Convexity of certain integrals of the calculus of variations

B. Dacorogna
Département de Mathématiques, Ecole Polytechnique Féderale, 1015 Lausanne, Switzerland

(MS received 24 November 1986. Revised MS received 12 February 1987)

Synopsis

In this paper we study the convexity of the integral $I(u)=\int_{0}^{1} f\left(x, u(x), u^{\prime}(x)\right) d x$ over the space $W_{0}^{1, \infty}(0,1)$. We isolate a necessary condition on f and we find necessary and sufficient conditions in the case where $f\left(x, u, u^{\prime}\right)=a(u) u^{\prime 2 n}$ or $g(u)+h\left(u^{\prime}\right)$.

1. Introduction

In this paper we are concerned with integrals of the calculus of variations of the type

$$
\begin{equation*}
I(u)=\int_{0}^{1} f\left(x, u(x), u^{\prime}(x)\right) d x \tag{1}
\end{equation*}
$$

where $f:(0,1) \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is C^{2}. We study the conditions on f under which the integral I is convex over the space $W_{0}^{1, \infty}(0,1)$, which denotes the space of Lipschitz functions vanishing at 0 and 1 .

We first give a necessary condition on f, which is that $f(x, u, \cdot)$ is convex. We then give examples showing that no implication can be inferred a priori on the convexity of f with respect to the variable u. We then study two examples
(i) $f(x, u, \xi)=a(u) \xi^{2 n}$
with $n \geqq 1, n$ an integer, and we show in this case that

$$
I \text { convex over } W_{0}^{1, \infty}(0,1) \Leftrightarrow a(u)=\text { constant. }
$$

(ii) $f(x, u, \xi)=g(u)+h(\xi)$ and we show that if

$$
\begin{aligned}
& g_{0}=\inf \left\{g^{\prime \prime}(u): u \in \mathbb{R}\right\} \\
& h_{0}=\inf \left\{h^{\prime \prime}(\xi): \xi \in \mathbb{R}\right\},
\end{aligned}
$$

then

$$
I \text { convex over } W_{0}^{1, \infty}(0,1) \Leftrightarrow \pi^{2} h_{0}+g_{0} \geqq 0 \text { and } h_{0} \geqq 0 .
$$

In this last example we show that even if $f(x, u, \xi)$ is not convex in the variables (u, ξ), while I is convex over $W_{0}^{1, \infty}(0,1)$, there exists $\tilde{f}:(0,1) \times \mathbb{R} \times$ $\mathbb{R} \rightarrow \mathbb{R}$ such that $\tilde{f}(x, \ldots)$ is convex and

$$
I(u)=\int_{0}^{1} \tilde{f}\left(x, u(x), u^{\prime}(x)\right) d x=\int_{0}^{1}\left(g(u(x))+h\left(u^{\prime}(x)\right)\right) d x
$$

for every $u \in W_{0}^{1, \infty}(0,1)$.

The question of the convexity of the integral I is important in the sense that one can then apply the abstract results of convex analysis to I; in particular a solution of the Euler equation must then be a minimiser of I.

Usually in the direct methods of the calculus of variations one studies the weak lower semicontinuity of I in a Sobolev space $W^{1, p}$ and we have the following result
(i) I convex $\Rightarrow I$ weakly lower semicontinuous;
(ii) I weakly lower semicontinuous $\Leftrightarrow f(x, u,$.$) is convex.$

So, in particular, if

$$
f(x, u, \xi)=\xi^{4}+\left(u^{2}-1\right)^{2}
$$

then, in view of the above results, we have that the associated I is weakly lower semicontinuous but not convex.

2. Main results

We start with a necessary condition.
Theorem 1. Let $f:(0,1) \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be continuous and satisfy

$$
|f(x, u, \xi)| \leqq a(x,|u|,|\xi|)
$$

where a is increasing with respect to $|u|$ and $|\xi|$ and locally integrable in x. If I is convex over $W_{0}^{1, \infty}(0,1)$, then $f(x, u,$.$) is convex.$

Proof. Since f is continuous and I is convex over $W_{0}^{1, \infty}(0,1)$ then I is weak* lower semicontinuous in $W^{1, \infty}$ (this is a direct application of Mazur's lemma, see for example [1]). However, it is well known that under the above hypotheses on f and if I is weak* lower semicontinuous in $W^{1, \infty}$, then $f(x, u,$.$) is convex (see for$ example [3] and the references quoted therein).

Remark. The above result is still true for multiple integrals of the type

$$
I(u)=\int_{\Omega} f(x, u(x), \nabla u(x)) d x
$$

where $\Omega \subset \mathbb{R}^{n}$ is a bounded open set and $u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$. However, it is false if $u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with $n, m>1$; for example, if $m=n=2$ and

$$
f(x, u, \xi)=\operatorname{det} \xi
$$

then f is obviously not convex, while $I(u) \equiv 0$ for every $u \in W_{0}^{1, \infty}(\Omega)$ and hence I is convex.

