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Abstract. In this paper we prove genus bounds for closed embedded minimal sur-
faces in a closed 3-dimensional manifold constructed via min-max arguments. A stronger
estimate was announced by Pitts and Rubinstein but to our knowledge its proof has never
been published. Our proof follows ideas of Simon and uses an extension of a famous result
of Meeks, Simon and Yau on the convergence of minimizing sequences of isotopic surfaces.
This result is proved in the second part of the paper.
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0. Introduction

0.1. Min-max surfaces. In [8] Tobias H. Colding and the second author started a
survey on constructing closed embedded minimal surfaces in a closed 3-dimensional mani-
fold via min-max arguments, including results of F. Smith, L. Simon, J. Pitts and H. Ru-
binstein. This paper completes the survey by giving genus bounds for the final min-max
surface.
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The basic idea of min-max arguments over sweep-outs goes back to Birkho¤, who
used such a method to find simple closed geodesics on spheres. In particular when M 2 is
the 2-dimensional sphere we can find a 1-parameter family of curves starting and ending
at a point curve in such a way that the induced map F : S2 ! S2 has nonzero degree.
Birkho¤ ’s argument (or the min-max argument) allows us to conclude that M has a non-
trivial closed geodesic of length less than or equal to the length of the longest curve in the
1-parameter family. A curve shortening argument gives that the geodesic obtained in this
way is simple.

Following [8] we introduce a suitable generalized setting for sweepouts of 3-manifolds
by two-dimensional surfaces. From now on, M, Di¤0 and Is will denote, respectively,
a closed 3-dimensional Riemannian manifold, the identity component of the di¤eomor-
phism group of M, and the set of smooth isotopies. Thus Is consists of those maps
c A Cyð½0; 1� � M;MÞ such that cð0; �Þ is the identity and cðt; �Þ A Di¤0 for every t.

Definition 0.1. A family fStgt A ½0;1� of surfaces of M is said to be continuous if:

(c1) H2ðStÞ is a continuous function of t.

(c2) St ! St0
in the Hausdor¤ topology whenever t ! t0.

A family fStgt A ½0;1� of subsets of M is said to be a generalized family of surfaces if
there are a finite subset T of ½0; 1� and a finite set of points P in M such that:

(1) (c1) and (c2) hold.

(2) St is a surface for every t B T .

(3) For t A T , St is a surface in MnP.

With a small abuse of notation, we shall use the word ‘‘surface’’ even for the sets St

with t A T . To avoid confusion, families of surfaces will always be denoted by fStg. Thus,
when referring to a surface a subscript will denote a real parameter, whereas a superscript
will denote an integer as in a sequence.

Given a generalized family fStg we can generate new generalized families via the fol-
lowing procedure. Take an arbitrary map c A Cyð½0; 1� � M;MÞ such that cðt; �Þ A Di¤0

for each t and define fS 0
tg by S 0

t ¼ cðt;StÞ. We will say that a set L of generalized families
is saturated if it is closed under this operation.

Remark 0.2. For technical reasons we require an additional property for any satu-
rated set L considered in this paper: the existence of some N ¼ NðLÞ < y such that for
any fStgHL, the set P in Definition 0.1 consists of at most N points.

Given a family fStg A L we denote by FðfStgÞ the area of its maximal slice and by
m0ðLÞ the infimum of F taken over all families of L; that is,

FðfStgÞ ¼ max
t A ½0;1�

H2ðStÞð0:1Þ
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and

m0ðLÞ ¼ inf
L

F ¼ inf
fStg AL

�
max

t A ½0;1�
H2ðStÞ

�
:ð0:2Þ

If lim
n

FðfStgnÞ ¼ m0ðLÞ, then we say that the sequence of generalized families of

surfaces ffStgngHL is a minimizing sequence. Assume ffStgng is a minimizing sequence
and let ftng be a sequence of parameters. If the areas of the slices fSn

tn
g converge to m0, i.e.

if H2ðSn
tn
Þ ! m0ðLÞ, then we say that fSn

tn
g is a min-max sequence.

An important point in the min-max construction is to find a saturated L with
m0ðLÞ > 0. For instance, this can be done by using the following elementary proposition
proven in the Appendix of [8].

Proposition 0.3. Let M be a closed 3-manifold with a Riemannian metric and let fStg
be the level sets of a Morse function. The smallest saturated set L containing the family fStg
has m0ðLÞ > 0.

The paper [8] reports a proof of the following regularity result.

Theorem 0.4 (Simon–Smith). Let M be a closed 3-manifold with a Riemannian met-

ric. For any saturated L, there is a min-max sequence Sn
tn

converging in the sense of varifolds

to a smooth embedded minimal surface S with area m0ðLÞ (multiplicity is allowed ).

0.2. Genus bounds. In this note we bound the topology of S under the assumption
that the t-dependence of fStg is smoother than just the continuity required in Definition
0.1. This is the content of the next definition.

Definition 0.5. A generalized family fStg as in Definition 0.1 is said to be smooth if:

(s1) St varies smoothly in t on ½0; 1�nT .

(s2) For t A T , St ! St smoothly in MnP.

Here P and T are the sets of requirements (2) and (3) of Definition 0.1. We assume further
that St is orientable for any t B T .

Note that, if a set L consists of smooth generalized families, then the elements of its
saturation are still smooth generalized families. Therefore the saturated set considered in
Proposition 0.3 is smooth.

We next introduce some notation which will be consistently used during the proofs.

We decompose the surface S of Theorem 0.4 as
PN
i¼1

niG
i, where the G i’s are the connected

components of S, counted without multiplicity, and ni A Nnf0g for every i. We further di-
vide the components fG ig into two sets: the orientable ones, denoted by O, and the non-
orientable ones, denoted by N. We are now ready to state the main theorem of this paper.
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Theorem 0.6. Let L be a saturated set of smooth generalized families and S and Sn
tn

the surfaces produced in the proof of Theorem 0.4 given in [8]. Then

P
G i AO

gðG iÞ þ 1

2

P
G i AN

�
gðG iÞ � 1

�
e g0 :¼ lim inf

j"y
lim inf
t!tj

gðS j
tÞ:ð0:3Þ

Remark 0.7. According to our definition, S j
tj

is not necessarily a smooth submani-
fold, as tj could be one of the exceptional parameters of point (3) in Definition 0.1. How-
ever, for each fixed j there is an h > 0 such that S

j
t is a smooth submanifold for every

t A �tj � h; tj½W �tj; tj þ h½. Hence the right-hand side of (0.3) makes sense.

In fact the inequality (0.3) holds with g0 ¼ lim inf
j

gðS jÞ for every limit S of a se-

quence of surfaces S j’s that enjoy certain requirements of variational nature, i.e. that are
almost minimizing in su‰ciently small annuli. The precise statement will be given in Theo-
rem 1.6, after introducing the suitable concepts.

As usual, when G is an orientable 2-dimensional connected surface, its genus gðGÞ is
defined as the number of handles that one has to attach to a sphere in order to get a surface
homeomorphic to G. When G is non-orientable and connected, gðGÞ is defined as the num-
ber of cross caps that one has to attach to a sphere in order to get a surface homeomorphic
to G (therefore, if w is the Euler characteristic of the surface, then

gðGÞ ¼
1

2
ð2 � wÞ if G A N;

2 � w if G A O

8<
:

see [12]). For surfaces with more than one connected component, the genus is simply the
sum of the genus of each connected component.

Our genus estimate (0.3) is weaker than the one announced by Pitts and Rubinstein in
[15], which reads as follows (cp. with [15], Theorem 1 and Theorem 2):

P
G i AO

nigðG iÞ þ 1

2

P
G i AN

nigðG iÞe g0:ð0:4Þ

In Section 10 a very elementary example shows that (0.4) is false for sequences of almost
minimizing surfaces (in fact even for sequences which are locally strictly minimizing). In
this case the correct estimate should be

P
G i AO

nigðG iÞ þ 1

2

P
G i AN

ni

�
gðG iÞ � 1

�
e g0:ð0:5Þ

Therefore, the improved estimate (0.4) can be proved only by exploiting an argument of
more global nature, using a more detailed analysis of the min-max construction.

The estimate (0.5) respects the rough intuition that the approximating surfaces S j are,
after appropriate surgeries, isotopic to coverings of the surfaces G i. For instance G can con-

50 De Lellis and Pellandini, Genus bounds for minimal surfaces



sist of a single component that is a real projective space, and S j might be the boundary of a
tubular neighborhood of G of size ej # 0, i.e. a sphere. In this case S j is a double cover of G.

Our proof uses the ideas of an unpublished argument of Simon, reported by Smith in
[19] to show the existence of an embedded minimal 2-sphere when M is a 3-sphere. These
ideas do not seem enough to show (0.4): its proof probably requires a much more careful
analysis. In Section 10 we discuss this issue.

Remark 0.8. The unpublished argument of Simon has been used also by Grüter and
Jost in [10]. The core of Simon’s argument is reported here with a technical simplification.
We then give a detailed proof of an auxiliary proposition which plays a fundamental role in
the argument. This part is, to our knowledge, new: neither Smith, nor Grüter and Jost pro-
vide a proof of it. Smith suggests that the proposition can be proved by suitably modifying
the arguments of [13] and [4]. Though this is indeed the case, the strategy suggested by
Smith leads to a di‰culty which we overcome with a di¤erent approach: see the discussion
in Section 7. Moreover, [19] does not discuss the ‘‘convex-hull property’’ of Section 5,
which is a basic prerequisite to apply the boundary regularity theory of Allard in [3] (in
fact we do not know of any boundary regularity result in the minimal surface theory which
does not pass through some kind of convex hull property).

0.3. An example. We end this introduction with a brief discussion of how a se-
quence of closed surface S j could converge, in the sense of varifolds, to a smooth surface
with higher genus. This example is a model situation which must be ruled out by any proof
of a genus bound. First take a sphere in R3 and squeeze it in one direction towards a double
copy of a disk (recall that the convergence in the sense of varifolds does not take into ac-
count the orientation). Next take the disk and wrap it to form a torus in the standard way.
With a standard diagonal argument we find a sequence of smooth embedded spheres in R3

which, in the sense of varifolds, converges to a double copy of an embedded torus. See
Figure 1 below.

Figure 1. Failure of genus bounds under varifold convergence. A sequence of embedded spheres converges to a

double copy of a torus.
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This example does not occur in min-max sequences for variational reasons. In partic-
ular, it follows from the arguments of this paper that such a sequence does not have the
almost minimizing property in (su‰ciently small) annuli discussed in Section 1.

0.4. Plan of the paper. Section 1 contains: some preliminaries on notational conven-
tions, a summary of the material of [8] used in this note and the most precise statement of
the genus bounds (Theorem 1.6). Section 2 gives an overview of the proof of Theorem 1.6.
In particular it reduces it to a statement on lifting of paths, which we call Simon’s Lifting
Lemma (see Proposition 2.1). Sections 3 and 4 contain a proof of Simon’s Lifting Lemma.
In Section 3 we state a suitable modification of a celebrated result of Meeks, Simon and
Yau (see [13]) in which we handle minimizing sequences of isotopic surfaces with bound-
aries (see Proposition 3.2).

Sections 5, 6, 7, 8 and 9 show how to modify the theory of [13] and [4] in order to
prove Proposition 3.2. Section 5 discusses the convex-hull properties needed for the bound-
ary regularity. In Section 6 we introduce and prove the ‘‘squeezing lemmas’’ which allow to
pass from almost-minimizing sequences to minimizing sequences. Section 7 discusses the
g-reduction and how one applies it to get the interior regularity. We also point out why
the g-reduction cannot be applied directly to the surfaces of Proposition 3.2. Section 8
proves the boundary regularity. Finally, Section 9 handles the part of Proposition 3.2 in-
volving limits of connected components.

Section 10 discusses the subtleties of the stronger estimates (0.4) and (0.5).

1. Preliminaries and statement of the result

1.1. Notation. Throughout this paper our notation will be consistent with the one of
[8], explained in Section 2 of that paper. For the reader’s convenience we recall some of
these conventions in the following table.

TxM the tangent space of M at x.
TM the tangent bundle of M.
InjðMÞ the injectivity radius of M.
H2 the 2-d Hausdor¤ measure in the metric space ðM; dÞ.
H2

e the 2-d Hausdor¤ measure in the euclidean space R3.
BrðxÞ open ball.
BrðxÞ closed ball.
qBrðxÞ distance sphere of radius r in M.
diamðGÞ diameter of a subset G HM.
dðG1;G2Þ the Hausdor¤ distance between the subsets G1 and G2 of M.
D, Dr the unit disk and the disk of radius r in R2.
B, Br the unit ball and the ball of radius r in R3.
expx the exponential map in M at x A M.
IsðUÞ smooth isotopies which leave MnU fixed.
G2ðUÞ, GðUÞ grassmannian of (unoriented) 2-planes on U HM.
Anðx; t; tÞ the open annulus BtðxÞnBtðxÞ.
ANrðxÞ the set fAnðx; t; tÞ where 0 < t < t < rg.
CyðX ;YÞ smooth maps from X to Y .
Cy

c ðX ;YÞ smooth maps with compact support from X to the vector space Y .
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1.2. Varifolds. We will need to recall some basic facts from the theory of varifolds;
see for instance [18], chapter 4 and chapter 8, for further information. Varifolds are a
convenient way of generalizing surfaces to a category that has good compactness proper-
ties. An advantage of varifolds, over other generalizations (like currents), is that they do
not allow for cancellation of mass. This last property is fundamental for the min-max con-
struction.

If U is an open subset of M, any finite nonnegative measure on the Grassmannian of
unoriented 2-planes on U is said to be a 2-varifold in U . The Grassmannian of 2-planes will
be denoted by G2ðUÞ and the vector space of 2-varifolds is denoted by V2ðUÞ. Throughout
we will consider only 2-varifolds; thus we drop the 2.

We endow VðUÞ with the topology of the weak convergence in the sense of mea-
sures, thus we say that a sequence V k of varifolds converges to a varifold V if for every
function j A Cc

�
GðUÞ

�
lim

k!y

Ð
jðx; pÞ dV kðx; pÞ ¼

Ð
jðx; pÞ dVðx; pÞ:

Here p denotes a 2-plane of TxM. If U 0 HU and V A VðUÞ, then we denote by V CU 0

the restriction of the measure V to GðU 0Þ. Moreover, kVk will be the unique measure on U

satisfying

Ð
U

jðxÞ dkVkðxÞ ¼
Ð

GðUÞ
jðxÞ dVðx; pÞ Ej A CcðUÞ:

The support of kVk, denoted by suppðkVkÞ, is the smallest closed set outside which kVk
vanishes identically. The number kVkðUÞ will be called the mass of V in U . When U is
clear from the context, we say briefly the mass of V .

