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SUMMARY

Planning of the control of Plasmodium falciparum malaria leads to a need for models of malaria epidemiology that provide

realistic quantitative prediction of likely epidemiological outcomes of a wide range of control strategies. Predictions of

the effects of control often ignore medium- and long-term dynamics. The complexities of the Plasmodium life-cycle, and

of within-host dynamics, limit the applicability of conventional deterministic malaria models. We use individual-based

stochastic simulations of malaria epidemiology to predict the impacts of interventions on infection, morbidity, mortality,

health services use and costs. Individual infections are simulated by stochastic series of parasite densities, and naturally

acquired immunity acts by reducing densities. Morbidity and mortality risks, and infectiousness to vectors, depend on

parasite densities. The simulated infections are nested within simulations of individuals in human populations, and linked

to models of interventions and health systems. We use numerous field datasets to optimise parameter estimates. By using a

volunteer computing system we obtain the enormous computational power required for model fitting, sensitivity analysis,

and exploration of many different intervention strategies. The project thus provides a general platform for comparing,

fitting, and evaluating different model structures, and for quantitative prediction of effects of different interventions and

integrated control programmes.
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INTRODUCTION

‘‘Hubris seems to be the chief vice of the model builder without,

and even with, field experience. It induces justified scepticism

and is counter-productive. It serves only to convince the

determinedly non-numerate public health worker that models

are a seductive alternative to understanding ’’ (Bradley,

1982).

‘‘… and perhaps none will fully understand the behaviour of

the whole system as it operates within the economic, social and

political constraints of a given society. This may explain some

of the difficulties of predicting with sufficient accuracy the

likely consequences of any chosen strategy of intervention. And

if one cannot predict the consequences of a given strategy, one

had no rational basis for choosing between the available al-

ternatives. ’’ (Bailey, 1982).

Mathematical modelling of malaria transmission

dynamics goes back to Ross, who described the

population dynamics of malaria and identified ento-

mological thresholds for elimination (Ross, 1911).

In the 1950s, as the emergence of indoor residual

spraying made the elimination of malaria over wide

areas conceivable, Ross’ work was further developed

by Macdonald and others, who provided the math-

ematical explanation of the effect of reduction of

mosquito longevity on malaria transmission, es-

pecially through the concept of the basic repro-

duction number (Macdonald, 1957). Later models

incorporated superinfection and immunity (Dietz,

Molineaux and Thomas, 1974), linked to a field

investigation of the feasibility of malaria elimination

in the West African savannah (Molineaux and

Gramiccia, 1980). The focus of malaria modelling up

until then (reviewed in detail by Bailey (1982)) was

on transmission dynamics, and in particular strat-

egies for eliminating the parasite.

Models of malaria dynamics have continued to be

developed (e.g. Aron, 1988; Struchiner, Halloran

and Spielman, 1989; McKenzie and Bossert, 2005)

but a very different kind of modelling became

prominent in the last few decades of the 20th century

when control programmes, especially in Africa,

focused on reducing morbidity and mortality rather

than suppressing transmission. Elimination had

proven unrealistic in tropical Africa and had been

given up in most tropical countries in Asia and the

Americas following severe setbacks. New interven-

tions considered suitable for long-term control were

validated through large-scale field trials. This motiv-

ated the development of predictive models that use

empirical estimates of the effectiveness of interven-

tions, studies on disease burden, and unit costs

to quantify morbidity and mortality and likely
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cost-effectiveness of interventions. Examples include

the work ofGoodman, Coleman andMills (2000) and

Rowe et al. (2007). In such models, epidemiological

impact is generally inferred from field trial results,

which assess only short-term effects using well-

controlled delivery systems, and there is no explicit

consideration of the dynamics of transmission and

immunity, in particular the loss of population im-

munity that results from decreased transmission.

With a yearly toll of the order of one million lives,

malaria remains the main cause of death in young

children in Africa (Roll Back Malaria, 2005). The

disease has therefore become one of the top priorities

on the international health agenda. There are a

number of efficacious interventions such as insecti-

cide treated nets (ITNs), indoor residual spraying

(IRS) and artemisinin-based combination therapy

(ACT) but it is not obvious what will be their impact,

taking into consideration effects on transmission and

health system constraints, and so it is not obvious

when and how best to deploy and combine them.The

resource allocation issues are considerable, with

current estimates of US$ 3.8 to 4.5 billion per year

for the total costs of controlling malaria worldwide

in accordance with internationally agreed targets

(Kiszewski et al. 2007) and the actual annual inter-

national transfers for malaria control increasing year

by year, reaching USD 600 million in 2006 (Roll

Back Malaria, 2005). Ongoing field research as well

as programme monitoring and evaluation is essential

to decide on the best strategies in different contexts,

but it is not realistic to field-test a large number of

combinations of different interventions in different

epidemiological and operational settings.

