (that is the zeroes of σhd). Its pseudo-inverse I−1 : H 1(A)→
H 1(A)/Ker I can be readily described

I−1[ϕ](x)=
∮

A

dξ

2iπ

M(ξ) ϕ(ξ)

σhd(ξ) (x− ξ) .

Lemma 5.3. We have the factorization between operators in H m(A):

id + L− P = σ−1/2
S · (I ◦K). (5.9)

�

Proof. A sequence of elementary manipulations allows one to recast K in the form

K[ϕ](x)=
∮

A

dξ

2iπ

σhd(ξ)

σhd(x)

1

x− ξ {[2Weq(ξ)− V ′(ξ)]ϕ(ξ)+ Weq(ξ)O[ϕ](ξ)}, (5.10)

where the definition of V(x) was given in (5.8). Using (5.7) and the fact that M is holo-

morphic and nowhere vanishing in a neighborhood of A, we find

(I ◦K)[ϕ](x)=
∮

A

dξ

2iπ

σ
1/2
S (ξ)ϕ(ξ)

x− ξ +
∮

A

dξ

2iπ

σhd(ξ)Weq(ξ)O[ϕ](ξ)

M(ξ)(x− ξ) .

The first integral can be computed by taking the residues outside of the integration con-

tour, whereas the second integral can be simplified by squeezing the integration contour

to S and then using (5.6). Coming back to a contour integral, we obtain

(I ◦K)[ϕ](x)= σ 1/2
S (x) ϕ(x)− σ 1/2

S (x)P[ϕ](x)+
∮

A

dξ

2iπ

σ
1/2
S (ξ)O[ϕ](ξ)

2(x− ξ) ,

which takes the desired form. �

5.4 Kernel of the master operator

The factorization property of Lemma 5.3 implies
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Corollary 5.4.

KerK⊆Ker(id + L− P),

with equality when there is no hard edge. �

We may give an alternative description of the kernel of I ◦K.

Lemma 5.5. The three properties are equivalent:

(i) K[ϕ] ∈Ker I.

(ii) ϕ ∈H m(S), the function σ 1/2
S · ϕ has continuous ± boundary values on S,

and for any x∈ S̊:

ϕ+(x)+ ϕ−(x)+O[ϕ](x)= 0.

(iii) The expression:

dνϕ(x)= (ϕ−(x)− ϕ+(x)) · dx

2iπ

defines a complex measure supported in S with density in L p(S) for p< 2.

It satisfies the singular integral equation: for any x∈ S̊,

β

∫
/S

dνϕ(ξ)

x− ξ +
∫

Sr−1

∂xT(x, ξ2, . . . , ξr)

(r − 2)!
dνϕ(ξ2)

r∏
i=3

dμeq(ξi)= 0. �

Proof. • (i)⇒ (ii) : If ϕ satisfies (i), then

ϕ(x)= (P − L)[ϕ](x). (5.11)

From the definition of our operators, σ 1/2
S (x) (P − L)[ϕ](x) is holomorphic on C \ S, and

admits continuous ± boundary values on S. So, Equation (5.11) ensures that ϕ(x)σ 1/2
S (x)

admits continuous ± boundary values on S. Given the definition of L, we have

∀x∈S, L[ϕ]+(x)+ L[ϕ]−(x)=O[ϕ](x). (5.12)

Hence, the claim follows upon computing the sum of the + and − boundary values of

ϕ(x) expressed by (5.11).

• (ii)⇒ (i) : Conversely, assume ϕ satisfies (ii). Then, the definition of K implies that

σhd(x)K[ϕ](x) has continuous ± boundary values on S. Let us compute the difference of
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those boundary values using (5.10). For x∈S:

K[ϕ]−(x)−K[ϕ]+(x)= (Weq;−(x)− Weq;+(x))(ϕ+(x)+ ϕ−(x)+O[ϕ](x))

+ (Weq;+(x)+ Weq;−(x)− V ′(x))(ϕ−(x)− ϕ+(x)).

Since ϕ satisfies (ii), for any x∈S, the second factor in the first line vanishes. Moreover,

the first factor in the second line vanishes as well by the characterization of the equi-

librium measure. Hence, σhd(x)K[ϕ](x) has continuous and equal ± boundary values on

S. As a consequence σhd(x)K[ϕ](x) is an entire function. Since K[ϕ](x) behaves as O(1/x)

when x→∞, we deduce that K[ϕ](x) is a rational function with at most simple poles at

hard edges, that is, that K[ϕ] belongs to Ker I.

• (iii)⇔ (ii) : (iii) is stronger than (ii). Conversely, assume ϕ satisfies (ii). Since σS has

simple zeroes, the information in (ii) imply that dνϕ is an integrable, complex measure,

which has a density which is L p(S) for any p< 2. By construction

ϕ(x)=
∫

S

dνϕ(ξ)

x− ξ .

Then, the equation for the ± boundary values of ϕ in (ii) translates into the singular

integral equation for the measure dνϕ . �

Proof of Lemma 5.1. We need to show that the restriction of K to KerΠ is injective. Let

ϕ ∈KerK ∩ KerΠ . The singular integral equation of (iii) holds since K[ϕ]= 0 ∈Ker I. Let

us integrate it: there exist constants c0, . . . , cg such that,

∀x∈Sh β

∫
S

ln |x− ξ |dνϕ(ξ)+
∫

Sr−1

T(x, ξ2, . . . , ξr)

(r − 2)!
dνϕ(ξ2)

r∏
i=3

dμeq(ξi)= ch. (5.13)

Now, let us integrate under dν∗ϕ(x) (here ∗ denotes the complex conjugate) and integrate

over x∈S. This last operation is licit since every term in (5.13) belongs to L∞(S,dx). The

right-hand side vanishes since:
∫

Sh

dνϕ(x)=
∮

Sh

ϕ(x)dx

2iπ
= 0. (5.14)

We find

Q[Re νϕ ] +Q[Im νϕ ]= 0, (5.15)

where Q is the quadratic form of Hypothesis 3.2. The vanishing of periods (5.14) implies

a fortiori that Re νϕ and Im νϕ are signed measures supported on S⊆A with total mass

zero. The assumption of local strict convexity (Hypothesis 3.2) states that for any such
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measure ν supported on A, Q[ν]≥ 0, with equality iff ν = 0. So, (5.15) implies Re νϕ =
Im νϕ = 0, that is, ϕ = 0. �

5.5 Continuity of the inverse

We prove Lemma 5.2 by a detour via Fredholm theory in L2 spaces. We fix nonintersect-

ing contours Γh surrounding Ah in C \ A, all lying inΩ such that T is holomorphic onΩr.

We denote Γ =⋃g
h=0 Γh. Then, L can be interpreted as an integral operator on L2(Γ )

L[ϕ](x)=
∮
Γ

dy

2iπ
L (x, y)ϕ(y),

where the integral kernel L (x, y) is smooth on Γ × Γ :

L (x, y)=− 2

βσ
1/2
S (x)

∮
(Γ [−1])r−1

dr−1ξ

(2iπ)r−1

σ
1/2
S (ξ1) ∂ξ1 T(ξ1, y, ξ2, . . . , ξr−1)

(r − 2)! (ξ1 − x)

r−1∏
i=2

Weq(ξi).

Similarly, the operator P can be recast as

P[ϕ](x)=
∮
Γ

dy

2iπ
P(x, y) ϕ(y) , with P(x, y)= 1

σ
1/2
S (x)

Res
ξ→∞

σ
1/2
S (ξ)dξ

(ξ − y)(x− ξ) .

This last kernel is smooth on Γ × Γ and of finite rank g+ 1.

Since L and P, as operators on L2(Γ ), have smooth kernels and Γ is compact, the

operator (L− P) : L2(Γ )→ L2(Γ ) is compact and trace class in virtue of the condition

established in [23]. Finally, let pk be the unique polynomial of degree at most g such that

∀h,k∈ [[ 0 ; g ]],
∮
Γh

dξ

2iπ

pk(ξ)

σ
1/2
S (ξ)

= δk,h.

Now consider the measure space X= [[ 0 ; g ]] ∪ Γ endowed with the measure ds

that is the atomic measure on [[ 0 ; g ]] and a curvilinear measure on Γ . We shall con-

stantly make the identification L2(X)�C
g+1 ⊕ L2(A). It is then readily seen that the oper-

ator

N :

C
g+1 ⊕ L2(Γ ) −→ C

g+1 ⊕ L2(Γ )

(v, ϕ) �−→
(
−v +Π [ϕ], (L− P)[ϕ] + σ−1/2

S ·
(

g∑
h=0

vh ph

))

is compact and trace class when considered as an integral operator L2(X) �→ L2(X). The

matrix integral kernel N of N has a block decomposition:

N =
(

N (h,k) N (h, y)

N (x,k) N (x, y)

)
=
(

−δ j,k 1Γh(y)/2iπ

σ
−1/2
S (x) · pk(x) (L −P)(x, y)

)
.
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The operator id +N is injective: indeed, if (v, ϕ) ∈ ker(id +N ), then

∀h∈ [[ 0 ; g ]],
∮
Γh

dξ ϕ(ξ)

2iπ
= 0 and ϕ(x)=−

∑g
h=0 vh ph(x)

σ
1/2
S (x)

+ (P − L)[ϕ](x). (5.16)

The second equation implies that, in fact, ϕ ∈H 1(A). Further, since
∮
Γ

dξ ϕ(ξ)= 0, it fol-

lows that ϕ ∈H 2(A). Thus, ϕ(x)dx is a holomorphic differential all of whose Γh periods

are zero. Hence ϕ = 0. Then (5.16) implies that v = 0 as well. The Fredholm alternative

thus ensures that id +N is continuously invertible. Furthermore, its inverse id −RN is

given in terms of the resolvent kernel defined as in (A.16). The integral kernel N falls

into the class discussed in Appendix A.3 with f = 1. Hence, the integral kernel RN of

RN belongs to L∞(X2).

We are now in position to establish the continuity of its inverse. The represen-

tation (5.10) and the explicit form of the operators appearing there make it clear that K
is a continuous operator for any norm ‖ · ‖Γ in the sense that

‖K[ϕ]‖Γ [1] ≤ ‖ϕ‖Γ .

