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Synopsis
In this paper we study the convexity of the integral I(u) = JJ f(x, u(x), u'(x))dx over the space
Wj°°(0, 1). We isolate a necessary condition on /and we find necessary and sufficient conditions in the
case where/(x, u, u') = a(u)u'2" or g(u) + h{u').

1. Introduction

In this paper we are concerned with integrals of the calculus of variations of the
type

I{u)=\ f{x,u{x),u\x))dx, (1)
Jo

where / : (0, 1) x U x U —> U is C2. We study the conditions on / under which the
integral / is convex over the space Wo'°°(0, 1), which denotes the space of
Lipschitz functions vanishing at 0 and 1.

We first give a necessary condition on /, which is that f(x, u, •) is convex. We
then give examples showing that no implication can be inferred a priori on the
convexity of / with respect to the variable u. We then study two examples

with n ^ l , nan integer, and we show in this case that

/ convex over Wj°°(0, l)<=>a(w) = constant,

(ii) f(x, u, £) = g(u) + h{%) and we show that if

go = inf{g"(u):«e[R}

then

/ convex over W^(0, 1) <=> n2h0 + g0 ̂  0 and h0 ̂  0.

In this last example we show that even if f(x, u, %) is not convex in the
variables (M, §), while / is convex over W£>oc(0, 1), there exists / : (0, l ) x i x
U -»• U such that f(x, . , .) is convex and

I(u) = ff(x, u(x), u'(x)) dx = f (g(u(x)) + h(u'(x))) dx
Jo Jo

for every u e Wjc°(0, 1).
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16 B. Dacorogna

The question of the convexity of the integral / is important in the sense that
one can then apply the abstract results of convex analysis to /; in particular a
solution of the Euler equation must then be a minimiser of /.

Usually in the direct methods of the calculus of variations one studies the weak
lower semicontinuity of / in a Sobolev space WlrP and we have the following
result

(i) / convex =£> / weakly lower semicontinuous;
(ii) /weakly lower semicontinuousOfix, u, .) is convex.

So, in particular, if

then, in view of the above results, we have that the associated / is weakly lower
semicontinuous but not convex.

2. Main results

We start with a necessary condition.

THEOREM 1. Let f: (0, l)xU xU-*U be continuous and satisfy

\f(x,u,Z)\*a(x,\u\,\£\),

where a is increasing with respect to \u\ and |£| and locally integrable in x. If I is
convex over W '̂°°(0, 1), thenf(x, u, .) is convex.

Proof. Since / is continuous and / is convex over Wj°°(0, 1) then / is weak*
lower semicontinuous in W1'" (this is a direct application of Mazur's lemma, see
for example [1]). However, it is well known that under the above hypotheses on /
and if / is weak* lower semicontinuous in W1'", then/(;e, u, .) is convex (see for
example [3] and the references quoted therein). •

Remark. The above result is still true for multiple integrals of the type

I(u) = f f{x, u{x), Vu(x)) dx,

where Q <= W is a bounded open set and u: Q c R " - » i . However, it is false if
u: Un^> Um with n,m > 1; for example, if m = n = 2 and

f(x, u, | ) = det §,

then / is obviously not convex, while I(u) = 0 for every u e W '̂°°(Q) and hence /
is convex.

We now turn our attention to sufficient conditions in some particular cases. The
most important and the simplest is, of course, the case with no dependence on u,
i.e.

/ (* ,« ,§ )= / (* ,§ ) .

We then have, trivially, the following:

PROPOSITION 2. / is convex over Wo'°°(0> 1) if and only if fix, .) is convex.
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Convexity of certain integrals 17

We now give a trivial example showing that no convexity on the variable u can
in general be inferred from the convexity of /.

PROPOSITION 3. Let g: U —»IR be continuous and let

/(*,«, §)=g(u)£

Then

I(u) = 0 for every u e Wj-*(0, 1).

Remark. Note, however, in the above example that there exists/: (0, 1) x [R x
U —* U, namely / = 0, convex in the last two variables such that

I(u)=\ f(x,u(x),u'(x))dx
Jo

for every u e Wi'°°(0, 1).

We now turn our attention to the last two cases.