We now turn our attention to sufficient conditions in some particular cases. The most important and the simplest is, of course, the case with no dependence on u, i.e.

$$
f(x, u, \xi) \equiv f(x, \xi)
$$

We then have, trivially, the following:
Proposition 2. I is convex over $W_{0}^{1, \infty}(0,1)$ if and only if $f(x,$.$) is convex.$

We now give a trivial example showing that no convexity on the variable u can in general be inferred from the convexity of I.

Proposition 3. Let $g: \mathbb{B} \rightarrow \mathbb{R}$ be continuous and let

$$
f(x, u, \xi)=g(u) \xi
$$

Then

$$
I(u) \equiv 0 \text { for every } u \in W_{0}^{1, \infty}(0,1)
$$

Remark. Note, however, in the above example that there exists $\tilde{f}:(0,1) \times \mathbb{R} \times$ $\mathbb{R} \rightarrow \mathbb{R}$, namely $\tilde{f} \equiv 0$, convex in the last two variables such that

$$
I(u)=\int_{0}^{1} \tilde{f}\left(x, u(x), u^{\prime}(x)\right) d x
$$

for every $u \in W_{0}^{1, \infty}(0,1)$.
We now turn our attention to the last two cases.
Proposition 4. Let $a \in C^{\infty}(\mathbb{R})$ be such that

$$
a(u) \geqq a_{0}>0 \quad \text { for every } \quad u \in \mathbb{R}
$$

and for $n \geqq 1, n$ an integer, let

$$
f(x, u, \xi)=a(u) \xi^{2 n}
$$

Then I is convex over $W_{0}^{1, \infty}(0,1)$ if and only if a is constant.
Proposition 5. Let $g, h \in C^{\infty}(\mathbb{R})$ and

$$
f(x, u, \xi)=g(u)+h(\xi)
$$

and let

$$
g_{0}=\inf \left\{g^{\prime \prime}(u): u \in \mathbb{R}\right\}, h_{0}=\inf \left\{h^{\prime \prime}(\xi): \xi \in \mathbb{R}\right\}
$$

Then
(i) There exist g nonconvex and h convex such that I is convex over $W_{0}^{1, \infty}(0,1)$, for example

$$
g(u)=\frac{1}{2}\left(u^{2}-1\right)^{2}, h(\xi)=\xi^{2}
$$

(ii) I is convex over $W_{0}^{1, \infty}(0,1)$ if and only if $h_{0} \geqq 0$ and

$$
\begin{equation*}
\pi^{2} h_{0}+g_{0} \geqq 0 \tag{2}
\end{equation*}
$$

(iii) Case 1. If $g_{0} \geqq 0$ and $h_{0} \geqq 0$, then $f(x, u, \xi)=g(u)+h(\xi)$ is convex in the variables (u, ξ).

Case 2. If $g_{0}<0$ and $\pi^{2} h_{0}+g_{0}>0$, then let $\varphi(x, u, \xi)=\sqrt{-g_{0} h_{0}} \tan \left[\sqrt{\frac{-g_{0}}{h_{0}}}\left(x-\frac{1}{2}\right)\right] u \xi-\frac{g_{0}}{2}\left(1+\tan ^{2}\left[\sqrt{\frac{-g_{0}}{h_{0}}}\left(x-\frac{1}{2}\right)\right]\right) u^{2}$.

If

$$
\begin{equation*}
\Phi(x, u)=\frac{1}{2} \sqrt{-g_{0} h_{0}}\left(\tan \left[\sqrt{\frac{-g_{0}}{h_{0}}}\left(x-\frac{1}{2}\right)\right]\right) u^{2}, \tag{4}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{d}{d x}\left(\Phi(x, u(x))=\varphi\left(x, u(x), u^{\prime}(x)\right)\right. \text { almost everywhere } \tag{5}
\end{equation*}
$$

for every $u \in W^{1, \infty}(0,1)$ and

$$
\begin{equation*}
\tilde{f}(x, u, \xi)=g(u)+h(\xi)+\varphi(x, u, \xi) \tag{6}
\end{equation*}
$$

is convex in the variables (u, ξ) for every $x \in[0,1]$ and satisfies

$$
\begin{equation*}
I(u)=\int_{0}^{1} \tilde{f}\left(x, u(x), u^{\prime}(x)\right) d x \tag{7}
\end{equation*}
$$

for every $u \in W^{1, \infty}(0,1)$.
Case 3. If $g_{0} \leqq 0$ and $\pi^{2} h_{0}+g_{0}=0$ then \tilde{f} defined by (6) is convex in (u, ξ) for every $x \in(0,1)$ and (7) holds if $u \in \mathscr{D}(0,1)=\left\{u \in C^{\infty}(0,1)\right.$: supp $\left.u \subset(0,1)\right\}$.