The planning and prioritization of integrated

control strategies thus need models that can quantify

both short- and long-term effects on transmission,

morbidity, mortality, immunity and resistance to

medicines and insecticides, at the same time as in-

corporating field-based data about control, including

health system information. Unfortunately there have

been very few examples of disease modelling span-

ning transmission dynamics as well as economic

factors, and these have been constrained by the ap-

plication of limited sets of field data to linear models

and limited combinations of interventions (Flessa,

2002). This paper is an overview of the project we

are undertaking to develop such comprehensive

simulation models of malaria epidemiology and

control and to fit them to field data.

This project started when we undertook to develop

a model to simulate the potential effects of the in-

troduction of pre-erythrocytic malaria vaccines. We

chose to address this problem using an individual-

based stochastic model, or micro-simulation ap-

proach. Micro-simulation is an increasingly popular

modelling technique (see for instance Stolk et al.

in this special issue) because it offers almost total

flexibility in the description both of inputs and

outputs, making it relatively easy to extend the

framework indefinitely to mimic very complex sys-

tems, so that both short- and longer- term dynamics

can be considered at the same time. Moreover,

stochastic approaches lend themselves to modelling

rare events (such as deaths), and stochastic models

can be readily extended to model heterogeneities

as functions of distributions. Micro-simulations of

infectious disease control can reproduce arbitrary

aspects of interventions such as delivery to selected

groups of individuals, and also look at the impli-

cations of monitoring selected population sub-

groups, such as specific age groups or only those

with clinical symptoms. Despite this potential,

micro-simulations of human parasitic diseases have

so far had little impact on public health policy, with

the notable exception of the ONCHOSIM model

(Plaisier et al. 1990; Habbema et al. 1992), which

has proved an invaluable decision support tool

in the Onchocerciasis Control Programme in West

Africa.

The results of our initial simulations of pre-

erythrocytic malaria vaccines are already published

(for an overview see Smith et al. (2006a)). The ap-

proach lends itself to prediction of the potential

impact of any malaria intervention strategy under

consideration and we are now adapting it for fore-

casting the epidemiological and economic impact and

cost-effectiveness of the whole range of malaria

control interventions, singly or combined, applied

across a broad range of epidemiological and health

system scenarios in malaria endemic areas. In the

next section of the paper we outline the major chal-

lenges that we face in meeting this ambitious goal.

We then describe how we have addressed these

challenges to develop amodel that can be of real value

for malaria control decision-makers and planners.

CHALLENGES

A general predictive model for malaria epidemiology

and control needs a parsimonious structure that

mimics malaria biology well enough to capture the

mechanisms of action of all the different interven-

tions, and at the same time needs parameter values

that reproduce the observed quantitative relation-

ships between epidemiological measures. The sim-

ultaneous achievement of both these objectives is a

major challenge.

The biology and epidemiology of malaria com-

prises many different dynamic processes with (posi-

tive and negative) feedback loops. Furthermore,

drug treatments, vector control, personal protection

and vaccines may all have effects on outcomes that

are more complex than the effects on primary infec-

tions in the non-immune host. Even if the effect of a

vaccine is simply to reduce the force of infection,

the short-term consequences in terms of morbidity

and mortality are not simply proportional to the
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reduction in infection rate. There are also longer

term dynamic effects due to changes in the immune

status of the population, benefits due to herd im-

munity (in the case of vaccines), community effects of

vector control, and long-term evolutionary conse-

quences (see, for instance, Koella and Zaghloul

(2008)). Predictions of long-term effectiveness of

interventions in programmes also need to consider

the health system realities that result in sub-optimal

access, targeting accuracy, provider compliance, and

consumer adherence. Longer term effects also in-

clude the ramifications with regard to health service

demands.

The core of a model that can capture all of these is

the specification of the properties of an infection.

