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Genus bounds for minimal surfaces arising from
min-max constructions

By Camillo De Lellis and Filippo Pellandini at Ziirich

Abstract. In this paper we prove genus bounds for closed embedded minimal sur-
faces in a closed 3-dimensional manifold constructed via min-max arguments. A stronger
estimate was announced by Pitts and Rubinstein but to our knowledge its proof has never
been published. Our proof follows ideas of Simon and uses an extension of a famous result
of Meeks, Simon and Yau on the convergence of minimizing sequences of isotopic surfaces.
This result is proved in the second part of the paper.
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0. Introduction

0.1. Min-max surfaces. In [8] Tobias H. Colding and the second author started a
survey on constructing closed embedded minimal surfaces in a closed 3-dimensional mani-
fold via min-max arguments, including results of F. Smith, L. Simon, J. Pitts and H. Ru-
binstein. This paper completes the survey by giving genus bounds for the final min-max
surface.
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The basic idea of min-max arguments over sweep-outs goes back to Birkhoff, who
used such a method to find simple closed geodesics on spheres. In particular when M? is
the 2-dimensional sphere we can find a 1-parameter family of curves starting and ending
at a point curve in such a way that the induced map F : S> — S? has nonzero degree.
Birkhoff’s argument (or the min-max argument) allows us to conclude that M has a non-
trivial closed geodesic of length less than or equal to the length of the longest curve in the
I-parameter family. A curve shortening argument gives that the geodesic obtained in this
way is simple.

Following [8] we introduce a suitable generalized setting for sweepouts of 3-manifolds
by two-dimensional surfaces. From now on, M, Diffy, and 3s will denote, respectively,
a closed 3-dimensional Riemannian manifold, the identity component of the diffeomor-
phism group of M, and the set of smooth isotopies. Thus JIs consists of those maps
Y e C*([0,1] x M, M) such that (0, -) is the identity and (¢, -) € Diff, for every z.

Definition 0.1. A family {2}, ; of surfaces of M is said to be continuous if:
(cl) #*(%,) is a continuous function of .
(c2) %, — Z,, in the Hausdorff topology whenever ¢ — .

A family {Z},. | ; of subsets of M is said to be a generalized family of surfaces if
there are a finite subset 7" of [0, 1] and a finite set of points P in M such that:

(1) (cl) and (c2) hold.
(2) %, is a surface for every 7 ¢ T.
(3) Forte T, %, is a surface in M\ P.

With a small abuse of notation, we shall use the word “‘surface” even for the sets X,
with ¢ € T. To avoid confusion, families of surfaces will always be denoted by {Z,}. Thus,
when referring to a surface a subscript will denote a real parameter, whereas a superscript
will denote an integer as in a sequence.

Given a generalized family {X,} we can generate new generalized families via the fol-
lowing procedure. Take an arbitrary map € C*([0,1] x M, M) such that (¢, -) € Diff,
for each 7 and define {X/} by X = /(#,X,). We will say that a set A of generalized families
is saturated if it is closed under this operation.

Remark 0.2. For technical reasons we require an additional property for any satu-
rated set A considered in this paper: the existence of some N = N(A) < oo such that for

any {X,} < A, the set P in Definition 0.1 consists of at most N points.

Given a family {Z,} € A we denote by 7 ({Z,}) the area of its maximal slice and by
mo(A) the infimum of % taken over all families of A; that is,

(0.1) 7 ({Z}) = max A (E)
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and

0.2 A) =inf # = inf H(Z)].
(0.2) mo(A) = in {2{1}1€A[;§3§] ( r)}

If lim Z ({Z,}") = mo(A), then we say that the sequence of generalized families of

surfaces {{Z,}"} = A is a minimizing sequence. Assume {{Z,}"} is a minimizing sequence
and let {#,} be a sequence of parameters. If the areas of the slices {X } converge to my, i.e.
if %2(2”) — mg(A), then we say that {¥] } is a min-max sequence.

An important point in the min-max construction is to find a saturated A with
mo(A) > 0. For instance, this can be done by using the following elementary proposition
proven in the Appendix of [8].

Proposition 0.3.  Let M be a closed 3-manifold with a Riemannian metric and let {X,}
be the level sets of a Morse function. The smallest saturated set A containing the family {Z,}
has mo(A) > 0.

The paper [8] reports a proof of the following regularity result.

Theorem 0.4 (Simon—Smith). Let M be a closed 3-manifold with a Riemannian met-
ric. For any saturated A, there is a min-max sequence X converging in the sense of varifolds
to a smooth embedded minimal surface X with area mo(A) (multiplicity is allowed).

0.2. Genus bounds. In this note we bound the topology of ¥ under the assumption
that the 7-dependence of {X,} is smoother than just the continuity required in Definition
0.1. This is the content of the next definition.

Definition 0.5. A generalized family {X,} as in Definition 0.1 is said to be smooth if:
(s1) Z, varies smoothly in # on [0, ||\ T’
(s2) Forte T, X, — Z, smoothly in M\P.

Here P and T are the sets of requirements (2) and (3) of Definition 0.1. We assume further
that X, is orientable for any ¢ ¢ 7.

Note that, if a set A consists of smooth generalized families, then the elements of its
saturation are still smooth generalized families. Therefore the saturated set considered in
Proposition 0.3 is smooth.

We next introduce some notation which will be consistently used during the proofs.
We decompose the surface £ of Theorem 0.4 as Z mT'?, where the I'”’s are the connected

components of X, counted without multiplicity, and n; € N\{0} for every i. We further di-
vide the components {I"'} into two sets: the orientable ones, denoted by ¢, and the non-
orientable ones, denoted by ./". We are now ready to state the main theorem of this paper.
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Theorem 0.6. Let A be a saturated set of smooth generalized families and ¥ and X}
the surfaces produced in the proof of Theorem 0.4 given in [8]. Then

(0.3) S g(T) +% > (g —1)<gy:= lirleinf limitnf g(X/).
jloo

reo Tet H

Remark 0.7. According to our definition, 2-,’/, is not necessarily a smooth submani-
fold, as ¢; could be one of the exceptional parameters of point (3) in Definition 0.1. How-
ever, for each fixed j there is an # > 0 such that X/ is a smooth submanifold for every
telti—n, ;[ Ult;, t; + n[. Hence the right-hand side of (0.3) makes sense.

In fact the inequality (0.3) holds with g, = liminf g(X/) for every limit ¥ of a se-

quence of surfaces X/’s that enjoy certain requirements of variational nature, i.e. that are
almost minimizing in sufficiently small annuli. The precise statement will be given in Theo-
rem 1.6, after introducing the suitable concepts.

As usual, when T is an orientable 2-dimensional connected surface, its genus g(I") is
defined as the number of handles that one has to attach to a sphere in order to get a surface
homeomorphic to I'. When I" is non-orientable and connected, g(I) is defined as the num-
ber of cross caps that one has to attach to a sphere in order to get a surface homeomorphic
to I (therefore, if y is the Euler characteristic of the surface, then

Yooy ifrew

(\

g(l) =
2y ifTCe®

see [12]). For surfaces with more than one connected component, the genus is simply the
sum of the genus of each connected component.

Our genus estimate (0.3) is weaker than the one announced by Pitts and Rubinstein in
[15], which reads as follows (cp. with [15], Theorem 1 and Theorem 2):

(04) S ng(l) +3 3 nal) g,

reo Tiew

In Section 10 a very elementary example shows that (0.4) is false for sequences of almost
minimizing surfaces (in fact even for sequences which are locally strictly minimizing). In
this case the correct estimate should be

05) S mg(T) 45 3 mle) - 1) < g
T'eo e

Therefore, the improved estimate (0.4) can be proved only by exploiting an argument of
more global nature, using a more detailed analysis of the min-max construction.

The estimate (0.5) respects the rough intuition that the approximating surfaces ¥/ are,
after appropriate surgeries, isotopic to coverings of the surfaces I'*. For instance I" can con-
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sist of a single component that is a real projective space, and X/ might be the boundary of a
tubular neighborhood of T of size ¢; | 0, i.e. a sphere. In this case X/ is a double cover of T.

Our proof uses the ideas of an unpublished argument of Simon, reported by Smith in
[19] to show the existence of an embedded minimal 2-sphere when M is a 3-sphere. These
ideas do not seem enough to show (0.4): its proof probably requires a much more careful
analysis. In Section 10 we discuss this issue.

Remark 0.8. The unpublished argument of Simon has been used also by Griiter and
Jost in [10]. The core of Simon’s argument is reported here with a technical simplification.
We then give a detailed proof of an auxiliary proposition which plays a fundamental role in
the argument. This part is, to our knowledge, new: neither Smith, nor Griiter and Jost pro-
vide a proof of it. Smith suggests that the proposition can be proved by suitably modifying
the arguments of [13] and [4]. Though this is indeed the case, the strategy suggested by
Smith leads to a difficulty which we overcome with a different approach: see the discussion
in Section 7. Moreover, [19] does not discuss the “convex-hull property” of Section 5,
which is a basic prerequisite to apply the boundary regularity theory of Allard in [3] (in
fact we do not know of any boundary regularity result in the minimal surface theory which
does not pass through some kind of convex hull property).