Recall also that a 2-dimensional rectifiable set is a countable union of closed subsets
of C1 surfaces (modulo sets of H2-measure 0). Thus, if RHU is a 2-dimensional rectifi-
able set and h : R ! Rþ is a Borel function, then we can define a varifold V by

Ð
GðUÞ

jðx; pÞ dVðx; pÞ ¼
Ð
R

hðxÞjðx;TxRÞ dH2ðxÞ Ej A Cc

�
GðUÞ

�
:ð1:1Þ

Here TxR denotes the tangent plane to R in x. If h is integer-valued, then we say that V is
an integer rectifiable varifold. If S ¼

S
niSi, then by slight abuse of notation we use S for

the varifold induced by S via (1.1).

1.3. Pushforward, first variation, monotonicity formula. If V is a varifold induced by
a surface SHU and c : U ! U 0 a di¤eomorphism, then we let cKV A VðU 0Þ be the vari-
fold induced by the surface cðSÞ. The definition of cKV can be naturally extended to any

V A VðUÞ by

Ð
jðy; sÞ dðcKVÞðy; sÞ ¼

Ð
Jcðx; pÞj

�
cðxÞ; dcxðpÞ

�
dVðx; pÞ

where Jcðx; pÞ denotes the Jacobian determinant (i.e. the area element) of the di¤erential
dcx restricted to the plane p; cf. [18], equation (39.1).
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Given a smooth vector field w, let c be the isotopy generated by w, i.e. with
qc

qt
¼ wðcÞ. The first variation of V with respect to w is defined as

½dV �ðwÞ ¼ d

dt

�
kcðt; �ÞKVk

�����
t¼0

;

cf. [18], sections 16 and 39. When S is a smooth surface we recover the classical definition
of first variation of a surface:

½dS�ðwÞ ¼
Ð
S

divS w dH2 ¼ d

dt

�
H2

�
cðt;SÞ

������
t¼0

:

If ½dV �ðwÞ ¼ 0 for every w A Cy
c ðU ;TUÞ, then V is said to be stationary in U . Thus station-

ary varifolds are natural generalizations of minimal surfaces.

Stationary varifolds in Euclidean spaces satisfy the monotonicity formula (see [18],
sections 17 and 40):

For every x the function f ðrÞ ¼
kVk

�
BrðxÞ

�
pr2

is non-decreasing:ð1:2Þ

When V is a stationary varifold in a Riemannian manifold, a similar formula with an error
term holds. Namely, there exists a constant CðrÞf 1 such that

f ðsÞeCðrÞ f ðrÞ whenever 0 < s < r < r:ð1:3Þ

Moreover, the constant CðrÞ approaches 1 as r # 0. This property allows us to define the
density of a stationary varifold V at x, by

yðx;VÞ ¼ lim
r#0

kVk
�
BrðxÞ

�
pr2

:

Thus yðx;VÞ corresponds to the upper density y�2 of the measure kVk as defined in [18],
section 3.

1.4. Curvature estimates for stable minimal surfaces. In many of the proofs we will
use Schoen’s curvature estimate (see [17]) for stable minimal surfaces. Recall that this esti-
mate asserts that, if U HHM, then there exists a universal constant, CðUÞ, such that for
every stable minimal surface SHU with qSH qU and second fundamental form A

jAj2ðxÞe CðUÞ
d 2ðx; qUÞ Ex A S:ð1:4Þ

In fact, what we will use is not the actual curvature estimate, rather it is the following con-
sequence of it:

If fSng is a sequence of stable minimal surfaces in U ; then að1:5Þ
subsequence converges to a stable minimal surface Sy:
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1.5. Almost minimizing min-max sequences. Next, we assume that L is a fixed satu-
rated set and we begin by recalling the building blocks of the proof of Theorem 0.4. First of
all, in [8], following ideas of Pitts and Almgren (see [14] and [5]), the authors reported a
proof of the following proposition (cp. with [8], Proposition 3.1).

Proposition 1.1. There exists a minimizing sequence ffStgngHL such that every

min-max sequence fSn
tn
g clusters to stationary varifolds.

It is well-known that stationary varifolds are not, in general, smooth minimal sur-
faces. The regularity theory of Theorem 0.4 relies on the definition of almost minimizing
sequence, a concept introduced by Pitts in [14] and based on ideas of Almgren (see [5]).
Roughly speaking a surface S is almost minimizing if any path of surfaces fStgt A ½0;1� start-
ing at S and such that S1 has small area (compared to S) must necessarily pass through a
surface with large area. Our actual definition, following Smith and Simon, is in fact more
restrictive: we will require the property above only for families fStg given by smooth iso-
topies.

Definition 1.2. Given e > 0, an open set U HM 3, and a surface S, we say that S is
e-a.m. in U if there does not exist any isotopy c supported in U such that

H2
�
cðt;SÞ

�
eH2ðSÞ þ e=8 for all t;ð1:6Þ

H2
�
cð1;SÞ

�
eH2ðSÞ � e:ð1:7Þ

Using a combinatorial argument due to Almgren and exploited by Pitts in [14], the
second step of [8] was to show Proposition 1.4 below.

Remark 1.3. In fact, the statement of Proposition 1.4 does not coincide exactly with
the corresponding Proposition 5.1 of [8]. However, it is easy to see that Proposition 5.3 of
[8] yields the slightly small precise statement given below.

Proposition 1.4. There exists a function r : M ! Rþ and a min-max sequence

S j ¼ S
j
tj

such that:

� In every annulus An centered at x and with outer radius at most rðxÞ, S j is 1=j-a.m.

provided j is large enough.

� In any such annulus, S j is smooth when j is su‰ciently large.

� S j converges to a stationary varifold V in M, as j " y.

The following theorem completed the proof of Theorem 0.4 (cp. with [8], Theorem
7.1).

Theorem 1.5. Let fS jg be a sequence of surfaces in M and assume the existence of a

function r : M ! Rþ such that the conclusions of Proposition 1.4 hold. Then V is a smooth

minimal surface.
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The proof of this theorem draws heavily on a fundamental result of Meeks, Simon
and Yau ([13]). A suitable version of it plays a fundamental role also in this paper and since
the modifications of the ideas of [13] needed in our case are complicated, we will discuss
them later in detail. From now on, in order to simplify our notation, a sequence fS jg sat-
isfying the conclusions of Proposition 1.4 will be simply called almost minimizing in su‰-

ciently small annuli.

1.6. Statement of the result. Our genus estimate is valid, in general, for limits of se-
quences of surfaces which are almost minimizing in su‰ciently small annuli.

Theorem 1.6. Let S j ¼ S
j
tj

be a sequence which is a.m. in su‰ciently small annuli. Let

V ¼
P

i

niG
i be the varifold limit of fS jg, where G i are as in Theorem 0.6. Then

P
G i AO

gðG iÞ þ 1

2

P
G i AN

�
gðG iÞ � 1

�
e lim inf

j"y
lim inf
t!tj

gðS j
tÞ:ð1:8Þ

2. Overview of the proof

In this section we give an overview of the proof of Theorem 1.6. Therefore we fix
a min-max sequence S j ¼ S

j
tj

as in Theorem 1.6 and we let
P

i

niG
i be its varifold limit.

Consider the smooth surface G ¼
S
i

G i and let e0 > 0 be so small that there exists a smooth

retraction of the tubular neighborhood T2e0
G onto G. This means that, for every d < 2e0,

� TdG
i are smooth open sets with pairwise disjoint closures;

� if G i is orientable, then TdG
i is di¤eomorphic to G i � ��1; 1½;

� if G i is non-orientable, then the boundary of TdG
i is an orientable double cover

of G i.

2.1. Simon’s Lifting Lemma. The following proposition is the core of the genus
bounds. Similar statements have been already used in the literature (see for instance [10]
and [9]). We recall that the surface S j might not be everywhere regular, and we denote by
Pj its set of singular points (possibly empty).

Proposition 2.1 (Simon’s Lifting Lemma). Let g be a closed simple curve on G i and

let ee e0 be positive. Then, for j large enough, there is a positive ne ni and a closed curve ~gg j

on S j XTeG
inPj which is homotopic to ng in TeG

i.

Simon’s Lifting Lemma implies directly the genus bounds if we use the characteriza-
tion of homology groups through integer rectifiable currents and some more geometric
measure theory. However, we choose to conclude the proof in a more elementary way,
using Proposition 2.3 below.

2.2. Surgery. The idea is that, for j large enough, one can modify any fS j
t g su‰-

ciently close to S j ¼ S
j
tj

through surgery to a new surface ~SS j
t such that
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� the new surface lies in a tubular neighborhood of G;

� it coincides with the old surface in a yet smaller tubular neighborhood.

The surgeries that we will use in this paper are of two kinds: we are allowed to

� remove a small cylinder and replace it by two disks (as in Figure 2);

� discard a connected component.

We give below the precise definition.

Definition 2.2. Let S and ~SS be two closed smooth embedded surfaces. We say that ~SS
is obtained from S by cutting away a neck if:

� Sn~SS is homeomorphic to S1 � �0; 1½;

� ~SSnS is homeomorphic to the disjoint union of two open disks;

� ~SSDS is a contractible sphere.

We say that ~SS is obtained from S through surgery if there is a finite number of surfaces
S0 ¼ S;S1; . . . ;SN ¼ ~SS such that each Sk is

� either isotopic to the union of some connected components of Sk�1;

� or obtained from Sk�1 by cutting away a neck.

Clearly, if ~SS is obtained from S through surgery, then gð~SSÞe gðSÞ. We are now ready
to state our next proposition.

Figure 2. Cutting away a neck.
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Proposition 2.3. Let ee e0 be positive. For each j su‰ciently large and for t su‰-

ciently close to tj, we can find a surface ~SS j
t obtained from S

j
t through surgery and satisfying

the following properties:

� ~SS j
t is contained in T2eG.

� ~SS j
t XTeG ¼ S

j
t XTeG.

2.3. Proof of Theorem 1.6. Proposition 2.3 and Proposition 2.1 allow us to conclude
the proof of Theorem 1.6. We only need the following standard fact for the first integral
homology group of a smooth closed connected surface (see [12], Sections 4.2 and 4.5).

Lemma 2.4. Let G be a connected closed 2-dimensional surface with genus g. If G is

orientable, then H 1ðGÞ ¼ Z2g. If G is non-orientable, then H 1ðGÞ ¼ Zg�1 � Z2.

The proof of Proposition 2.3 is given below, at the end of this section. The rest of the
paper is then dedicated to prove Simon’s Lifting Lemma. We now come to the proof of
Theorem 1.6.

Proof of Theorem 1.6. Define mi ¼ gðG iÞ if i is orientable and
�
gðG iÞ � 1

�
=2 if not.

Our aim is to show that

P
i

mi e lim inf
j"y

lim inf
t!tj

gðS j
t Þ:ð2:1Þ

By Lemma 2.4, for each G i there are 2mi curves g i;1; . . . ; g i;2mi with the following property:

(Hom) If k1; . . . ; k2mi
are integers such that k1g

i;1 þ � � � þ k2mi
g i;2mi is homologically

trivial in G i, then kl ¼ 0 for every l.

Since e < e0=2, T2eG
i can be retracted smoothly on G i. Hence:

(Hom 0) If k1; . . . ; k2mi
are integers such that k1g

i;1 þ � � � þ k2mi
g i;2mi is homologically

trivial in T2eG
i, then kl ¼ 0 for every l.

Next, fix e < e0 and let N be su‰ciently large so that, for each j fN, Simon’s Lifting
Lemma applies to each curve g i; l . We require, moreover, that N is large enough so that
Proposition 2.3 applies to every j > N.

Choose next any j > N and consider the curves ~gg i; l lying in TeGXS j given by Si-
mon’s Lifting Lemma. Such surfaces are therefore homotopic to ni; lg

i; l in TeG
i, where

each ni; l is a positive integer. Moreover, for each t su‰ciently close to tj consider the sur-
face ~SS j

t given by Proposition 2.3. The surface ~SS j
t decomposes into the finite number of com-

ponents (not necessarily connected) ~SS j
t XT2eG

i. Each such surface is orientable and

P
i

gð~SS j
t XT2eG

iÞ ¼ gð~SS j
t Þe gðS j

t Þ:ð2:2Þ

We claim that

mi e lim inf
t!tj

gð~SS j
t XT2eG

iÞ;ð2:3Þ

which clearly would conclude the proof.
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Since S
j
t converges smoothly to S j outside Pj, we conclude that ~SS j

t XTeG
i converges

smoothly to S j XTeG
i outside Pj. Since each g i; l does not intersect Pj, it follows that, for t

large enough, there exist curves ĝg i; l contained in ~SS j
t XTeG

i and homotopic to ~gg i; l in TeG
i.

Summarizing:

(i) Each ~gg i; l is homotopic to ni; lg
i; l in T2eG

i for some positive integer ni; l .

(ii) Each ~gg i; l is contained in ~SS j
t XT2eG

i.

(iii) ~SS j
t XT2eG

i is a closed surface.

(iv) If c1g
i;1 þ � � � þ c2mi

g i;2mi is homologically trivial in T2eG
i and the cl ’s are inte-

gers, then they are all 0.

These statements imply that:

(Hom 00) If c1~gg
i;1 þ � � � þ c2mi

~gg i;2mi is homologically trivial in ~SS j
t XT2eG

i and the cl ’s
are integers, then they are all 0.

From Lemma 2.4, we conclude again that gð~SS j
t XT2eG

iÞfmi. r

2.4. Proof of Proposition 2.3. Consider the set W ¼ T2eGnTeG. Since S j converges,
in the sense of varifolds, to G, we have

lim
j"y

lim sup
t!tj

H2ðS j
t XWÞ ¼ 0:ð2:4Þ

Let h > 0 be a positive number to be fixed later and consider N such that

lim sup
t!tj

H2ðS j
t XWÞ < h=2 for each j fN:ð2:5Þ

Fix j fN and let dj > 0 be such that

H2ðS j
t XWÞ < h if jtj � tj < dj:ð2:6Þ

For each s A �e; 2e½ consider Ds :¼ qðTsGÞ, i.e. the boundary of the tubular neighborhood
TsG. The surfaces Ds are a smooth foliation of WnG and therefore, by the coarea formula

Ð2e
e

LengthðS j
t XDsÞ dseCH2ðS j

t XWÞ < Chð2:7Þ

where C is a constant independent of t and j. Therefore,

LengthðS j
t XDsÞ <

2Ch

e
ð2:8Þ

holds for a set of s’s with measure at least e=2.

59De Lellis and Pellandini, Genus bounds for minimal surfaces



By Sard’s Lemma we can fix a s such that (2.7) holds and S
j
t intersects Dt transver-

sally.

For positive constants l and C, independent of j and t, the following holds:

(B) For any s A �0; 2e½, any simple closed curve g lying on Ds with LengthðgÞe l

bounds an embedded disk DHDs with diamðDÞeC LengthðgÞ.