An individual malaria infection can last for many

months, during which densities of both asexual

parasites and gametocytes vary irregularly as conse-

quences mainly of the developmental cycle of the

parasite, of host immunity, and of antigenic variation

(in P. falciparum). Disease and death are associated

with high parasite densities, and the most obvious

impact of acquired immunity is in reducing parasite

densities. The irregularities in parasite densities lend

themselves to treatment as statistical fluctuations.

Since the course of each infection is different, and

the average behaviour is of less importance than the

extent of variation, convincing models for individual

infections (e.g. those of Molineaux et al. (2001) and

Gatton and Cheng (2004)) have adopted stochastic

simulation approaches, rather than treating the de-

velopment of an individual malaria infection as a

deterministic process.

A population model for predicting the impact of

interventions that modify parasite densities, such as

asexual blood stage vaccination, or treatment with

incompletely effective drugs, must explicitly capture

relationships with parasite densities, and thus

needs to nest within it such a stochastic model for

individual infections. This constrains the whole

modelling process into the individual-based stoch-

astic framework. In addition to its advantages, the

stochastic approach also leads to challenges: stoch-

astic models are computationally demanding, and

are more difficult to fit to data than deterministic

equivalents. The fitting of a complex stochastic

model to a wide range of different epidemiological

outcomes pushes limits both in terms of algorithms

of multi-objective optimization and computational

resources. In particular, because death is a relatively

infrequent event, many tens of thousands of life-

histories must be simulated in order to generate

stable estimates of mortality rates that can be com-

pared with field data.

Fitting of models to data aims to minimize the

uncertainty in our predictions, but a further challenge

is to identify and quantify the many uncertainties

that will remain. For instance, it is very difficult to

quantify natural variation in exposure to mosquito

bites, because it is influenced profoundly by a

number of factors including, for example, micro-

environment, climate and human behaviour. Stat-

istical imprecision can be reduced by acquiring

more data, but doubts will remain in any attempt to

predict the future. We do not know what new inter-

ventions may be discovered, and the future costs of

malaria control commodities may develop almost

unpredictably in reaction to demand, raw material

prices, industrial innovation and other factors.

Other uncertainties, especially those that relate to

the human immune response to the parasite, arise

because we have not been able to measure the

relevantquantities, or donot knowwhat they are.The

lack of a proxy measure for protective immunity

is particularly a problem for vaccine development

but it also represents a challenge for the specification

of models of disease dynamics. Finally, there are es-

pecially large uncertainties with regard to both

the performance of health systems and the health-

seeking behaviours of populations. This is partly

because of the limited extent of comprehensive health

systems research inmalaria endemic areas.Validation

of parameters for models of interventions and health

systems is constrained to relatively few sites with

thorough costing and effectiveness studies of inter-

ventions in real life health systems.

EPIDEMIOLOGICAL MODELS

The first phase of the project (from 2003–2005) fo-

cused on developing a single model for malaria epi-

demiology that reproduces the relevant aspects of

malaria biology. We used this to predict the likely

impact of pre-erythrocytic vaccines, including pro-

jections of the consequences of introducing such

vaccines into the Expanded Program on Im-

munization, for both malaria epidemiology (Maire

et al. 2006c) and vaccine cost-effectiveness (Tediosi

et al. 2006a). This required us to develop simulations

of the malaria transmission cycle, of the course of

individual infections, of the risk of morbidity and

mortality as a function of transmission intensity, and

of the impact of the health systems on malaria in

endemic settings. The details of the models used,

including their justification in terms of biology and

epidemiology have been published as a supplement

to the American Journal of Tropical Medicine and

Hygiene, of which the first paper provides an over-

view, together with the mathematical description

(Smith et al. 2006c).

The simulated time-courses of parasite densities

are based on a description of parasite densities in

neurosyphilis patients who received therapeutic

P. falciparum infections. By placing parasite densities

as the centre of a causal web linking infection with its

downstream effects (Fig. 1), we are able to reproduce

key features of malaria biology that are difficult to

capture with other approaches.

Simulation model of malaria control 1509

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0031182008000371
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 17:48:50, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0031182008000371
https:/www.cambridge.org/core


Notably, in our models as in the real world, the

main effect of naturally acquired immunity to ma-

laria is to reduce infection density, rather than per-

sistence of the infection (Sama, Killeen and Smith,

2004; Sama et al. 2006). We model the probability

that a mosquito is infected when feeding as a stoch-

astic function of time-lagged asexual parasite den-

sities in the human host. This is a considerable

simplification but does capture the important density

dependence demonstrated in experimental models

(Sinden et al. 2007). High parasite densities are also a

trigger of clinical malaria and are quantitatively re-

lated to severity of disease, and so in our simulations

these events occur when parasite densities exceed

given thresholds.