0.3. An example. We end this introduction with a brief discussion of how a se-
quence of closed surface £/ could converge, in the sense of varifolds, to a smooth surface
with higher genus. This example is a model situation which must be ruled out by any proof
of a genus bound. First take a sphere in R* and squeeze it in one direction towards a double
copy of a disk (recall that the convergence in the sense of varifolds does not take into ac-
count the orientation). Next take the disk and wrap it to form a torus in the standard way.
With a standard diagonal argument we find a sequence of smooth embedded spheres in R*
which, in the sense of varifolds, converges to a double copy of an embedded torus. See
Figure 1 below.

Figure 1. Failure of genus bounds under varifold convergence. A sequence of embedded spheres converges to a
double copy of a torus.
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This example does not occur in min-max sequences for variational reasons. In partic-
ular, it follows from the arguments of this paper that such a sequence does not have the
almost minimizing property in (sufficiently small) annuli discussed in Section 1.

0.4. Plan of the paper. Section 1 contains: some preliminaries on notational conven-
tions, a summary of the material of [8] used in this note and the most precise statement of
the genus bounds (Theorem 1.6). Section 2 gives an overview of the proof of Theorem 1.6.
In particular it reduces it to a statement on lifting of paths, which we call Simon’s Lifting
Lemma (see Proposition 2.1). Sections 3 and 4 contain a proof of Simon’s Lifting Lemma.
In Section 3 we state a suitable modification of a celebrated result of Meeks, Simon and
Yau (see [13]) in which we handle minimizing sequences of isotopic surfaces with bound-
aries (see Proposition 3.2).

Sections 5, 6, 7, 8 and 9 show how to modify the theory of [13] and [4] in order to
prove Proposition 3.2. Section 5 discusses the convex-hull properties needed for the bound-
ary regularity. In Section 6 we introduce and prove the “squeezing lemmas” which allow to
pass from almost-minimizing sequences to minimizing sequences. Section 7 discusses the
y-reduction and how one applies it to get the interior regularity. We also point out why
the yp-reduction cannot be applied directly to the surfaces of Proposition 3.2. Section 8
proves the boundary regularity. Finally, Section 9 handles the part of Proposition 3.2 in-
volving limits of connected components.

Section 10 discusses the subtleties of the stronger estimates (0.4) and (0.5).

1. Preliminaries and statement of the result

1.1. Notation. Throughout this paper our notation will be consistent with the one of
[8], explained in Section 2 of that paper. For the reader’s convenience we recall some of
these conventions in the following table.

T M the tangent space of M at x.

™ the tangent bundle of M.

Inj(M) the injectivity radius of M.

H? the 2-d Hausdorff measure in the metric space (M, d).
AP the 2-d Hausdorff measure in the euclidean space R>.
B,(x) open ball.

B,(x) closed ball.

0B, (x) distance sphere of radius p in M.

diam(G) diameter of a subset G = M.

d(Gy, Gy) the Hausdorff distance between the subsets G; and G, of M.
9,9, the unit disk and the disk of radius p in R?.

B, B, the unit ball and the ball of radius p in R>.

exp, the exponential map in M at x € M.

Js(U) smooth isotopies which leave M\ U fixed.

G*(U), G(U) grassmannian of (unoriented) 2-planes on U = M.

An(x,1,1) the open annulus B,(x)\B;(x).

LN (X) the set {An(x,,7) where 0 < 7 <7 <r}.

C*(X,Y) smooth maps from X to Y.

Cr(X,Y) smooth maps with compact support from X to the vector space Y.
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1.2. Varifolds. We will need to recall some basic facts from the theory of varifolds;
see for instance [18], chapter 4 and chapter 8, for further information. Varifolds are a
convenient way of generalizing surfaces to a category that has good compactness proper-
ties. An advantage of varifolds, over other generalizations (like currents), is that they do
not allow for cancellation of mass. This last property is fundamental for the min-max con-
struction.

If U is an open subset of M, any finite nonnegative measure on the Grassmannian of
unoriented 2-planes on U is said to be a 2-varifold in U. The Grassmannian of 2-planes will
be denoted by G?(U) and the vector space of 2-varifolds is denoted by #"*(U). Throughout
we will consider only 2-varifolds; thus we drop the 2.

We endow 77(U) with the topology of the weak convergence in the sense of mea-
sures, thus we say that a sequence VX of varifolds converges to a varifold V if for every
function ¢ € C.(G(U))

lim [¢(x,7)dV*(x,7) = [ p(x,7)dV(x,7).

k— o0

Here 7 denotes a 2-plane of T\M. If U' = U and V € ¥"(U), then we denote by V L U’
the restriction of the measure V" to G(U’). Moreover, || V|| will be the unique measure on U
satisfying

,J; o(x) d||V|(x JU x)dV(x,n) Ve C(U).

The support of ||V||, denoted by supp(||V]|), is the smallest closed set outside which || V||
vanishes identically. The number || V||(U) will be called the mass of V' in U. When U is
clear from the context, we say briefly the mass of V.

Recall also that a 2-dimensional rectifiable set is a countable union of closed subsets
of C! surfaces (modulo sets of #*-measure 0). Thus, if R = U is a 2-dimensional rectifi-
able set and 7 : R — R is a Borel function, then we can define a varifold V' by

(1.1) | o(x,m)dV(x,n) fh(x x, TyR)d#*(x) Vpe C(G(U)).
G(U)

Here TR denotes the tangent plane to R in x. If / is integer-valued, then we say that V is
an integer rectifiable varifold. If ¥ = |Jn;Z;, then by slight abuse of notation we use X for
the varifold induced by X via (1.1).

1.3. Pushforward, first variation, monotonicity formula. If J is a varifold induced by
asurface X < U and y : U — U’ a diffeomorphism, then we let ..V € 7" (U’) be the vari-
fold induced by the surface /(X). The definition of ..} can be naturally extended to any
Ve (U) by

Jo(r,0)dWyV)(y,0) = [ Tb(x,m)p(W(x),d(r)) dV (x,7)

where Jy/(x, ) denotes the Jacobian determinant (i.e. the area element) of the differential
dys . restricted to the plane 7; cf. [18], equation (39.1).
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Given a smooth vector field y, let v be the isotopy generated by y, i.e. with

% = x (). The first variation of V" with respect to y is defined as

i

=0

V100 = 5 (W6 V1)

cf. [18], sections 16 and 39. When X is a smooth surface we recover the classical definition
of first variation of a surface:

0% = [dived#? = & (2 W(2))

t=0

If 0V](x) = 0 for every y € C*(U, TU), then V is said to be stationary in U. Thus station-
ary varifolds are natural generalizations of minimal surfaces.

Stationary varifolds in Euclidean spaces satisfy the monotonicity formula (see [18],
sections 17 and 40):

V(B
(1.2)  For every x the function f(p) = M is non-decreasing.
mp

When V is a stationary varifold in a Riemannian manifold, a similar formula with an error
term holds. Namely, there exists a constant C(r) = 1 such that

(1.3) f(s) = C(r)f(p) whenever 0 <s<p<r.

Moreover, the constant C(r) approaches 1 as r | 0. This property allows us to define the
density of a stationary varifold V" at x, by

. VI (B, (x
O(x, V)= lhnolw.

Thus 6(x, V') corresponds to the upper density 8% of the measure || V|| as defined in [18],
section 3.

1.4. Curvature estimates for stable minimal surfaces. In many of the proofs we will
use Schoen’s curvature estimate (see [17]) for stable minimal surfaces. Recall that this esti-
mate asserts that, if U cc M, then there exists a universal constant, C(U), such that for
every stable minimal surface £ < U with 0X < ¢U and second fundamental form A

c(U)

—_— 2.
Px.o0) V€

(1.4) |4]*(x) <

In fact, what we will use is not the actual curvature estimate, rather it is the following con-
sequence of it:

(1.5) If {£"} is a sequence of stable minimal surfaces in U, then a
subsequence converges to a stable minimal surface X.
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1.5. Almost minimizing min-max sequences. Next, we assume that A is a fixed satu-
rated set and we begin by recalling the building blocks of the proof of Theorem 0.4. First of
all, in [8], following ideas of Pitts and Almgren (see [14] and [5]), the authors reported a
proof of the following proposition (cp. with [8], Proposition 3.1).

Proposition 1.1. There exists a minimizing sequence {{Z,}"} = A such that every
min-max sequence {¥]' } clusters to stationary varifolds.