Assume that 2Ch=e < l. By construction, S
j
t XDs is a finite collection of simple

curves. Consider ~WW :¼ TsþdGnTs�dG. For d su‰ciently small, ~WWXS
j
t is a finite collection

of cylinders, with upper bases lying on Dsþd and lower bases lying on Ds�d. We ‘‘cut
away’’ this finite number of necks by removing ~WWXS

j
t and replacing them with the two

disks lying on Ds�d WDsþd and enjoying the bound (B). For a suitable choice of h, the
union of each neck and of the corresponding two disks has su‰ciently small diameter.
This surface is therefore a compressible sphere, which implies that the new surface ŜS

j
t is

obtained from S
j
t through surgery.

We can smooth it a little: the smoothed surface will still be obtained from S
j
t through

surgery and will not intersect Ds. Therefore ~SS j
t :¼ ŜS

j
t XTsG is a closed surface and is ob-

tained from ŜS
j
t by dropping a finite number of connected components. r

3. Proof of Proposition 2.1

Part I: Minimizing sequences of isotopic surfaces

A key point in the proof of Simon’s Lifting Lemma is Proposition 3.2 below. Its
proof, postponed to later sections, relies on the techniques introduced by Almgren and Si-
mon in [4] and Meeks, Simon and Yau in [13]. Before stating the proposition we need to
introduce some notation.

3.1. Minimizing sequences of isotopic surfaces.

Definition 3.1. Let I be a class of isotopies of M and SHM a smooth embedded
surface. If fjkgHI and

lim
k!y

H2
�
jkð1;SÞ

�
¼ inf

c AI
H2

�
cð1;SÞ

�
;

then we say that jkð1;SÞ is a minimizing sequence for Problem ðS;IÞ.

If U is an open set of M, S a surface with qSH qU and j A N an integer, then we
define

IsjðU ;SÞ :¼
�
c A IsðUÞ jH2

�
cðt;SÞ

�
eH2ðSÞ þ 1=ð8jÞ Et A ½0; 1�

�
:ð3:1Þ

Proposition 3.2. Let U HM be an open ball with su‰ciently small radius and con-

sider a smooth embedded surface S such that qSH qU is also smooth. Let Dk :¼ jkð1;SÞ be

a minimizing sequence for Problem
�
S;IsjðU ;SÞ

�
, converging to a stationary varifold V.

Then, V is a smooth minimal surface D with smooth boundary qD ¼ qS.
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Moreover, if we form a new sequence ~DDk by taking an arbitrary union of connected

components of Dk, it converges, up to subsequences, to the union of some connected compo-

nents of D.

In fact, we believe that the proof of Proposition 3.2 could be modified to include any
open set U with smooth, uniformly convex boundary. However, such a statement would
imply several technical complications in Section 5 and hence goes beyond our scopes. In-
stead, the following simpler statement can be proved directly with our arguments, though
we do not give the details.

Proposition 3.3. Let U HM be a uniformly convex open set with smooth boundary

and consider a smooth embedded surface S such that qSH qU is also smooth. Let

Dk :¼ jkð1;SÞ be a minimizing sequence for Problem
�
S;IsðUÞ

�
, converging to a stationary

varifold V. Then, V is a smooth minimal surface D with smooth boundary qD ¼ qS.

Moreover, if we form a new sequence ~DDk by taking an arbitrary union of connected

components of Dk, it converges, up to subsequences, to the union of some connected compo-

nents of D.

3.2. Elementary remarks on minimizing surfaces. We end this section by collecting
some properties of minimizing sequences of isotopic surfaces which will be used often
throughout this paper. We start with two very elementary remarks.

Remark 3.4. If S is 1=j-a.m. in an open set U and ~UU is an open set contained in U ,
then S is 1=j-a.m. in ~UU .

Remark 3.5. If S is 1=j-a.m. in U and c A IsjðS;UÞ is such that
H2

�
cð1;SÞ

�
eH2ðSÞ, then cð1;SÞ is 1=j-a.m. in U .

Next we collect two lemmas. Their proofs are short and we include them below for
the reader’s convenience.

Lemma 3.6. Let Sj be 1=j-a.m. in annuli and r : M ! Rþ be the function of Theorem

1.5. Assume U is an open set with closure contained in Anðx; t; sÞ, where s < rðxÞ. Let

cj A IsjðSj;UÞ be such that H2
�
cjð1;SjÞ

�
eH2ðSÞ. Then cjð1;SjÞ is 1=j-a.m. in su‰-

ciently small annuli.

Proof. Recall the definition of 1=j-a.m. in su‰ciently small annuli. This means that
there is a function r : M ! Rþ such that S is 1=j-a.m. on every annulus centered at y and
with outer radius smaller than rðyÞ. Let Anðx; t; sÞ be an annulus on which S is 1=j-a.m.
and U HHAnðx; t; sÞ. If y B BsðxÞ, then distðy;UÞ > 0. Set r1ðyÞ :¼ minfrðyÞ; distðy;UÞg.
Then cð1;SÞ ¼ S on every annulus with center y and radius smaller than r1ðyÞ, and there-
fore it is 1=j-a.m. in it. If y ¼ x, then the statement is obvious because of Remark 3.5. If
y A BsðxÞnfxg, then there exists rðyÞ; tðyÞ such that U WBrðyÞðyÞHAn

�
x; tðyÞ; s

�
. By Re-

marks 3.5 and 3.4, cð1;SÞ is 1=j-a.m. on every annulus centered at y and outer radius
smaller than rðyÞ. r
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Lemma 3.7. Let fS jg be a sequence as in Theorem 1.5 and U and cj be as in Lemma

3.6. Assume moreover that U is contained in a convex set W. If S j converges to a varifold V ,
then cjð1;S jÞ converges as well to V .

Proof of Theorem 3.7. By Theorem 1.5, V is a smooth minimal surface (multiplicity
allowed). By Lemma 3.6, cjð1;S jÞ is also 1=j-a.m. and again by Theorem 1.5 a subse-
quence (not relabeled) converges to a varifold V 0 which is a smooth minimal surface. Since
S j ¼ cjð1;S jÞ outside W , V ¼ V 0 outside W . Being W convex, it cannot contain any
closed minimal surface, and hence by standard unique continuation, V ¼ V 0 in W as
well. r

4. Proof of Proposition 2.1

Part II: Leaves

4.1. Step 1. Preliminaries. Let fS jg be a sequence as in Theorem 1.6. We keep the
convention that G denotes the union of disjoint closed connected embedded minimal sur-
faces G i (with multiplicity 1) and that S j converges, in the sense of varifolds, to
V ¼

P
i

niG
i. Finally, we fix a curve g contained in G.

Let r : G ! Rþ be such that the three conclusions of Proposition 1.4 hold. Consider a
finite covering fBrl

ðxlÞg of M with rl < rðxlÞ and denote by C the set of the centers fxlg.
Next, up to extraction of subsequences, we assume that the set of singular points Pj HS j

converges in the sense of Hausdor¤ to a finite set P (recall Remark 0.2) and we denote by E

the union of C and P. Recalling Remark 3.4, for each x A MnE there exists a ball B cen-
tered at x such that:

� S j XB is a smooth surface for j large enough.

� S j is 1=j-a.m. in B for j large enough.

Deform g to a smooth curve contained in GnE and homotopic to g in G. It su‰ces to
prove the claim of the proposition for the new curve. By abuse of notation we continue to
denote it by g. In what follows, we let r0 be any given positive number so small that:

� Tr0
ðGÞ can be retracted on G.

� For every x A G, Br0
ðxÞXG is a disk with diameter smaller than the injectivity ra-

dius of G.

For any positive re 2r0 su‰ciently small, we can find a finite set of points x1; . . . ; xN

on g with the following properties (to avoid cumbersome notation we will use the conven-
tion xNþ1 ¼ x1):

(C1) If we let ½xk; xkþ1� be the geodesic segment on G connecting xk and xkþ1, then g

is homotopic to
P
k

½xk; xkþ1�.

(C2) Brðxkþ1ÞXBrðxkÞ ¼ j.
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(C3) BrðxkÞWBrðxkþ1Þ is contained in a ball Bk;kþ1 of radius 3r.

(C4) In any ball Bk;kþ1, S j is 1=j-a.m. and smooth provided j is large enough.

See Figure 3. From now on we will consider j so large that (C4) holds for every k. The
constant r will be chosen (very small, but independent of j) only at the end of the proof.
The existence of the points xk is guaranteed by a simple compactness argument if r0 is a
su‰ciently small number.

4.2. Step 2. Leaves. In every BrðxkÞ consider a minimizing sequence
S j; l :¼ clð1;S jÞ for Problem

�
S j;Isj

�
BrðxkÞ;S j

��
. Using Proposition 3.2, extract a sub-

sequence converging (in BrðxkÞ) to a smooth minimal surface G j;k with boundary
qG j;k ¼ S j XBrðxkÞ. This is a stable minimal surface, and we claim that, as j " y, G j;k

converges smoothly on every ball Bð1�yÞrðxkÞ (with y < 1) to V . Indeed, this is a conse-
quence of Schoen’s curvature estimates, see Subsection 1.4.

By a diagonal argument, if fljg grows su‰ciently fast, S j; lj XBrðxkÞ has the same
limit as G j;k. On the other hand, for fljg growing su‰ciently fast, Lemmas 3.6 and 3.7
apply, giving that S j; lj converges to V .

Therefore, G j;k converges smoothly to niG
i XBð1�yÞrðxkÞ in Bð1�yÞrðxkÞ for every

positive y < 1. Therefore any connected component of G j;k XBð1�yÞrðxkÞ is eventually (for
large j’s) a disk (multiplicity allowed). The area of such a disk is, by the monotonicity for-
mula for minimal surfaces, at least cð1 � yÞ2r2, where c is a constant depending only on M.
From now on we consider y fixed, though its choice will be specified later.

Up to extraction of subsequences, we can assume that for each connected component
ŜS j of S j, clð1; ŜS jÞ converges to a finite union of connected components of G j;k. However,
in Bð1�yÞrðxkÞ,

� either their limit is zero;

� or the area of clð1; ŜS jÞ in Bð1�yÞrðxkÞ is larger than cð1 � 2yÞ2r2 for l large enough.

Figure 3. The points xl of (C1)–(C4).
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We repeat this argument for every k. Therefore, for any j su‰ciently large, we define
the set Lð j; kÞ whose elements are those connected components ŜS j of S j XBrðxkÞ such that
clð1; ŜS jÞ intersected with Bð1�yÞrðxkÞ has area at least cð1 � 2yÞ2r2.

Recall that S j is converging to niG
i XBrðxkÞ in BrðxkÞ in the sense of varifolds.

Therefore, the area of S j is very close to niH
2
�
G i XBrðxkÞ

�
. On the other hand, by de-

finition H2
�
clð1;S jÞXBrðxkÞ

�
is not larger. This gives a bound to the cardinality of

Lð j; kÞ, independent of j and k. Moreover, if r and y are su‰ciently small, the con-
stants c and e get so close, respectively, to 1 and 0 that the cardinality of Lð j; kÞ can be
at most ni.

4.3. Step 3. Continuation of the leaves. We claim the following

Lemma 4.1 (Continuation of the leaves). If r is su‰ciently small, then for every j

su‰ciently large and for every element L of Lð j; kÞ there is an element ~LL of Lð j; k þ 1Þ
such that L and ~LL are contained in the same connected component of S j XBk;kþ1.

The lemma is su‰cient to conclude the proof of the theorem. Indeed let
fL1;L2; . . . ;Lkg be the elements of Lð j; 1Þ. Choose a point y1 on L1 and then a point y2

lying on an element ~LL of Lð j; 2Þ such that L1 W ~LL is contained in a connected component
of S j XB1;2. We proceed by induction and after N steps we get a point yNþ1 in some Lk.
After repeating at most ni þ 1 times this procedure, we find two points ylNþ1 and yrNþ1

belonging to the same Ls. Without loss of generality we discard the first lN points and re-
number the remaining ones so that we start with y1 and end with ynNþ1 ¼ y1. Note that
ne ni. Each pair yk, ykþ1 can be joined with a path gk;kþ1 lying on S j and contained in a
ball of radius 3r, and the same can be done with a path gnNþ1;1 joining ynNþ1 and y1. Thus,
if we let

~gg ¼
P
k

gk;kþ1 þ gnNþ1;1

we get a closed curve contained in S j.

It is easy to show that the curve ~gg is homotopic to ng in
S
k

Bk;kþ1. Indeed, for each

sN þ r fix a path hsNþr : ½0; 1� ! BrðxrÞ with hsNþrð0Þ ¼ ysNþr and hsNþrð1Þ ¼ xr. Next fix
an homotopy zsNþr : ½0; 1� � ½0; 1� ! Bk;kþ1 with

� zsNþrð0; �Þ ¼ gsNþr;sNþrþ1,

� zsNþrð1; �Þ ¼ ½xr; xrþ1�,

� zsNþrð�; 0Þ ¼ h iNþrð�Þ and

� zsNþrð�; 1Þ ¼ hsNþrþ1ð�Þ.

Joyning the zk’s we easily achieve an homotopy between g and ~gg. See Figure 4. If r is
chosen su‰ciently small, then

S
k

Bk;kþ1 is contained in a retractible tubular neighborhood

of G and does not intersect E.
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4.4. Step 4. Proof of the continuation of the leaves. Let us fix a r for which Lemma
4.1 does not hold. Our goal is to show that for r su‰ciently small, this leads to a contradic-
tion. Clearly, there is an integer k and a subsequence jl " y such that the statement of the
lemma fails. Without loss of generality we can assume k ¼ 1 and we set x ¼ x1, y ¼ x2 and
B1;2 ¼ B. Moreover, by a slight abuse of notation we keep labeling S jl as S j.

Consider the minimizing sequence of isotopies fclg for Problem
�
S j;Isj

�
BrðxÞ;S j

��
and fflg for Problem

�
S j;Isj

�
BrðyÞ;S j

��
fixed in Step 3. Since BrðxÞXBrðyÞ ¼ j and cl

and fl leave, respectively, MnBrðyÞ and MnBrðxÞ fixed, we can combine the two isotopies
in

Flðt; zÞ :¼ clð2t; zÞ for t A ½0; 1=2�;
flð2t � 1; zÞ for t A ½1=2; 1�:

�

If we consider S j; l ¼ Flð1;S jÞ, then

S j; l XBrðxÞ ¼ clð1;S jÞXBrðxÞ and S j; l XBrðyÞ ¼ flð1;S jÞXBrðyÞ:

Moreover for a su‰ciently large l, the surface S j; l by Lemma 3.6 is 1=j-a.m. in B and in
su‰ciently small annuli.

Arguing as in Step 2 (i.e. applying Theorem 1.5, Lemma 3.6 and Lemma 3.7), with-
out loss of generality we can assume that:

(i) S j; l converges, as l " y, to smooth minimal surfaces D j and Lj respectively in
BrðxÞ and BrðyÞ.