PROPOSITION 4. Let a e C°°(IR) be such that

a(u)^ao>0 for every ueU

and for rc i= 1, n an integer, let

f{x,u,%) = a{u)¥n.

Then I is convex over W\y!*(0, 1) if and only if a is constant.

PROPOSITION 5. Let g, he C°(R) and

f(x,u,Z)=g(u) + hG)
and let

Then
(i) There exist g nonconvex and h convex such that I is convex over Wo'™(0, 1),

for example

(ii) / is convex over Wo'°°(0, 1) if and only if h0H^O and

jt2hQ + g0^0. (2)

(iii) Case 1. / / g0 = 0 and h0 ̂  0, then fix, u, §) = g(u) + h(£) is convex in the
variables (u, §).

Case 2. Ifg0<0 and Jt2ho + g0 > 0, then let

<p(x, u, §) = V=^A tan [ if^ (x - £)]«£ - 1 (l + tan2 [ yf-j^ (x - |)])«2.

(3)
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18 B. Dacorogna

If

®{x, u) = I V ^ A ; (tan [ y[^ (x - i)])M
2, (4)

then

— (<&(x, u(x)) = cp(x, u(x), u'{x)) almost everywhere (5)

for every u e Wlc°(0, 1) and

f(x, u, §) = g(u) + ft(§) + <p{x, u, §) (6)

is convex in the variables (u, If) for every x e [0, 1] and satisfies

I{u)=\ f(x,u{x),u'(x))dx (7)
Jo

for every u e Wlc°(0, 1).

Case 3. If gn ̂  0 and jr2h0 + g0 = 0 then f defined by (6) is convex in (u, If) for
every x e (0, 1) and (7) holds if u e 2(0, 1) = {« e C°°(0, 1): supp u c (0, 1)}.

Remarks, (i) Note that the function <p(x, u, | ) in (3) is linear in § and it is
such that

(p(x,u(x),u'(x))dx =f
for every u e W^'°°(0, 1) if Jt2h0 + go>0; such an integral is called an invariant
integral in the field theories in the calculus of variations.

(ii) Note also that if ji2h0 + g0 = 0, then the function cp is not defined at the
boundary points x = 0 and 1.

Before proceeding with the proof, we quote a lemma whose proof is obvious.

LEMMA 6. Let f: (0, 1) x IR x U -»IR be C2, let

/(«)= { f(x,u(x),u'(x))dx

and for A e [0, 1], for u, v e Wl0o(0, 1) to

= /(A(M - w) + u) - A/(M) - (1 -

77ien f/ic three following assertions are equivalent:
(i) / is convex over VKo'̂ O, 1).

(ii) ip is convex for every u,w e Wo°°(0, 1).
(iii) V"(A) = 0for every A e [0, 1], u,v e W^(0, 1), where

= f
Jo
f [(« - w)2/UH(x, A(M - u) + u, A(«' - u')
o

2(M - U)(M' - U ' ) / ^

of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0308210500029322
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 11:55:45, subject to the Cambridge Core terms

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0308210500029322
https:/www.cambridge.org/core


Convexity of certain integrals 19

where

Juu gu2, Jut d u 3 ^ , JU Q£2-

Proof of Proposition 4. The fact that if a is constant then / is convex is trivial.
We therefore prove the converse. We divide the proof into three steps.

Step 1. In the above lemma we let w = u — v and z = X{u — v) + v. We then
have

0 ^ q"{K) = I [w2a"(z)z'2n + 4nww'a'(z)z'2"-1 + 2n(2n - l)w'2a(z)z'2"-2] dx
Jo

= f 2«(2n - l)a(z)z'2"-2\w'2 + —^— ww' ̂ z '
Jo L (2n - 1 ) a{z)

wa'(z)z' \2 _ / wa'(z)z' \2 w2a"(z)z'2 1
(2n - l)a(z)) ~ \(2n - l)a(z)/ + 2n(2n - l)a(z)\ *

2
i

w-l)fl(z)

w2z'2

- (2n - l)a"(z)a(z)
2n(2n - I)2

On letting

we have

b"(t) = -

1 2«(fl')2-(2w-l)aa"

~ + (2n - I)2

Therefore, returning to (8), we have

. (10)

Step 2. We now show that (10) implies that

b"{t) ^ 0 for every teU. (11)

Assume, for the sake of contradiction, that there exists a e U such that

b"{a) > 0. (12)
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20 B. Dacorogna

By continuity of b", we can choose a¥=0. We then construct z and w in the
following way.