It is well-known that stationary varifolds are not, in general, smooth minimal sur-
faces. The regularity theory of Theorem 0.4 relies on the definition of almost minimizing
sequence, a concept introduced by Pitts in [14] and based on ideas of Almgren (see [5]).
Roughly speaking a surface X is almost minimizing if any path of surfaces {Z,},.( ;) start-
ing at £ and such that X; has small area (compared to X) must necessarily pass through a
surface with large area. Our actual definition, following Smith and Simon, is in fact more
restrictive: we will require the property above only for families {,} given by smooth iso-
topies.

Definition 1.2. Given ¢ > 0, an open set U = M?>, and a surface X, we say that X is
e-a.m. in U if there does not exist any isotopy ¥ supported in U such that

(1.6) AH(Y(1,%)) < A*(Z) +¢/8 forally,
(1.7) AY(1,2) £ A3 E) —e

Using a combinatorial argument due to Almgren and exploited by Pitts in [14], the
second step of [8] was to show Proposition 1.4 below.

Remark 1.3. In fact, the statement of Proposition 1.4 does not coincide exactly with
the corresponding Proposition 5.1 of [§8]. However, it is easy to see that Proposition 5.3 of

[8] yields the slightly small precise statement given below.

Proposition 1.4. There exists a function r: M — R* and a min-max sequence
¥/ =3/ such that:

e In every annulus An centered at x and with outer radius at most r(x), ¥/ is 1/j-a.m.
provided j is large enough.

o In any such annulus, ¥’ is smooth when j is sufficiently large.
o 3/ converges to a stationary varifold V in M, as j 1 .

The following theorem completed the proof of Theorem 0.4 (cp. with [8], Theorem
7.1).

Theorem 1.5. Let {X/} be a sequence of surfaces in M and assume the existence of a
function v : M — R such that the conclusions of Proposition 1.4 hold. Then V is a smooth
minimal surface.
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The proof of this theorem draws heavily on a fundamental result of Meeks, Simon
and Yau ([13]). A suitable version of it plays a fundamental role also in this paper and since
the modifications of the ideas of [13] needed in our case are complicated, we will discuss
them later in detail. From now on, in order to simplify our notation, a sequence {X’/} sat-
isfying the conclusions of Proposition 1.4 will be simply called almost minimizing in suffi-
ciently small annuli.

6. Statement of the result. Our genus estimate is valid, in general, for limits of se-
quences of surfaces which are almost minimizing in sufficiently small annuli.

Theorem 1.6. Let ¥/ = Z’ be a sequence which is a.m. in sufficiently small annuli. Let
V= Z n, T be the varifold limit of {2/}, where T'" are as in Theorem 0.6. Then

(1.8) > g(T'") —|— > (g -1)< 11n%1nf liminf g(X/).

I'eo F’e N =

2. Overview of the proof

In this section we give an overview of the proof of Theorem 1.6. Therefore we fix
a min-max sequence X/ = Z{/. as in Theorem 1.6 and we let > n,I"* be its varifold limit.

i
Consider the smooth surface I' = [ JI'* and let &y > 0 be so small that there exists a smooth
i

retraction of the tubular neighborhood 75,,I" onto I'. This means that, for every 0 < 2¢,
e T;I'" are smooth open sets with pairwise disjoint closures;
e if '’ is orientable, then T;T"' is diffeomorphic to ' x |—1, 1[;

e if I'" is non-orientable, then the boundary of 75"’ is an orientable double cover
of T

2.1. Simon’s Lifting Lemma. The following proposition is the core of the genus
bounds. Similar statements have been already used in the literature (see for instance [10]
and [9]). We recall that the surface X/ might not be everywhere regular, and we denote by
P; its set of singular points (possibly empty).

Proposition 2.1 (Simon’s Lifting Lemma). Let y be a closed simple curve on T and
let & < &y be positive. Then, for j large enough, there is a positive n < n; and a closed curve 3/
on ¥/~ T,T'\ P; which is homotopic to ny in T,I"".

Simon’s Lifting Lemma implies directly the genus bounds if we use the characteriza-
tion of homology groups through integer rectifiable currents and some more geometric
measure theory. However, we choose to conclude the proof in a more elementary way,
using Proposition 2.3 below.

2.2. Surgery. The idea is that, for j large enough, one can modify any {Z’ } suffi-
ciently close to X/ = E’ through surgery to a new surface ZJ such that
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e the new surface lies in a tubular neighborhood of T7;

e it coincides with the old surface in a yet smaller tubular neighborhood.
The surgeries that we will use in this paper are of two kinds: we are allowed to

e remove a small cylinder and replace it by two disks (as in Figure 2);

e discard a connected component.

We give below the precise definition.

removing a
cylinder

-

adding two
disks

Figure 2. Cutting away a neck.

Definition 2.2. Let X and 2 be two closed smooth embedded surfaces. We say that X
is obtained from X by cutting away a neck if:

e 3\Z is homeomorphic to S! x ]0, 1;
. 2\2 is homeomorphic to the disjoint union of two open disks;
e SAY is a contractible sphere.

We say that X is obtained from X through surgery if there is a finite number of surfaces
Xy =2,%,...,2y = Z such that each X, is

e cither isotopic to the union of some connected components of X;_;
e or obtained from X;_; by cutting away a neck.

Clearly, if T is obtained from X through surgery, then g(2) < g(X). We are now ready
to state our next proposition.
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Proposition 2.3. Let ¢ < & be positive. For each j sufficiently large and for t suffi-
ciently close to t;, we can find a surface 2] obtained from 2] through surgery and satisfying
the following properties:

o i{ is contained in T»>.I.
e AT, =%/ NT,I.

2.3. Proof of Theorem 1.6. Proposition 2.3 and Proposition 2.1 allow us to conclude
the proof of Theorem 1.6. We only need the following standard fact for the first integral
homology group of a smooth closed connected surface (see [12], Sections 4.2 and 4.5).

Lemma 2.4. Let I' be a connected closed 2-dimensional surface with genus g. If T is
orientable, then H'(T') = 7. If T is non-orientable, then H'(T') = 787! x 7.

The proof of Proposition 2.3 is given below, at the end of this section. The rest of the
paper is then dedicated to prove Simon’s Lifting Lemma. We now come to the proof of
Theorem 1.6.

Proof of Theorem 1.6. Define m; = g(I'") if i is orientable and (g(I') — 1)/2 if not.
Our aim is to show that

(2.1) S m; < liminf liminf g(Z7).
i JTo =1
By Lemma 2.4, for each I'’ there are 2m; curves "', ..., > with the following property:

(Hom) If ki, ..., kay, are integers such that kjp»! 4 - - - 4 ky,,»"2"™ is homologically
trivial in F’ then k; = 0 for every /.

Since & < &y/2, T>,I'" can be retracted smoothly on I"'. Hence:

(Hom') If ky, ..., kyy, are integers such that k"' + - - - + ky,, p"*" is homologically
trivial in 75.I"', then k; = 0 for every /.

Next, fix ¢ < g and let N be sufficiently large so that, for each j = N, Simon’s Lifting
Lemma applies to each curve y"/. We require, moreover, that N is large enough so that
Proposition 2.3 applies to every j > N.

Choose next any j > N and consider the curves 7/ lying in 7,I' n X/ given by Si-
mon’s Lifting Lemma. Such surfaces are therefore homotopic to n; "' in T.T'', where
each n;; is a positive integer. Moreover, for each 7 sufficiently close to #; consider the sur-
face E’ given by Proposition 2.3. The surface 2’ decomposes into the finite number of com-
ponents (not necessarily connected) =/ N T5,I"". Each such surface is orientable and

(2.2) Zg(2 N To,I'') = g(Z)) < g(=)).
We claim that
(2.3) m; < lirtn itr_lf g(i,j N Ty T,

which clearly would conclude the proof.



De Lellis and Pellandini, Genus bounds for minimal surfaces 59

Since X/ converges smoothly to 3/ outside P;, we conclude that ¥/ A T,I'! converges
smoothly to £/ n T,I'" outside P;. Since each y*! does not intersect P, it follows that, for
large enough, there exist curves / contained in £/ n 7,I'' and homotopic to 3"/ in T,I"".

Summarizing:

(i) Each ;7’7’ is homotopic to n,-’gy"vl in T5,I'" for some positive integer n; ;.

(i) Each 5%/ is contained in £/ N T5,I"".

(iti) £/ n To.I' is a closed surface.

(iv) If ¢t 4 - + ¢, 7™ is homologically trivial in 75" " and the ¢;’s are inte-
gers, then they are all 0.

These statements imply that:

(Hom”) If ¢15"" + - + ¢3, 7" 2™ is homologically trivial in £/ n T5,I'" and the ¢;’s
are integers, then they are all 0.