In the first phase we concentrated on simulating

malaria epidemiology in sites where there are field-

based measurements of the seasonal pattern in the

entomological inoculation rate (EIR). We introduce

infections into the simulated human population via a

stochastic process dependent on the average EIR,

allowing for annual periodicity (Smith et al. 2006b).

Because the presence of P. falciparum in the blood

does not prevent a new infection (superinfection),

the population model needs to simulate not just

single infections but also recurrent and concurrent

multiple infections. The subsequent parasite den-

sities are then sampled using 5-day time steps, where

the sampling distributions for the parasite densities

are derived from the time-trends in malaria therapy

data and from immunity parameters determined

from each simulated individual’s history of infection

(Maire et al. 2006b).

In the first phase of the project the requirement

for field measurements of the EIR restricted

us to simulating only areas of intense endemic

transmission. We generated the simulated infections

via Poisson processes (Smith et al. 2006b), in-

corporating both seasonality and the age dependence

that arises because larger people generally receive

more bites by mosquitoes by virtue of their larger

body surface (Port, Boreham and Bryan, 1980), but

neglecting the clustering in infection that certainly

occurs in malaria. Some people are more attractive to

mosquitoes than others (Knols, de Jong and Takken,

1995), and some live in micro-environments where

they are more exposed.

In high transmission scenarios it is reasonable to

treat transmission as homogeneous, and generate

mortality rates by simulating very large closed popu-

lations. This is equivalent to averagingmany smaller,

village size, simulations because the population

average level of transmission is not much affected

by stochastic variation. In low transmission scenarios

it is important to consider both individual differ-

ences in risk of infection and to simulate receptivity

(the risk of epidemics from imported infections)

in realistically-sized human populations. Stochastic

models are the natural way to achieve this, and we are

currently exploring different distributional assump-

tions for transmission heterogeneity (Smith, 2008).

We expect to confirm the effects of heterogeneity on

the basic reproduction number, R0 (Smith et al.

2007), but it is unclear how important are the sec-

ondary consequences of individual differences in

risk, such as the stronger development of natural

immunity for high-risk persons.

MODELS OF INTERVENTION STRATEGIES

We plan to define and simulate a minimal essential

set of interventions, intervention combinations and

scale-up strategies for malaria control. Table 1 out-

lines an example of some among the many possible

strategies, each of which will be specified in detail,

and for each of which a model for action of the in-

terventions must be incorporated into the simu-

lations. Integrated strategies may simultaneously

include many different interventions, the appropri-

ateness of which will depend on the epidemiological

setting and health system.

For case management of malaria we include the

effects on morbidity, mortality and transmission.

Models of health system effectiveness in intervention

delivery are an important part of the simulation of

any preventive and curative intervention, since the

effectiveness can be affected by constraints both on

the provider and the consumer side. Improvements

in the health system, such as rolling-out of rapid

diagnostic tests represent an important set of inter-

ventions that we aim to simulate. We also consider

the reduced burden on the health system resulting

from preventive interventions and case management.

Quantitative modelling of the feedbacks in health

systems is in its infancy, and so far we have completed

Fig. 1. Key causal factors and outcomes in the models of

malaria epidemiology and interventions. Abbreviations:

BSV: blood stage vaccine; MSTBV: mosquito stage

transmission blocking vaccine; PEV: pre-erythrocytic

vaccine; ITNs: insecticide treated nets; IRS: indoor

residual spraying.
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only a basic model based on data from Tanzania

(Tediosi et al. 2006b). We are currently revising this

to incorporate improved simulations of diagnosis,

drug action, referral, the contribution of the informal

sector, and of the implications of intermittent pre-

ventive treatment as well as transmission reducing

interventions.

Measurements of immune responses to malaria

have generally not demonstrated strong correlations

with protection (pre-clinical studies of mosquito

stage transmission blocking vaccines are exceptions

(Saul, 2008)). For this reason we have formulated

models of vaccine action in terms of the effects on

clinical and parasitological outcomes, rather than

modelling immune effectors. Our analyses of the

results of field trials of a pre-erythrocytic vaccine

were compatible with a very simple such model,

namely, that such vaccines block a percentage of

sporozoite inoculations from reaching the blood.