Remarks. (i) Note that the function $\varphi(x, u, \xi)$ in (3) is linear in ξ and it is such that

$$
\int_{0}^{1} \varphi\left(x, u(x), u^{\prime}(x)\right) d x \equiv 0
$$

for every $u \in W_{0}^{1, \infty}(0,1)$ if $\pi^{2} h_{0}+g_{0}>0$; such an integral is called an invariant integral in the field theories in the calculus of variations.
(ii) Note also that if $\pi^{2} h_{0}+g_{0}=0$, then the function φ is not defined at the boundary points $x=0$ and 1 .

Before proceeding with the proof, we quote a lemma whose proof is obvious.
Lemma 6. Let $f:(0,1) \times \mathbb{B} \times \mathbb{R} \rightarrow \mathbb{R}$ be C^{2}, let

$$
I(u)=\int_{0}^{1} f\left(x, u(x), u^{\prime}(x)\right) d x
$$

and for $\lambda \in[0,1]$, for $u, v \in W^{1, \infty}(0,1)$ let

$$
\psi(\lambda)=I(\lambda(u-v)+v)-\lambda I(u)-(1-\lambda) I(v) .
$$

Then the three following assertions are equivalent:
(i) I is convex over $W_{0}^{1, \infty}(0,1)$.
(ii) ψ is convex for every $u, w \in W_{0}^{1, x}(0,1)$.
(iii) $\psi^{\prime \prime}(\lambda) \geqq 0$ for every $\lambda \in[0,1], u, v \in W_{0}^{1, \infty}(0,1)$, where
$\psi^{\prime \prime}(\lambda)=\int_{0}^{1}\left[(u-v)^{2} f_{u u}\left(x, \lambda(u-v)+v, \lambda\left(u^{\prime}-v^{\prime}\right)+v^{\prime}\right)\right.$

$$
\left.+2(u-v)\left(u^{\prime}-v^{\prime}\right) f_{u \xi}+\left(u^{\prime}-v^{\prime}\right)^{2} f_{\xi \xi}\right] d x,
$$

where

$$
f_{u u}=\frac{\partial^{2} f}{\partial u^{2}}, \quad f_{u \xi}=\frac{\partial^{2} f}{\partial u \partial \xi}, \quad f_{\xi \xi}=\frac{\partial^{2} f}{\partial \xi^{2}}
$$

Proof of Proposition 4. The fact that if a is constant then I is convex is trivial. We therefore prove the converse. We divide the proof into three steps.

Step 1. In the above lemma we let $w=u-v$ and $z=\lambda(u-v)+v$. We then have

$$
\begin{align*}
0 \leqq & \psi^{\prime \prime}(\lambda)=\int_{0}^{1}\left[w^{2} a^{\prime \prime}(z) z^{\prime 2 n}+4 n w w^{\prime} a^{\prime}(z) z^{\prime 2 n-1}+2 n(2 n-1) w^{\prime 2} a(z) z^{\prime 2 n-2}\right] d x \\
= & \int_{0}^{1} 2 n(2 n-1) a(z) z^{\prime 2 n-2}\left[w^{\prime 2}+\frac{2}{(2 n-1)} w w^{\prime} \frac{a^{\prime}(z)}{a(z)} z^{\prime}\right. \\
& \left.+\left(\frac{w a^{\prime}(z) z^{\prime}}{(2 n-1) a(z)}\right)^{2}-\left(\frac{w a^{\prime}(z) z^{\prime}}{(2 n-1) a(z)}\right)^{2}+\frac{w^{2} a^{\prime \prime}(z) z^{\prime 2}}{2 n(2 n-1) a(z)}\right] d x \\
= & \int_{0}^{1} 2 n(2 n-1) a(z) z^{\prime 2 n-2}\left[\left(w^{\prime}+\frac{a^{\prime}(z) z^{\prime}}{(2 n-1) a(z)} w\right)^{2}\right. \\
& \left.-\frac{w^{2} z^{\prime 2}}{2 n(2 n-1)^{2}(a(z))^{2}} \cdot\left(2 n\left(a^{\prime}(z)\right)^{2}-(2 n-1) a^{\prime \prime}(z) a(z)\right)\right] d x \\
= & \int_{0}^{1} 2 n(2 n-1) a(z) z^{\prime 2 n-2}\left\{\left[\left(\frac{1}{a(z)}\right)^{1 /(2 n-1)}\left((a(z))^{1 /(2 n-1)} w\right)^{\prime}\right]^{2}\right. \\
& \left.-\frac{w^{2} z^{\prime 2}(a(z))^{1 /(2 n-1)}}{2 n(2 n-1)^{2}} \frac{2 n\left(a^{\prime}(z)\right)^{2}-(2 n-1) a^{\prime \prime}(z) a(z)}{(a(z))^{2+1 /(2 n-1)}}\right\} d x . \tag{8}
\end{align*}
$$