We have already proved in Lemma 5.1 that the map

K̂ : H 1(A) �−→ C
g+1 ⊕H 1(A),

ϕ −→ (Π [ϕ],K[ϕ])

is injective. So, for any ψ ∈J 1(A), there exists there exists a unique ϕ ∈H 1(A) such that

K[ϕ]=ψ and
∮

Ah

dξ ϕ(ξ)

2iπ
= 0.

In other words, (0, ϕ) ∈C
g+1 ⊕ H 1(A) does provide one with the unique solution to

(id +N )[(0, ϕ)]= (0, I[ψ ]).

Then, it readily follows that for any ψ ∈J 1(A)

K−1[ψ ](x)= I[ψ ](x)−
∮
Γ

dξ

2iπ

RN (x, ξ) σhd(ξ)

M(ξ)
ψ(ξ),

where we have used that the resolvent kernel RN (x, ξ) is an analytic function on

(C \ A)×Ω, with Ω the open neighborhood of A such that T is analytic on Ωr. It is

straightforward to establish the continuity of the inverse on the basis of the formula

above. As a consequence, it follows that J 1(A) (respectively, J 2(A)) is a closed sub-

space of H 1(A) (respectively, H 2(A)). �
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6 Asymptotics of Correlators in the Fixed Filling Fraction Model

6.1 More linear operators

Let us decompose

W1 = N(Weq +Δ−1W1).

We define, with the notations of (5.2),

D1[ϕ](x1, x2)= 2

β

∮
A

dξ

2iπ

σhd(ξ)

σhd(x1)

ϕ(ξ)

(x1 − ξ)(x2 − ξ)2 ,

D2[ϕ](x)= ϕ(x, x)−
∮

A2

dξ1dξ2
(2iπ)2

σ [2]
hd(x; ξ1, ξ2)
σhd(x)

ϕ(ξ1, ξ2),

and

T [ϕ](x)= 2

β

∮
Ar

drξ

(2iπ)r
∂ξ1 T(ξ) ϕ(ξ)

(r − 1)! (x− ξ1) ,

ΔK[ϕ](x)= 1 − 2/β

N

(
∂xϕ(x)+

∮
A

dξ

2iπ

σ [2]
hd(x; ξ, ξ)
σhd(x)

ϕ(ξ)

)
+ 2D2[(Δ−1W1)(•1) ϕ(•2)](x)

+
r∑

i=1

∑
J⊆[[ 1 ; r ]]\{i}

J �=∅

T

⎡⎣ϕ(•i)
∏
j∈J

(Δ−1W1)(• j)
∏
j /∈J

Weq(• j)

⎤⎦ .
Above and in the following the notation • j inside of the action of an operator denotes the

jth running variable of the function on which the given operator acts. We also remind

that if Γ = Γ [0] is a contour surrounding A, then we denote by (Γ [i])i≥0 a family of nested

contours such that Γ [i + 1] is exterior to Γ [i] for any i. There exists positive constants

c1, c2, . . . which depend on the model and on the contours, so that

‖D1[ϕ]‖(Γ [1])2 ≤ c1 ‖ϕ‖Γ ,

‖D2[ϕ]‖Γ ≤ c2 ‖ϕ‖Γ 2 ,

‖T [ϕ]‖Γ [1] ≤ c3 ‖ϕ‖Γ r ,

‖ΔK[ϕ]‖Γ [1] ≤ (c4/N) ‖ϕ‖Γ + c5‖(Δ−1W1)‖Γ ‖ϕ‖Γ [1].

(6.1)

Above, ϕ belongs to the domain of definition of the respective operators. Note that we

have to push the contour toward the exterior in order to control the effect of the singular

factors in D1 and T . Further, we have also used the continuity of the derivation operator

‖∂xϕ‖Γ [1] ≤ c‖ϕ‖Γ . In order to gather all of the relevant operator bounds in one place, we
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remind the continuity of K−1: for ϕ ∈J 2(A)

‖K−1[ϕ]‖Γ [1] ≤ c6 ‖ϕ‖Γ .

Besides, if ϕ is holomorphic in C \ S instead of C \ A, then K−1[ϕ] is also holomorphic in

C \ S.

6.2 Improving concentration bounds using SD equations

In order to improve the a priori control on the correlators which follows from the con-

centration bounds

‖NΔ−1W1‖Γ ≤ c1 ηN, ‖Wn‖Γ ≤ cnη
n
N with ηN = (N ln N)1/2, (6.2)

it is convenient to recast the Schwinger-Dyson equations.

The Schwinger-Dyson equation relative to W1, that is, (5.3) with n= 1 takes the

form:

K[NΔ−1W1](x)= A1(x)+ B1(x)− (ΔK)[NΔ−1W1](x) (6.3)

with:

A1(x)=−N−1D2[W2](x)+ ND2[(Δ−1W1)(•1) (Δ−1W1)(•2)]

−
∑

J![[ 1 ; r ]]
[J]≤r−1

N1−rT
[

[J]∏
i=1

W|Ji |(•Ji )

]
(x)

+ N
∑

J⊆[[ 1 ; r ]]
|J|≥2

(|J| − 1)T

⎡⎣∏
j∈J

(Δ−1W1)(• j)
∏
j /∈J

Weq(• j)

⎤⎦ (x)

− (1 − 2/β) ·
{
∂xWeq(x)+

∮
S

dξ

2iπ

σ [2]
hd(x; ξ, ξ)
σhd(x)

Weq(ξ)

}
,

B1(x)= 2

Nβ

∑
a∈∂A\∂S

σhd(a)

σhd(x)

∂a ln ZS
x− a

.

(6.4)

Also, some notational clarifications are in order. The symbol J ! [[ 1 ; r ]] refers to a sum

over all partitions of the set [[ 1 ; r ]] into [J] disjoint subsets J1, . . . , J[J], with [J] going

from 1 to r. In particular, the above sum is empty when r = 1. Finally, the summation

arising in the second line of (6.4) corresponds to a summation over all subsets J of

[[ 1 ; r ]] whose cardinality |J| varies from 2 to r.
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More generally, for n≥ 2, the nth Schwinger-Dyson equation takes the form:

K[Wn(•, xI )](x)= An(x; xI )+ Bn(x; xI )− (ΔK)[Wn(•, xI )](x) (6.5)

with:

An(x; xI )=−N−1D2

⎡⎢⎢⎣Wn+1(•1, •2, xI )+
∑
I ′⊆I

I ′ �=∅,I

W|I ′|+1(•1, xI ′)Wn−|I ′|(•2, xI\I ′)

⎤⎥⎥⎦ (x)

−
∑
i∈I

N−1D1[Wn−1(•, xI\{i})](x, xi)−
∗∑

J![[ 1 ; r ]]
I1"···"I[J]=I

N1−rT
[

[J]∏
i=1

W|Ji |+|Ii |(•Ji , xIi )

]
(x)

(6.6)

and

Bn(x; xI )= 2

Nβ

∑
a∈∂A\∂S

σhd(a)

σhd(x)

∂aWn−1(xI )

x− a
.

Finally, one has

∗∑
J![[ 1 ; r ]]

I1"···"I[J]=I

[J]∏
k=1

W|Jk|+|Ik|(ξ Jk
, xIk)

=
∑

I1"···"I[J]=I
|Ik|<|I |

r∏
k=1

W1+|Ik|(ξk, xIk)+
∑

J![[ 1 ; r ]]
∃� : |J�|≥2

∑
I1"···"I[J]=I

[J]∏
k=1

W|Jk|+|Ik|(ξ Jk
, xIk).

The " means that one should sum up over all decompositions of I into [J] disjoint sub-

sets I1, . . . , I[J] some of which can be empty. We stress that the order of dispatching the

elements does count, viz. the decompositions I " {∅} and {∅} " I differ. In other words,

the ∗ label means that one excludes all terms of the form Wn(•i, xI )
∏

j �=i W1(• j).

Schematically, the reason for this decomposition is that if we want to know

Wn—so it is put in the left-hand side—An should contain the leading contribution, Bn

an exponentially small contribution since it is a boundary term, and the ΔK term a

negligible contribution compared with the K term. Let us explain how (6.5) for n≥ 2 is

obtained from the Schwinger-Dyson equations (5.3). We first substitute in (5.3) W1(x)=
N(Weq(x)+Δ−1W(x)). We have collected in the left-hand side of (6.3) the terms which

are linear in Wn and involve Weq only, and the operator K was introduced in (5.5) for

this purpose. There also exist linear terms in Wn which is small, either because they

are originally of order 1/N compared with the K[Wn] terms (like the derivative term), or
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because they came in the substitution with a factor of Δ−1W1 instead of Weq. Recollect-

ing all those terms makes appear the operator ΔK, thought as a “small deformation” of

the master operator K. Then, we collect the boundary terms in Bn, and all the remaining

terms in An. Thus, the origin of
∑∗ in An is that terms which are linear in Wn should be

excluded, since they already appeared in K[Wn] and ΔK[Wn].

The decomposition (6.3) is obtained from the n= 1 Schwinger-Dyson equation by

a similar scheme. The quantity we would like to know is now NΔ−1W1. All leading linear

terms in Δ−1W1 appear in the left-hand side of (6.3) in the form of K[NΔ−1W1]. Then, we

do isolate some terms ΔK[NΔ−1W1], and A1 collect all the remaining terms which do not

come from the boundary. However, we remark that the expression (6.1) of the operator

ΔK itself is polynomialΔ−1W1—which in principle makes it small—soΔK[NΔ−1W1] con-

tains nonlinear terms in the function NΔ−1W1 sought for, and this is the main difference

with n≥ 2. Since we insisted to isolate ΔK[NΔ−1W1], the expression (6.6) is not valid for

A1, since it would lead to overcounting of nonlinear terms in Δ−1W1. The correct expres-

sion of A1 is (6.4): it differs from (6.6) at n= 1 by the sign of the second term, and the

appearance of the first term of the second line, that precisely avoid overcounting.