From Lemma 2.4, we conclude again that g(i{ NT, T =2m. O

2.4. Proof of Proposition 2.3. Consider the set Q = ngl"\]T . Since X’ converges,
in the sense of varifolds, to I', we have

(2.4) lim limsup #2(Z/ N Q) = 0.

JToo oy
Let # > 0 be a positive number to be fixed later and consider N such that

(2.5) limsup #%(2/ N Q) < /2 foreach j > N.

=t
Fix j = N and let J; > 0 be such that
(2.6) HHE AQ) <y if |t —1] <0

For each o € ]¢, 2¢] consider A, := d(T,I"), i.e. the boundary of the tubular neighborhood
T,T. The surfaces A, are a smooth foliation of Q\I" and therefore, by the coarea formula

2¢ . .
(2.7) [ Length(X/ nA,)do < CH?* (2] nQ) < Cn

where C is a constant independent of # and j. Therefore,

20y

(2.8) Length(2/ N A,) < ;

holds for a set of ¢’s with measure at least ¢/2.
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By Sard’s Lemma we can fix a o such that (2.7) holds and ¥/ intersects A, transver-
sally.

For positive constants 4 and C, independent of j and ¢, the following holds:

(B) For any s €]0,2¢[, any simple closed curve y lying on A, with Length(y) < 4
bounds an embedded disk D < A with diam(D) < C Length(y).

Assume that 2Cx/e < A. By construction, Z-,/ NA; is a finite collection of simple
curves. Consider Q := w0l \T5_sI". For o sufficiently small, Qn ¥/ is a finite collection
of cyhnders with upper bases lying on A,,s and lower bases lying on A, 5. We “cut
away” this finite number of necks by removing Q N Z] and replacing them with the two
disks lying on A,_s U A5 and enjoying the bound (B). For a suitable choice of #, the
union of each neck and of the corresponding two disks has sufficiently small diameter.
This surface is therefore a compressible sphere, which implies that the new surface 37 is
obtained from X/ through surgery.

We can smooth it a little: the smoothed surface will still be obtained from ¥/ through
surgery and will not intersect A,. Therefore ¥/ =3/ nT,I is a closed surface and is ob-
tained from X/ by dropping a finite number of connected components. []

3. Proof of Proposition 2.1
Part I: Minimizing sequences of isotopic surfaces

A key point in the proof of Simon’s Lifting Lemma is Proposition 3.2 below. Its
proof, postponed to later sections, relies on the techniques introduced by Almgren and Si-
mon in [4] and Meeks, Simon and Yau in [13]. Before stating the proposition we need to
introduce some notation.

3.1. Minimizing sequences of isotopic surfaces.

Definition 3.1. Let .# be a class of isotopies of M and ¥ < M a smooth embedded
surface. If {¢p*} = .# and

k—o0

1 2(¢*(1,%)) = inf #*(Y(1,2
im #2(p"(1,2)) = inf #7()(1,2)),
then we say that ¢*(1,X) is a minimizing sequence for Problem (Z,.%).

If U is an open set of M, ¥ a surface with 0X < U and j € N an integer, then we
define

3.1)  35(U,%) = {y eIs(U) | #*(Y(7,%)) < #*(Z) + 1/(8)) VT € [0, 1]}.

Proposition 3.2. Let U = M be an open ball with sufficiently small radius and con-
sider a smooth embedded surface X such that 0L < dU is also smooth. Let A* := ¢*(1,%) be
a minimizing sequence for Problem (E,Ssj(U ,2)), converging to a stationary varifold V.
Then, V is a smooth minimal surface A with smooth boundary 0A = 0X.
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Moreover, if we form a new sequence A* by taking an arbitrary union of connected
components of A, it converges, up to subsequences, to the union of some connected compo-
nents of A.

In fact, we believe that the proof of Proposition 3.2 could be modified to include any
open set U with smooth, uniformly convex boundary. However, such a statement would
imply several technical complications in Section 5 and hence goes beyond our scopes. In-
stead, the following simpler statement can be proved directly with our arguments, though
we do not give the details.

Proposition 3.3. Let U = M be a uniformly convex open set with smooth boundary
and consider a smooth embedded surface ¥ such that 0X < 0U is also smooth. Let
A* .= ¢k(1,%) be a minimizing sequence for Problem (2, JIs(U )), converging to a stationary
varifold V. Then, V is a smooth minimal surface A with smooth boundary oA = 0X.

Moreover, if we form a new sequence A* by taking an arbitrary union of connected
components of A¥, it converges, up to subsequences, to the union of some connected compo-
nents of A.

3.2. Elementary remarks on minimizing surfaces. We end this section by collecting
some properties of minimizing sequences of isotopic surfaces which will be used often
throughout this paper. We start with two very elementary remarks.

Remark 3.4. If¥is 1/j-a.m. in an open set U and U is an open set contained in U,
then X is 1/j-a.m. in U.

Remark 35. If ¥ is 1l/j-am. in U and ye3s(X,U) is such that
A*(P(1,%)) < A*(Z), then y(1,%) is 1/j-am. in U.

Next we collect two lemmas. Their proofs are short and we include them below for
the reader’s convenience.

Lemma 3.6. Let X, be 1/j-a.m. in annuli and r : M — R* be the function of Theorem
1.5. Assume U is an open set with closure contained in An(x,t,0), where g < r(x). Let
;€ 3s;(%;, U) be such that %z(zpj(l,Zj)) < #*(X). Then i (LE) is 1/j-am. in suffi-
ciently small annuli.

Proof. Recall the definition of 1/j-a.m. in sufficiently small annuli. This means that
there is a function r : M — R* such that X is 1/j-a.m. on every annulus centered at y and
with outer radius smaller than r(y). Let An(x,7,0) be an annulus on which X is 1/j-a.m.
and U cc An(x,1,0). If y ¢ B,(x), then dist(y, U) > 0. Set ri(y) := min{r(y),dist(y, U)}.
Then y(1,X) = X on every annulus with center y and radius smaller than r|(y), and there-
fore it is 1/j-a.m. in it. If y = x, then the statement is obvious because of Remark 3.5. If
y € B;(x)\{x}, then there exists p(y), () such that U U B,(,)(») = An(x,7(y),0). By Re-
marks 3.5 and 3.4, ¥(1,X) is 1/j-a.m. on every annulus centered at y and outer radius
smaller than p(y). [
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Lemma 3.7. Let {3/} be a sequence as in Theorem 1.5 and U and \; be as in Lemma
3.6. Assume moreover that U is contained in a convex set W. If L/ converges to a varifold V,
then y;(1,X7) converges as well to V.

Proof of Theorem 3.7. By Theorem 1.5, V' is a smooth minimal surface (multiplicity
allowed). By Lemma 3.6, l,bj(l,Ej ) is also 1/j-a.m. and again by Theorem 1.5 a subse-
quence (not relabeled) converges to a varifold 7’ which is a smooth minimal surface. Since
3/ = l//j(l,Ej ) outside W, V =V’ outside W. Being W convex, it cannot contain any
closed minimal surface, and hence by standard unique continuation, V' = V' in W as
well. [

4. Proof of Proposition 2.1
Part II: Leaves

4.1. Step 1. Preliminaries. Let {X’} be a sequence as in Theorem 1.6. We keep the
convention that I" denotes the union of disjoint closed connected embedded minimal sur-
faces T’ (with multiplicity 1) and that X/ converges, in the sense of varifolds, to
V' =3 nI". Finally, we fix a curve y contained in T".

1

Let 7 : T — R" be such that the three conclusions of Proposition 1.4 hold. Consider a
finite covering {B,, (x;)} of M with p; < r(x;) and denote by C the set of the centers {x;}.
Next, up to extraction of subsequences, we assume that the set of singular points P; < X/
converges in the sense of Hausdorff to a finite set P (recall Remark 0.2) and we denote by £
the union of C and P. Recalling Remark 3.4, for each x € M\ E there exists a ball B cen-
tered at x such that:

e ¥/ N Bis a smooth surface for j large enough.

e ¥/ is 1/j-a.m. in B for j large enough.

Deform y to a smooth curve contained in I'\ E and homotopic to y in I'. It suffices to
prove the claim of the proposition for the new curve. By abuse of notation we continue to
denote it by y. In what follows, we let p, be any given positive number so small that:

e T,,(I') can be retracted on I'.

® Forevery xeI', B, (x) n T is a disk with diameter smaller than the injectivity ra-
dius of T.