On letting

$$
\begin{equation*}
b(t)=(a(t))^{-1 /(2 n-1)} \tag{9}
\end{equation*}
$$

we have

$$
\begin{aligned}
b^{\prime \prime}(t) & =-\frac{1}{2 n-1}\left(a^{-1-1 /(2 n-1)} a^{\prime}\right)^{\prime} \\
& =+\frac{1}{(2 n-1)^{2}} \frac{2 n\left(a^{\prime}\right)^{2}-(2 n-1) a a^{\prime \prime}}{a^{2+1 /(2 n-1)}}
\end{aligned}
$$

Therefore, returning to (8), we have

$$
\begin{equation*}
0 \leqq \psi^{\prime \prime}(\lambda)=\int_{0}^{1} 2 n(2 n-1) \frac{z^{\prime 2 n-2}}{(b(z))^{(2 n-1)^{-1}}}\left\{\left[b(z)\left(\frac{w}{b(z)}\right)^{\prime}\right]^{2}-\frac{w^{2} z^{\prime 2}}{2 n b(z)} b^{\prime \prime}(z)\right\} d x \tag{10}
\end{equation*}
$$

Step 2. We now show that (10) implies that

$$
\begin{equation*}
b^{\prime \prime}(t) \leqq 0 \text { for every } t \in \mathbb{R} \tag{11}
\end{equation*}
$$

Assume, for the sake of contradiction, that there exists $\alpha \in \mathbb{R}$ such that

$$
\begin{equation*}
b^{\prime \prime}(\alpha)>0 \tag{12}
\end{equation*}
$$

By continuity of $b^{\prime \prime}$, we can choose $\alpha \neq 0$. We then construct z and w in the following way.

Construction of z. We define for N an integer

$$
z(x)= \begin{cases}N \alpha x & \text { if } \quad x \in\left(0, \frac{1}{N}\right) \\ \alpha+N \alpha\left(x-\frac{k}{N}-\frac{m}{N^{2}}\right) & \text { if } \quad x \in \bigcup_{m=0}^{N-1}\left(\frac{k}{N}+\frac{m}{N^{2}}, \frac{k}{N}+\frac{m}{N^{2}}+\frac{1}{2 N^{2}}\right), \quad 1 \leqq k \leqq N-2, \\ \alpha-N \alpha\left(x-\frac{k}{N}-\frac{m+1}{N^{2}}\right) & \text { if } \quad x \in \bigcup_{m=0}^{N-1}\left(\frac{k}{N}+\frac{m}{N^{2}}+\frac{1}{2 N^{2}}, \frac{k}{N}+\frac{m+1}{N^{2}}\right), \quad 1 \leqq k \leqq N-2 \\ \alpha-N \alpha\left(x-\frac{N-1}{N}\right) & \text { if } \quad x \in\left(\frac{N-1}{N}, 1\right) .\end{cases}
$$

We then have that $z \in W_{0}^{1, \infty}(0,1)$ and

$$
\left\{\begin{array}{l}
|z(x)-\alpha| \leqq \frac{|\alpha|}{2 N} \quad \text { if } \quad x \in\left(\frac{1}{N}, \frac{N-1}{N}\right) \tag{13}\\
\left|z^{\prime}(x)\right|=N|\alpha| \quad \text { almost everywhere in }(0,1)
\end{array}\right.
$$

Therefore if $\varepsilon>0$ is fixed, there exists N sufficiently large that

$$
\begin{equation*}
\left|b^{\prime \prime}(z)-b^{\prime \prime}(\alpha)\right|, \quad\left|b^{\prime}(z)-b^{\prime}(\alpha)\right|, \quad|b(z)-b(\alpha)| \leqq \varepsilon \tag{14}
\end{equation*}
$$

for every $x \in(1 / N, N-1 / N)$.
Construction of w. We choose w in such a way that

$$
\frac{1}{b(z(x))} w(x)= \begin{cases}0 & \text { if } \quad x \in\left(0, \frac{1}{N}\right) \tag{15}\\ \sin \frac{\pi N}{N-2}\left(x-\frac{1}{N}\right) & \text { if } \quad x \in\left(\frac{1}{N}, \frac{N-1}{N}\right) \\ 0 & \text { if } \quad x \in\left(\frac{N-1}{N}, 1\right)\end{cases}
$$

Returning to (10) we have

$$
\begin{aligned}
0 \leqq \psi^{\prime \prime}(\lambda)= & \int_{1 / N}^{1-(1 / N)} 2 n(2 n-1) \frac{N^{2 n-2}|\alpha|^{2 n-2}}{(b(z))^{(2 n-1)^{-1}}} \\
& \times\left\{\left[b(z) \frac{\pi N}{N-2} \cos \left(\frac{\pi N}{N-2}\left(x-\frac{1}{N}\right)\right)\right]^{2}\right. \\
& \left.-\frac{b(z) N^{2} \alpha^{2}}{2 n} \sin ^{2}\left(\frac{\pi N}{N-2}\left(x-\frac{1}{N}\right)\right) b^{\prime \prime}(z)\right\} d x .
\end{aligned}
$$

With K_{1} and $K_{2}>0$ denoting constants depending on n, α and $b(\alpha)$, but not on N, and using (14), we have

$$
\begin{equation*}
0 \leqq \psi^{\prime \prime}(\lambda) \leqq K_{1}\left(\varepsilon+\frac{1}{N}\right)+K_{2}\left(N^{2 n-2}-b^{\prime \prime}(\alpha) N^{2 n}\right) \tag{16}
\end{equation*}
$$

By letting N tend to infinity and using (12), we have a contradiction with (16). Therefore (11) holds.