Construction of z. We define for TV an integer

z(x) =

Nax

k m
~N~W2

k m

if X 6 ( 0 , -

*

if -o \N N2 N N2

oc — Na (x —
N-

N N '

T V - 1

We then have that z e Wh''(O, 1) and

= TV | a| almost everywhere in (0,1).

Therefore if e > 0 is fixed, there exists TV sufficiently large that

\b"{z)-b"{a)\, \b'(z)-b'(a)\, \b(z)-b(a)\£e

for every x e (1/7V, TV - I/TV).
Construction of w. We choose w in such a way that

1
b(z(x))

w(x) =

if

• - - ) if

if

1

1 TV-1

TV

Returning to (10) we have

/•l-(lW)

SV"W= 2n(2n-l)
2"~2\a\2n~2

Nz"-Z\a\

2n
2

sin TV-2

(13)

(14)

(15)

With K1 and ^2^*0 denoting constants depending on n, a and b(a), but not on
TV, and using (14), we have

0^ v"W = (16)
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Convexity of certain integrals 21

By letting N tend to infinity and using (12), we have a contradiction with (16).
Therefore (11) holds.

Step 3. The conclusion then follows immediately from (11), i.e. from the
concavity of b. Recall that a{t) ̂  a0 > 0, therefore

l/(2n-l) / 1 ,.1/(2*-1)

the fact that b is concave, and bounded, implies that b, and therefore a, is
constant. •

We now conclude with the following proof.

Proof of Proposition 5. Recall that

Recall also the Poincare-Wirtinger inequality, that is

\\w{x)fdx^-2\\w'{x)fdx

Jo n Jo

for every w e W£'°°(0, 1) and that equality holds if w(x) = sin nx (see [2]).

(i) We now prove that if

i.e. g is not convex, then the associated / is convex. We use Lemma 6 and we
have

V"(A) = f {2(«' - v'f + [6(A(u - v) + vf - 2](M - v)2} dx
Jo

^2 [(M'-U')2-(M-U)2]dx.
Jo

The Poincare-Wirtinger inequality then immediately implies the positivity of ip"
and therefore the convexity of / over Wj-°°(0, 1).

(ii) We always have

r1

V/"(A) = [(M - f)2g"(A(« - v) + v) + («' - U')2^"(A(M' - u') + V)] dx. (17)
Jo

We now wish to show that if ho = inf {h"{t):t e U} ^ 0 and jr2^o + go =
where g() = inf {g"(0: teU} then / is convex over Wk°°(0, 1).

It is clear that

;"(A) ̂  f [(M' - u')2A0 + (u - u)2g0]
Jo

dx.

By using the Poincare-Wirtinger inequality, we have
rl

Jo

and therefore from Lemma 6, / is convex.
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22 B. Dacorogna

We now assume that / is convex over Wj'°°(0, 1) and we wish to show that
/zo = 0 and Ji2h0 + go = 0. First, as before, we let

w = u — v, z = X(u — v) + v.

Then w, z e VKo°°(0, 1) and (17) becomes

f= f [w2g"(z) "(z')} dx i= 0. (18)

Since / is convex, it then follows immediately from Theorem 1 that ho^0. It
therefore remains to show that n2h0 + g0 = 0. Observe that if g0 i? 0, then the
result is trivial; we therefore assume that go'^O.

We now fix N an integer, then there exist §0 , uoeU such that

~ZN'

(19)

The aim of the following construction is to choose w, z e WQ-°°(0, 1) such that the
left-hand side of (18) is up to a multiplicative constant equal to n2h0 + g0, the
positivity of rp"(A) then implying the result.