The above rewriting in basically enough so as to prove that the Schwinger-Dyson

are rigid, in the sense that even a very rough a priori control on the correlators enables

establishing that Wn∈ O(N2−n). Indeed,

Proposition 6.1. There exist integers pn and positive constants c′n so that

‖Δ−1W1‖Γ [p1] ≤ c′1 N−1, ‖Wn‖(Γ [pn])n ≤ c′n N2−n. �

In order to prove the above proposition we, however, first need to establish a

technical lemma emphasizing a one-step improvement of bounds.

Lemma 6.2. Assume there exist positive constants cn so that

‖NΔ−1W1‖Γ ≤ c1(ηNκN + 1), (6.7)

‖Wn‖Γ n ≤ cn(η
n
NκN + N2−n), (n≥ 2) (6.8)

for ηN →∞ so that ηN/N → 0, and κN ≤ 1. Then, there exist positive constants c′n so that

‖NΔ−1W1‖Γ [2] ≤ c′1(ηN κN (ηN/N)+ 1),

‖Wn‖(Γ [2])n ≤ c′n(η
n
N · ηN/N · κN + N2−n). �
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Proof. Hereafter, the values of the positive constants c1, c2, . . . may vary from line to

line, and we use repeatedly the continuity of the auxiliary operators introduced in

Section 6.1. We remind that in the fixed filling fraction model, we have a priori:

Δ−1W1 ∈H 2
0 (A),

and for any fixed xI = (x2, . . . , xr) ∈ (C \ A)n−1:

Wn(•, xI ) ∈H 2
0 (A).

Therefore, the right-hand side of (6.3) or (6.5) (seen as a function of x) belongs to J 2(A)

and we can apply the inverse of K:

Δ−1W1(x)=K−1[A1 + B1 − (ΔK)[Δ−1W1]](x), (6.9)

Wn(x, xI )=K−1[An(•, xI )+ Bn(•, xI )− (ΔK)[Wn(·, xI )](•)](x). (6.10)

We start by estimating the various terms present in A1. The terms not associated

with the sum over J in the first line are readily estimated by using the control on the

correlators and the continuity of the various operators introduced at the beginning of

the section. In what concerns the terms present in the sum, we bound them by using

that the bound (6.8) trivially holds for n= 1. All in all this leads to

‖A1‖Γ [1] ≤
c2c̃

N
(η2

NκN + 1)+ c2
1c̃

N
(ηNκN + 1)2 + c′

∑
J![[ 1 ; r ]]
[J]≤r−1

N1−r
[J]∏

a=1

(η
|Ja|
N κN + N2−|Ja|)

+ c̃c2
1(ηNκN + 1)(ηNκN/N + 1/N)+ c′′.

Thus, it solely remains to obtain an optimal bound for the product

Π1([J])= N1−r
[J]∏

a=1

(η
|Ja|
N κN + N2−|Ja|)=

∑
α"α =[[ 1 ; [J] ]]

κ
|α|
N N1−r

∏
a∈α
η
|Ja|
N

∏
a∈α

N2−|Ja|. (6.11)

Note that, because of the structure of the sum, there exists at least one � such that

|J�| ≥ 2. There are two scenarii then. Either, α= [[ 1 ; [J] ]] or |α|< [J]. In the second case,

the sum is maximized by the choice of partitions α such that � ∈ α since η2
N > 1 for N

large enough. In such partitions, one bounds∏
a∈α
η
|Ja|
N

∏
a∈α

N2−|Ja| ≤ η2
N

∏
a∈α\{�}

N |Ja|
∏
a∈α

N2−|Ja| ≤ η2
N Nr−2.
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So, taking this into account, one obtains

Π1([J])≤ c1 N1−r+[J] + c2
η2

N

N
κN .

It remains to recall that [J]≤ r − 1 so as to obtain

‖A1‖Γ [1] ≤ c′1

(
η2

N

N
κN + 1

)
.

It follows from the large deviations of single eigenvalues, Lemma 3.1, that ‖B1‖Γ =
O(N−∞). Finally, the bound (6.7) for Δ−1W1 leads to

‖ΔK[ϕ]‖Γ [1] ≤ c
ηN

N
‖ϕ‖Γ , i.e. ‖(ΔK)[NΔ−1W1]‖Γ [1] ≤ c′

(
ηN · ηN

N
κN + ηN

N

)
, (6.12)

where we have used (6.7) to obtain the last bound. For the second term of the last

inequality, we remind that ηN/N → 0, a fortiori is bounded by 1 for N large enough.

Note that, above, the shift of contour was necessary because of (6.1). It solely remains

to invoke the continuity of K−1—which, however, demands one additional shift of

contour—so as to obtain the claimed improvement of bounds relative to NΔ−1W1.

We can now repeat the chain of bounds for the Schwinger-Dyson equation asso-

ciated with the nth correlator with n≥ 2. Since

max
j∈[[ 1 ;n−2 ]]

{(η j+1
N κN + N2−( j+1))(κNη

n− j
N + N2−n+ j)} ≤ c(ηn

N · ηN

N
κN + N2−n),

and
1

N
(ηn−1

N κN + N−(n−1))≤ ηn
N · ηN

N
κN + N2−n (6.13)

for N large enough, one obtains

‖An‖(Γ [1])n ≤ c(ηn
N
ηN

N
κN + N2−n)+ c′δ(1)N + c′′δ(2)N , (6.14)

where

δ
(1)
N =

∑
I1"···"I[J]=I
|Ik|<|I |

N1−r
[J]∏

a=1

(η
|Ia|
N κN + N1−|Ia|),

δ
(2)
N =

∑
J![[ 1 ; r ]]
∃� : |J�|≥2

∑
I1"···"I[J]=I

[J]∏
a=1

(η
|Ia|+|Ja|
N κN + N2−|Ia|−|Ja|)
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issue from bounding the last term in (6.6). It is readily seen that

δ
(1)
N ≤

∑
I1"···"I[J]=I
|Ik|<|I |

∑
α"α=[[ 1 ; r ]]

(ηN

N
κN

)|α|
N2−n(ηN N)mα with mα =

∑
a∈α

|Ia|.

Thus, the right-hand side is maximized by choosing |α| minimal and mα maximal. How-

ever, if |α| = 0, then �α = 0 and one obtain N2−n as a bound. When |α| = 1, due to the con-

straint |Ik|< |I | =n− 1, one obtain that max mα <n− 2. Finally, for α ≥ 2 one has that

max mα =n− 1. A short calculation then shows that

δ
(1)
N ≤ c

(
N2−n+ ηn

N · ηN

N
κN

)
.

Likewise, one obtains,

δ
(2)
N =

∑
J![[ 1 ; r ]]
∃a : |Ja|≥2

∑
I1"···"I[J]=I

∑
α∪α=[[ 1 ; [J] ]]

κ
|α|
N N2−n(ηN N)�α+mα N2([J]−r−|α|) with

⎧⎪⎪⎪⎨⎪⎪⎪⎩
mα =

∑
a∈α

|Ia|,

�α =
∑
a∈α

|Ja|.

Thus, the above summand is maximized by taking the smallest possible value for |α|
and the largest possible ones for �α, mα and [J]. Note, however, that [J]≤ r − 1 due to

the constraint ∃a : |Ja| ≥ 2. If |α| = 0, then �α =mα = 0 and one obtains a bound by N−n≤
N2−n. If |α|> 0, then one has �α ≤ r − [J] + 1 + (|α| − 1), thus leading to

κ
|α|
N N2−n(ηN N)�α+mα N2([J]−r−|α|) ≤ κ |α|N N2−n(ηN N)|α|+mα

(ηN

N

)r−[J]
.

The right-hand side is maximized for mα =n− 1, [J]= r − 1 and |α| = 1, what leads to a

bound by (ηn+1
N /N)κN . Hence, ‖An‖(Γ [1])n ≤ c(ηn

N · (ηN/N) · κN + N2−n). The remaining terms

in (6.6) are bounded analogously to the n= 1 case. Repeating then the steps of this

derivation one, eventually, obtains the sought bounds on Wn. �

Proof of Proposition 6.1. The concentration results (6.2) provide us the bounds (6.7)–

(6.8) with ηN = (N ln N)1/2 and κN = 1. From Lemma 6.2, we can replace κN by (ηN/N)m =
(ln N/N)m/2 provided Γ is replaced by Γ [2m]. In particular, for n= 1, we may choose

m= 2 to have ηN (ηN/N)m ∈ o(1), and for n≥ 2, we may choose m= 4n+ 4, so that

ηn
N(ηN/N)m ∈ o(N2−n). At this point, the remainder N2−n in (6.7)–(6.8) gives us the desired

bounds. �
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6.3 Recursive asymptotic analysis using SD equations

Lemma 6.3. There exist W[k]
n ∈H 2

0 (S,n), positive integers p[k]
n and positive constants c[k]

n ,

indexed by integers n≥ 1 and k≥n− 2, so that, for any k0 ≥−1:

Wn=
k0∑

k=n−2

N−k W[k]
n + N−k0 Δk0 Wn, ‖Δk0 Wn‖Γ [p[k]

n ] ≤ c[k]
n /N.

By convention, the first sum is empty whenever k0 <n− 2. �

Proof. The proof goes by recursion. Our recursion hypothesis at step k0 is that we have

a decomposition for any n≥ 1:

Wn=
k0∑

k=n−2

N−k W[k]
n + N−k0 Δk0 Wn, ‖Δk0 Wn‖Γ → 0,

where W[k]
n ∈H 2

0 (S,n) is known and the convergence holds without uniformity in Γ and

n. From Proposition 6.1, we know the recursion hypothesis is true for k0 =−1. We choose

not to specify anymore the shift of the contours which are necessary at each step of

inversion of K−1, since this mechanism of shifting is clear from the Proof of Proposi-

tion 6.1.

The recursion hypothesis induces a decomposition:

An(x, xI )=
k0+1∑

k=n−2

N−k A[k]
n (x, xI )+ N−(k0+1) Δ(k0+1)An(x, xI ),

(ΔK)[ϕ](x)=
k0+1∑
k=1

N−k K[k][ϕ](x)+ N−(k0+1)(Δ(k0+1)K)[ϕ](x).

We give below the expressions of those quantities for k∈ [[ 1 ; k0 + 1 ]] (this set is empty if

k0 =−1).