Step 3. The conclusion then follows immediately from (11), i.e. from the concavity of b. Recall that $a(t) \geqq a_{0}>0$, therefore

$$
0<b(t)=\left(\frac{1}{a(t)}\right)^{1 /(2 n-1)} \leqq\left(\frac{1}{a_{0}}\right)^{1 /(2 n-1)} ;
$$

the fact that b is concave, and bounded, implies that b, and therefore a, is constant.

We now conclude with the following proof.
Proof of Proposition 5. Recall that

$$
f(x, u, \xi)=g(u)+h(\xi) .
$$

Recall also the Poincaré-Wirtinger inequality, that is

$$
\int_{0}^{1}(w(x))^{2} d x \leqq \frac{1}{\pi^{2}} \int_{0}^{1}\left(w^{\prime}(x)\right)^{2} d x
$$

for every $w \in W_{0}^{1, \infty}(0,1)$ and that equality holds if $w(x)=\sin \pi x$ (see [2]).
(i) We now prove that if

$$
h(\xi)=\xi^{2} \text { and } g(u)=\frac{1}{2}\left(u^{2}-1\right)^{2},
$$

i.e. g is not convex, then the associated I is convex. We use Lemma 6 and we have

$$
\begin{aligned}
\psi^{\prime \prime}(\lambda) & =\int_{0}^{1}\left\{2\left(u^{\prime}-v^{\prime}\right)^{2}+\left[6(\lambda(u-v)+v)^{2}-2\right](u-v)^{2}\right\} d x \\
& \geqq 2 \int_{0}^{1}\left[\left(u^{\prime}-v^{\prime}\right)^{2}-(u-v)^{2}\right] d x
\end{aligned}
$$

The Poincaré-Wirtinger inequality then immediately implies the positivity of $\psi^{\prime \prime}$ and therefore the convexity of I over $W_{0}^{1, \infty}(0,1)$.
(ii) We always have

$$
\begin{equation*}
\psi^{\prime \prime}(\lambda)=\int_{0}^{1}\left[(u-v)^{2} g^{\prime \prime}(\lambda(u-v)+v)+\left(u^{\prime}-v^{\prime}\right)^{2} h^{\prime \prime}\left(\lambda\left(u^{\prime}-v^{\prime}\right)+v^{\prime}\right)\right] d x \tag{17}
\end{equation*}
$$

(\Leftarrow) We now wish to show that if $h_{0}=\inf \left\{h^{\prime \prime}(t): t \in \mathbb{P}\right\} \geqq 0$ and $\pi^{2} h_{0}+g_{0} \geqq 0$ where $g_{0}=\inf \left\{g^{\prime \prime}(t): t \in \mathbb{R}\right\}$ then I is convex over $W_{0}^{1, \infty}(0,1)$.

It is clear that

$$
\psi^{\prime \prime}(\lambda) \geqq \int_{0}^{1}\left[\left(u^{\prime}-v^{\prime}\right)^{2} h_{0}+(u-v)^{2} g_{0}\right] d x
$$

By using the Poincaré-Wirtinger inequality, we have

$$
\psi^{\prime \prime}(\lambda) \geqq \int_{0}^{1}\left(\pi^{2} h_{0}+g_{0}\right)(u-v)^{2} \geqq 0
$$

and therefore from Lemma 6, I is convex.
\Leftrightarrow) We now assume that I is convex over $W_{0}^{1, \infty}(0,1)$ and we wish to show that $h_{0} \geqq 0$ and $\pi^{2} h_{0}+g_{0} \geqq 0$. First, as before, we let

$$
w=u-v, \quad z=\lambda(u-v)+v
$$

Then $w, z \in W_{0}^{1, \infty}(0,1)$ and (17) becomes

$$
\begin{equation*}
\psi^{\prime \prime}(\lambda)=\int_{0}^{1}\left[w^{2} g^{\prime \prime}(z)+\left(w^{\prime}\right)^{2} h^{\prime \prime}\left(z^{\prime}\right)\right] d x \geqq 0 \tag{18}
\end{equation*}
$$

Since l is convex, it then follows immediately from Theorem 1 that $h_{0} \geqq 0$. It therefore remains to show that $\pi^{2} h_{0}+g_{0} \geqq 0$. Observe that if $g_{0} \geqq 0$, then the result is trivial; we therefore assume that $g_{0}<0$.