For any positive p < 2p, sufficiently small, we can find a finite set of points xi,...,xy
on y with the following properties (to avoid cumbersome notation we will use the conven-

tion xy.; = Xl)l

(C1) If we let [xx, x4 1] be the geodesic segment on I' connecting x; and x4, then y
is homotopic to > [xk, Xx+1]-
k

(C2) B,(xx+1) N By(xk) = 0.
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(C3) B,(xk) v B,(xk41) is contained in a ball B! of radius 3p.
n any ba k4137 is 1/j-a.m. and smooth provided ;j is large enough.
C4) 1 ball BXK+1 %7 is 1 d h ded jis1 h

See Figure 3. From now on we will consider j so large that (C4) holds for every k. The
constant p will be chosen (very small, but independent of j) only at the end of the proof.
The existence of the points x; is guaranteed by a simple compactness argument if p, is a
sufficiently small number.

Figure 3. The points x; of (C1)—(C4).

4.2. Step 2. Leaves. In every B,(xx) consider a minimizing sequence
2/ = y,(1,27) for Problem (X7, Is;(B,(xx),%’)). Using Proposition 3.2, extract a sub-
sequence converging (in B,(xx)) to a smooth minimal surface T/* with boundary
ok =%/ n B,(xx). This is a stable minimal surface, and we claim that, as j T oo, ik
converges smoothly on every ball B(j_g),(xx) (with 0 < 1) to V. Indeed, this is a conse-
quence of Schoen’s curvature estimates, see Subsection 1.4.

By a diagonal argument, if {/;} grows sufficiently fast, PIULIS B,(xx) has the same
limit as T/**. On the other hand, for {/;} growing sufficiently fast, Lemmas 3.6 and 3.7
apply, giving that 7'/ converges to V.

Therefore, I'/** converges smoothly to n,I'" N B(1_9)p(xx) in B(_g),(xx) for every
positive @ < 1. Therefore any connected component of I'/*K A B(1_9),(xx) is eventually (for
large j’s) a disk (multiplicity allowed). The area of such a disk is, by the monotonicity for-
mula for minimal surfaces, at least ¢(1 — 0) 2pz, where ¢ is a constant depending only on M.
From now on we consider 6 fixed, though its choice will be specified later.

R Up to extraction of subsequences, we can assume that for each connected component
>/ of X/, y,(1,2/) converges to a finite union of connected components of I'/**. However,
in B<1,g)p(xk),

e cither their limit is zero;

e or the area of y,(1,%/) in B(1_9),(xx) is larger than ¢(1 — 20) 2p? for [ large enough.
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We repeat this argument for every k. Therefore, for any j sufficiently large, we define
the set Z(j, k) whose elements are those connected components Z/ of £/ n B,(xx) such that
,(1,27) intersected with B (1-6)p(xx) has area at least ¢(1 —20)%p

Recall that X/ is converging to n,T" N B,(x;) in B,(x;) in the sense of varifolds.
Therefore, the area of X/ is very close to n A (F s B, (xk)). On the other hand, by de-
finition #2(y,(1,%/) N B,(xx)) is not larger. This gives a bound to the cardinality of
Z(j, k), independent of j and k. Moreover, if p and 0 are sufficiently small, the con-
stants ¢ and ¢ get so close, respectively, to 1 and 0 that the cardinality of #(j, k) can be
at most n;.

4.3. Step 3. Continuation of the leaves. We claim the following

Lemma 4.1 (Continuation of the leaves). If p is sufficiently small, then for every j
sufficiently large and for every element A of ¥ (j, k) there is an element A of ¥ (j, k+ 1)
such that A and A are contained in the same connected component of ¥/ ~ B&k+1,

The lemma is sufficient to conclude the proof of the theorem. Indeed let
{A1, Az, ..., Ay} be the elements of #(j,1). Choose a point y; on A; and then a point y;
lying on an element A of #(},2) such that A; U A is contained in a connected component
of £/ n B"“2. We proceed by induction and after N steps we get a point yy,; in some Ay.
After repeating at most n; + 1 times this procedure, we find two points y;v.; and y,nyi
belonging to the same A;. Without loss of generality we discard the first /N points and re-
number the remaining ones so that we start with y; and end with y,y.; = y;. Note that
n < n;. Each pair yk, yri1 can be joined with a path y; ;. lying on ¥/ and contained in a
ball of radius 3p, and the same can be done with a path y,y, ; joining y,y+1 and y;. Thus,
if we let

y = Zk:yk,kﬂ + Van+1,1

we get a closed curve contained in /.

It is easy to show that the curve J is homotopic to ny in |J B**!. Indeed, for each
k

sN +r fix a path #*V*" 2 [0, 1] — B,(x,) with 7*¥"(0) = yv, and 7*¥ (1) = x,. Next fix
an homotopy {*V*": [0,1] x [0,1] — B&*+1 with

o IM(0,) = Ponirsnrt s
o CVH(1,) =[x x4,

o (M(-,0) = 7™ (.) and
o INFI(L 1) = NI,

Joyning the (*’s we easily achieve an homotopy between y and 7. See Figure 4. If p is
chosen sufficiently small, then | J B®**! is contained in a retractible tubular neighborhood
k

of I" and does not intersect E.
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Bl,2

¢! “fills in”
here

Figure 4. The homotopies (™.

4.4. Step 4. Proof of the continuation of the leaves. Let us fix a p for which Lemma
4.1 does not hold. Our goal is to show that for p sufficiently small, this leads to a contradic-
tion. Clearly, there is an integer k£ and a subsequence j; T co such that the statement of the
lemma fails. Without loss of generality we can assume k = 1 and we set x = x;, y = X, and
B'2 = B. Moreover, by a slight abuse of notation we keep labeling X/ as X/.

Consider the minimizing sequence of isotopies {y/,} for Problem (X, Js;(B,(x),%/))
and {¢,} for Problem (X, 3s;(B,(y),%’)) fixed in Step 3. Since B,(x) N B,(y) =0 and y,
and ¢, leave, respectively, M\B,(y) and M\B,(x) fixed, we can combine the two isotopies
in

(2t 2) for te0,1/2],
i(8,2) = {¢,l(2t “1,2) forrell/21].

If we consider /' = ®;(1,%/), then
A By (x) =¥y (1,E) N B,(x) and ' B,(y) = ¢(1,%)  By(y).

Moreover for a sufficiently large /, the surface /! by Lemma 3.6 is 1/j-a.m. in B and in
sufficiently small annuli.

Arguing as in Step 2 (i.e. applying Theorem 1.5, Lemma 3.6 and Lemma 3.7), with-
out loss of generality we can assume that:

(1) ¥/ converges, as [ T oo, to smooth minimal surfaces A’ and A’ respectively in
B,(x) and B,(y).

(ii) A/ and A/ converge, respectively, to n,T'' N B,(x) and n,T" n B, ().

(iii) For /; growing sufficiently fast, ¥/ converges to the varifold V = Sl
i

Let 2/ be the connected component of _EJ N B, (x) which contradicts Lemma 4.1. Denote by
>/ the connected component of B N X/ containing /.



66 De Lellis and Pellandini, Genus bounds for minimal surfaces

Now, by Proposition 3.2, @(1, ¥/) N B,(x) converges to a stable minimal surface
A/ = N and ®;(1,%/) converges to a stable mmlmal surface A/ = AJ. Because of (ii) and
of curvature estimates (see Subsection 1.4), A/ converges necessarily to rI'' N B ,(x) for
some integer r > 0. Since £/ € #(j, 1), it follows that r > 1. Similarly, CD;(I /) A B,(y)
converges to a smooth minimal surface A’ and A’ converges to sT'' N B,(y) for some
integer s > 0. Since X/ does not contain any element of % (/,2), it follows necessarily
s=0.

Consider now the varifold W which is the limit in B of X// = =®(1, ¥/). Arguing
again as in Step 2 we choose {/;} growing so fast that W, which is the limit of /4,
coincides with the limit of A/ in B,(x) and with the limit of A; in B,(y). According to the
discussion above, ¥ coincides then with rI'" A B,(x) in B,(x) and vanishes in B, (). More-
over

(4.1) IW| 2 IV|_B=n#*_T'nB

in the sense of varifolds. We recall here that ||| and || V|| _ B are nonnegative measures
defined in the following way:

42) Jox)d| W) =lim [
b
and
(4.3) Jo(x)d|[V]|(x) :}%ﬂré fﬁ”

for every ¢ € C.(B). Therefore (4.1) must be understood as a standard inequality between
measures, which is an effect of (4.2), (4.3) and the inclusion /4 = £/ A B. An important
consequence of (4.1) is that

(4.4) |W|(6B:(w)) =0 for every ball B;(w) = B.

Next, consider the geodesic segment [x,y] joining x and y in I'". For z € [x, )],
B,)»(z) = B. Moreover,

(4.5) the map z +— || W||(B,2(z)) is continuous in z,

because of (4.1) and (4.4).

Since || W||(B,)2(x)) = #*(T" " B,j2(x)) and ||[W||(B,/2(»)) =0, by the continuity
of the map in (4.5), there exists z € [x, y] such that

W (Byalc) = 3 #° (T 1 Ba(2)).
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Since ||W||(0B,/2(z)) = 0, we conclude (see [6], Proposition 1.62(b)) that
s Lo
(4.6) lim HHE A B,y (2) = 572 (T 0 Byp(2)

(see Figure 5).