K[k][ϕ](x)= δk,1(1 − 2/β)

(
∂xϕ(x)+

∮
A

dξ

2iπ

σ [2]
hd(x; ξ, ξ)
σhd(x)

ϕ(ξ)

)
+ 2D2[W[k−1]

1 (•1)ϕ(•2)](x)

+
r∑

i=1

∑
J⊆[[ 1 ; r ]]\{i}

J �=∅

∑
k1,...,k|J|≥0
(
∑

j kj)+|J|=k

T

⎡⎣ϕ(•i)
∏
j∈J

W
[kj ]
1 (• j)

∏
j /∈J

Weq(• j)

⎤⎦ (x). (6.15)
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For n≥ 2, we have for k≤ k0 + 1:

A[k]
n (x, xI )=−D2

⎡⎢⎢⎣W[k−1]
n+1 (•1, •2, xI )+

∑
I ′⊆I

I ′ �=∅,I

∑
0≤k′≤k−1

W[k′]
|I ′|+1(•1, xI ′)W

[k−k′−1]
n−|I ′| (•2, xI\I ′)

⎤⎥⎥⎦
−
∑
i∈I

D1[W[k−1]
n−1 (•, xI\{i})](x, xi)−

∗∑
J![[ 1 ; r ]]

I1"···"I[J]=I

∑
k1,...,k[J]≥−1
(
∑

i ki)+r−1=k

T
[

[J]∏
i=1

W[ki ]
|Ji |+|Ii |(•Ji , xIi )

]
(x).

(6.16)

In the above expression, we agree that W[�]
m = 0 whenever � <m − 2. The main point is

that both A[k]
n (x, xI ) and K[k][ϕ](x) only involve W[k′]

m with k′ ≤ k− 1≤ k0. This is a matter

of simple reading off in the case of the expression for K[k][ϕ](x). Likewise, in the case of

A[k]
n (x, xI ) this is clear in what concerns the first three terms, but the last one ought to

be discussed. So, for a given term of the sum, let J [−1] be the collection of singletons {i}
such that ki =−1. Then, the ki associated with this precise term of the sum satisfy

⎛⎝ ∑
p�∈J [−1]

kp

⎞⎠+ r − 1 − |J [−1]| = k.

The restriction
∑∗ ensures that, in the nonvanishing terms, |J [−1]| ≤ r − 2 that is to say

that there is at most r − 2 kp’s which can be equal to −1. Since kp ≥ 0 for p �∈ J [−1], this

implies kp ≤ k− 1 for any p �∈ J [−1]. We now discuss the error terms at order N−k0−1. These

take the form:

(Δ(k0+1)An)(x, xI )=−D2[(Δk0 Wn+1)(•1, •2, xI )

+
∑
I ′⊆I

I ′ �=∅,I

k0∑
k′=0

(Δk′W|I ′|+1)(•1, xI ′) (Δ(k0−k′)Wn−|I ′|)(•2, xI\I ′)]

−
∑
i∈I

D1[(Δk0 Wn−1)(•, xI\{i})](x, xi)

−
∗∑

J![[ 1 ; r ]]
I1"···"I[J]=I

∑
k1,...,k[J]≥−1

(
∑

i ki)+r−1=k0+1

T
[

[J]∏
i=1

(Δki W|Ji |+|Ii |)(•Ji , xIi )

]
(x) (6.17)
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and

(Δ(k0+1)K)[ϕ](x)= 2D2[(Δk0 W1)(•1) ϕ(•2)](x)

+
r∑

i=1

∑
J⊆[[ 1 ; r ]]\{i}

|J|≥1

∑
k1,...,k[J]≥−1

(
∑

j kj)+|J|=k0+1

T

⎡⎣ϕ(•i)
∏
j∈J

(Δkj W1)(• j)
∏
j /∈J

Weq(• j)

⎤⎦ (x).
For the reason invoked above, these expressions only involveΔkW� with k≤ k0. Note that,

for r = 1, the
∑∗ is empty. Further, one readily checks that the recursion hypothesis

implies

‖Δ(k0+1)An‖Γ n ≤ c

N
and ‖Δ(k0+1)K[ϕ]‖Γ [1] ≤

c′

N
‖ϕ‖Γ .

One likewise obtains similar expressions at n= 1, namely

A[k]
1 (x)=−δ0,k(1 − 2/β)

{
∂xWeq(x)+

∮
S

dξ

2iπ

σ [2]
hd(x; ξ, ξ)
σhd(x)

Weq(ξ)

}
−D2[W[k−1]

2 ](x)

+
∑

k1,k2≥0
k1+k2=k−1

D2[W[k1]
1 (•1)W[k2]

1 (•2)]

+
∑

J⊆[[ 1 ; r ]]
|J|≥2

∑
k1,...,k|J|≥−1

(
∑

j kj)+|J|=k+1

(|J| − 1) T

⎡⎣∏
j∈J

W
[kj ]
1 (• j)

∏
j /∈J

Weq(• j)

⎤⎦ (x) (6.18)

and

(Δ(k0+1)A1)(x)=−D2[(Δk0 W2)](x)+
∑

k1,k2≥0
k1+k2=k0

D2[(Δk1 W1)(•1) (Δk2 W1)(•2)]

+
∑

J⊆[[ 1 ; r ]]
|J|≥2

∑
k1,...,k|J|≥−1

(
∑

j kj)+|J|=k0+2

(|J| − 1) T

⎡⎣∏
j∈J

(Δkj W1)(• j)
∏
j /∈J

Weq(• j)

⎤⎦ (x)

−
∗∑

J![[ 1 ; r ]]

∑
k1,...,k[J]≥−1

(
∑

i ki)+r−1=k0+1

T
[

[J]∏
i=1

Δki W|Ji |(•Ji )

]
(x).

One checks that likewise, A[k]
1 only involves W[k′]

1 with k′ < k, and W[k−1]
2 . Similarly,

Δ(k0+1)A1 only involves ΔkW1 and ΔkW2 with k≤ k0 and satisfies to the bounds

‖Δ(k0+1)A1‖Γ ≤ c/N.
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By inserting the obtained expansions into the appropriate Schwinger-Dyson

equations (6.3)–(6.5) one obtains for n≥ 2:

K[Wn(•, xI )](x)=
k0+1∑

k=n−2

N−k(A[k]
n (x; xI )−

k−1∑
�=n−2

K[k−�][W[�]
n (•, xI )](x))+ Bn(x; xI )

− N−(k0+1)K[Δ(k0+1)Wn(•, xI )](x)− N−(k0+1)
k0∑

�=n−2

K[k0+1−�][Δ�Wn(•, xI )](x)

+ N−(k0+1)Δ(k0+1)A
[k]
n (x; xI ).

For n= 1, the right-hand side is similar but the left-hand side should be replaced by

K[NΔ−1W1].

Using the continuity of K−1 and of the other operators involved the above equa-

tions yields a system of equations which determine the W[k]
n recursively on k. In par-

ticular, this implies that Wn admits an asymptotic expansion up to order k0 + 1. By

the recursion hypothesis at step k0, the function to which we apply K−1 to obtain

W[k0+1]
n is holomorphic on C \ S. Therefore, W[k0+1]

n is also holomorphic in C \ S, so that

W[k0+1]
n ∈H 2

0 (S,n). We just proved that the recursion hypothesis holds at step k0 + 1, so

we can conclude by induction. To summarize, the recursive formula for the coefficient of

expansion of the correlators is

W[k]
n =K−1[A[k]

n (•; xI )−
k−1∑
�=n−2

K[k−�][W[�]
n (·, xI )](•)](x) (6.19)

with A[k]
n given by (6.16)–(6.18) and K[�] by (6.15). �

7 Partition Function in the Fixed Filling Fraction Model

7.1 Asymptotic expansion

Lemma 7.1. Assume the local strict convexity of Hypothesis 3.2, the analyticity of

Hypothesis 5.1, and that μeq,ε is off-critical. There exists a 1-linear potential T̂ satis-

fying the same assumptions and so that, for any k0, we have an asymptotic expansion of

the form:

Z T
AN

Z T̂
AN

= exp

(
k0∑

k=−2

N−k G [k]
ε + N−k0Δk0 Gε

)
.
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G [k]
ε are smooth functions of the filling fractions ε in a small enough domain, where με

eq

remains off-critical, and for any fixed k0, the error is uniform in ε in such a compact

domain. �

Since the asymptotic expansion for 1-linear potentials and its smoothness with

respect to ε have been established in [15] under the same assumptions as here, we obtain

automatically:

Corollary 7.2. Assume the local strict convexity of Hypothesis 3.2, the analyticity of

Hypothesis 5.1, and that με
eq is off-critical. The partition function with fixed filling frac-

tions has an asymptotic expansion of the form

Z T
AN

= N(β/2)N+γ exp

(
k0∑

k=−2

N−k F [k]
ε + o(N−k0)

)
.

γ is a universal exponent depending only on β and the nature of the edges and reminded

in Section 1.3. F [k]
ε are smooth functions of ε and for any fixed k0, the error is uniform in

ε as explained in Lemma 7.1. �

7.2 Proof of Lemma 7.1: except regularity

The characterization (2.3) of equilibrium measure can be rephrased by saying that με,T
eq =

με,T̂
eq where

T̂(x1, . . . , xr)= (r − 1)!
r∑

j=1

T̂1(xj)

is the 1-body interaction defined, if x∈Ah, by

T̂1(x)=
g∑

h′=0
h′ �=h

β

∫
Sh′

ln |x− ξ |dμε,T
eq (ξ)1Sh′ (ξ)+

∫
Sr−1

T(x, ξ2, . . . , ξr)

(r − 1)!

r∏
i=2

dμε,T
eq (ξi). (7.1)

Since Ah and Sh′ are disjoint if h′ �= h, (x− y) keeps the same sign for x∈Sh′ , T̂1(x) has

actually an analytic continuation for x in a neighborhood of each Ah. Besides, the char-

acterization of the equilibrium measure implies that

∀t∈ [0,1], με,tT+(1−t)T̂
eq =με,T

eq .
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So, if T satisfies our assumptions, tT + (1 − t)T̂ satisfies it uniformly for t∈ [0,1]. And,

we have the general formula:

∂t ln ZtT+(1−t)T̂
AN

= N2−r

r!