We now fix N an integer, then there exist $\xi_{0}, u_{0} \in \mathbb{R}$ such that

$$
\left\{\begin{array}{l}
0 \leqq h^{\prime \prime}\left(\xi_{0}\right)-h_{0} \leqq \frac{1}{N} \tag{19}\\
0 \leqq g^{\prime \prime}\left(u_{0}\right)-g_{0} \leqq \frac{1}{N}
\end{array}\right.
$$

The aim of the following construction is to choose $w, z \in W_{0}^{1, \infty}(0,1)$ such that the left-hand side of (18) is up to a multiplicative constant equal to $\pi^{2} h_{0}+g_{0}$, the positivity of $\psi^{\prime \prime}(\lambda)$ then implying the result.

Construction of z. We let

$$
z(x)= \begin{cases}N u_{0} x & \text { if } \quad x \in\left(0, \frac{1}{N}\right) \\ u_{0}+\xi_{0}\left(x-\frac{k}{N}\right) & \text { if } \quad x \in\left(\frac{k}{N}, \frac{k+1}{N}-\frac{1}{N^{2}}\right), \quad 1 \leqq k \leqq N-3 \\ u_{0}-\xi_{0}(N-1)\left(x-\frac{k+1}{N}\right) & \text { if } x \in\left(\frac{k+1}{N}-\frac{1}{N^{2}}, \frac{k+1}{N}\right), \quad 1 \leqq k \leqq N-3 \\ u_{0} & \text { if } x \in\left(\frac{N-2}{N}, \frac{N-1}{N}\right) \\ -N u_{0}(x-1) & \text { if } \quad x \in\left(\frac{N-1}{N}, 1\right) .\end{cases}
$$

We then obviously have that $z \in W_{0}^{1, x}(0,1)$ and that

$$
\begin{cases}\left|z(x)-u_{0}\right| \leqq\left|\xi_{0}\right|\left(\frac{1}{N}-\frac{1}{N^{2}}\right) & \text { if } \tag{20}\\ x \in\left(\frac{1}{N}, \frac{N-1}{N}\right) \\ z^{\prime}(x)=\xi_{0} & \text { if } \quad x \in \bigcup_{k=1}^{N-3}\left(\frac{k}{N}, \frac{k+1}{N}-\frac{1}{N^{2}}\right)\end{cases}
$$

Hence for $\varepsilon>0$ fixed we may choose N sufficiently large so that for $x \in$ $(1 / N, N-1 / N)$

$$
\begin{equation*}
\left|g^{\prime \prime}(z)-g^{\prime \prime}\left(u_{0}\right)\right| \leqq \varepsilon \tag{21}
\end{equation*}
$$

Construction of w. We let

$$
w(x)= \begin{cases}0 & \text { if } x \in\left(0, \frac{1}{N}\right), \\ \sin \frac{N \pi}{N-2}\left(x-\frac{1}{N}\right)+a_{2 k-1} & \text { if } x \in\left(\frac{k}{N}, \frac{k+1}{N}-\frac{1}{N^{2}}\right), 1 \leqq k \leqq N-3 \\ a_{2 k} & \text { if } x \in\left(\frac{k+1}{N}-\frac{1}{N^{2}}, \frac{k+1}{N}\right), 1 \leqq k \leqq N-3, \\ -N a_{2(N-3)}\left(x-\frac{N-1}{N}\right) & \text { if } x \in\left(\frac{N-2}{N}, \frac{N-1}{N}\right), \\ 0 & \text { if } x \in\left(\frac{N-1}{N}, 1\right),\end{cases}
$$

where for $1 \leqq k \leqq N-3$

$$
\left\{\begin{array}{l}
a_{1}=0 \\
a_{2 k}=a_{2 k-1}+\sin \frac{N k-1}{N(N-2)} \pi, \\
a_{2 k+1}=a_{2 k}-\sin \frac{k \pi}{N-2} .
\end{array}\right.
$$

Therefore $w \in W_{0}^{1, \infty}(0,1)$ and

$$
\begin{aligned}
a_{2 k} & =\sum_{v=1}^{k} \sin \left[\frac{(N v-1) \pi}{N(N-2)}\right]-\sum_{v=1}^{k-1} \sin \left[\frac{v \pi}{N-2}\right] \\
& =\sin \left[\frac{N k-1}{N(N-2)} \pi\right]-2 \sin \left[\frac{\pi}{2 N(N-2)}\right] \sum_{v=1}^{k-1} \cos \left[\frac{2 N v-1}{2 N(N-2)} \pi\right],
\end{aligned}
$$

and similarly

$$
a_{2 k+1}=-2 \sin \left[\frac{\pi}{2 N(N-2)}\right] \sum_{v=1}^{k} \cos \left[\frac{2 N v-1}{2 N(N-2)} \pi\right] .
$$

We then deduce that

$$
\left\{\begin{array}{l}
\left|a_{2 k+1}\right| \rightarrow 0 \text { as } N \rightarrow \infty, \\
\left|a_{2 k}-\sin \left[\frac{N k-1}{N(N-2)} \pi\right]\right| \rightarrow 0 \text { as } N \rightarrow \infty,
\end{array}\right.
$$

and therefore

$$
\begin{equation*}
\left|w(x)-\sin \left[\frac{N \pi}{N-2}\left(x-\frac{1}{N}\right)\right]\right| \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty \quad x \in\left(\frac{1}{N}, \frac{N-2}{N}\right) . \tag{22}
\end{equation*}
$$

More precisely if $k=N-3$ from (22) we have

$$
\left|a_{2(N-3)}\right| \leqq\left|\sin \left[\frac{N(N-3)-1}{N(N-2)} \pi\right]\right|+\frac{K}{N} \leqq \frac{K^{\prime}}{N},
$$

where K and K^{\prime} are constant independent of N and hence $N a_{2(N-3)}$ is uniformly bounded.