[|W] = 0 here

|W|| =T here

the segment [x, y]
|W| < ||V = nT" everywhere

Figure 5. The varifold W.

On the other hand, since /b converges to V in the sense of varifolds and
V =nI"nB,/s(z) in B,/ (z), we conclude that

@.7)  lim (N A Byys(z) = (n,- — %) AT A B,p(2)).

JTeo
If p is sufficiently small, I N B, »(z) is close to a flat disk and B, 5(z) is close to a flat ball.

Using the coarea formula and Sard’s Lemma, we can find a o € ]0,p/2[ and a sub-
sequence of {7/} (not relabeled) with the following properties:

(a) /% intersects 0B,(z) transversally.

(b) Length(Z/% N dB,(z)) < 2(1/2 + &)no.

(c) Length((Z/"\Z/h) N 0B,(z)) < 2((n; — 1/2) + &)7o.
(d) #*(T" " B,(2)) 2 (1 - &)na™.

Note that the geometric constant ¢ can be made as close to 0 as we want by choosing p
sufficiently small.

~In order to simplify the notation, set Qj': ¥/ Consider a minimizing sequence
Q7 = ¢ (1,Q) for Problem (Q/,3Js;(B,(z),Q’)). By Proposition 3.2, Q/* n B,(z) con-
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verges, up to subsequences, to a minimal surface Z/ with boundary Q/ N 0B;(z). Moreover,
using Lemma 3.7 and arguing as in the previous steps, we conclude that Z/ converges to
n' N B,(z).

Next, set:

e Q) =3l A B,(z), Q) = ¢, (1,Q7).

o O = (FNE) (B (2), @ = (1, Q).
By Proposition 3.2, since Qj and Q/ are unions of connected components of Q/ N B,(z), we
can assume that Q/% and Q/* converge respectively to stable minimal surfaces E/ and &/

with

08/ =2 A 0B, (z), 0E/ = (ZPN\EHN) A 0B,(z).

Hence, by (b) and (c), we have
(4.8)  Length(dE/) <2 3 +¢|no, Length(02/) <2(n; — 3 +¢ |no.

On the other hand, using the standard monotonicity estimate of Lemma 4.2 below, we con-
clude that

[1]>

(4.9) (2 < (ni - % - n) na?,
(4.10) H(E)) < G + n) no>.

As the constant ¢ in (d), # as well can be made arbitrarily small by choosing p suitably
small. We therefore choose p so small that

A 3
(4.11) (2 < (ni —§>n02,
(4.12) HE) < gmﬂ

and

(4.13) A (T A By(z))

1\

1
1 —— 2,
< 8]’11‘) i

Now, by curvature estimates (see Subsection 1.4), we can assume that the stable mini-
mal surfaces £/ and E/, are converging smoothly (on compact subsets of B,(z)) to stable
minimal surfaces & and E. Since &/ = E/ + &/ converges to n;,I'' n B,(z), we conclude that
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E=7
i+

I N B,(z) and E = #il'' N B,(z), where 7 and 7 are nonnegative integers with
n;.

+ On the other hand, by (4.11), (4.12) and (4.13), we conclude

(4.14) ﬁ(l - %) no? = #*(E) £ liminf #2(5/) < gnaz,
i J

(4.15) ﬁ(l — 8i> no> = #*(8) < liminf #2(E/) < (n,. - %) no>.

n; J

From (4.14) and (4.15) we conclude, respectively, 77 = 0 and 72 < n; — 1, which contradicts
n + n= n;.

4.5. A simple estimate. The following lemma is a standard fact in the theory of mini-
mal surfaces.

Lemma 4.2. There exist constants C and ry > 0 (depending only on M) such that
1
(4.16) HA(Z) < <2 - Ca> o Length(0X)

for any o < ry and for any smooth minimal surface ¥ with boundary 0¥ < 0B,(z).

Indeed, (4.16) follows from the usual computations leading to the monotonicity for-
mula. However, since we have not found a reference for (4.16) in the literature, we will
sketch a proof in Appendix A.

5. Proof of Proposition 3.2
Part I: Convex hull property

5.1. Preliminary definitions. Consider an open geodesic ball U = B,(¢) with suffi-
ciently small radius p and a subset y = dU consisting of finitely many disjoint smooth Jor-
dan curves.

Definition 5.1. We say that an open subset 4 — U meets 0U in p transversally if
there exists a positive angle 6 such that:

(@) 0AnoU < y.
(b) Forevery p e 04 n dU we choose coordinates (x, y,z) in such a way that the tan-
gent plane T}, of 0U at p is the xy-plane and y’(p) = (1,0,0). Then in this setting every

. . 1
point ¢ = (g1, 42, q3) € A satisfies Eal = tan <2 — Ho>.
q2

Remark 5.2. Condition (b) of the above definition can be stated in the following ge-
ometric way: There exixt two halfplanes 7; and 7, meeting at the line through p in direc-
tion y’(p) such that
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e they form an angle 0y with T;
e the set A is all contained in the wedge formed by 7; and 7ny;

see Figure 6.

P

Figure 6. Forany pe AnodU, A is contained in a wedge delimited by two halfplanes meeting at p transversally
to the plane T,.

In this section we will show the following lemma.

Lemma 5.3 (Convex hull property). Let V and X be as in Proposition 3.2. Then, there
exists a convex open set A = U which intersects U in 0X transversally and such that
supp(|[V]]) = 4.

Our starting point is the following elementary fact about convex hulls of smooth
curves lying in the euclidean two-sphere.

Proposition 5.4. If f < 0%, = R? is the union of finitely many C?-Jordan curves, then
its convex hull meets %, transversally in f5.

The proof of this proposition follows from the regularity and the compactness of 8
and from the fact that f is not self-intersecting. We leave its details to the reader.

5.2. Proof of Lemma 5.3. From now on, we consider y = J%: this is the union of
finitely many disjoint smooth Jordan curves contained in JU. Recall that U is a geodesic
ball B,(&). Without loss of generality we assume that p is smaller than the injectivity radius.

Step 1. Consider the rescaled exponential coordinates induced by the chart
f:B,(&) — %, given by f(z) = (expz'(z))/p. These coordinates will be denoted by
(x1,x2,x3). We apply Proposition 5.4 and consider the convex hull B of f = f(JX) in 4.
According to our definition, f~!(B) meets U transversally in y.
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We now let 0 be a positive angle such that condition (b) in Definition 5.1 is fulfilled
for B. Next we fix a point x € f(y) and consider the halfplanes 7; and n, delimiting the

wedge of condition (b). Without loss of generality, we can assume that the coordinates are
chosen so that 7 is given by

m = {(z1,22,23) : 23 S a}

for some positive constant a. Condition (b) ensures that a < ay < 1 for some constant
inpendent of the point x € ().

For 7 €10, oo[ denote by C, the points C, := {(0,0,—7)} and by r(¢) the positive real
numbers

r(t) == /1412 + 2at.
We finally denote by R; the closed balls
RZ‘ = ,@,(1)((?,)

The centers C; and the radii r(¢) are chosen in such a way that the intersection of the sphere
OR, and 04 is always the circle 7; N 04;.

Note, moreover, that for ¢ coverging to + oo, the ball R, converges towards the region
z3 < a}. Therefore, the region {z3 > a} N %4, is foliated with the caps
g p

S;:=0R,n %, fortel0, .

In Figure 7, we see a section of this foliation with the plane z,z3.

the foliation “3

T

Figure 7. A planar cross-section of the foliation {S; : 7 € ]0, o0 [}.
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We claim that, for some constant #, > 0 independent of the choice of the point
x € f(y), the varifold V is supported in f~!(R,). A symmetric procedure can be followed
starting from the plane 7;. In this way we find two off-centered balls and hence a corre-
sponding wedge W, satisfying condition (b) of Definition 5.1 and containing the support
of V; see Picture 8. Our claim that the constant 7y can be chosen independently of x and
the bound a < gy < 1 imply that the planes delimiting the wedge W, form an angle larger
than some fixed constant with the plane 7, tangent to 04, at x. Therefore, the intersections
of all the wedges W,, for x varying among the points of y, yield the desired set 4.

the wedge W,

-~ = &S -

Figure 8. A planar cross-section of the wedge W.,.

Step 2. We next want to show that the varifold V is supported in the closed ball
f~Y(R,). For any t € [0, ], denote by 7, : U — f~!(R,) the nearest point projection. If
the radius p, of U and the parameter ¢, are both sufficiently small, then 7, is a well defined
Lipschitz map (because there exists a unique nearest point). Moreover, the Lipschitz con-
stant of 7, is equal to 1 and, for ¢ > 0, |Vr,| < 1 on U\ f~!(R,). In fact the following lemma
holds.