(ii) D j and Lj converge, respectively, to niG
i XBrðxÞ and niG

i XBrðyÞ.

(iii) For lj growing su‰ciently fast, S j; lj converges to the varifold V ¼
P

i

niG
i.

Let ŜS j be the connected component of S j XBrðxÞ which contradicts Lemma 4.1. Denote by
~SS j the connected component of BXS j containing ŜS j.

Figure 4. The homotopies z iNþr.
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Now, by Proposition 3.2, Flð1; ~SS jÞXBrðxÞ converges to a stable minimal surface
~DD j HD j and Flð1; ŜS jÞ converges to a stable minimal surface D̂D j H ~DD j. Because of (ii) and
of curvature estimates (see Subsection 1.4), D̂D j converges necessarily to rG i XBrðxÞ for
some integer rf 0. Since ŜS j A Lð j; 1Þ, it follows that rf 1. Similarly, Flð1; ~SS jÞXBrðyÞ
converges to a smooth minimal surface ~LLj and ~LLj converges to sG i XBrðyÞ for some
integer sf 0. Since ~SS j does not contain any element of Lð j; 2Þ, it follows necessarily
s ¼ 0.

Consider now the varifold W which is the limit in B of ~SS j; lj ¼ Fljð1; ~SS jÞ. Arguing
again as in Step 2 we choose fljg growing so fast that W , which is the limit of ~SS j; lj ,
coincides with the limit of ~DD j in BrðxÞ and with the limit of ~LLj in BrðyÞ. According to the
discussion above, V coincides then with rG i XBrðxÞ in BrðxÞ and vanishes in BrðyÞ. More-
over

kWke kVkCB ¼ nH2
CG i XBð4:1Þ

in the sense of varifolds. We recall here that kWk and kVkCB are nonnegative measures
defined in the following way:

Ð
jðxÞ dkWkðxÞ ¼ lim

j"y

Ð
~SS j; lj

jð4:2Þ

and

Ð
jðxÞ dkVkðxÞ ¼ lim

j"y

Ð
S j; lj

jð4:3Þ

for every j A CcðBÞ. Therefore (4.1) must be understood as a standard inequality between
measures, which is an e¤ect of (4.2), (4.3) and the inclusion ~SS j; lj HS j; lj XB. An important
consequence of (4.1) is that

kWk
�
qBtðwÞ

�
¼ 0 for every ball BtðwÞHB:ð4:4Þ

Next, consider the geodesic segment ½x; y� joining x and y in G i. For z A ½x; y�,
Br=2ðzÞHB. Moreover,

the map z 7! kWk
�
Br=2ðzÞ

�
is continuous in z;ð4:5Þ

because of (4.1) and (4.4).

Since kWk
�
Br=2ðxÞ

�
fH2

�
G i XBr=2ðxÞ

�
and kWk

�
Br=2ðyÞ

�
¼ 0, by the continuity

of the map in (4.5), there exists z A ½x; y� such that

kWk
�
Br=2ðzÞ

�
¼ 1

2
H2

�
G i XBr=2ðzÞ

�
:
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Since kWk
�
qBr=2ðzÞ

�
¼ 0, we conclude (see [6], Proposition 1.62(b)) that

lim
j"y

H2
�
~SS j; lj XBr=2ðzÞ

�
¼ 1

2
H2

�
G i XBr=2ðzÞ

�
ð4:6Þ

(see Figure 5).

On the other hand, since S j; lj converges to V in the sense of varifolds and
V ¼ niG

i XBr=2ðzÞ in Br=2ðzÞ, we conclude that

lim
j"y

H2
�
ðS j; ljn~SS j; ljÞXBr=2ðzÞ

�
¼ ni �

1

2

	 

H2

�
G i XBr=2ðzÞ

�
:ð4:7Þ

If r is su‰ciently small, G i XBr=2ðzÞ is close to a flat disk and Br=2ðzÞ is close to a flat ball.

Using the coarea formula and Sard’s Lemma, we can find a s A �0; r=2½ and a sub-
sequence of fS j; ljg (not relabeled) with the following properties:

(a) S j; lj intersects qBsðzÞ transversally.

(b) Length
�
~SS j; lj X qBsðzÞ

�
e 2ð1=2 þ eÞps.

(c) Length
�
ðS j; ljn~SS j; ljÞX qBsðzÞ

�
e 2

�
ðni � 1=2Þ þ e

�
ps.

(d) H2
�
G i XBsðzÞ

�
f ð1 � eÞps2.

Note that the geometric constant e can be made as close to 0 as we want by choosing r

su‰ciently small.

In order to simplify the notation, set W j ¼ S j; lj . Consider a minimizing sequence
W j; s ¼ jsð1;W jÞ for Problem

�
W j;Isj

�
BsðzÞ;W j

��
. By Proposition 3.2, W j; s XBsðzÞ con-

Figure 5. The varifold W .
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verges, up to subsequences, to a minimal surface X j with boundary W j X qBsðzÞ. Moreover,
using Lemma 3.7 and arguing as in the previous steps, we conclude that X j converges to
niG

i XBsðzÞ.

Next, set:

� ~WW j ¼ ~SS j; lj XBsðzÞ, ~WW j; s ¼ jsð1; ~WW jÞ.

� ŴW j ¼ ðS j; ljn~SS j; ljÞXBsðzÞ, ŴW j; s ¼ jsð1; ŴW jÞ.

By Proposition 3.2, since ~WW j and ŴW j are unions of connected components of W j XBsðzÞ, we
can assume that ~WW j; s and ŴW j; s converge respectively to stable minimal surfaces ~XX j and X̂X j

with

q~XX j ¼ ~SS j; lj X qBsðzÞ; qX̂X j ¼ ðS j; ljn~SS j; ljÞX qBsðzÞ:

Hence, by (b) and (c), we have

Lengthðq~XX jÞe 2
1

2
þ e

	 

ps; LengthðqX̂X jÞe 2 ni �

1

2
þ e

	 

ps:ð4:8Þ

On the other hand, using the standard monotonicity estimate of Lemma 4.2 below, we con-
clude that

H2ðX̂X jÞe ni �
1

2
þ h

	 

ps2;ð4:9Þ

H2ð~XX jÞe 1

2
þ h

	 

ps2:ð4:10Þ

As the constant e in (d), h as well can be made arbitrarily small by choosing r suitably
small. We therefore choose r so small that

H2ðX̂X jÞe ni �
3

8

	 

ps2;ð4:11Þ

H2ð~XX jÞe 5

8
ps2ð4:12Þ

and

H2
�
G i XBsðzÞ

�
f 1 � 1

8ni

	 

ps2:ð4:13Þ

Now, by curvature estimates (see Subsection 1.4), we can assume that the stable mini-
mal surfaces ~XX j and X̂X j, are converging smoothly (on compact subsets of BsðzÞÞ to stable
minimal surfaces ~XX and X̂X. Since X j ¼ ~XX j þ X̂X j converges to niG

i XBsðzÞ, we conclude that

68 De Lellis and Pellandini, Genus bounds for minimal surfaces



~XX ¼ ~nnG i XBsðzÞ and X̂X ¼ n̂nG i XBsðzÞ, where ~nn and n̂n are nonnegative integers with
~nn þ n̂n ¼ ni. On the other hand, by (4.11), (4.12) and (4.13), we conclude

~nn 1 � 1

8ni

	 

ps2 ¼ H2ð~XXÞe lim inf

j
H2ð~XX jÞe 5

8
ps2;ð4:14Þ

n̂n 1 � 1

8ni

	 

ps2 ¼ H2ðX̂XÞe lim inf

j
H2ðX̂X jÞe ni �

3

8

	 

ps2:ð4:15Þ

From (4.14) and (4.15) we conclude, respectively, ~nn ¼ 0 and n̂ne ni � 1, which contradicts
~nn þ n̂n ¼ ni.

4.5. A simple estimate. The following lemma is a standard fact in the theory of mini-
mal surfaces.

Lemma 4.2. There exist constants C and r0 > 0 (depending only on M) such that

H2ðSÞe 1

2
þ Cs

	 

sLengthðqSÞð4:16Þ

for any s < r0 and for any smooth minimal surface S with boundary qSH qBsðzÞ.

Indeed, (4.16) follows from the usual computations leading to the monotonicity for-
mula. However, since we have not found a reference for (4.16) in the literature, we will
sketch a proof in Appendix A.

5. Proof of Proposition 3.2

Part I: Convex hull property

5.1. Preliminary definitions. Consider an open geodesic ball U ¼ BrðxÞ with su‰-
ciently small radius r and a subset gH qU consisting of finitely many disjoint smooth Jor-
dan curves.

Definition 5.1. We say that an open subset AHU meets qU in g transversally if
there exists a positive angle y0 such that:

(a) qAX qU H g.

(b) For every p A qAX qU we choose coordinates ðx; y; zÞ in such a way that the tan-
gent plane Tp of qU at p is the xy-plane and g 0ðpÞ ¼ ð1; 0; 0Þ. Then in this setting every

point q ¼ ðq1; q2; q3Þ A A satisfies
q3

q2
f tan

1

2
� y0

	 

.

Remark 5.2. Condition (b) of the above definition can be stated in the following ge-
ometric way: There exixt two halfplanes p1 and p2 meeting at the line through p in direc-
tion g 0ðpÞ such that
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� they form an angle y0 with Tp;

� the set A is all contained in the wedge formed by p1 and p2;

see Figure 6.

In this section we will show the following lemma.

Lemma 5.3 (Convex hull property). Let V and S be as in Proposition 3.2. Then, there

exists a convex open set AHU which intersects U in qS transversally and such that

suppðkVkÞHA.

Our starting point is the following elementary fact about convex hulls of smooth
curves lying in the euclidean two-sphere.

Proposition 5.4. If bH qB1 HR3 is the union of finitely many C2-Jordan curves, then

its convex hull meets B1 transversally in b.

The proof of this proposition follows from the regularity and the compactness of b
and from the fact that b is not self-intersecting. We leave its details to the reader.

5.2. Proof of Lemma 5.3. From now on, we consider g ¼ qS: this is the union of
finitely many disjoint smooth Jordan curves contained in qU . Recall that U is a geodesic
ball BrðxÞ. Without loss of generality we assume that r is smaller than the injectivity radius.

Step 1. Consider the rescaled exponential coordinates induced by the chart
f : BrðxÞ ! B1 given by f ðzÞ ¼

�
exp�1

x ðzÞ
�
=r. These coordinates will be denoted by

ðx1; x2; x3Þ. We apply Proposition 5.4 and consider the convex hull B of b ¼ f ðqSÞ in B1.
According to our definition, f �1ðBÞ meets U transversally in g.

Figure 6. For any p A AX qU , A is contained in a wedge delimited by two halfplanes meeting at p transversally

to the plane Tp.
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We now let y0 be a positive angle such that condition (b) in Definition 5.1 is fulfilled
for B. Next we fix a point x A f ðgÞ and consider the halfplanes p1 and p2 delimiting the
wedge of condition (b). Without loss of generality, we can assume that the coordinates are
chosen so that p1 is given by

p1 ¼ fðz1; z2; z3Þ : z3 e ag

for some positive constant a. Condition (b) ensures that ae a0 < 1 for some constant a0

inpendent of the point x A f ðgÞ.

For t A �0;y½ denote by Ct the points Ct :¼ fð0; 0;�tÞg and by rðtÞ the positive real
numbers

rðtÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ t2 þ 2at

p
:

We finally denote by Rt the closed balls

Rt :¼ BrðtÞðCtÞ:

The centers Ct and the radii rðtÞ are chosen in such a way that the intersection of the sphere
qRt and qB1 is always the circle p1 X qB1.

Note, moreover, that for t coverging to þy, the ball Rt converges towards the region
fz3 e ag. Therefore, the region fz3 > agXB1 is foliated with the caps

St :¼ qRt XB1 for t A �0;y½:

In Figure 7, we see a section of this foliation with the plane z2z3.

Figure 7. A planar cross-section of the foliation fSt : t A �0;y½g.
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We claim that, for some constant t0 > 0 independent of the choice of the point
x A f ðgÞ, the varifold V is supported in f �1ðRt0

Þ. A symmetric procedure can be followed
starting from the plane p2. In this way we find two o¤-centered balls and hence a corre-
sponding wedge Wx satisfying condition (b) of Definition 5.1 and containing the support
of V ; see Picture 8. Our claim that the constant t0 can be chosen independently of x and
the bound ae a0 < 1 imply that the planes delimiting the wedge Wx form an angle larger
than some fixed constant with the plane Tx tangent to qB1 at x. Therefore, the intersections
of all the wedges Wx, for x varying among the points of g, yield the desired set A.

Step 2. We next want to show that the varifold V is supported in the closed ball
f �1ðRt0

Þ. For any t A ½0; t0½, denote by pt : U ! f �1ðRtÞ the nearest point projection. If
the radius r0 of U and the parameter t0 are both su‰ciently small, then pt is a well defined
Lipschitz map (because there exists a unique nearest point). Moreover, the Lipschitz con-
stant of pt is equal to 1 and, for t > 0, j‘ptj < 1 on Un f �1ðRtÞ. In fact the following lemma
holds.

Lemma 5.5. Consider in the euclidean ball B1 a set U that is uniformly convex, with

constant c0. Then there is a rðc0Þ > 0 such that, if r0 e rðc0Þ, then the nearest point projec-

tion p on f ðUÞ is a Lipschitz map with constant 1. Moreover, at every point P B f ðUÞ,
j‘pðPÞj < 1.

The proof is elementary and we give it in Appendix 12 for the reader’s convenience.
Next, it is obvious that p0 is the identity map and that the map ðt; xÞ 7! ptðxÞ is smooth.

Assume now for a contradiction that V is not supported in f �1ðRt0
Þ. By Lemma 5.5,

the varifold ðpt0
ÞKV has, therefore, strictly less mass than the varifold V .

Next, consider a minimizing sequence Dk as in the statement of Proposition 3.2. Since
qDk ¼ qS, the intersection of Dk with qU is given by qS. On the other hand, by construc-

Figure 8. A planar cross-section of the wedge Wx.
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tion qSH f �1ðRtÞ and therefore, if we consider Dk
t :¼ ðptÞKD

k we obtain a (continuous)
one-parameter family of currents with the properties that:

(i) qDk
t ¼ qS.

(ii) Dk
0 ¼ D0.

(iii) The mass of Dk
t is less or equal than H2ðDkÞ.

(iv) The mass of Dk
t0

converges towards the mass of ðpt0
ÞKV and hence, for k large

enough, it is strictly smaller than the mass of V .

Therefore, if we fix a su‰ciently large number k, we can assume that (iv) holds
with a gain in mass of a positive amount e ¼ 1=j. We can, moreover, assume that
H2ðDkÞeH2ðSÞ þ 1=ð8jÞ. By an approximation procedure, it is possible to replace the
family of projections fptgt A ½0; t0� with a smooth isotopy fctgt A ½0;1� with the following
properties:

(v) c0 is the identity map and ctjqU is the identity map for every t A ½0; 1�.