This percentage may vary between human hosts, but

it seems no-one is completely protected from infec-

tion by such a vaccine (Maire et al. 2006a).

We can model mosquito-stage transmission

blocking vaccines similarly by assuming a defined

proportionate reduction in the probability that a

mosquito becomes infected from any one feed. We

have also modelled blood stage vaccines by assuming

the immediate effect to be reduction in parasite den-

sities. This assumptionmay be an over-simplification

as vaccine-induced reduction in asexual blood stage

challenge very likely has complex effects on parasite

dynamics. We are developing improved within-host

models based on stochastic simulations to include

interaction between asexual parasites and host im-

mune responses. We anticipate that these should

provide us with models for asexual blood stage vac-

cination and for the action of antimalarial drugs that

capture these dynamics.

Table 1. Summary of datasets used for parameterising the epidemiological models

Objective Included& Sources of data
Number of
scenarios$

Number of
data points*

Reference for
the analysis

Parasite densities in primary
infections by age of infection

No Collins and Jeffery
(1999)

n.a. 47 patients Maire et al.
(2006b)

Infectivity of humans to mosquitoes
by history of parasite density

No Collins and Jeffery
(2003)

n.a. 730 feeding
experiments

Ross et al.
(2006a)

Incidence of new infection in
previously treated children#

No Beier et al. (1994) 21 62 Smith et al.
(2006b)

Age pattern of incidence of new
infection in treated individuals#

Yes Molineaux and
Gramiccia (1980)

1 12 Smith et al.
(2006b)

Age- and seasonal patterns of
prevalence of infection#

Yes Molineaux and
Gramiccia (1980)

6 563 Maire et al.
(2006b)

Age- and seasonal patterns of
parasite density#

Yes Molineaux and
Gramiccia (1980)

6 563 Maire et al.
(2006b)

Age pattern of number of
concurrent infections#

Yes Maire et al. (2006b) ;
Owusu-Agyei et al.
(2002)

1 12 Maire et al.
(2006b)

Age pattern of incidence of clinical
malaria#

Yes Trape and Rogier
(1996); Kitua et al.
(1996)

3 31 Smith et al.
(2006c)

Age pattern of threshold parasite
density for clinical attacks#

Yes Rogier et al. (1996) 1 13 Smith et al.
(2006c)

Hospitalisation rate in relation to
prevalence in children

Yes See Ross et al. (2006b) 26 10£ Ross et al.
(2006b)

Age pattern of hospitalisation# Yes Marsh and Snow
(1999)

4 12 Ross et al.
(2006b)

Malaria specific mortality
in children#

Yes Snow et al. (1997) 9 9 Ross et al.
(2006b)

Infant mortality rate# Yes See Ross et al. (2006b). 11 11 Ross et al.
(2006b)

& This column indicates whether this objective is included in the simultaneous multi-objective fitting of the model, or
whether the data are used to separately parameterise model components.
$ Some scenarios are used to predict several outcomes, so the total of this column does not equal the total of 61 scenarios
involved in fitting the models.
* The number of data points is the sum over all scenarios and simulated survey periods of the number of age groups into
which the data were disaggregated for comparison with the model predictions.
# In relation to the seasonal pattern in the EIR.
£ Model predictions for this objective are compared with interpolations between the field data points.
n.a. (not applicable) indicates that this objective is not included in the multi-objective optimisation.
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We base our models for the effects of personal pro-

tection and vector control on discrete-time models of

the mosquito feeding cycle (Saul, Graves and Kay,

1990;Killeen and Smith, 2007).We have generalized

these models to incorporate the heterogeneity of

human and non-human animal hosts, and explicitly

model the different stages of the mosquito feeding

cycle that can be targeted by different interventions,

allowing the duration of the feeding cycle to vary

(Chitnis, Steketee and Smith, 2007). The model is

being parameterized to simulate the effects of Indoor

Residual Spraying (IRS) and for simulating effects

of Insecticide Treated Nets (ITNs) at various per-

formance levels of the health system. Combinations

of both interventions can also be simulated. For the

latter, we are considering the dynamics of mosquito

net coverage, to include the effects of deterioration of

nets and loss of insecticidal effects. These models

will be validated by simulating field trials of ITNs.