∮
Ar

drξ

(2iπ)r
(T(ξ)− T̂(ξ))W̃tT+(1−t)T̂

r (ξ) (7.2)

in terms of the disconnected correlators introduced in (1.4). By Lemma 6.3, W̃tT+(1−t)T̂
r (ξ)

has an asymptotic expansion in 1/N, starting at order Nr, and if we truncate it to an

order N−k0 , it is uniform in ξ on the contour of integration of (7.2) and in t∈ [0,1]. So, we

can integrate (7.2) over t∈ [0,1], exchange the expansion and the integrations to obtain

the expansion of the partition function. The smoothness of the coefficients of expansion

of the correlators with respect to filling fractions is a consequence of Proposition 7.4.

7.3 Lipschitz dependence in filling fractions

We first show that the equilibrium measures depend on the filling fractions in a Lips-

chitz way.

Lemma 7.3. Assume Hypothesis 2.1 in the unconstrained model and T holomorphic in

a neighborhood of A in C. Then, for ε close enough to ε, E has a unique minimizer over

Mε(A), denoted με
eq. Let (g+ 1) be the number of cuts of μeq, and ε =μeq[Ah] its masses.

Assume μeq is off-critical. Then, for ε close enough to ε, με
eq still has g+ 1 cuts, is off-

critical, has the edges of the same nature which are Lipschitz functions of ε, and the

density of με
eq is a Lipschitz function of ε away from its edges. �

Proof. We remind (Section 2.1) that the level sets EM = {μ ∈M1(A), E [μ]≤ M} are com-

pact. Therefore, E achieves its minimum on Mε(A), and we denote με
eq any such min-

imizer. It must satisfy the saddle point equation (2.3). By assumption, the minimizer

over M1(A) is unique, it is denoted by μeq, and its partial masses εh =μeq[Ah]. In other

words, the minimizer με

eq is unique and equal to μeq. We must prove that the minimizer

is unique for ε close enough to ε.

• We first show that any με
eq must belong to a ball B(μeq, δε) around μeq for the

Vasershtein distance, with δε going to zero when ε goes to ε.

Let us first prove that

Eε := inf
μ∈Mε(A)

E(μ)→ Eε as ε → ε.
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In fact, if we denote μh
eq the probability on Ah so that μeq =

∑
h ε


hμ

h
eq, we have

Eε ≤ Eε ≤ E
(∑

h

εhμ
h
eq

)
.

But we have seen that
∫

log |x− y|dμh
eq(y) is uniformly bounded on A for all i

and therefore one easily sees that there exists a finite constant C such that

E
(∑

h

εhμ
h
eq

)
≤ E

(∑
h

εhμ
h
eq

)
+ C max |εh − εh|

from which the announced continuity follows.

Let us deduce by contradiction that there exists a sequence δε so that

με
eq ∈ B(μeq, δε) for |ε − ε| small enough. Otherwise, we can find a δ > 0 and

a sequence μεn
eq /∈ B(μeq, δ) with εn converging to ε. As we can assume by

the above continuity that this sequence belongs to the level set EEε+1, this

sequence is tight and we can consider a limit point μ. But by lower semi-

continuity of E, we must have

lim inf
n→∞ E(μεn

eq)≥ E(μ),

whereas the previous continuity shows that the left-hand side is actually

equal to Eε . Hence μ minimizes E on M1(A) which implies by Hypothesis

2.1 that μ=μeq hence yielding the announced contradiction.

• We now show uniqueness of the minimizer of E on Mε(A) for ε close enough to

ε by showing that the interaction keeps the property of local strict convexity.

Let us define, for any ν ∈M0(A):

Qε [ν]= βQC [ν] −
∫

Ar−2

T(x1, . . . , xr)

(r − 2)!
dν(x1)dν(x2)

r∏
j=3

dμε
eq(xj),

where QC was defined in (3.2). For any probability measure μ, we can write

using Taylor-Lagrange formula at order 3 around με
eq:

E [μ]= E [με
eq] −

∫
T ε

eff(x)dμ(x)+ 1

2
Qε [μ− με

eq] +Rε
3[μ− με

eq], (7.3)

where T ε
eff is the effective potential (2.4) for με

eq. The remainder is

Rε
3[ν]=

∫1

0

dt(1 − t)2

2
E (3)[(1 − t)με

eq + tμ] · (ν, ν, ν), (7.4)
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where E (3) was already defined in (3.11). If κ ∈R
g+1
+ so that

∑
h κh = 1, for any

measure μκ ∈Mκ(A), we have

E [μκ
eq]≤ E [μκ ].

We now use the equality (7.3) for both sides, and assume the support of μκ is

included in the support of με
eq. Since T ε

eff is nonpositive, and equal to 0 on the

support of με
eq, we find

1

2
Qε [μκ

eq − με
eq]≤ 1

2
Qε [μκ − μκ

eq] +Rε
3[μκ − με

eq] −Rε
3[μκ

eq − με
eq]. (7.5)

We assume κh ∈ [0,2εh], and put μκ = tμε
eq + (1 − t)μref with the choice

1 − t= max
0≤h≤g

|κh − εh|
εh

∈ [0,1], (7.6)

and the choice of a probability measure μref, whose support is included in

that of με
eq, and with masses satisfying

tεh + (1 − t)μref[Ah]= κh.

Note that we can assume εh �= 0 since εh �= 0 follows from the assumption that

μeq is off-critical. We also require that μref is such that Qε [μref − με
eq]<+∞,

which is always possible, for instance by taking for μref the renormalized

Lebesgue measure on the support of με
eq.

Using Q=Qε , we know from Lemma 3.3 that the remainder can be

bounded as

|Rε
3[ν]| ≤ C ε‖ν‖Q[ν].

Therefore, we have

Qε [μκ
eq − με

eq] − C ε‖μκ
eq − με

eq‖Q[μκ
eq − με

eq]

≤ (1 − t)2Qε [μref − με
eq] + (1 − t)3 C ε ‖μref − με

eq‖Q[μref − με
eq]. (7.7)

If we apply this inequality to ε = ε, and κ close enough to ε so that

C ε‖μκ
eq − με

eq‖ ≤ 1
2
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(this is possible by the continuity previously established), we deduce from

(7.6) that for maxh |κh − εh|< c′ for some c′ > 0 independent of ε:

Q[μκ
eq − μeq]≤ C max

h
|κh − εh|2.

Besides, we may compare Qε and Q=Qε by writing

Qε [ν] −Q[ν]=
r∑

m=3

∫
Ar

T(ξ1, . . . , ξr)

(r − 2)!
dν(ξ1)dν(ξ2)d(με

eq − μeq)(ξ3)

m∏
i=4

dμε
eq(ξi)

×
r∏

j=m+1

dμeq(ξ j).

Hence, from Lemma 3.3, there exists a constant C > 0, independent of ε but

depending on T , so that

|Qε [ν] −Q[ν]| ≤ CQ[ν]Q1/2[με
eq − μeq]≤ C ′Q[ν] max

h
|εh − εh|.

Therefore, for maxh C ′|εh − εh|< 1, there exists constants c1, c2 > 0 so that

∀ν ∈M0(A), c1 Q[ν]≤Qε [ν]≤ c2 Q[ν], (7.8)

in particular Qε [ν]≥ 0 with equality iff ν = 0. So, coming back to (7.7), we

deduce for ε close enough to ε and κ close enough to ε that there exists a

constant c′ such that

Q[μκ
eq − με

eq]≤ c′(1 − t)2 Q[μref − με
eq]

with t as in (7.6). This entails

Q[μκ
eq − με

eq]≤ C max
h

|κh − εh|2. (7.9)

We can apply this relation with ε = κ but μκ
eq another minimizer of E over

Mε(A), which would tell us that the Q-distance between two minimizers is 0.

So, the minimizer is unique for any ε close enough to ε.

• We finally prove smoothness of the minimizing measures and related quanti-

ties. As a second consequence of (7.8) and (7.9), for any m≥ 1 and any smooth



10508 G. Borot et al.

test function ϕ of m variables, we have a finite constant Cϕ so that∣∣∣∣∣∣
∫
ϕ(ξ1, . . . , ξm)

⎛⎝ m∏
j=1

dμκ
eq(ξ j)−

m∏
j=1

dμε
eq(ξ j)

⎞⎠∣∣∣∣∣∣≤ CϕQ1/2[μκ
eq − με

eq]

≤ C max
h

|κh − εh|. (7.10)

In other words, the integrals of m-variables test functions in H(m) against

με
eq (called below m-linear statistics) are Lipschitz in the variable ε close

enough to ε.

To extend this regularity result to the equilibrium measure, we con-

sider the expression (2.13) for its density:

dμeq

dx
(x)= 1Sε

(x)

2π

√
Rε(x), Rε(x)= 4 P̃ε(x)− σA(x)(V ′

ε (x))
2

σA(x)
. (7.11)

The important feature of this formula is that V ′
ε (x) (respectively, P̃ε(x)) defined

in (2.10)–(2.11) are integrals against με
eq of a holomorphic test function in a

neighborhood of Ar−1 (respectively, Ar) which depends holomorphically in x

in a neighborhood of A. Thanks to (7.10), x �→ Rε(x) is a holomorphic function

when x belongs to a compact neighborhood K (independent of ε) of A avoiding

the hard edges, which has a Lipschitz dependence in ε. Thus, the density itself

is a Lipschitz function of ε away from the edges. The edges of the support of

με
eq are precisely the zeroes and the poles of Rε(x) in K. If we assume that με

eq

is off-critical, then these zeroes and poles are simple. So, they must remain

simple zeroes (respectively, simple poles) for ε′ close enough to ε, and their

dependence in ε′ is Lipschitz. �

7.4 Smooth dependence in filling fractions

Proposition 7.4. Lemma 7.3 holds with C∞ dependence in ε. �

Corollary 7.5. Under the same assumptions, the coefficients of expansion of the corre-

lators W[k];ε
n (x1, . . . , xn) depends smoothly on ε for x1, . . . , xn uniformly in any compact of

C \ A. �

Proof. The idea of the proof is again very similar to [15, Appendix A.2]. Let E be an open

neighborhood of ε in {
ε ∈ [0,1]g+1

∑
h

εh = 1

}
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so that the result of Lemma 7.3 holds. For any given x in a compact neighborhood K of

A avoiding the edges, Rε(x) is Lipschitz function of ε, therefore differentiable for ε in a

subset Ex whose complement in E has measure 0. By Baire theory, E∞ =⋂x∈K Ex has still

a complement of measure 0, therefore is dense in E. For any ε ∈E∞ and any η ∈R
g+1 so

that
∑

h ηh = 0, we can then study the effect of differentiation at ε in a direction η in the

characterization and properties of the equilibrium measure. We find that dνε
η = ∂t=0 μ

ε+tη
eq

defines a signed measure on Sε which is integrable (its density behaves atmost like the

inverse of a squareroot at the edges), gives a mass ηh to Sε,h, and satisfies

∀x∈ S̊ε, β

∫
/Sε

dνε
η(ξ)

x− ξ +
∫

Sr−1
ε

∂x T(x, ξ2, . . . , ξr)

(r − 2)!
dνε

η(ξ2)

r∏
j=3

dμε
eq(ξ j)= 0.