(vi) H2ðDkÞeH2
�
ctðSÞ

�
þ 1=ð8jÞ.

(vii) H2
�
c1ðDkÞ

�
eM

�
ðpt0

ÞKV
�
� 1=j.

This contradicts the 1=j-almost minimizing property of S.

In showing the existence of the family of isotopies ct, a detail must be taken into ac-
count: the map pt is smooth everywhere on U but on the circle f �1ðRtÞX qU (which is the
same circle for every t!). We briefly indicate here a procedure to construct ct, skipping the
cumbersome details.

We replace the sets fRtg with a new family Rt which have the following prop-
erties:

� R0 ¼ B1.

� Rt0
¼ Rt0

.

� For t A ½0; t0� the boundaries qRt are uniformly convex.

� qRt X qB1 ¼ Rt X qB1.

� The boundaries of qRt are smooth for t A ½0; t0½ and form a smooth foliation of
B1ð0ÞnRt0

.

The properties of the new sets are illustrated in Figure 9.
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Since Dk touches qU in qS transversally and qSH f �1ðRtÞ for every t, we conclude
the existence of a small d such that Dk H f �1ðR2dÞ. Moreover, for d su‰ciently small, the
nearest point projection ~ppt0�d on f �1ðRt0�dÞ is so close to pt0

that

M
�
ð~ppt0�dÞKD

k
�
eM

�
ðpt0

ÞKD
k
�
þ e=4:

We then construct ct in the following way. We fix a smooth increasing bijective func-
tion t : ½0; 1� ! ½d; t0 � d�:

� ct is the identity on UnRd and on RtðtÞ.

� On RdnRtðtÞ it is very close to the projection ~pptðtÞ on RtðtÞ.

In particular, for this last step, we fix for a smoooth function s : ½0; 1� � ½0; 1� such that, for
each t, sðt; �Þ is a smooth bijection between ½0; 1� and ½d; tðtÞ� very close to the function
which is identically tðtÞ on ½0; 1�. Then, for s A ½0; 1�, we define ct on the surface
qRð1�sÞdþstðtÞ to be the nearest point projection on the surface qRsðt;sÞ. So, ct fixes the leave
qRd but moves most of the leaves between qRd and qRtðtÞ towards qRtðtÞ. This completes
the proof of Lemma 5.3.

6. Proof of Proposition 3.2

Part II: Squeezing Lemma

In this section we prove the following lemma.

Lemma 6.1 (Squeezing Lemma). Let fDkg be as in Proposition 3.2, x A U and

b > 0 be given. Then there exists an e0 > 0 and a K A N with the following property. If

Figure 9. A planar cross-section of the new foliation.
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k fK and j A Is
�
Be0

ðxÞXU
�

is such that H2
�
jð1;DkÞ

�
eH2ðDkÞ, then there exists a

F A Is
�
Be0

ðxÞXU
�

such that

Fð1; �Þ ¼ jð1; �Þ;ð6:1Þ

H2
�
Fðt;DkÞ

�
eH2ðDkÞ þ b for every t A ½0; 1�:ð6:2Þ

If x is an interior point of U , this lemma reduces to [8], Lemma 7.6. When x is on the
boundary of U , one can argue in a similar way (cp. with [8], Section 7.4). Indeed, the proof
of [8], Lemma 7.6 relies on the fact that, when e is su‰ciently small, the varifold V is close
to a cone. For interior points, this follows from the stationarity of the varifold V . For
points at the boundary this, thanks to a result of Allard (see [3]), is a consequence of the
stationarity of V and of the convex hull property of Lemma 5.3.

6.1. Tangent cones. Consider the varifold V of Proposition 3.2. Given a point x A U

and a radius r > 0, consider the chart fx;r : BrðxÞ ! B1 given by fx;rðyÞ ¼ exp�1
x ðyÞ=r.

We then consider the varifolds Vx;r :¼ ð fx;rÞKV . Moreover, if l > 0, we will denote by
Ol : R

3 ! R3 the rescaling OlðxÞ ¼ x=l.

If x A U , the monotonicity formula and a compactness result (see [18], Theorem 19.3)
imply that, for any rj # 0, there exists a subsequence, not relabeled, such that Vx;rj

con-
verges to an integer rectifiable varifold W supported in B1 with the property that
ðOlÞKW CB1ð0Þ ¼ W for any l < 1. The varifolds W which are limit of subsequences
Vx;rj

are called tangent cones to V at x. The monotonicity formula implies that the mass
of each W is a positive constant yðx;VÞ independent of W (see again [18], Theorem 19.3).

If x A qU , we fix coordinates y1, y2, y3 in R3 in such a way that fx;r

�
U XBrðxÞ

�
con-

verges to the half-ball Bþ
1 ¼ B1 X fy1 > 0g.

Recalling Lemma 5.3, we can infer with the monotonicity formula of Allard for
points at the boundary (see [3], 3.4) that Vx;r ¼ ð fx;rÞKV have equibounded mass. There-
fore, if rj # 0, a subsequence of Vx;rj

, not relabeled, converges to a varifold W .

By Lemma 5.3, there is a positive angle y0 such that, after a suitable change of coor-
dinates, W is supported in the set

fjy2je y1 tan y0g:

Therefore suppðWÞX fy1 ¼ 0g ¼ fð0; 0; tÞ : t A ½�1; 1�g ¼: l. Applying the monotonocity
formula of [3], 3.4, we conclude that

kWkðlÞ ¼ 0ð6:3Þ

and

kWk
�
Brð0Þ

�
¼ pyðkVk; xÞr2;ð6:4Þ
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where

yðkVk; xÞ ¼ lim
r#0

kVk
�
BrðxÞ

�
pr2

is independent of W . Being W the limit of a sequence Vx;rj
with rj # 0, we conclude that W

is a stationary varifold.

Now, define the reflection map r : R3 ! R3 given by rðz1; z2; z3Þ ¼ ð�z1;�z2; z3Þ. By
(6.3), using the reflection principle of [3], 3.2, the varifold W 0 :¼ W þ rKW is a stationary
varifold. By (6.4) and [2], Corollary 2 of 5.1, we conclude that ðOlÞKW 0

CBþ
1 ¼ W 0 for

every l < 1. On the other hand, this implies ðOlÞKW CBþ
1 ¼ W . Therefore W is a cone

and we will call it tangent cone to V at x.

6.2. A squeezing homotopy. Since for points in the interior the proof is already given
in [8], we assume that x A qU . Moreover, the proof given here in this case can easily be
modified for x A U . Therefore we next fix a small radius e > 0 and consider an isotopy j
of U XBeðxÞ keeping the boundary fixed.

We start by fixing a small parameter d > 0 which will be chosen at the end of
the proof. Next, we consider a di¤eomorphism Ge between Bþ

e ¼ BeX fy1 > 0g and
BeðxÞXU . Consider on Bþ

e the standard Euclidean metric and denote the corresponding
2-dimensional Hausdor¤ measure with H2

e . If e is su‰ciently small, then Ge can be chosen
so that the Lipschitz constants of Ge and G�1

e are both smaller than 1 þ e. Then, for any
surface DHBeðxÞXU ,

ð1 � CdÞH2ðDÞeH2
e

�
GeðDÞ

�
e ð1 þ CdÞH2ðDÞ;ð6:5Þ

where C is a universal constant.

We want to construct an isotopy L A IsðBþ
e Þ such that Lð1; �Þ ¼ Ge � j

�
1;G�1

e ð�Þ
�

and (for k large enough)

H2
e

�
L
�
t;GeðDkÞ

��
eH2

e

�
GeðDkÞ

�
ð1 þ CdÞ þ Cd for every t A ½0; 1�:ð6:6Þ

After finding L, Fðt; �Þ ¼ G�1
e �L

�
t;Geð�Þ

�
will be the desired map. Indeed F is an isotopy

of BeðxÞXU which keeps a neighborhood of BeðxÞXU fixed. It is easily checked that
Fð1; �Þ ¼ jð1; �Þ. Moreover, by (6.5) and (6.6), for k su‰ciently large we have

H2
�
Fðt;DkÞ

�
e ð1 þ CdÞH2ðDkÞ þ Cd Et A ½0; 1�;ð6:7Þ

for some constant C inpendent of d and k. Since H2ðDkÞ is bounded by a constant inde-
pendent of d and k, by choosing d su‰ciently small, we reach the claim of the lemma.

Next, we consider on Bþ
e a one-parameter family of di¤eomorphisms. First of all we

consider the continuous piecewise linear map a : ½0; 1½ ! ½0; 1� defined in the following way:

� aðt; sÞ ¼ s for ðt þ 1Þ=2e se 1.
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� aðt; sÞ ¼ ð1 � tÞs for 0e se t.

� aðt; sÞ is linear on te se ðt þ 1Þ=2.

So, each aðt; �Þ is a biLipschitz homeomorphism of ½0; 1� keeping a neighborhood of 1 fixed,
shrinking a portion of ½0; 1� and uniformly stretching the rest. For t very close to 1, a large
portion of ½0; 1� is shrinked into a very small neighborhood of 0, whereas a small portion
lying close to 1 is stretched to almost the whole interval.

Next, for any given t A ½0; 1½, let yt :¼
�
ð1 � tÞhe; 0; 0

�
where h is a small parameter

which will be fixed later. For any z A Bþ
e we consider the point ptðzÞ A qBþ

e such that the
segment ½yt; ptðzÞ� contains z. We then define Cðt; zÞ to be the point on the segment
½yt; ptðzÞ� such that

jyt �Cðt; zÞj ¼ a t;
jyt � zj

jxt � ptðxÞj

	 

jyt � ptðzÞj:

It turns out that Cð0; �Þ is the identity map and, for fixed t, Cðt; �Þ is a biLipschitz homeo-
morphism of Bþ

e keeping a neighborhood of qBþ
e fixed. Moreover, for t close to 1, Cðt; �Þ

shrinks a large portion of Bþ
e in a neighborhood of yt and stretches uniformly a layer close

to qBe. See Figure 10.

We next consider the isotopy Xðt; �Þ :¼ G�1
e �C

�
t;Geð�Þ

�
. It is easy to check that, if we

fix a Dk and we let t " 1, then the surfaces C
�
1;GeðDkÞ

�
converge to the cone with center 0

and base GeðDkÞX qBe.

6.3. Fixing a tangent cone. By Subsection 6.1, we can find a sequence rl # 0 such
that Vx;rl

converges to a tangent cone W . Our choice of the di¤eomorphism Grl
implies

that ðOrl
� Grl

ÞKV has the same varifold limit as Vx;rl
.

Since Dk converges to V in the sense of varifolds, by a standard diagonal argument,
we can find an increasing sequence of integers Kl such that:

(C) Orl

�
Grl

ðDkl Þ
�

converges in the varifold sense to W , whenever kl fKl .

Figure 10. For t close to 1 the map Cðt; �Þ shrinks homothetically a large portion of Bþ
e .
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(C), the conical property of W and the coarea formula imply the following fact. For rl suf-
ficiently small, and for k su‰ciently large, there is an e A �rl=2; rl ½ such that:

H2
e

�
C
�
t;GeðDkÞXL

��
eH2

e

�
GeðDkÞXL

�
þ d Et and all open LHBþ

e ;ð6:8Þ

where C is the map constructed in the previous subsection. This estimate holds indepen-
dently of the small parameter h. Moreover, it fixes the choice of e0 and K as in the state-
ment of the lemma. K depends only on the parameter d, which will be fixed later. e might
depend on k fK, but it is always larger than some fixed rl , which will then be the e0 of the
statement of the lemma.

6.4. Construction of L. Consider next the isotopy c ¼ Ge � j � G�1
e . By definition,

there exists a compact set K such that cðt; zÞ ¼ z for z A Bþ
e nK and every t. We now choose

h so small that K H fx : x1 > heg. Finally, consider T A �0; 1½ with T su‰ciently close to 1.
We build the isotopy L in the following way:

� For t A ½0; 1=3� we set Lðt; �Þ ¼ Cð3tT ; �Þ.

� For t A ½1=3; 2=3� we set Lðt; �Þ ¼ C
�
3tT ;cð3t � 1; �Þ

�
.

� For t A ½2=3; 1� we set Lðt; �Þ ¼ C
�
3ð1 � tÞT ;cð1; �Þ

�
.

If T is su‰ciently large, then L satisfies (6.6). Indeed, for t A ½0; 1=3�, (6.6) follows from
(6.8). Next, consider t A ½1=3; 2=3�. Since cðt; �Þ moves only points of K, Lðt; xÞ coincides
with CðT ; xÞ except for x in CðT ;KÞ. However, CðT ; xÞ is homotethic to K with a very
small shrinking factor. Therefore, if T is chosen su‰ciently large, H2

e

�
L
�
t;GeðDkÞ

��
is ar-

bitrarily close to H2
e

�
L
�
1=3;GeðDkÞ

��
. Finally, for t A ½2=3; 1�, Lðt; xÞ ¼ C

�
3ð1 � tÞT ; x

�
for x B C

�
3ð1 � tÞT ;K

�
and it is C

�
3ð1 � tÞT ;cð1; xÞ

�
otherwise. Therefore, L

�
t;GeðDkÞ

�
di¤ers from C

�
3ð1 � tÞT ;GeðDkÞ

�
for a portion which is a rescaled version of

Ge

�
jð1;DkÞnGeðDkÞ

�
. Since by hypothesis H2

�
jð1;DkÞ

�
eH2ðDkÞ, we actually get

H2
e

�
Ge

�
jð1;DkÞ

�
nGeðDkÞ

�
e ð1 þ CdÞH2

e

�
GeðDkÞnGe

�
jð1;DkÞ

��

and by the scaling properties of the Euclidean Hausdor¤ measure we conclude (6.6) for
t A ½2=3; 1� as well.

Though L is only a path of biLipschitz homeomorphisms, it is easy to approximate it
with a smooth isotopy: it su‰ces indeed to smooth aj½0;T ��½0;1�, for instance mollifying it
with a standard kernel.

7. Proof of Proposition 3.2

Part III: g-reduction

In this section we prove the following:

Lemma 7.1 (Interior regularity). Let V be as in Proposition 3.2. Then

kVk ¼ H2
CD where D is a smooth stable minimal surface in U (multiplicity is allowed ).
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In fact the lemma follows from the interior version of the squeezing lemma and the
following proposition, applying the regularity theory of replacements as described in [8]
(cp. with Section 7 therein).

Proposition 7.2. Let U be an open ball with su‰ciently small radius. If L is an em-

bedded surface with smooth boundary qLH qU and fLkg is a minimizing sequence for Prob-

lem
�
L;IsðUÞ

�
converging to a varifold W , then there exists a stable minimal surface G with

GnGH qL and W ¼ G in U .