Once these models are in the overall stochastic

simulation platform, we will be able not only to

simulate plausible vector control strategies, but also

integrated control involving multiple interventions.

SOFTWARE AND FITTING TO DATA

Our stochastic simulation models are highly

computation-intensive, and are implemented in the

general purpose programming languages Fortran 95

andC++ for performance and flexibility. The speci-

fications of the scenario to be simulated are provided

in an input file written in Extensible Markup

Language (XML), and output is returned in the form

of text files containing predictions of age- and time-

specific epidemiological quantities (infection preva-

lence and density, multiplicity of infection, incidence

and severity of morbidity, mortality, and levels of

intervention coverage), allowing for effects of mis-

diagnosis where necessary.

In our initial overview publication we listed a total

of 38 parameters in the overall model of malaria

epidemiology. Considering that this comprises

simulations of the whole transmission cycle, relevant

aspects of immunity, and of a wide range of mor-

bidity and mortality outcomes, this is not excessive,

but optimisation within a space of this dimension is

challenging.

Some of the current components of this model are

estimated independently of the others. Six of the

parameters are part of a statistical model for how

anaemia depends on infection status (Carneiro et al.

2006). This anaemia component does not feed back

into the rest of the model. Nor do values of five

parameters that quantify infectivity of human hosts

to mosquitoes affect the estimates of the rest of the

parameters and these were estimated in stand-alone

exercises (Ross, Killeen and Smith, 2006a ; Killeen,

Ross and Smith, 2006). Two other components of

the models are estimated directly from field data,

namely, the time-course of parasite densities in

individual infections in a previously untreated

host, which is based on a statistical description of

malaria therapy profiles (Maire et al. 2006b) ; and

the relationship between the force of infection

(parasitological inoculation rate) and the EIR, which

is estimated from the data of a field study that

specifically addressed this question (Beier et al.

1994). Malaria attributable neonatal mortality rates

are taken from systematic reviews (Ross and Smith,

2006).

The other components of the model, correspond-

ing to 25 different unknown quantities (parameters),

are fitted by treating the stochastic simulation as an

implicit statistical model (a list of these parameters is

given by Smith et al. (2006a). A total of 61 standard

scenarios have been constructed, corresponding to

sites where both the pattern of transmission and

one or more epidemiological variables have been

measured (Table 2). These epidemiological variables

define a set of 10 different objective functions (like-

lihoods or sums of squares) corresponding to differ-

ent epidemiological outcome measures that must be

optimised. In the first phase of the project we were

able to fit our model to all of these objectives using a

simulated annealing algorithm. We used a desktop-

grid approach to distribute the simulations across our

local computer network, using up to 40 processors

at any one time. However this was only possible by

fitting the different objectives and corresponding

model components sequentially, each conditional on

the upstream objectives. Even then, many of the

optimisation runs required several weeks of com-

puting. The computational demands were particu-

larly high for the large number of scenarios used

for predicting rates of severe disease and mortality.

Since these are relatively rare events, many simulated

individuals were needed to provide stable predictions

of rates that can be compared with field data.

In the current phase of the project the compu-

tational demands are even higher because we are

developing and comparing a number of alternative

model formulations. These involve explicit simu-

lations of longitudinal patterns of parasitaemiawithin

hosts ; effects of heterogeneity in transmission (to

simulate areas of focal transmission) ; decay in ac-

quired immunity against malaria; parasite drug re-

sistance; and different models for preventive and

curative interventions, singly and combined.

To optimise all these models we are harnessing the

spare capacity of computers made available across

the internet by volunteers via the Berkeley Open

Infrastructure for Network Computing (BOINC)

(http://boinc.berkeley.edu/). The BOINC middle-

ware manages the allocation of tasks to volunteer

computers (scheduling), information exchange about

the project, and the corresponding security issues

both for our servers and for the volunteers. Using

this infrastructure we can fit many models in parallel
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using genetic algorithms (Holland, 1975). Each

iteration of the fitting process involves sending each

of the 61 standard scenarios to the volunteers, com-

bining their results to give measures of model fit (loss

function) for each of the 10 objectives, and computing

an overall loss function, thus making possible

simultaneous multi-objective optimisation. The

project server generates new parameterisations and

tracks convergence. Fig. 2 illustrates how the overall

loss function computed from all 61 scenarios im-

proved during a typical implementation of this iter-

ative process. This run illustrates slow convergence

when many similar parameterisations are run in

parallel using the current genetic algorithm.