We have seen in the proof of Lemma 5.1 that there is a unique solution to this problem.

As a matter of fact, if we introduce the Stieltjes transform:

ϕε
η(x)=

∫
Sε

dνε
η(ξ)

x− ξ ,

by construction of the operator K we have K[ϕε
η]= 0 and the condition on masses is∮

Sε,h
ϕε

η(ξ)
dξ
2iπ = ηh for any h. So, the invertibility of K used toward the end of the proof of

Lemma 5.1 gives

ϕε
η(x)=−

g∑
h=0

ηh RN (x,h), (7.12)

where RN (x,h) is one of the blocks of the resolvent kernel of N . Eventually, we observe

that K depends on ε only via the Stieltjes transform of με
eq, therefore is Lipschitz in ε.

The expression (A.15) for the resolvent kernel implies that if K depends on a parameter

(here ε) with a certain regularity, its inverse depends on the parameter with the same

regularity. Therefore, the right-hand side of (7.12) is Lipschitz in ε, a fortiori continuous.

To summarize, we have obtained that

Wε
eq(x)=

∫
Sε

dμε
eq(ξ)

x− ξ
is differentiable at a dense subset of ε, and that the differential happens to be a contin-

uous function of ε. Therefore, Wε
eq is differentiable everywhere, and (7.12) can be consid-

ered as a differential equation, where the right-hand side is differentiable. Hence Wε
eq is

twice differentiable. This regularity then carries to the right-hand side, and by induc-

tion, this entails the C∞ regularity of Wε
eq—and thus the density of με

eq—for any x away

from the edges of Sε . Therefore, Rε in (7.11) was C∞ in ε, and the result of Lemma 7.3 is

improved to C∞ regularity in ε. �
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Proof of Corollary 7.5. From the Proof of Section 6.3, the coefficient of expansion of

correlators W[k]
n (x1, . . . , xn) (cf. (6.19)) and the errors ΔkWn(x1, . . . , xn) can be computed

recursively, by successive applications of K−1 to combinations involving Wε
eq = W[−1],ε

1 (x),

T and the W[k′],ε
n computed at the previous steps. As we have seen, K−1 and Wε

eq depend

smoothly on ε under the conditions stated above, so the W[k]
n enjoy the same property,

and similarly one can show that the bounds on the errors ΔkWn are uniform with respect

to ε. �

End of the proof of Lemma 7.1. After the proof of the corollary, we just have to check

that T = T̂ given by (7.1) depends smoothly on ε. Since it is expressed as the integration

of an analytic function against (several copies of) μeq, this follows from the proof of

Section 7.3 and its improvement in Proposition (7.4). �

7.5 Strict convexity of the energy

We show that the value of the energy functional at με
eq is a strictly convex function of

the filling fraction in a neighborhood of ε. This property is useful in the analysis of the

unconstrained model in the multi-cut regime.

Proposition 7.6. Assume Hypothesis 2.1 in the unconstrained model, T holomorphic in

a neighborhood of A in C, μeq is off-critical. Denote εh =μeq[Ah]. Then, for ε in a neigh-

borhood of ε, E [με
eq] is C2 and its Hessian is definite positive. �

Proof. Proposition 7.3 ensures the existence of με
eq for ε close enough to ε. It is char-

acterized, for any h∈ [[ 0 ; g ]] and x∈Sε,h, by

β

∫
/

Sε

ln |x− ξ |dμε
eq(ξ)+

∫
Sr−1

ε

T(x, ξ2, . . . , ξr)

(r − 1)!

r∏
j=2

dμε
eq(ξ j)= C ε

h.

For any x∈A, the left-hand side minus the right-hand side defines the effective potential

T ε
eff, which is therefore 0 for x∈Sε . The proof of Proposition 7.4 provides us, for any

η ∈R
g+1 so that

∑g
h=0 ηh = 0, with the existence of:

νε
η = ∂t=0 μ

ε+tη
eq ,

as a signed, integrable measure on A, so that νε
η [Ah]= ηh for any h. It satisfies, for any

h∈ [[ 0 ; g ]] and x∈Sε,h:

β

∫
/

Sε

ln |x− ξ |dνε
η(ξ)+

∫
Sr−1

ε

T(x, ξ2, . . . , ξr)

(r − 2)!
dνε

η(ξ2)

r∏
j=3

dμε
eq = ∂t=0 C ε+tη

h . (7.13)
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Therefore, E [με
eq] is C1 and we have

∂t=0 E [με+tη
eq ]=−

∫
Sε

(
T ε

eff(x)+
g∑

h=0

Cε,h 1Sε,h(x)

)
dνε

η(x)=−
g∑

h=0

C ε
h ηh.

We can differentiate the result once more:

Hessianε E [με
eq] · (η, η′)= ∂t′=0 ∂t=0 E [με+tη+t′η′

eq ]=−
g∑

h=0

(∂t′=0 C ε+t′η′
h ) ηh. (7.14)

Since the right-hand side of (7.13) is constant on each Sε,h, we integrate it against −dνε
η

and find a result equal to the right-hand side of (7.14):

Hessianε E [με
eq] · (η, η′)=Qε [νε

η, ν
ε
η′ ], (7.15)

where we have recognized the bilinear functional Qε introduced in Section 3.2. By

Hypothesis 3.2, we deduce that the Hessian at ε = ε is definite positive, and (7.8) actually

shows that this remains true for ε in a vicinity of ε. �

8 Asymptotics in the Multi-Cut Regime

8.1 Partition function

We have gathered all the ingredients needed to analyze the partition function in the

(g+ 1) regime when g≥ 1, decomposed as

ZAN =
∑

N0+···+Ng=N

N!∏g
h=0 Nh!

ZAN .

Given the large deviations of filling fractions (Corollary 3.7), the expansion in 1/N of

the partition function at fixed filling fractions ε close to ε (Corollary 7.2), the smooth

dependence of the coefficients in ε (Proposition 7.4) and the positivity of the Hessian of

F [−2] =−E [με
eq] (Lemma 7.6), the proof of the asymptotic expansion of ZAN is identical to

[15, Section 8]. When necessary, we identify ε with an element of R
g by forgetting the

component ε0. To summarize the idea of the proof, one first restricts the sum in (8.1)

over vectors N = (N1, . . . , Ng) such that |N − Nε| ≤√
N ln N up to exponentially small

corrections thanks to the large deviations of filling fractions, cf. Corollary 3.7. Since

the filling fractions ε kept in this sum are close to ε, one can write down the 1/N-

expansion of each term in the sum. Then, one performs a Taylor expansion around ε of

the coefficients of the latter expansion, and one can exchange the finite (although large)

sum over N with the Taylor expansion while controlling the error terms. Eventually, one
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recognizes the answer as the general term (in N) of an exponentially fast converging

series, so we can actually lift the restriction N − Nε to sum over all N ∈Z
g up to an

error o(e−cN). The result can be expressed in terms of:

• The Theta function:

Θγ (v|T)=
∑
m∈Zg

exp
(
−1

2
(m+ γ ) · T · (m+ γ )+ v · (m+ γ )

)
,

where T is a symmetric definite positive g× g matrix, v ∈C
g and γ ∈

C
g mod Z

g.

• The �th-order derivative of F [k]
ε with respect to the filling fractions. For a pre-

cise definition, we consider the canonical basis (eh)0≤h≤g of R
g+1, and intro-

duce ηh = eh − e0 for h∈ [[ 1 ; g ]]. Then, we can define the tensor of �th-order

derivatives as an element of (Rg)⊗�:

F [k],(�)
ε =

∑
1≤h1,...,h�≤g

(∂t1=0 · · · ∂t�=0 F [k]
ε+∑�

i=1 ti ηhi
)

�⊗
i=1

ehi .

When necessary, we identify ε with an element of R
g by forgetting the component ε0.

Theorem 8.1. Assume Hypothesis 2.1, T holomorphic in a neighborhood of Ar, and μeq

off-critical. Then, for any k0, we have an asymptotic expansion of the form:

ZAN = N(β/2)N+γ exp

(
k0∑

k=−2

N−k F [k]
ε + o(N−k0)

)

×

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑
m≥0

∑
�1,...,�m≥1
k1,...,kr≥−2∑m

i=1 �i+ki>0

N−∑m
i=1(�i+ki)

m!

(
m⊗

i=1

F [ki ],(�i)
ε

�i!

)
· ∇⊗(∑m

i=1 �i)
v

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭Θ−Nε (F
[−1],(1)
ε | F [−2],(2)

ε ).