Summarising the results we have for $\varepsilon>0$ fixed that there exists N sufficiently large that

$$
\begin{cases}\left|w^{\prime}\right| \leqq K \quad \text { almost everywhere in }(0,1) \text { uniformly in } N \\ \left|w(x)-\sin \left[\frac{N \pi}{N-2}\left(x-\frac{1}{N}\right)\right]\right| \leqq \varepsilon, x \in(0,1), \\ w^{\prime}(x)=\frac{N \pi}{N-2} \cos \left[\frac{N \pi}{N-2}\left(x-\frac{1}{N}\right)\right] & \text { if } x \in \bigcup_{k=1}^{N-3}\left(\frac{k}{N}, \frac{k+1}{N}-\frac{1}{N^{2}}\right), \tag{23}\\ w^{\prime}(x)=0 & \text { if } x \in \bigcup_{k=1}^{N-3}\left(\frac{k+1}{N}-\frac{1}{N^{2}}, \frac{k+1}{N}\right) .\end{cases}
$$

Returning to (18), we have

$$
\begin{aligned}
0 \leqq \psi^{\prime \prime}(\lambda)= & \int_{0}^{1}\left[w^{\prime 2} h^{\prime \prime}\left(z^{\prime}\right)+w^{2} g^{\prime \prime}(z)\right] d x \\
= & \int_{1 / N}^{(N-1) / N}\left[w^{\prime 2} h^{\prime \prime}\left(z^{\prime}\right)+w^{2} g^{\prime \prime}(z)\right] d x \\
= & \int_{1 / N}^{(N-1) / N}\left(\sin ^{2}\left[\frac{N \pi}{N-2}\left(x-\frac{1}{N}\right)\right] g^{\prime \prime}(z)\right) d x \\
& +\int_{1 / N}^{(N-1) / N}\left[w^{2}(x)-\sin ^{2} \frac{N \pi}{N-2}\left(x-\frac{1}{N}\right)\right] g^{\prime \prime}(z) d x \\
& +\sum_{k=1}^{N-3} \int_{k / N}^{(k+1) / N-\left(1 / N^{2}\right)}\left(\frac{N \pi}{N-2}\right)^{2} \cos ^{2}\left[\frac{N \pi}{N-2}\left(x-\frac{1}{N}\right)\right] h^{\prime \prime}\left(\xi_{0}\right) d x \\
& +\int_{(N-2) / N}^{(N-1) / N}\left(N a_{2(N-3)}\right)^{2} h^{\prime \prime}(0) d x .
\end{aligned}
$$

Using (20) and (23) we have, with K denoting a generic constant independent of N and ε, that

$$
\begin{aligned}
0 \leqq & -K\left(\varepsilon+\frac{1}{N}\right)+\int_{1 / N}^{(N-1) / N} \sin ^{2}\left[\frac{N \pi}{N-2}\left(x-\frac{1}{N}\right)\right] g^{\prime \prime}(z) d x \\
& +h^{\prime \prime}\left(\xi_{0}\right)\left(\frac{N \pi}{N-2}\right)^{2} \sum_{k=1}^{N-3} \int_{k / N}^{(k+1) / N-\left(1 / N^{2}\right)} \cos ^{2}\left[\frac{N \pi}{N-2}\left(x-\frac{1}{N}\right)\right] d x .
\end{aligned}
$$

Using (19) and (21), we have

$$
\begin{aligned}
0 \leqq & -K\left(\varepsilon+\frac{1}{N}\right)+g_{0} \int_{1 / N}^{(N-1) / N} \sin ^{2}\left[\frac{N \pi}{N-2}\left(x-\frac{1}{N}\right)\right] d x \\
& +h_{0}\left(\frac{N \pi}{N-2}\right)^{2} \int_{1 / N}^{(N-1) / N} \cos ^{2}\left[\frac{N \pi}{N-2}\left(x-\frac{1}{N}\right)\right] d x \\
& -h_{0}\left(\frac{N \pi}{N-2}\right)^{2}\left\{\sum_{k=1}^{N-3} \int_{(k+1) / N-\left(1 / N^{2}\right)}^{(k+1) / N} \cos ^{2}\left[\frac{N \pi}{N-2}\left(x-\frac{1}{N}\right)\right] d x\right. \\
& \left.+\int_{(N-2) / N}^{(N-1) / N} \cos ^{2}\left[\frac{N \pi}{N-2}\left(x-\frac{1}{N}\right)\right] d x\right\} .
\end{aligned}
$$