This proposition has been claimed in [8] (cp. with Theorem 7.3 therein) and since
nothing on the behavior of W at the boundary is claimed, it follows from a straightforward
modification of the theory of g-reduction of [13] (as asserted in [8]). This simple modifica-
tion of the g-reduction is, as the original g-reduction, a procedure to reduce through simple
surgeries the minimizing sequence Lk into a more suitable sequence.

In this section we also wish to explain why this argument cannot be directly applied
neither to the surfaces Dk of Proposition 3.2 on the whole domain U (see Remark 7.6), nor
to their intersections with a smaller set U 0 (see Remark 7.7). In the first case, the obstruc-
tion comes from the 1=j-a.m. property, which is not powerful enough to perform certain
surgeries. In the second case this obstruction could be removed by using the squeezing
lemma, but an extra di‰culty pops out: the intersection Dk X qU 0 is, this time, not fixed
and the topology of Dk XU 0 is not controlled. These technical problems are responsible
for most of the complications in our proof.

7.1. Definition of the g-reduction. In what follows, we assume that an open set
U HM and a surface L in M with qLH qU are fixed. Moreover, we let C denote the col-
lection of all compact smooth 2-dimensional surfaces embedded in U with boundary equal
to qL.

We next fix a positive number d such that the conclusion of [13], Lemma 1 holds and
consider g < d2=9. Following [13] we define the g-reduction and the strong g-reduction.

Definition 7.3. For S1;S2 A C we write

S2 W
ðg;UÞ

S1

and we say that S2 is a ðg;UÞ-reduction of S1, if the following conditions are satisfied:

(g1) S2 is obtained from S1 through a surgery as described in Definition 2.2. There-
fore:

– S1nS2 ¼ AHU is di¤eomorphic to the standard closed annulus Anðx; 1=2; 1Þ.

– S2nS1 ¼ D1 WD2 HU with each Di di¤eomorphic to D.

– There exists a set Y embedded in U , homeomorphic to B1 with qY ¼ AWD1 WD2

and ðYnqY ÞX ðS1 WS2Þ ¼ j. (See Picture 2.)
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(g2) H2ðAÞ þH2ðD1Þ þH2ðD2Þ < 2g.

(g3) If G is the connected component of S1 WU containing A, then for each compo-
nent of GnA we have one of the following possibilities:

– either it is a disc of areaf d2=2;

– or it is not simply connected.

Remark 7.4. The previous definition has another interesting consequence that
the reader could easily check: S A C is ðg;UÞ-irreducible if and only if whenever D is a
disc with qD ¼ DXS and H2ðDÞ < g, then there is a disc DHS with qD ¼ qD and
H2ðDÞ < d2=2.

A slightly weaker relation than W
ðg;UÞ

can be defined as follows. We consider S1;S2 A C

and we say that S2 is a strong ðg;UÞ-reduction of S1, written S2 <
ðg;UÞ

S1, if there exists an
isotopy c A IsðUÞ such that:

(s1) S2 W
ðg;UÞ

cðS1Þ.

(s2) S2 X ðMnUÞ ¼ S1 X ðMnUÞ.

(s3) H2
�
cðS1ÞhS1

�
< g.

We say that S A C is strongly ðg;UÞ-irreducible if there is no ~SS A C such that ~SS <
ðg;UÞ

S.

Remark 7.5. Arguing as in [13] one can prove that, for every L0 A C, there exist a
constant cf 1 (depending on d, gðL0Þ and H2ðL0Þ) and a sequence of surfaces Sj,
j ¼ 1; . . . ; k, such that

k e c;ð7:1Þ

Sj A C; j ¼ 1; . . . ; k;ð7:2Þ

Sk <
ðg;UÞ

Sk�1 <
ðg;UÞ

� � � <
ðg;UÞ

S1 ¼ L0;ð7:3Þ

H2ðSkDL
0Þe 3cg;ð7:4Þ

Sk is strongly ðg;UÞ-irreducible:ð7:5Þ

Compare with [13], Section 3, and in particular with (3.3), (3.4), (3.8) and (3.9) therein.

7.2. Proof of Proposition 7.2. Applying Lemma 5.3, we conclude that a susbse-
quence, not relabeled, of Lk converges to a stationary varifold V in U such that
U X suppðVÞH qL. Next, arguing as in Section 6.1, we conclude that kVkðqLÞ ¼ 0, and
hence that kVkðqUÞ ¼ 0. Arguing as in [13], pages 364–365 (see (3.22)–(3.26) therein), we
find a g0 > 0 and a sequence of g0-strongly irreducible surfaces Sk with the following
properties:
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� Sk is obtained from Lk through a number of surgeries which can be bounded inde-
pendently of k.

� Sk converges, in the sense of varifolds, to V .

This allows to apply [13], Theorem 2 and Section 5 to the surfaces Sk to conclude that
suppðVÞnqU is a smooth embedded stable minimal surface.

Remark 7.6. This procedure cannot be applied if the minimality of the sequence
Lk in IsðUÞ were replaced by the minimality in IsjðUÞ. In fact, the proof of [13], The-
orem 2 uses heavily the minimality in IsðUÞ and we do not know how to overcome this
issue.

7.3. Proof of Lemma 7.1. Let Dk and V be as in Proposition 3.2 and in Lemma 7.1.
Let x A U and consider a U 0 ¼ BeðxÞHU as in Lemma 6.1. Applying Lemma 6.1 we can
modify Dk in BeðxÞ getting a minimizing sequence fDk; jgj for Is

�
BeðxÞ

�
. Applying Pro-

position 7.2, we can assume that Dk; j converges, as j " y to a varifold V 0
k which in BeðxÞ

is a stable minimal surface Sk. By the curvature estimates for minimal surfaces (cp. also
with the Choi-Schoen Compactness Theorem), we can assume that Sk converges to a stable
smooth minimal surface Sy. Extracting a diagonal subsequence ~DDk :¼ Dk; jðkÞ, we can as-
sume that ~DDk is still minimizing for problem IsjðUÞ and hence that it converges to a vari-
fold V 0. V 0 coincides with S in BeðxÞ and with V outside BeðxÞ and hence it is a replace-
ment according to [8], Definition 6.2 (see Section 7 therein). By [8], Proposition 6.3, V

coincides with a smooth embedded minimal surface in U .

Remark 7.7. Note that the arguments of [13], Section 3 cannot be applied directly
to the sequence Dk. It is indeed possible to modify Dk in BeðxÞ ¼: U 0 to a strongly g-
irreducible ~DDk. However, the number of surgeries needed is controlled by H2

�
Dk XBeðxÞ

�
and gðDk XU 0Þ. Though the first quantity can be bounded independently of k, on the sec-
ond quantity (i.e. gðDk XU 0Þ) we do not have any a priori uniform bound.

8. Proof of Proposition 3.2

Part IV: Boundary regularity

In this section we conclude the proof of the first part of Propositions 3.2 and 3.3.
More precisely, we show that the surface D of Lemma 7.1 is regular up to the boundary
and its boundary coincides with qS.

Lemma 8.1 (Boundary regularity). Let D be as in Lemma 7.1. Then D has a smooth

boundary and qD ¼ qS.

As a corollary, we conclude that the multiplicity of D is everywhere 1.

Corollary 8.2. There exist finitely many stable embedded connected disjoint mini-

mal surfaces G1; . . . ;GN HU with disjoint smooth boundaries and with multiplicity 1
such that

D ¼ G1 W � � �WGN and qD ¼ qG1 W � � �W qGN :ð8:1Þ
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Proof. Lemmas 7.1 and 8.1 imply that D is the union of finitely many disjoint con-
nected components G1 W � � �WGN contained in U and that either qGi ¼ 0 or qGi is the
union of some connected components of qS. In this last case, the multiplicity of Gi is nec-
essarily 1. On the other hand, qGi ¼ 0 cannot occur, otherwise Gi would be a smooth em-
bedded minimal surface without boundary contained in a convex ball of a Riemannian
manifold, contradicting the classical maximum principle. r

8.1. Tangent cones at the boundary. Consider now x A suppkVkX qU . We follow
Subsection 6.1 and consider the chart fx;r : BrðxÞ ! B1 given by fx;rðyÞ ¼ exp�1

x ðyÞ=r.
We then denote by Vx;r the varifolds ð fx;rÞKV . Moreover, if l > 0, we will denote by
Ol : R

3 ! R3 the rescaling OlðxÞ ¼ x=l.

Let next W be the limit of a subsequence Vx;rj
. Again following the discussion of

Subsection 6.1, we can choose a system of coordinates ðy1; y2; y3Þ such that:

� W is integer rectifiable and suppðW Þ is contained in the wedge

Wed :¼ fðy1; y2; y3Þ : jy2je y1 tan y0gXB1ð0Þ:

� suppðWÞ containes the line l ¼ fð0; 0; tÞ : t A ½�1; 1�g (which is the limit of the
curves fx;r

�
qSXBrðxÞ

�
).

� If we denote by r : R3 ! R3 the reflection given by rðz1; z2; z3Þ ¼ ð�z1;�z2; z3Þ,
then rKW þ W is a stationary cone.

By the Boundary Regularity Theorem of Allard (see [3], Section 4), in order to show
regularity it su‰ces to prove that:

(TC) Any W as above (i.e. any varifold limit of a subsequence ð f
rn

x ÞKV with rn # 0)
is a half-disk of the form

Py :¼ fðy1; y2; y3Þ : y1 > 0; y3 ¼ y1 tan ygXB1ð0Þð8:2Þ

for some angle y A ��p=2; p=2½.

In the rest of this section we aim, therefore, at proving (TC). As a first step we now
show that

W ¼
PN
i¼1

kiPyi
ð8:3Þ

where ki f 1 are integers and yi are angles in ½�y0; y0�. There are two possible ways of
seeing this. One way is to use the classification of stationary integral varifolds proved by
Allard and Almgren in [1].

The second, which is perhaps simpler, is to observe that, on Bþ the varifold W is
actually smooth. Indeed, by the interior regularity, V is a smooth minimal surface in
BrðxÞXV and it is stable, therefore, by Schoen’s curvature estimates, a subsequence of
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Vx;rn
converges smoothly in compact subsets of Bþ. It follows that W r :¼ W þ rKW coin-

cides with a smooth minimal surface outside on B1ð0Þnl. On the other hand W r is a cone
and therefore we conclude that qB1=2ð0ÞXW rnfð0; 0; 1=2Þ; ð0; 0;�1=2Þg is a smooth 1-d
manifold consisting of arcs of great circles. Since suppðWÞHWed, we conclude that in
fact qB1=2ð0ÞXW rnfð0; 0; 1=2Þ; ð0; 0;�1=2Þg consists of finitely many planes (mupltiplicity
is allowed) passing through l. This proves (8.3).

8.2. Diagonal sequence. We are now left with the task of showing that N ¼ 1 and
k1 ¼ 1. We will, indeed, assume the contrary and derive a contradiction. In order to do
so, we consider a suitable diagonal sequence fx;rn

ðDknÞ converging, in the sense of varifolds,
to W . We can select Dkn in such a way that the following minimality property holds:

(F) If L is any surface isotopic to Dkn with an isotopy fixing q
�
U XBrn

ðxÞ
�
, then

H2ðLÞfH2ðDknÞ � r3
n .

Indeed, we appply the Squeezing Lemma 6.1 with b ¼ 1=ð16jÞ and let n be so large that rn

is smaller than the constant e0 given by the lemma. Since Dk is 1=j-a.m. in U , we conclude
therefore that, if we set

Mk;n :¼ inf
�
Fð1;DkÞ : F A Is

�
U XBrn

ðxÞ
��

;

then

lim
k"y

H2
�
Dk XBrn

ðxÞ
�
� Mn;k ¼ 0:

Therefore, having fixed rn < e0, we can choose kn so large that Mn;k fH2ðDknÞ � r3
n .

Next, it is convenient to introduce a slightly perturbed chart g
rn
x which maps

qU XBrn
ðxÞ onto B1 X fy1 ¼ 0g and qSXBrnðxÞ onto l. This can be done in such a way

that fx;rn
� g�1

x;rn
and gx;rn

� f �1
x;rn

converge smoothly to the identity map as rn # 0.

Having set Gn ¼ gx;rn
ðDknÞ, we have that Gn converges to W in the sense of varifolds.

Moreover, our discussion implies that H2
�
Dkn XBrn

ðxÞ
�
¼ r2

nH
2

e ðGnÞ þ Oðr3
nÞ. Therefore

we conclude from (F) that:

(F 0) Let mn be the minimum of H2
e ðLÞ over all surfaces L isotopic to Gn with an

isotopy which fixes qðU XB1Þ. Then H2
e ðGnÞ � mn # 0.

We next claim that

lim inf
n#0

H1
e ðGn X qBsÞf ps

PN
i¼1

ki for every s A �0; 1½:ð8:4Þ

Indeed, using the squeezing homotopies of Section 6.2 it is easy to see that

H2
e ðGnÞ � mn fH2

e ðGn XBsÞ � sH1
e ðGn X qBsÞ:
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Letting n " 0 and using (8.3) with the convergence of Gn to the varifold W we conclude

lim inf
n"y

�
H2

e ðGnÞ � mn

�
f s

	
sp

P
i

ki � lim inf
n#0

H1
e ðGn X qBsÞ



:

Therefore, from (F 0) we conclude (8.4).

We next claim the existence of a s A ½1=2; 1½ and a subsequence nð jÞ such that
Gnð jÞ X qBs is a smooth 1-dimensional manifold with boundary ð0; 0; sÞ � ð0; 0;�sÞ and,
at the same time,

lim
j"y

H1
e ðGnð jÞ X qBsÞ ¼ ps

PN
i¼1

kið8:5Þ

and

lim
j"y

H1
e ðGnð jÞX qBsnKÞ ¼ 0 for every compact K HB1n

S
i

Pyi
:ð8:6Þ

In fact, let fKlgl be an exhaustion of B1n
S
i

Pyi
by compact sets. Observe that, by the

convergence of Gn to W , we get

lim
n"y

	
H2

e ðGn XB1nB1=2Þ þ
Py
l¼0

2�lH2
e

�
GnnKl X ðB1nB1=2Þ

�

¼ p

8

P
i

ki:ð8:7Þ

Using the coarea formula, we conclude

Ð1
1=2

sp
P

i

ki dsf lim
n"y

Ð1
1=2

	
H1

e ðGn X qBsÞ þ
P

l

2�lH1
e ðGn X qBsnKlÞ



ds:

Therefore, by Fatou’s Lemma, for a.e. s A ½1=2; 1½ there is a subsequence nð jÞ such that

lim
j"y

	
H1

e ðGn X qBsÞ þ
P

l

2�lH1
e ðGn X qBsnKlÞ



¼ ps

P
i

ki:ð8:8Þ

Clearly, (8.4) and (8.8) imply (8.5) and (8.6). On the other hand, by Sard’s Theorem, for
a.e. s A ½1=2; 1½ every surface qBsXGn is a smooth 1-dimensional submanifold with bound-
ary ð0; 0; sÞ � ð0; 0;�sÞ.