Construction of z. We let

NuQx

zyx)

«o

Mo

if X€ 0 , -

,'k k + l 1
lf x e i - ,

N
if x e

if x e

AT A7

k+l 1 k+l

N 'N2' N

N-2 JV-1N

lSikSA'-:

. /'y. _ 1 \ •«^4
We then obviously have that z e Wo'^O, 1) and that

if

if U
*=i VA'

k + l 1
(20)

Hence for e > 0 fixed we may choose A' sufficiently large so that for x e
(I/A7, N - I/A7)

(21)
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Convexity of certain integrals

Construction of w. We let

23

w(x) =

0 if xe(O,±),

N' N N2f

A f - 1

if

if

N N2' N
N-2 N-l}

N ' N

where for 1 ^ A; ^ N - 3

. M t - 1
+ sin ——-—— jt,

a2k+i = a2k ~ sin

N(N - 2)'

N-2'
Therefore w e Wj"(0, 1) and

4 . [(Nv-i)jf\ V= S s i n [-NW^)\ " ?s i n

r 2Nv-iL
and similarly

We then deduce that

'l«2*+i|-*0 as N-

Nk-1

cos - 2)

. — sin
- 2) as

and therefore

WiX) — !
• - 2 as

I
N N

More precisely if k = N - 3 from (22) we have

(22)

S14 N(N-2) *\\+N-7f'
where K and K' are constant independent of N and hence Na2(N-3) is uniformly
bounded.
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24 B. Dacorogna

Summarising the results we have for e > 0 fixed that there exists N sufficiently
large that

w Si K almost everywhere in (0,1) uniformly in N,

w(x) —: (0, 1),

NJT NJT

w'(x) = O

Returning to (18), we have

0^xp"(X)= f [w'2h"(z') + w2g"(z)]dx
Jo
r(N-l)/N

= 1 [w'2h"(z') + w2g"(z)]dx

k + 1 1
'"~N~~N2''

., »~f(k + l 1 k + 1
if x e U =,

k=i\ N N2 N

(23)

+L
/•(Af-l)W

Using (20) and (23) we have, with K denoting a generic constant independent of
N and e, that

<i-l)/N

2 t 3

Using (19) and (21), we have

NJT
cos2 x-j-) I dx

NJ

J '(N—1)/N r \^TT- / 1 \ "I

W _ 2 W
C O S 2 L A ^ I * - A 7 J J ^
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Convexity of certain integrals 25

Finally, we have

0 ̂  K(S + i ) + (jr2h0 + g0) | sin2 ny dy.

Letting N—»°° and using the arbitrariness of e we have indeed obtained

jt2h0 + g0^0

and thus the result,

(iii) Case 1 is trivial and we now show that if / is defined by

f(x, u, | ) = g(u) + fc(§) + tp(x, u, §),

then

(a) fix, ., .) is convex over U2 for every x e (0, 1).

(b) For every u e Wo'°°(0, 1) we have

/(«)= f Kx,u{x), u'(x))dx.

In (a), since ji2h0> —g0 (Case 2) and gn<0, then

Z ' rt0 Z

and if ^2/i0 = -go (Case 3), then the above inequality holds only if x e (0, 1), so
that / is well defined if x e (0, 1). In order to show the convexity of / we show
that, denoting by y = V~-gJK (x-\),

V-«ogotany

g"(«)-go(l + tan2y)/

the above matrix is positive definite for every (w, §) e IR2. Since /J"(§) = /J() and
g'\u) = gQ, and g()< 0 it remains to show that

det V2/ = h"i%)ig"iu) - go(l + tan2 y)) + hogo tan2 y = 0.

We have immediately that

det V2/ ^ fco(go - go(l + tan2 y)) + A()g0 tan2 y = 0,

and thus / is convex.
In (b), we observe that if u e Wlo<5(0, 1) then

+ T I °g° tan (J(^j^)ix - i))w2] almost everywhere in (0,1),
dx L L \ ^ V AIQ / / J

and therefore

f1 r 1 -
/(M) = I [giuix)) + hiu'ix))] dx = fix, M(X), M'(X)) <ic,

Jo Jo
for every u e Wj-°°(0, 1) if ^ 2 ^ 0 + g0 > 0 and only in S(0, 1) if n2h0 + g0 = 0. •
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