(8.1)

�

8.2 Fluctuations of linear statistics

We mention that, along the line of [15, Corollary 6.4; 48], it is possible to show

Theorem 8.1 while allowing T to contain 1/N complex-valued contribution on A—still

under the assumptions that T is analytic. Then, for any test function ϕ holomorphic is a
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neighborhood of A, it follows for the fluctuations of the linear statistics:

XN [ϕ]=
N∑

i=1

ϕ(λi)− N
∫
ϕ(x)dμeq(x)

that for any s ∈R, we have

μAN [eisXN [ϕ]] =
N→∞

eis M1[ϕ]−s2 M2[ϕ] Θ−Nε (F
[−1],(1)
ε + is w[ϕ] | F [−2],(2)

ε )

Θ−Nε (F
[−1],(1)
ε | F [−2],(2)

ε )

with:

M1[ϕ]=
∮

S

dx

2iπ
ϕ(x)W[0]

1;ε (x),

M2[ϕ]=
∮

S2

dx1dx2

(2iπ)2
ϕ(ξ1)ϕ(ξ2)W[0]

2;ε (x1, x2),

w[ϕ]=
g∑

h=1

(∫
S
ϕ(x)dνε

ηh(x)
)

eh =
g∑

h=1

∂t=0

(∫
ϕ(x)dμε+tηh

eq (x)
)

eh,

(8.2)

where we recall that ηh = eh − e0 and (eh)0≤h≤g is the canonical basis of R
g+1. At this point,

the regularity of ϕ can be weakened by going to Fourier space, see [15, Section 6.1] for

details. We deduce a central limit theorem when the contribution of the Theta function

vanishes, namely the following.

Proposition 8.2. For the codimension g space of test functions ϕ satisfying w[ϕ]= 0,

XN [ϕ] converges in law to a random Gaussian G (M1[ϕ],M2[ϕ]) with mean M1[ϕ] and

covariance M2[ϕ]. �

For test functions so that w[ϕ] �= 0, the ratio of Theta functions is present, and

we recognize it to be the Fourier transform of the law of a random variable which is

the scalar product of a deterministic vector w[ϕ] with D(γ N,T
−1[v],T−1), where D is the

sampling on γ N + Z
g of a random Gaussian vector with g components, with covariance

matrix T−1, and mean T−1[v]. The values of the various parameters appearing here is

T = F [−2],(2)
ε , γ N =−Nε mod Z

g, v = F [−1],(1)
ε .

Therefore, we can only say that, along subsequences of N so that −Nε mod Z
g con-

verges to a limit γ ∗, XN [ϕ] converges in law to the independent sum

G (M1[ϕ],M2[ϕ])+ w[ϕ] · D(γ ∗,T−1[v],T−1).
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Appendix 1. Derivation of the Schwinger-Dyson Equations

Let A=⋃g
h=0[a−h ,a

+
h ] be a disjoint union of closed segments of R. We consider an r-body

interaction T satisfying Hypothesis 5.1. In this section, we derive the Schwinger-Dyson

equation given in (5.3).

A.1 Diffeomorphism invariance

Let f : A→R be a smooth function. For ε > 0 small enough, the function ψ f,ε(λ)=
λ+ ε f(λ) is a diffeomorphism sending [ψ−1

f,ε (a
−
h ), ψ

−1
f,ε (a

+
h )] to [a−h ,a

+
h ]. Let us express the

invariance of the integral computing the partition function under change of variables:

ZAN =
∫

AN
dμ(λ1, . . . , λN)=

∫
ψ−1

f,ε (A)
N

dμ(ψ f,ε(λ1), . . . , ψ f,ε(λN)). (A.1)

Therefore, expanding when ε→ 0 and collecting the term of order ε, we should find 0.

We compute

∂ε[
∏N

i=1 dψ f,ε(λi) ·
∏

1≤i< j≤N |ψ f,ε(λi)− ψ f,ε(λ j)|β ]ε=0∏N
i=1 dλi ·

∏
1≤i< j≤N |λi − λ j|β

=
N∑

i=1

f ′(λi)+ β
∑

1≤i< j≤N

f(λi)− f(λ j)

λi − λ j

=
N∑

i=1

(
1 − β

2

)
f ′(λi)+ β

2

∑
1≤i, j≤N

f(λi)− f(λ j)

λi − λ j
(A.2)
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and for the r-body interaction:

∂ε[exp( N2−r

r!

∑
1≤i1,...,ir≤N T(ψ f,ε(λi1), . . . , ψ f,ε(λir )))]ε=0

exp( N2−r

r!

∑
1≤i1,...,ir≤N T(λi1, . . . , λir ))

= N2−r

r!

r∑
j=1

∑
1≤i1,...,ir≤N

∂ jT(λi1 , . . . , λir ) f(λi j ), (A.3)

where ∂ j denotes the derivation with respect to the jth variable. We also need to take

into account the variation of the range of integration:

∂εψ
−1
f,ε (a

±
h )|ε=0 =− f(a±h ). (A.4)

Combining all the terms, we find the first Schwinger-Dyson equation:

μAN

⎡⎣(1 − β

2

) N∑
i=1

f ′(λi)+
∑

1≤i, j≤N

f(λi)− f(λ j)

λi − λ j
+ N2−r

(r − 1)!

∑
1≤i1,...,ir≤N

f(λi1) ∂1T(λi1, . . . , λir )

⎤⎦
−
∑
α∈∂A

f(α) ∂α ln ZAN = 0. (A.5)

We exploited the symmetry of the measure under permutation of the λi’s to rewrite the

third term. Since this equation is linear in f , it is also valid for f complex-valued by

decomposing into f into real and imaginary part.

A.2 In terms of correlators

We recall that the essential properties of the disconnected correlators Wn(ξ1, . . . , ξn) is

that, for any holomorphic function ϕ in a neighborhood of An, we have

μAN

⎡⎣ ∑
1≤i1,...,in≤N

ϕ(λi1 , . . . , λin)

⎤⎦=
∮

An

[
n∏

i=1

dξi
2iπ

]
ϕ(ξ1, . . . , ξn)Wn(ξ1, . . . , ξn). (A.6)

Let H be a subset of ∂A—in Section 5.1 we choose H to be the subset of hard edges. Let

us define

σH(x)=
∏
α∈H

(x− α), σ [1]
H (x; ξ)=

σH(x)− σH(ξ)

x− ξ , σ [2]
H (x; ξ1, ξ2)=

σ [1]
H (x; ξ1)− σ [1]

H (x; ξ2)
ξ1 − ξ2 .

(A.7)

If x∈C \ A, let us choose fx(λ)= σH(λ)

x−λ . It is an analytic function for which we can write

the Schwinger-Dyson equations (A.5). It has the property that fx(α)= 0 for any edge α ∈H,
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so there is no boundary term issuing from those points. Using (A.6), we find(
β

2
− 1
) ∮

A

dξ

2iπ
∂ξ fx(ξ)W1(ξ)+

∮
A2

d2ξ

(2iπ)2
fx(ξ1)− fx(ξ2)

ξ1 − ξ2 W2(ξ1, ξ2)

+ N2−r

(r − 1)!

∮
A2

drξ

(2iπ)r
fx(ξ1) ∂ξ1 T(ξ1, . . . , ξr)−

∑
α∈∂A\H

fx(α) ∂α ln ZAN = 0. (A.8)

For the first term, we need to compute

∂ξ

(
σH(ξ)

x− ξ
)
=−σ

[2]
H (x; ξ, ξ)

x− ξ + σH(ξ)

(x− ξ)2 (A.9)

therefore, by moving the contour to ∞ when integrating the second term in (A.9), the

contribution to (A.8) is(
β

2
− 1
)(∮

A

dξ

2iπ
σ [2]

H (x; ξ, ξ)W1(ξ)+ σH(x) ∂xW1(x)
)
. (A.10)

For the second term in (A.8), we need

fx(ξ1)− fx(ξ2)

ξ1 − ξ2 =−σ [2]
H (x; ξ1, ξ2)+

σH(x)

(x− ξ1)(x− ξ2) (A.11)

and moving the contours at ∞ when integrating the second term in (A.11), the contribu-

tion to (A.8) reads

β

2

(
−

∮
A2

d2ξ

(2iπ)2
σ [2]

H (x; ξ1, ξ2)W2(ξ1, ξ2)+ σ(x)W2(x, x)
)
. (A.12)

The third term in (A.8) is just:

N2−r

(r − 1)!

∮
Ar

drξ

(2iπ)r
σH(ξ1)

x− ξ1 ∂ξ1 T(ξ1, . . . , ξr)Wr(ξ1, . . . , ξr). (A.13)

Combining all the terms, dividing by σH(x) and β/2, and replacing W2(x, x)= W2(x, x)+
W1(x)2, one obtains the n= 1 Schwinger-Dyson equation:(

1 − 2

β

)
∂xW1(x)+ W2(x, x)+ W2

1 (x)

− 2

β

∑
α∈∂A\H

σH(α)

σH(x)

∂α ln ZAN

x− α + 2

β
N2−r

∮
Ar

drξ

(2iπ)r
σH(ξ1)

σH(x)

∂ξ1 T(ξ1, . . . , ξr)

(r − 1)! (x− ξ1) Wr(ξ1, . . . , ξr)

+
(

1 − 2

β

)∮
A

dξ

2iπ

σ [2]
H (x; ξ, ξ)
σH(x)

W1(ξ)−
∮

A2

d2ξ

(2iπ)2
σ [2]

H (x; ξ1, ξ2)
σH(x)

{W2(ξ1, ξ2)+ W1(ξ1)W1(ξ2)}

= 0. (A.14)
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This is the equation announced in (5.3) for n= 1, provided one chooses H to be the set of

hard edges.

We can apply this equation to infinitesimal perturbation T̃t1,...,tn−1 of the interac-

tion T . Then, collecting the term of order t1 · · · tn−1 with ti → 0 yields the nth Schwinger-

Dyson equation in the form (5.3).

Appendix 2. Inversion of Integral Operators

In this section, we study integral operators on the real line which parallel the opera-

tors defined on the complex plane defined in Section 5. This is necessary to obtain the

concentration bounds of Section 3.5.

A.3 Reminder of Fredholm theory

Let (X,ds) be a measured space, so that |s|(X) <+∞. Let K be an integral operator on

L p(X,ds), p≥ 1 with a kernel K (x, y)= f(x)K̃ (x, y) such that K̃ ∈ L∞(X × X,d2s) and

f ∈ L p(X,ds). Then, the series of multiple integrals

det[id + K]=
∑
n≥0

1

n!

∫
X

detn[K (λa, λb)]
n∏

a=1

ds(λa) (A.15)

converges uniformly and defines the so-called Fredholm determinant associated with

the integral operator id + K. The convergence follows by means of an application of

Hadamard’s inequality

∣∣∣∣∫
X

detn[K (λa, λb)] dns(λ)

∣∣∣∣≤n
n
2 · ‖K̃ ‖n

L∞(X×X,d2s) · ‖ f‖n
L1(X,ds).