8.3. Disks. From now on we fix the radius s found above and we use Gn in place of
GnðiÞ (i.e. we do not relabel the subsequence). Consider now the Jordan curves gn

1 ; . . . ; g
n
MðnÞ

forming Gn X qBþ
s (by Bþ

s we understand the half ball BsX fy1 f 0g).

Since qGn X fy1 ¼ 0g is given by the segment l, there is one curve, say gn
1 , which con-

tains the segment l. All the others, i.e. the curves gn
i with if 2 lie in qBsX fy1 > 0g.

Next, for every gn
l consider the number

kn
l :¼ inffH2

e ðDÞ : D is an embedded smooth disk bounding gn
l g:ð8:9Þ
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We will split our proof into several steps.

(a) In the first step, we combine a simple desingularization procedure with the funda-
mental result of Almgren and Simon (see [4]), to show that

there are disjoint embedded smooth disks Dn
1 ; . . . ;D

n
MðnÞ s:t:

PMðnÞ

i¼1

H2
e ðDn

i Þe
PMðnÞ

i¼1

kn
i þ 1

n
:ð8:10Þ

A simple topological observation (see Lemma C.1 in the Appendix C) shows that, for each
fixed n, there exist isotopies Fl keeping qBþ

s fixed and such that FlðGn XBsÞ converges, in
the sense of varifolds, to the union of the disks Dn

i . Combining (F 0), (8.10) and the conver-
gence of Gn to the varifold W we then conclude

lim sup
n"y

PMðnÞ

i¼1

kn
i ¼ ps2 P

j

kj:ð8:11Þ

(b) In the second step we will show the existence of a d > 0 (independent of n) such
that

kn
i e s

1

2
� d

	 

H1

e ðgn
i Þ for every if 2 and every n:ð8:12Þ

A simple cone construction shows that

kn
1 e

s

2
H1

e ðgn
1 Þ:ð8:13Þ

So, (8.5), (8.12) and (8.13) imply

lim
n"y

PMðnÞ

i¼2

H1
e ðgn

i Þ ¼ 0 and lim
n"y

H1
e ðgn

1 Þ ¼ s
P

j

kj;ð8:14Þ

Figure 11. The curves gn
i .
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which in turn give

lim
n"y

kn
1 ¼ ps2

2

P
j

kj:ð8:15Þ

(c) We next fix a parameterization bn
1 : S1 ! qBþ

s of gn
1 with a multiple of the arc-

length and extract a further subsequence, not relabeled such that bn
1 converges to a by.

By (8.6), the image of by is then contained in the union of the curves Pyl
X qBþ

s . We will
then show that

lim sup
n#y

kn
1 ¼ ps2

2
:ð8:16Þ

(8.15) and (8.16) finally show that W consists of a single half-disk Py XBþ
1 , counted once.

This will therefore complete the proof.

8.4. Proof of (8.10). In this step we fix n and prove the claim (8.10). First of all, note
that each gn

i with i f 2 is a smooth Jordan curve lying in qBsX fy1 > 0g.

We recall the following result of Almgren and Simon (see [4]).

Theorem 8.3. For every curve gn
i with if 2 consider a sequence of smooth disks D j

with H2
e ðD jÞ converging to kn

i . Then a subsequence, not relabeled, converges, in the sense of

varifolds, to an embedded smooth disk Dn
i HBþ

s bounding gn
i and such that H2

e ðDn
i Þ ¼ kn

i .

(The disk is smooth also at the boundary.)

For each gn
i select therefore a disk Dn

i as in Theorem 8.3. We next claim that these
disks are all pairwise disjoint. Fix in fact two such disks. To simplify the notation we call
them D1 and D2 and assume they bound, respectively, the curves g1 and g2. Clearly, D1

divides Bþ
s into two connected components A and B and g2 lies in one of them, say A.

We will show that D2 lies in A.

Assume by contradiction that D2 intersects D1. By perturbing D2 a little we modify it
to a new disk E j such that H2

e ðE jÞeH2
e ðD2Þ þ 1=j and E j intersects D1 transversally in

finitely many smooth Jordan curves am.

Each am bounds a disk F m in E j. We call am maximal if it is not contained in any F l .
Each maximal am bounds also a disk Gm in D1. By the minimality of D1, clearly
H2

e ðGmÞeH2
e ðF mÞ. We therefore consider the new disk H j given by

D2n
	 S

am maximal

F m



W

S
am maximal

Gm:

Clearly H2
e ðH jÞeH2

e ðE jÞ þ 1=j. With a small perturbation we find a nearby smooth em-
bedded disk K j which lies in A and has H2

e ðK jÞeH2
e ðE jÞ þ 1=ð2jÞ. By letting j " y and

applying Theorem 8.3, a subsequence of K j converges to a smooth embedded minimal disk
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D3 in the sense of varifolds. On the other hand, by choosing K j su‰ciently close to H j, we
conclude that H j converges as well to the same varifold. But then,

D2n
	 S

am maximal

F m



HD3

and hence D2 XD3 3j. Since D3 lies on one side of D2 (i.e. in A) this violates the maxi-
mum principle for minimal surfaces.

Having chosen Dn
2 ; . . . ;D

n
MðnÞ as above, we now choose a smooth disk E n

1 bounding
gn

1 and with

H2
e ðE n

1 Þe kn
1 þ 1

3n
:

In fact we cannot apply directly Theorem 8.3 since in this case the curve gn
1 is not smooth

but has, in fact, two corners at the points ð0; 0; sÞ and ð0; 0;�sÞ.

gn
1 lies in one connected component A of Bþ

s . We now find a new smooth embedded
disk Dn

1 with

H2
e ðDn

1 Þe kn
1 þ 1

n

and lying in the interior of A. This su‰ces to prove (8.10).

Consider the disks D 0
1; . . . ;D

0
l which, among the Dn

j with j f 2, bound A. We first
perturb E n

1 to a smooth embedded F n
1 which intersects all the D 0

j . We then inductively mod-
ify E n

1 to a new disk which does not intersect D 0
j and looses at most 1=ð3lnÞ in area. This is

done exactly with the procedure outlined above and since the distance between di¤erent
D 0

j ’s is always positive, it is clear that while removing the intersections with D 0
j we can do

it in such a way that we do not add intersections with D 0
i for i < j.

8.5. Proof of (8.12). In this step we show the existence of a positive d, independent
of n and j, such that

kn
j e s

1

2
� d

	 

H1

e ðgn
j Þ Ej f 2; En:ð8:17Þ

Observe that for each gn
j we can construct the cone with vertex the origin, which is topolog-

ically a disk and achieves area equal to
s

2
H1

e ðgn
j Þ. On the other hand, this cone is clearly

not stationary, because gn
j is not a circle, and therefore there is a disk di¤eomorphic to the

cone with area strictly smaller than
s

2
H1

e ðgn
j Þ. A small perturbation of this disk yields a

smooth embedded disk D bounding gn
j such that

H2
e ðDÞ < s

2
H1

e ðgn
j Þ:ð8:18Þ

Therefore, it is clear that it su‰ces to prove (8.17) when n is large enough.
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Next, by the isoperimetric inequality, there is a constant C such that, any curve g in
qBs bounds, in Bs, a disk D such that

H2
e ðDÞeC

�
H1

e ðgÞ
�2
:ð8:19Þ

Therefore, (8.17) is clear for every gn
j with H1

e ðgn
j Þe s=4C.

We conclude that the only way of violating (8.17) is to have a subsequence, not re-
labeled, of curves gn :¼ gn

jðnÞ such that

� H1
e ðgnÞ converges to some constant c0 > 0;

� kn :¼ kn
jðnÞ converges to c0=2.

Consider next the wedge Wed ¼ fjy2je y1 tan y0g containing the support of the varifold
V . If we enlarge this wedge slightly to

Wed 0 :¼ fjy2je y1ðtan y0 þ 1Þg;

we conclude, by (8.6), that

lim
n"y

H1
e ðgnnWed 0Þ ¼ 0:ð8:20Þ

Perturbing gn slightly we find a nearby smooth Jordan curve bn contained in
qBsXWed 0. Consider next

mn :¼ minfH2
e ðDÞ : smooth embedded disk D bounding bng:ð8:21Þ

Given a D bounding bn, it is possible to construct a D 0 bounding gn with

H2
e ðD 0ÞeH2

e ðDÞ þ oð1Þ:

Therefore, we conclude that

� H1
e ðbnÞ converges to c0 > 0;

� mn converges to sc0=2;

� bn is contained in Wed 0.

Consider next the projection of the curve a ¼ Wed 0XBs on the plane p ¼ y1y3. This
projection is an ellypse bounding a domain W in p. Clearly a is the graph of a function over
this ellypse. The function is Lipschitz (actually it is analytic except for the two points ð0; sÞ
and ð0;�sÞ) and we can therefore find a function f : W ! R which minimizes the area of
its graph. This function is smooth up to the boundary except in the points ð0; sÞ and ð0;�sÞ
where, however, it is continuous. Therefore, the graph of f is an embedded disk.

We denote by L the graph of f . L is in fact the unique area-minimizing current span-
ning a, by a well-known property of area-minimizing graphs. By the classical maximum
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principle, L is contained in the wedge Wed 0 and does not contain the origin. Consider next
the cone C n having vertex in 0 and bn as base. Clearly, this cone intersects L in a smooth
Jordan curve ~bbn and hence there is a disk Dn in L bounding this curve. Moreover, we call
E n the cone constructed on ~bbn with vertex 0 (see Figure 12).

Clearly,

lim inf
n"y

H1
e ðbnÞ > 0:ð8:22Þ

Consider next the current given by Dn W ðC nnE nÞ. These coverge, up to subsequences, to
some integer rectifiable current. Therefore, the disks Dn converge, in the sense of currents,
to a 2-dimensional current D supported in L. It is easy to check that D must be the current
represented by a domain of L, counted with multiplicity 1. Therefore

lim
n"y

H2
e ðDnÞ ¼ H2

e ðDÞ:ð8:23Þ

Similarly, E n converges, up to subsequences, to a current E. By the minimizing property of
L, H2

e ðDÞ < MðEÞ, unless H2
e ðDÞ ¼ MðEÞ ¼ 0, where MðEÞ denotes the mass of E.

So, if MðEÞ > 0, we then have

lim inf
n"y

H2
e ðE nÞfMðEÞ > H2

e ðDÞ ¼ lim
n"y

H2
e ðDnÞ:

If MðEÞ ¼ 0, by (8.22), we conclude

lim inf
n"y

H2
e ðE nÞ > 0 ¼ lim

n"y
H2

e ðDnÞ:

In both cases we conclude that the embedded disk H n ¼ ðC nnE nÞWDn bounds bn and
satisfies

lim
n"y

H2
e ðH nÞ < lim

n"y
H2

e ðC nÞ ¼ sc0

2
¼ lim

n"y
mn:ð8:24Þ

Figure 12. The minimal surface L, the cones C n and E n and the domain D n.
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Therefore, there exists an n such that mn > H2
e ðH nÞ. A small perturbation of H n gives a

smooth embedded disk bounding bn with area strictly smaller than mn. This contradicts
the minimality of mn (see (8.21)) and hence proves our claim.

8.6. Proof of (8.16). In this final step we show (8.16). Our arguments are inspired by
those of [4], Section 7.

Consider the curve gn
1 . Again applying (8.6) we conclude that, for every compact set

K HBþ
s n

S
i

Pyi

we have

lim
n"y

H1
e ðgn

1nKÞ ¼ 0:ð8:25Þ

Consider next the solid sector S :¼ Wed 0 XBs. Clearly H2
e ðqSÞ ¼ ð3p� hÞs2, where

h is a positive constant. Clearly a curve contained in qS bounds always a disk with area at

most p
3

2
� h

2

	 

s2. For large gn

1 we can modify it to a new curve ~ggn contained in qS, and

hence find a smooth embedded disk bounding ~ggn with area at most p
3

2
� h

4

	 

s2. This and

(8.15) implies that

ps2

2

P
i

ki ¼ lim
n"y

kn
1 <

3p

2
s2:

Therefore we conclude that
P

i

ki e 2.

Extracting a subsequence, not relabeled, we can assume that gn
1 converges to an inte-

ger rectifiable current g. The intersection of the support of g with qBsnfð0; 0; sÞ; ð0; 0;�sÞg
is then contained in the arcs ai :¼ Pyi

X qBs. Therefore if we denote by ½½ai�� the current
induced by ai then we have

gC qBs ¼
P

i

hi½½ai��

where the hi are integers.

On the other hand, gn
1 CBs is given by the segment l. Therefore we conclude that

gCBs ¼ ½½l��:

It turns out that

g ¼ ½½l�� þ
P

i

hi½½ai��

and of course
P

i

jhije
P

i

ki.
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Since qg ¼ 0, we conclude that

0 ¼ q½½l�� þ
P

i

hiq½½ai�� ¼ dP � dN þ
P

i

hiðdN � dPÞ

where N ¼ ðs; 0; 0Þ, P ¼ ð�s; 0; 0Þ and dX denotes the Dirac measure in the point X .
Hence we conclude

	
1 �

P
i

hi



dP �

	
1 �

P
i

hi



dN ¼ 0

and therefore
P

i

hi ¼ 1. This implies that
P

i

jhij is odd. Since
P

i

jhije
P

i

ki e 2, we con-

clude
P

i

jhij ¼ 1.

Therefore, g consists of the segment l and an arc, say, a1. Clearly, g bounds Py1
,

which has area ps2=2. Consider next the closed curve bn made by joining gn
1 X qBs

and �a1. These curves might have self-intersections, but they are close. Moreover, they
have bounded length and they converge, in the sense of currents, to the trivial current
a1 � a1 ¼ 0.

There are therefore domains Dn HBþ
s such that qDn ¼ bn and H2

e ðDnÞ # 0. It is not
di‰cult to see that the union of the domains Dn and of Py1

gives embedded disks E n

bounding gn
1 and with area converging to ps2=2 (see Figure 13). Approximating these disks

E n with smooth embedded ones, we conclude that

lim
n"y

mn e
p

2
s2:

This shows that
P

i

ki e 1. Hence the varifold W is either trivial or it consists of at most one

half-disk. Since it cannot be trivial by the considerations of Subsections 6.1 and 8.1, we
conclude that W consists in fact of exactly one half-disk.

Figure 13. The curves gn
1 and a1.
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9. Proof of Proposition 3.2

Part V: Convergence of connected components

In this section we complete the proofs of Proposition 3.2 and Proposition 3.3. In par-
ticular, building on Corollary 8.2, we show the following.