Lemma 5.5. Consider in the euclidean ball %, a set U that is uniformly convex, with
constant co. Then there is a p(co) > 0 such that, if py < p(co), then the nearest point projec-
tion © on f(U) is a Lipschitz map with constant 1. Moreover, at every point P ¢ f(U),
|Vr(P)| < 1.

The proof is elementary and we give it in Appendix 12 for the reader’s convenience.
Next, it is obvious that 7y is the identity map and that the map (¢, x) — 7,(x) is smooth.

Assume now for a contradiction that ¥ is not supported in f~!'(R,,). By Lemma 5.5,
the varifold (7, ), V" has, therefore, strictly less mass than the varifold V.

Next, consider a minimizing sequence A* as in the statement of Proposition 3.2. Since
OAF = 03, the intersection of A* with dU is given by dX. On the other hand, by construc-
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tion 0T < f~!(R;) and therefore, if we consider A¥ := () #Ak we obtain a (continuous)
one-parameter family of currents with the properties that:

(i) oAk = oz
(i) Af = Ao.
(iii) The mass of A¥ is less or equal than #2(A¥).

(iv) The mass of AZ converges towards the mass of (r;,), V" and hence, for k large
enough, it is strictly smaller than the mass of V.

Therefore, if we fix a sufficiently large number k, we can assume that (iv) holds
with a gain in mass of a positive amount ¢ =1/j. We can, moreover, assume that
H2(AF) < #2(Z) +1/(8)). By an approximation procedure, it is possible to replace the
family of projections {m},.o,) Wwith a smooth isotopy {y,},.(o Wwith the following
properties:

(V) W is the identity map and |, is the identity map for every ¢ € [0, 1].
() 284 < H2(0(2)) + 1/(8))
(vii) 72 (9, (A5)) < M((m)y V) — 1/

This contradicts the 1/j-almost minimizing property of X.

In showing the existence of the family of isotopies i, a detail must be taken into ac-
count: the map 7, is smooth everywhere on U but on the circle f~!(R,) n dU (which is the
same circle for every #!). We briefly indicate here a procedure to construct iy, skipping the
cumbersome details.

We replace the sets {R,;} with a new family %, which have the following prop-
erties:

;%0:@1.

%[0 == Rlo'

e For t € [0, p] the boundaries 0%, are uniformly convex.

59?[0&%1 :R[mav@l-

e The boundaries of 0%, are smooth for 7 € [0, #)[ and form a smooth foliation of
B1(0)\R,.

The properties of the new sets are illustrated in Figure 9.
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6%[

l
ORy,

Figure 9. A planar cross-section of the new foliation.

Since A* touches dU in 0% transversally and 0 = f~!(%,) for every t, we conclude
the existence of a small & such that A* = f~!(%,5). Moreover, for J sufficiently small, the
nearest point projection 7,,_s on f ‘1(%,0_5) is so close to =, that

M((7t1,-5),AF) < M((m,),A") + &/4.

We then construct , in the following way. We fix a smooth increasing bijective func-
tion 7 : [0, 1] — [0, 7 — ]

® 1, is the identity on U\%s and on 2.
® On A5\ %, it is very close to the projection 7., on Z.(;).

In particular, for this last step, we fix for a smoooth function o : [0, 1] x [0, 1] such that, for
each 7, o(t,-) is a smooth bijection between [0, 1] and [0, z(7)] very close to the function
which is identically 7(¢#) on [0,1]. Then, for se[0,1], we define y, on the surface
OR(1-s)5+52(1) to be the nearest point projection on the surface 0%, ). So, ¥, fixes the leave
0%s but moves most of the leaves between 0%s and 0., towards 0%,(,. This completes
the proof of Lemma 5.3.

6. Proof of Proposition 3.2
Part II: Squeezing Lemma

In this section we prove the following lemma.

Lemma 6.1 (Squeezing Lemma). Let {A*} be as in Proposition 3.2, xe U and
S >0 be given. Then there exists an ¢y > 0 and a K € N with the following property. If
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k=K and ¢ € 3s(B,,(x) " U) is such that %2(¢(1,Ak)) < H2(AY), then there exists a
® € Is(B,,(x) N U) such that

(6.1) O(1,-) = o(1,),
(6.2) HHD(t,A)) < #2(A*) + B for every te [0, 1.

If x is an interior point of U, this lemma reduces to [8], Lemma 7.6. When x is on the
boundary of U, one can argue in a similar way (cp. with [8], Section 7.4). Indeed, the proof
of [8], Lemma 7.6 relies on the fact that, when ¢ is sufficiently small, the varifold V" is close
to a cone. For interior points, this follows from the stationarity of the varifold V. For
points at the boundary this, thanks to a result of Allard (see [3]), is a consequence of the
stationarity of V" and of the convex hull property of Lemma 5.3.

6.1. Tangent cones. Consider the varifold V' of Proposition 3.2. Given a point x € U
and a radius p > 0, consider the chart f ,: B,(x) — %) given by f ,(y) = exp;' (»)/p.
We then consider the varifolds V. , := (fy,)) +V. Moreover, if 2> 0, we will denote by
0, : R® — R the rescaling 0;(x) = x/A.

If x € U, the monotonicity formula and a compactness result (see [18], Theorem 19.3)
imply that, for any p; | 0, there exists a subsequence, not relabeled, such that Vy , con-
verges to an integer rectifiable varifold W supported in #; with the property that
(0,).W L Bi(0) = W for any 4 < 1. The varifolds W which are limit of subsequences
Vy p, are called tangent cones to V" at x. The monotonicity formula implies that the mass
of each W is a positive constant 6(x, V') independent of W (see again [18], Theorem 19.3).

If x € AU, we fix coordinates y;, y», y3 in R? in such a way that fx,p(U N Bp(x)) con-
verges to the half-ball 4 = %, n {y; > 0}.

Recalling Lemma 5.3, we can infer with the monotonicity formula of Allard for
points at the boundary (see [3], 3.4) that V. , = (/. ).V have equibounded mass. There-
fore, if p; | 0, a subsequence of V. p;» IOt relabeled, converges to a varifold W.

By Lemma 5.3, there is a positive angle 6, such that, after a suitable change of coor-
dinates, W is supported in the set

{I32] £ y1tanfo}.

Therefore supp(W) n{y1 =0} = {(0,0,7) : t € [-1,1]} =: /. Applying the monotonocity
formula of [3], 3.4, we conclude that

(6.3) [W1l(4) =0
and

(6.4) 1W11(,(0)) = z0( V]|, x)p,



76 De Lellis and Pellandini, Genus bounds for minimal surfaces

where

V| (B
o1V, x) = tim V1 Bo3) g(x))
rl0 p
is independent of . Being W the limit of a sequence V. ’ with Pl 0, we conclude that W
is a stationary varifold.

Now, define the reflection map r : R* — R® given by r(zy, 23, 23) = (=21, —22,23). By
(6.3), using the reflection principle of [3], 3.2, the varifold W’ := W + r W is a stationary
varifold. By (6.4) and [2], Corollary 2 of 5.1, we conclude that (0;), W' % = W’ for
every 2 < 1. On the other hand, this implies (0;), W L %, = W. Therefore W is a cone
and we will call it tangent cone to V at x.

6.2. A squeezing homotopy. Since for points in the interior the proof is already given
in [8], we assume that x € dU. Moreover, the proof given here in this case can easily be
modified for x € U. Therefore we next fix a small radius ¢ > 0 and consider an isotopy ¢
of U n B,(x) keeping the boundary fixed.

We start by fixing a small parameter 6 > 0 which will be chosen at the end of
the proof. Next, we consider a diffeomorphism G, between % = %, {y; >0} and
B.(x) n U. Consider on 4, the standard Euclidean metric and denote the corresponding
2-dimensional Hausdorff measure with #2. If ¢ is sufficiently small, then G, can be chosen
so that the Lipschitz constants of G, and G;! are both smaller than 1 + ¢. Then, for any
surface A = B,(x) n U,

(6.3) (1 CO)A(A) £ HZ(Gu(A)) £ (1 + CO)A(A),
where C is a universal constant.

We want to construct an isotopy A € Is(%;") such that A(1,-) = G,0¢(1,G. ("))
and (for k large enough)

(6.6) A2 (A(1t,G.(AY)) £ #2(G.(A))(1 + C8) + C5  forevery 1€ [0,1].

After finding A, ®(¢,-) = G, ' o A(1, G,(+)) will be the desired map. Indeed @ is an isotopy

&

of B.(x) n U which keeps a neighborhood of B,(x) n U fixed. It is easily checked that
®(1,-) = ¢(1,-). Moreover, by (6.5) and (6.6), for k sufficiently large we have

(6.7) (D, A")) < (1+ CO)H*(A*) + €5 Veelo,1],

for some constant C inpendent of § and k. Since #2(A¥) is bounded by a constant inde-
pendent of 0 and k, by choosing ¢ sufficiently small, we reach the claim of the lemma.