Finally, we have

$$
0 \leqq K\left(\varepsilon+\frac{1}{N}\right)+\left(\pi^{2} h_{0}+g_{0}\right) \int_{0}^{1} \sin ^{2} \pi y d y
$$

Letting $N \rightarrow \infty$ and using the arbitrariness of ε we have indeed obtained

$$
\pi^{2} h_{0}+g_{0} \geqq 0
$$

and thus the result.
(iii) Case 1 is trivial and we now show that if \tilde{f} is defined by

$$
\tilde{f}(x, u, \xi)=g(u)+h(\xi)+\varphi(x, u, \xi)
$$

then
(a) $\tilde{f}(x, .,$.$) is convex over \mathbb{R}^{2}$ for every $x \in(0,1)$.
(b) For every $u \in W_{0}^{1, \infty}(0,1)$ we have

$$
I(u)=\int_{0}^{1} \tilde{f}\left(x, u(x), u^{\prime}(x)\right) d x
$$

In (a), since $\pi^{2} h_{0}>-g_{0}$ (Case 2) and $g_{0}<0$, then

$$
-\frac{\pi}{2}<\sqrt{\frac{-g_{0}}{h_{0}}}\left(x-\frac{1}{2}\right)<\frac{\pi}{2} \quad \text { if } \quad x \in[0,1]
$$

and if $\pi^{2} h_{0}=-g_{0}$ (Case 3), then the above inequality holds only if $x \in(0,1)$, so that \tilde{f} is well defined if $x \in(0,1)$. In order to show the convexity of \tilde{f} we show that, denoting by $\gamma=\sqrt{-g_{0} / h_{0}}\left(x-\frac{1}{2}\right)$,

$$
\nabla^{2} \bar{f}=\binom{\tilde{f}_{\xi \xi} \tilde{f}_{u \xi}}{\tilde{f}_{u \xi} \tilde{f}_{u u}}=\left(\begin{array}{ll}
h^{\prime \prime}(\xi) & \sqrt{-h_{0} g_{0}} \tan \gamma \\
\sqrt{-h_{0} g_{0}} \tan \gamma & g^{\prime \prime}(u)-g_{0}\left(1+\tan ^{2} \gamma\right)
\end{array}\right)
$$

the above matrix is positive definite for every $(u, \xi) \in \mathbb{R}^{2}$. Since $h^{\prime \prime}(\xi) \geqq h_{0}$ and $g^{\prime \prime}(u) \geqq g_{0}$, and $g_{0}<0$ it remains to show that

$$
\operatorname{det} \nabla^{2} \tilde{f}=h^{\prime \prime}(\xi)\left(g^{\prime \prime}(u)-g_{0}\left(1+\tan ^{2} \gamma\right)\right)+h_{0} g_{0} \tan ^{2} \gamma \geqq 0
$$

We have immediately that

$$
\operatorname{det} \nabla^{2} \bar{f} \geqq h_{0}\left(g_{0}-g_{0}\left(1+\tan ^{2} \gamma\right)\right)+h_{0} g_{0} \tan ^{2} \gamma=0,
$$

and thus \tilde{f} is convex.
In (b), we observe that if $u \in W^{1, \infty}(0,1)$ then

$$
\begin{aligned}
\tilde{f}\left(x, u, u^{\prime}\right) \equiv & g(u)+h\left(u^{\prime}\right) \\
& +\frac{d}{d x}\left[\frac{\sqrt{-h_{0} g_{0}}}{2} \tan \left(\sqrt{\left(\frac{-g_{0}}{h_{0}}\right)}\left(x-\frac{1}{2}\right)\right) u^{2}\right] \text { almost everywhere in }(0,1),
\end{aligned}
$$

and therefore

$$
I(u) \equiv \int_{0}^{1}\left[g(u(x))+h\left(u^{\prime}(x)\right)\right] d x=\int_{0}^{1} \tilde{f}\left(x, u(x), u^{\prime}(x)\right) d x
$$

for every $u \in W_{0}^{1, \infty}(0,1)$ if $\pi^{2} h_{0}+g_{0}>0$ and only in $\mathscr{D}(0,1)$ if $\pi^{2} h_{0}+g_{0}=0$.

Acknowledgments

I would like to thank L. Boccardo for suggesting the problem and I. Ekeland for interesting discussions.

References

1 I. Ekeland and R. Témam. Analyse convexe et problèmes variationnels (Paris: Dunod, 1972).
2 G. Hardy, J. Littlewood and G. Polya. Inequalities (Cambridge: Cambridge University Press, 1934).

3 P. Marcellini and C. Sbordone. Semicontinuity problems in the calculus of variations. Nonlinear Anal. 4 (1980), 241-257.
(Issued 23 October 1987)