Within this framework, many different optimiz-

ations can be carried out in parallel, with the main

limitations being the server capacity, the minimum

turn-around time on the work units sent out to the

volunteers, and the capacity of the research team to

process the results. These in turn mean that the time

needed to perform one optimization remains of the

order of several weeks or months with the current

algorithm.

OUTLOOK

The development of a comprehensive simulation

model for malaria epidemiology and control requires

a substantial trans-disciplinary effort, and extra-

ordinary computing power. To this end, the Swiss

Tropical Institute has assembled a research team that

draws on skills from epidemiology, clinical medicine,
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Fig. 2. Loss function by iteration (example run). Each

point corresponds to the weighted average of the loss

functions over all 61 scenarios computed for a single

model parameterisation.

Table 2. Examples of interventions to combine in integrated control programmes

Intervention Deployment (examples) Combinations (examples)*

Prevention: Pre-erythrocytic
vaccine

EPI

Campaigns

Prevention: Asexual blood stage
vaccine

EPI

Campaigns

Prevention: Mosquito stage
transmission blocking vaccine

EPI

Campaigns

Prevention: Insecticide-treated nets Continuous social marketing

Continuous distribution with
ANC and or EPI integration

Targeted periodic campaigns

Mass distribution periodic
campaigns

Prevention: Indoor residual
spraying

Spray round campaigns

Prevention: Larviciding Application rounds

Treatment: IPTi EPI integration

Treatment: IPTp ANC integration

Treatment: ACT 1st line drug

Treatment: RDT Routine use

* Each column corresponds to one strategy of integrated or combined intervention programmes, making use of each of the
interventions indicated by shading. The project will simulate a very wide range of such combinations but not all are
possible : we will concentrate on analysing those most likely to be adapted to the particular epidemiological setting.
Abbreviations: ACT: artemisinin combination therapy; ANC: ante-natal clinic; EPI: Expanded Program on
Immunization; IPTi: intermittent preventive treatment in infants; IPTp: intermittent preventive treatment in pregnancy;
RDT: rapid diagnostic test.
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immunology, entomology, laboratory sciences,

health systems, mathematics, statistics, economics,

and computer sciences. The project is guided by an

international technical advisory group of malaria and

modelling experts. Finally, development of a valid

and useful comprehensive model such as this

requires access to numerous large and diverse field

data sets informing the many dimensions required to

validate the model. For this we are fortunate to have

the collaboration of many partners and field projects

from areas with endemic malaria and intend to

broaden further these links to obtain the strongest

possible validation.

It seems unlikely that any of the intervention

strategies we are simulating will prove to be a magic

bullet that will solve the problem of malaria for good.

On the other hand, the application of all existing

control interventions in all endemic areas is likely to

be highly cost-ineffective. Practical malaria control

experience indicates that the application of a well

selected limited menu of interventions in a given

area can capitalise on the advantages of each one.

Modelling integrated control strategies will thus be

of great utility for informing malaria control pro-

grammes about which strategies are most likely to be

cost-effective under specific conditions.

In the light of the many uncertainties inherent in

such an exercise, it is crucial to supplement themodel

predictions with sensitivity analyses, development of

new models, and validation of model outputs against

accumulated field data. The availability of the www.

malariacontrol.net volunteer computing resources

enables us not only to fit many models, but also to

carry out the extensive analysis of model predictions,

and in the same way as climate modellers now make

predictions from ensembles of different models, we

will be most confident about the predictions of dis-

ease models if we see that they are consistent across a

range of different sets of assumptions. To judge how

robust are the simulation results we can also perform

probabilistic sensitivity analysis (PSA) to identify

the sensitivity of model predictions to the different

parameters, thus helping to identify which model

assumptions are most important in determining the

predictions, and where further data may be needed

(Briggs, 2000). By including costing parameters in

the PSA we can also construct acceptability curves

for specific intervention strategies.

The final set of model results will be made publicly

accessible. We are engaged in a consultation process

with various users including health planners; control

programme managers; international policy makers;

researchers, and members of industry, in order to

determine what kinds of user-interfaces will be re-

quired. These will allow the users to query specific

eco-epidemiological and health system scenarios,

and hence enable the models to take their place as

important tools for rational planning of malaria

control.
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