This operator is invertible if and only if det[id + K] �= 0 and its inverse operator id −RK

is described in terms of the resolvent kernel given by the absolutely convergent series

of multiple integrals:

RK(x, y)= 1

det[id + K]

∑
n≥0

1

n!

∫
X

detn+1

[
K (x, y) K (x, λb)

K (λa, y) K (λa, λb)

]
·

n∏
a=1

dμ(λa). (A.16)

In particular, such a description ensures that the inverse operator is continuous as soon

as the operator id + K is injective. See [32] for a more detailed discussion. Note that the
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resolvent kernel RK(x, y) satisfies to the bounds

|RK(x, y)| ≤ | f(x)| ·
∑
n≥0

(n+ 1)
n+1

2

n!
·
‖K̃ ‖n+1

L∞(X×X,d2s) · ‖ f‖n
L1(X,ds)

det[id + K]
≤ cK · | f(x)|,

with cK a kernel K-dependent constant.

A.4 Inversion of T

Let T be the integral operator

T [φ](x)=−
∫

A
[β ln |x− y| + τ(x, y)]φ(y)dy+

∫
A2

[β ln |x− y| + τ(x, y)]φ(y)dx dy

with τ defined by

τ(x, y)=
∫

T(x, y, ξ3, . . . , ξr)

(r − 2)!

r−2∏
i=3

dμeq(ξi).

Let L and P be the integral operators on L p(A,dx) for 1< p< 2, with respective integral

kernels

L (x, y)= 1

β π2

∫
/Adξ

σ
1/2
A;+(ξ)

σ
1/2
A;+(x)

∂ξ τ (ξ, y)

x− ξ , P(x, y)= 1

iπσ 1/2
A;+(x)

Res
ξ→∞

(
σ

1/2
A (ξ)

(x− ξ)(ξ − y)

)
,

where we remind σA(x)=
∏g

h=0(x− a−h )(x− a+h ). Let X be the set [[ 1 ; g ]] ∪ A endowed with

the measure ds given by the atomic measure on [[ 1 ; g ]] and the Lebesgue measure on A.

We shall make the identification L p
0 (X,ds)�C

g ⊕ L p
0 (A,dx), where

L p
0 (A,dx)=

{
φ ∈ L p(A,dx) :

∫
A
φ(x)dx= 0

}
.

We define similarly a subspace W1,q
0 (A) of the Sobolev space W1,q(A)⊆ Lq(A), and intro-

duce the space:

W1,q
0 (X)=

{
(v, φ) ∈ Lq

0(X,ds),
(

max
1≤k≤g

|vk|
)
+ ‖φ‖q <+∞

}
.

Let N be integral operator

N :

{
C

g ⊕ L p
0 (A,dx)−→C

g ⊕ L p
0 (A,dx),

(v, φ) �−→ (Π [φ] − v, (L− P)[ f ] + σ−1/2
A;+ · Qv),

where

Π :

⎧⎨⎩L p(A,dx)−→C
g,

φ �−→
(∫

A1
T [φ](ξ)dξ, . . . ,

∫
Ag

T [φ](ξ)dξ
)
,
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and Qv is the unique polynomial of degree g− 1 such that
∫

Ak
dξ σ−1/2

A;+ (ξ) Qv(ξ)= vk for

any k∈ [[ 1 ; g ]]. The operators in underline letters—like L—are the analog on the real

axis of the operators—like L—defined in Section 5.3 on spaces of analytic functions,

the correspondence being given by the Stieltjes transform. It should therefore not be

surprising that the computations in this Appendix are parallel to those of Section 5.

Proposition A.3. Let 1< p< 2 and q> 2p/(2 − p). The integral operator N : L p
0 (X,ds)→

W1,q
0 (X,ds) is compact. The operator id +N is bi-continuous with inverse id −RN . Fur-

thermore, the inverse of T is expressed by

T −1[ f ](x)=Ξ [ f ′](ξ)−
g∑

k=1

RN (x,k)
∫

Ak

f(ξ)dξ −
∫

A
RN (x, ξ) ·Ξ [ f ′](ξ)dξ, (A.17)

where

Ξ [ f ](x)= 1

β π2

∫
/A

σ
1/2
A;+(x) f(ξ)

σ
1/2
A;+(ξ) (x− ξ)

dξ.

As a consequence, T −1 extends to a continuous operator T −1 : W1,q
0 (A,dx)→ L p

0

(A,dx). �

Proof. We first establish that L= L p
0 (A,dx)→ L p

0 (A,dx), defined for 1< p< 2, is com-

pact. It follows from

L (x, y)= 1

β π2

∫
A

dξ
σ

1/2
A;+(ξ)

σ
1/2
A;+(x)

∂ξ τ (ξ, y)− ∂ξ τ (x, y)

x− ξ + ∂xτ(x, y)

2β π2 σ
1/2
A;+(x)

∮
Γ (A)

dη σ 1/2
A (η)

x− η ,

where Γ (A) is a contour surrounding A with positive orientation, that L (x, y)=
L̃ (x, y) σ−1/2

A;+ (x) for a continuous function L̃ (x, y) on A2. Furthermore, the relation

∫
/A

dξ

σ
1/2
A;+(ξ)(x− ξ)

= 0

ensures that L stabilizes L p
0 (A,dx). Taking into account that A is compact, there exists a

sequence of continuous functions (Φn, Ψn)n≥1 on A such that

L̃
[n]
(x, y)=

n∑
m=1

Φm(x)Ψm(y)

converges uniformly on A2 to L̃ (x, y). Let L[n] be the integral operator on L p
0 (A,dx) with

the integral kernel L [n](x, y)= σ−1/2
A;+ (x) L̃

[n]
(x, y). It follows from Hölder inequality that
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the L p
0 (A,dx) operator norm satisfies

|||L− L[n] ||| ≤ �(A) p−1
p ‖σ−1/2

A;+ ‖L p(A) ‖L̃− L̃[n]‖L∞(A2).

As a consequence, L is indeed compact. An analogous statement is readily established

for P and hence N . We now establish that id +N is injective. Let (v, φ) ∈ ker(id +N ).
Then one has ∫

/A

∫
A

L (x, y)φ(y)

s − x
dy= 0 $⇒

∫
A
φ(s) · ds= 0.

By going back to the definition of a principal value integral, one obtains

−β
∫
/A
Ξ [φ](ξ)

x− ξ dξ =
∫

A
dη
φ(η) σ

1/2
A;+(η)

(2iπ)2

∮
Γ (A)

2 dξ

σ
1/2
A (ξ)(x− ξ)(η − ξ)

− lim
ε1,ε2→0+

{∫
A2

φ(η) σ
1/2
A;+(η)

σ
1/2
A;+(ξ)

[
1

x− ξ + iε1

(
1

η − ξ − iε2
− 1

η − ξ + iε2

)

+ 1

x− ξ + iε1

(
1

η − ξ − iε2
− 1

t− ξ + iε2

)]
dη dξ

}
= φ(x).

This ensures that

−β
∫
/A

L (ξ, y)

x− ξ dξ = (∂xτ)(x, y).

In its turn this leads to ∂ξT [ f ](ξ)= 0 by acting with the principal value operator on

(id + L)[ f ] and using that ∫
/A

dξ Q(ξ)

σ
1/2
A;+(ξ) · (x− ξ)

= 0

for any polynomial Q of degree at most g. In other words, there exist constants ck such

that T [φ](ξ)= ck on Ak, k= 0, . . . , g. Since, furthermore,
∫

Ak

T [φ](x)dx= 0, k= 1, . . . , g and by definition
∫

A
T [φ](x)dx= 0

it follows that, in fact, T [φ](x)= 0. Therefore,
∫

A
φ(x) · T [φ](x)dx=Q[νφ ]= 0 with νφ = φ(x)dx ∈ M0(A).

In virtue of the strict positivity of the functional Q, it follows that νφ = 0, viz. φ = 0. This

implies, in its turn, that Qv = 0, that is, v = 0.

We now focus on the invertibility of the operator T . Hence, assume that one is

given f ∈ T [L p
0 (A,dx)] ∩ W1;q

0 (A,dx)with 1< p< 2 and q> 2p/(2 − p). In other words that
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the function φ ∈ L p
0 (A,dx), 1< p< 2 is a solution to T [φ]= f for the given f ∈ W1;q

0 (A,dx).

Since, the principal value operator is continuous on L p(A,dx), 1< p< 2, it follows that

one can differentiate both sides of the equality leading to
∫
/A
φ(s)

x− ξ dξ =− f ′(x)
β

+ 1

β

∫
A
∂xτ(x, ξ) φ(ξ)dξ ≡ F (x).

The function

κ[φ](z)= σ 1/2
A (z) ·

∫
A

φ(y)

z− y
· dy

2iπ

is holomorphic on C \ A, admits L p(A) ± boundary values on A, and has the asymptotic

behavior at infinity

κ[φ](z)= Res
ξ→∞

σ
1/2
A (ξ)

x− ξ
(∫

A

dy

2iπ

φ(y)

ξ − y

)
︸ ︷︷ ︸

P [φ](z)/2

+O(1/z).

Furthermore, it satisfies to the jump conditions

κ[φ]+(x)− κ[φ]−(x)= σ 1/2
A;+(x)

F (x)

iπ
, x∈

◦
A.

Thus,

κ[φ](z)= P [φ](z)

2
+

∫
A

dξ F (ξ) σA;+(ξ)
2π2 (z− ξ) .

Note that P [φ] is at most of degree g− 1 since φ ∈ L p
0 (A,dx). Finally, it follows from the

equation

κ[φ]+(x)+ κ[φ]−(x)=−σ 1/2
A;+(x)φ(x)

that φ solves the regular integral equation

Ξ [ f ′](x)= (id + L− P)[φ](x).

As a consequence, for any f ∈ T [L p
0 (A,dx)] ∩ W1;q(A), there exists φ solving

(id +N )[(0, φ)]=
(∫

A1

f(x)dx, . . . ,
∫

Ag

f(x)dx, Ξ [ f ′]

)
.

Since (id +N ) is bijective, φ is necessarily unique and given by (A.17). The continuity of

T −1 is then obvious. �
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