Lemma 9.1. Let S and Dk be as in Proposition 3.2 (or as in Proposition 3.3) and con-

sider their varifold limit V. According to Lemma 7.1, Lemma 8.1 and Corollary 8.2, V is a

smooth stable minimal surface with boundary qD ¼ qS and with multiplicity 1. Let

G1; . . . ;GN be the connected components of D.

If ~DDk is an arbitrary union of connected components of Dk which converges, in the sense

of varifolds, to a W , then W is given by Gi1 W � � �WGil for some 1e i1 < i2 < � � � < il eN.

Proof. This lemma is indeed a simple consequence of some known facts in geomet-
ric measure theory. Fix a sequence ~DDk and a W as in the statement of the lemma. Note that
q~DDk H qDk ¼ qS.

We can therefore apply the compactness of integer rectifiable currents and, after a
further extraction of subsequence, assume that the ~DDk are converging, as currents, to an in-
teger rectifiable current T with boundary qT which is the limit of the boundaries q~DDk. Since
these boundaries are all contained in qU , we conclude that qT is also contained in qU . It is
a known fact in geometric measure theory that

kTke kWk:ð9:1Þ

On the other hand,

kWke kVke
P

i

H2
CGi:ð9:2Þ

So T is actually supported in the current given by the union of the currents induced by the
Gi’s, which we denote by ½½Gi��. Since qT and qGi lie both on qU , a second standard fact in
geometric measure theory implies the existence of integers h1; . . . ; hN such that

T ¼
PN
i¼1

hi½½Gi��:

Therefore,

kTk ¼
P

i

jhijH2
CGi:ð9:3Þ

Hence, (9.1), (9.2) and (9.3) give hi A f�1; 0; 1g. On the other hand, since each q~DDk is the
union of connected components of qS (with positive orientation), it turns out that qT is the
union of the currents induced by some connected components of qS, with positive orienta-
tion. Moreover, since U is a su‰ciently small ball, by the maximum principle each surface
Gi must have nontrivial boundary. Hence, we conclude that hi A f0; 1g.
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Arguing in the same way, we conclude that Dkn~DDk converge, as currents, to a current
T 0, and, as varifolds, to a varifold W 0 with the properties that

T 0 ¼
PN
i¼1

h 0
i ½½Gi��;ð9:4Þ

kT 0ke kW 0kð9:5Þ

and h 0
i A f0; 1g. Since W þ W 0 ¼ V (and hence kWk þ kWk0 ¼ kVk), we conclude that

h 00
i ¼ h 0

i þ hi A f0; 1g. On the other hand, Dk converges, in the sense of currents, to
T þ T 0, which is given by

T þ T 0 ¼
P

i

ðhi þ h 0
iÞ½½Gi��:ð9:6Þ

Moreover, since qDk ¼ qS,

½½qS�� ¼ qðT þ T 0Þ ¼
P

i

ðhi þ h 0
iÞ½½qGi��:ð9:7Þ

Since the qGi are all nonzero, disjoint and contained in qS, we conclude that hi þ h 0
i ¼ 1 for

every i.

Summarizing, we conclude that

kVk ¼ kWk þ kW 0kf kTk þ kT 0kf kT þ T 0k ¼ kVk:

This implies that kWk þ kW 0k ¼ kTk þ kT 0k and hence that kWk ¼ kTk. Therefore

kWk ¼
P

i

hiH
2
CGi

and since hi A f0; 1g, this last claim concludes the proof. r

10. Considerations on (0.5) and (0.4)

10.1. Coverings. In this subsection we discuss why (0.5) seems ultimately the correct
estimate. Fix a sequence fS j

tj
g which is 1=j-a.m. in su¤ciently small annuli and assume for

simplicity that each element is a smooth embedded surface and that the varifold limit is
given by

G ¼
P

G i AO

niG
i þ

P
G i AN

niG
i:

Then, one expects that, after appropriate surgeries (which can only bring the genus down)
S

j
tj

split into three groups.
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� The first group consists of

m1 ¼
P

G i AO

ni

surfaces, each isotopic to a G i A O.

� The second group consists of

m2 ¼ 1

2

P
G i AN

ni

surfaces, each isotopic to the boundary of a regular tubular neighborhood of G i A N
(which is a double cover of G i).

� The sum of the areas of the third group vahishes as j " y.

As a consequence one would conclude that ni is even whenever G i A N and that (0.5)
holds.

The type of convergence described above is exactly the one proved by Meeks, Simon
and Yau in [13] for sequences of surfaces which are minimizing in a given isotopy class. The
key ingredients of their proof is the g-reduction and the techniques set forth by Almgren
and Simon in [4] to discuss sequences of minimizing disks. However, in their situation there
is a fundamental advantage: when the sequence fS jg is minimizing in a given isotopy
class, one can perform the g-reduction ‘‘globally’’, and conclude that, after a finite number
of surgeries which do not increase the genus, there is a constant s > 0 with the following
property:

� For any ball B with radius s, each curve in qBXS j bounds a small disk in S j.

In the case of min-max sequences, their weak 1=j-almost minimizing property on sub-
sets of the ambient manifold allows to perform the g-reduction only to surfaces which are
appropriate local modifications of the S j’s, see the Squeezing Lemma of Section 6 and the
modified g-reduction of Section 6. Unfortunately, the size of the open sets where this can be
done depends on j. In order to show that the picture above holds, it seems necessary to
work directly in open sets of a fixed size.

10.2. An example. In this section we show that (0.4) cannot hold for sequences
which are 1=j-a.m. Consider in particular the manifold M ¼ ��1; 1½ � S2 with the stan-
dard product metric. We parameterize S2 with fjoj ¼ 1 : o A R3g. Consider on M the
orientation-preserving di¤eomorphism j : ðt;oÞ 7! ð�t;�oÞ and the equivalence relation
x@ y if x ¼ y or x ¼ jðyÞ. Let N ¼ M=@ be the quotient manifold, which is an oriented
Riemannian manifold, and consider the projection p : M ! N, which is a local isometry.
Clearly, G :¼ pðf1g � S2Þ is an embedded 2-dimensional (real) projective plane. Consider a
sequence tj # 1. Then, each Lj :¼ ftjg � S2 is a totally geodesic surface in M and, there-
fore, S j ¼ pðLjÞ is totally geodesic as well. Let r be the injectivity radius of N and consider
a smooth open set U HN with diameter smaller than r such that qU intersects S j trans-
versally. Then S j XU is the unique area-minimizing surface spanning qU XS j.
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Hence, the sequence of surfaces fS jg is 1=j-a.m. in su‰ciently small annuli of N.
Each S j is a smooth embedded minimal sphere and S j converges, in the sense of varifolds,
to 2G. Since gðS jÞ ¼ 0 and gðGÞ ¼ 1, the inequality

gðGÞe lim inf
j"y

gðS jÞ;

which corresponds to (0.4), fails in this case.

Appendix A. Proof of Lemma 4.2

Proof. Let S be a smooth minimal surface with qSH qBsðxÞ, where s < r0 and r0 is
a positive constant to be chosen later. We recall that, for every vector field X A C1

c

�
BsðxÞ

�
,

we have

Ð
BsðxÞ

divS X ¼ 0:ðA:1Þ

We assume r0 < InjðMÞ (the injectivity radius of M) and we use geodesic coordinates
centered at x. For every y A BsðxÞ we denote by rðyÞ the geodesic distance between y and
x. Recall that r is Lipschitz on BsðxÞ and Cy in BsðxÞnfxg, and that j‘rj ¼ 1, where
j‘rj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð‘r;‘rÞ

p
.

We let g A C1ð½0; 1�Þ be a cut-o¤ function, i.e. g ¼ 0 in a neighborhood of 1 and g ¼ 1

in a neighborhood of 0. We set X ¼ gðrÞr‘r ¼ gðrÞ‘ jrj2

2
. Thus, X A Cy

c

�
BsðxÞ

�
and from

(A.1) we compute

0 ¼
Ð
S

gðrÞ divSðr‘rÞ þ
Ð
S

rg 0ðrÞ
P

i

qei
rgð‘r; eiÞ;ðA:2Þ

where fe1; e2g is an orthonormal frame on TS. Clearly

P
i

qei
rgð‘r; eiÞ ¼

P
i

ðqei
rÞ2 ¼ j‘Srj2 ¼ j‘rj2 � j‘?rj2 ¼ 1 � j‘?rj2;ðA:3Þ

where ‘?r denotes the projection of ‘r on the normal bundle to S. Moreover, let ‘e be the
Euclidean connection in the geodesic coordinates and consider a 2-d plane p in TyM, for
y A BsðxÞ. Then

divp

�
rðyÞ‘rðyÞ

�
� dive

pðjyj‘ejyjÞ ¼ OðjyjÞ ¼ OðsÞ:

Since dive
pðjyj‘ejyjÞ ¼ 2, we conclude the existence of a constant C such that

����Ð
S

gðrÞ divSðr‘rÞ � 2
Ð
S

gðrÞ
����eCkgkysH2

�
SXBsðxÞ

�
:ðA:4Þ

Inserting (A.3) and (A.4) in (A.2), we conclude

Ð
S

2gðrÞ þ
Ð
S

rg 0ðrÞ ¼
Ð
S

rg 0ðrÞj‘?rj2 þ ErrðA:5Þ
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where, if we test with functions g taking values in ½0; 1�, we have

jErrjeCsH2
�
SXBsðxÞ

�
:ðA:6Þ

We test now (A.5) with functions taking values in ½0; 1� and approximating the character-
istic functions of the interval ½0; s�. Following the computations of [18], pages 83–84, we
conclude

d

dr

�
r�2H2

�
SXBrðxÞ

������
r¼s

¼ d

dr

	 Ð
SXBrðxÞ

j‘?rj2

r2


����
r¼s

þ s�3 Err:ðA:7Þ

Straightforward computations lead to

H2
�
SXBsðxÞ

�
ðA:8Þ

¼ s

2

d

dr

�
H2

�
SXBrðxÞ

������
r¼s

� s3

2

d

dr

	 Ð
SXBrðxÞ

j‘?rj2

r2


����
r¼s|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ðAÞ

þ Err:

Moreover, by the coarea formula, we have

ðAÞ ¼ s

2

Ð
qBsðxÞXS

1

j‘Srj �
s3

2

Ð
qBsðxÞXS

j‘?rj2

s2j‘Srj ¼
s

2

Ð
qS

1 � j‘?rj2

j‘SrjðA:9Þ

¼ s

2

Ð
qS

j‘Srje s

2
LengthðqSÞ:

Inserting (A.9) into (A.8), we conclude that

H2
�
SXBsðxÞ

�
e

s

2
LengthðqSÞ þ jErrj;ðA:10Þ

which, taking into account (A.6), becomes

ð1 � CsÞH2
�
SXBsðxÞ

�
e

s

2
LengthðqSÞ:ðA:11Þ

So, for r0 < minfInjðMÞ; ð2CÞ�1g we get (4.16). r

Appendix B. Proof of Lemma 5.5

Proof. Let deðyÞ be the Euclidean distance of y to U and dðyÞ the geodesic dis-
tance of y to f ðUÞ. The function de is C2 and uniformly convex on the closure of B1nU .
Therefore, if e0 is su‰ciently small, the function d is uniformly convex on the closure
of BeðxÞn f ðUÞ. Let now y0 A BeðxÞn f ðUÞ. In order to find pðxÞ it su‰ces to follow the
flow line of the ODE y ¼ �‘dðyÞ=j‘dðyÞj2, with initial condition yð0Þ ¼ y0, until the
line hits f ðUÞ. Thus, the inequality j‘pðxÞj < 1 follows from [7], Lemma 1. On the other
hand, pðxÞ ¼ x on f ðUÞ, and therefore the map is Lipschitz with constant 1. r
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Appendix C. A simple topological fact

We summarize the topological fact used in (a) of Section 8.3 in the following
lemma.

Lemma C.1. Consider a smooth 2-dimensional surface SHB1 with smooth boundary

qSH qB1. Let GHB1 be a smooth surface with qG ¼ qS consisting of disjoint embedded

disks. Then there exists a smooth map F : ½0; 1½ �B1 ! B1 such that:

(i) Fð0; �Þ is the identity and Fðt; �Þ is a di¤eomorphism for every t.

(ii) For every t there exists a neighborhood Ut of qB1 such that Fðt; xÞ ¼ x for every

x A Ut.

(iii) Fðt;SÞ converges to G in the sense of varifolds as t ! 1.

Proof. The proof consists of two steps. In the first one we show the existence of a
surface G 0 and of a map C : ½0; 1½ �B1 ! B1 such that

� qG 0 ¼ qS,

� G 0 consists of disjoint embedded disks,

� C satisfies (i) and (ii),

� Cðt;SÞ ! G 0 as t ! 1.

In the second we show the existence of a ~CC : ½0; 1½ �B1 ! B1 such that (i) and (ii) hold and
~CCðt;G 0Þ ! G as t ! 1.

In order to complete the proof from these two steps, consider the map
~FFðs; t; xÞ ¼ ~CC

�
t;Cðs; xÞ

�
. Then, for every smooth g : ½0; 1½ ! ½0; 1½ with gð0Þ ¼ 0, the map

Fðt; xÞ ¼ ~FF
�
gðtÞ; t; x

�
satisfies (i) and (ii) of the lemma. Next, for any fixed t, if s is su‰-

ciently close to 1, then ~FFðs; t;SÞ is close, in the sense of varifolds, to ~CCðt;G 0Þ. This allows
to find a piecewise constant function h : ½0; 1½ ! ½0; 1½ such that

lim
t!1

~FF
�
gðtÞ; t;S

�
¼ G ðin the sense of varifoldsÞ

whenever gf h in a neighborhood of 1. If we choose, therefore, a smooth g : ½0; 1½ ! ½0; 1½
with gð0Þ ¼ 0 and gf h on ½1=2; 1½, the map Fðt; xÞ ¼ ~FF

�
gðtÞ; t; x

�
satisfies all the require-

ments of the lemma.

We now come to the existence of the maps C and ~CC.

Existence of C. Let G be the set of all surfaces G 0 which can be obtained as
lim
t!1

Cðt;SÞ for maps C satisfying (i) and (ii). It is easy to see that any G 0 which is obtained
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from S through surgery as in Definition 2.2 is contained in G. Let g0 be the smallest genus
of a surface contained in G. It is then a standard fact that gðG 0Þ ¼ g0 if and only if the sur-
face is incompressible. However, if this holds, then the first homotopy group of G 0 is
mapped injectively in the homotopy group of B1 (see for instance [11]). Therefore there is
a G 0 A G which consists of disjoint embedded disks and spheres. The embedded spheres can
be further removed, yielding a G 0 A G consisting only of disjoint embedded disks.

Existence of ~CC. Note that each connected component of B1nG 0 (and of B1nG) is a,
piecewise smooth, embedded sphere. Therefore the claim can be easily proved by induction
from the case in which G and G 0 consist both of a single embedded disk. This is, however, a
standard fact (see once again [11]). r
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