Next, we consider on 4," a one-parameter family of diffeomorphisms. First of all we
consider the continuous piecewise linear map o : [0, 1[ — [0, 1] defined in the following way:

® ot,s) =sfor (t+1)/2=s=1.
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e o(t,s)=(1—t)sfor0<s=<t.
® o(t,s)islinearon t < s < (1 +1)/2.

So, each «(t,-) is a biLipschitz homeomorphism of [0, 1] keeping a neighborhood of 1 fixed,
shrinking a portion of [0, 1] and uniformly stretching the rest. For ¢ very close to 1, a large
portion of [0, 1] is shrinked into a very small neighborhood of 0, whereas a small portion
lying close to 1 is stretched to almost the whole interval.

Next, for any given ¢ € [0,1[, let y, := ((1 — #)57¢,0,0) where 7 is a small parameter
which will be fixed later. For any z € 4,” we consider the point 7,(z) € 04, such that the
segment [y, 7,(z)] contains z. We then define ¥(z,z) to be the point on the segment
[y, m:(z)] such that

B [ e LT

|x; — m,(x

It turns out that W(0, -) is the identity map and, for fixed 7, (¢, -) is a biLipschitz homeo-
morphism of %, keeping a neighborhood of 0%, fixed. Moreover, for ¢ close to 1, ¥(z,-)
shrinks a large portion of %, in a neighborhood of y, and stretches uniformly a layer close
to 04.. See Figure 10.

- - - boundary of V'

— boundary of ¥(z, V)

Figure 10. For ¢ close to 1 the map ¥(z,-) shrinks homothetically a large portion of 4,".

We next consider the isotopy (¢, ) := G, ! o ¥(1, G,(+)). It is easy to check that, if we
fix a A* and we let 7 1 1, then the surfaces (1, G,(A* )) converge to the cone with center 0
and base G,(A") N 04,.

6.3. Fixing a tangent cone. By Subsection 6.1, we can find a sequence p; | 0 such
that V', , converges to a tangent cone W. Our choice of the diffcomorphism G, implies

that (O,, o G,,),.V" has the same varifold limit as V ,,.

Since A¥ converges to V in the sense of varifolds, by a standard diagonal argument,
we can find an increasing sequence of integers K; such that:

C) 0, (G,;,(Ak’ )) converges in the varifold sense to W, whenever k; > K;.
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(C), the conical property of W and the coarea formula imply the following fact. For p; suf-
ficiently small, and for k sufficiently large, there is an ¢ € |p;/2, p;[ such that:

(6.8)  AH2(¥(1,G(A") " L)) < #*(G,(A*) L) +J Vtandall open L = %,

where W is the map constructed in the previous subsection. This estimate holds indepen-
dently of the small parameter . Moreover, it fixes the choice of ¢ and K as in the state-
ment of the lemma. K depends only on the parameter J, which will be fixed later. ¢ might
depend on k = K, but it is always larger than some fixed p;, which will then be the &y of the
statement of the lemma.

6.4. Construction of A. Consider next the isotopy ¥ = G, o ¢ o G, !. By definition,
there exists a compact set K such that y(¢,z) = z for z € 4,"\K and every 7. We now choose
n so small that K < {x : x; > #e}. Finally, consider 7 € |0, 1| with T sufficiently close to 1.
We build the isotopy A in the following way:

e Forte[0,1/3] weset A(z,-) =W (3tT,-).
e Forre[1/3,2/3] weset A(t,) =¥ (3T, (3t — 1,-)).
e Forte[2/3, 1] weset A(t,-) = Y (3(1 — )T, ¥(1,)).

If T is sufficiently large, then A satisfies (6.6). Indeed, for 7 € [0,1/3], (6.6) follows from
(6.8). Next, consider 7 € [1/3,2/3]. Since ¥(¢,-) moves only points of K, A(t,x) coincides
with W(T, x) except for x in ¥(7', K). However, ¥(7, x) is homotethic to K with a very
small shrinking factor. Therefore, if 7 is chosen sufficiently large, #.*(A(t, Gg(Ak))) is ar-
bitrarily close to #(A(1/3,G,(A"Y))). Finally, for ¢ e [2/3,1], A(t,x) =¥ (3(1 — )T, x)
for x ¢ W(3(1 — )T, K) and it is ¥(3(1 — #)T,¥(1,x)) otherwise. Therefore, A(z, G,(A"))
differs from ¥(3(1 —1)T, G.(A* )) for a portion which is a rescaled version of
G (p(1, Ak)\Gs(Ak)). Since by hypothesis # (¢(1, Ak)) < #?(A"), we actually get

A2 (Ge(p(1, AVN\G(AY)) < (14 CO) A7 (G(A\G; (p(1,A9)))

and by the scaling properties of the Euclidean Hausdorff measure we conclude (6.6) for
te[2/3,1] as well.

Though A is only a path of biLipschitz homeomorphisms, it is easy to approximate it

with a smooth isotopy: it suffices indeed to smooth |y 77,1 5, for instance mollifying it
with a standard kernel.

7. Proof of Proposition 3.2
Part III: y-reduction
In this section we prove the following:

Lemma 7.1 (Interior regularity). Let V be as in Proposition 3.2. Then
| V|| = #72 _ A where A is a smooth stable minimal surface in U (multiplicity is allowed ).
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In fact the lemma follows from the interior version of the squeezing lemma and the
following proposition, applying the regularity theory of replacements as described in [§]
(cp. with Section 7 therein).

Proposition 7.2. Let U be an open ball with sufficiently small radius. If A is an em-
bedded surface with smooth boundary A < 0U and {A*} is a minimizing sequence for Prob-
lem (A, Is(U )) converging to a varifold W, then there exists a stable minimal surface T with
T\[coAand W =T inU.

This proposition has been claimed in [8] (cp. with Theorem 7.3 therein) and since
nothing on the behavior of W at the boundary is claimed, it follows from a straightforward
modification of the theory of y-reduction of [13] (as asserted in [8]). This simple modifica-
tion of the y-reduction is, as the original y-reduction, a procedure to reduce through simple
surgeries the minimizing sequence A* into a more suitable sequence.

In this section we also wish to explain why this argument cannot be directly applied
neither to the surfaces A* of Proposition 3.2 on the whole domain U (see Remark 7.6), nor
to their intersections with a smaller set U’ (see Remark 7.7). In the first case, the obstruc-
tion comes from the 1/j-a.m. property, which is not powerful enough to perform certain
surgeries. In the second case this obstruction could be removed by using the squeezing
lemma, but an extra difficulty pops out: the intersection A U’ is, this time, not fixed
and the topology of A¥ n U’ is not controlled. These technical problems are responsible
for most of the complications in our proof.

7.1. Definition of the p-reduction. In what follows, we assume that an open set
U = M and a surface A in M with A = dU are fixed. Moreover, we let ¥ denote the col-
lection of all compact smooth 2-dimensional surfaces embedded in U with boundary equal
to JA.

We next fix a positive number J such that the conclusion of [13], Lemma 1 holds and
consider y < 6%/9. Following [13] we define the y-reduction and the strong y-reduction.

Definition 7.3. For X;,%, € ¥ we write

U
5, s,

and we say that %, is a (y, U)-reduction of Z;, if the following conditions are satisfied:

(y1) X, is obtained from X; through a surgery as described in Definition 2.2. There-
fore:

— %1\X; = 4 < U is diffeomorphic to the standard closed annulus An(x,1/2,1).
— %,\Z; = Dy u D, < U with each D; diffeomorphic to Z.

— There exists a set Y embedded in U, homeomorphic to %, with 0Y = 4 v Dy u D,
and (Y\0Y) N (£, UX;) = 0. (See Picture 2.)
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(y2) #H2(A) + #*(Dy) + #*(Dy) < 2.

(y3) If T is the connected component of £ U U containing 4, then for each compo-
nent of I'\ 4 we have one of the following possibilities:

— either it is a disc of area > 6°/2;
— or it is not simply connected.

Remark 7.4. The previous definition has another interesting consequence that
the reader could easily check: X € % is (y, U)-irreducible if and only if whenever A is a
disc with 0A = AnX and #*(A) <y, then there is a disc D =X with dD = A and
#*(D) < %)2.

U
A slightly weaker relation than (y'<< ) can be defined as follows. We consider 2,2, € ¢

and we say that X, is a strong (y, U)-reduction of X;, written X, "< %, if there exists an
isotopy ¥ € 3s(U) such that:

(s1) 2 "< p(z).
(s2) Zon(M\U) =Z, n(M\U).
(s3) A2(Y(Z1)AZ) < 7.
We say that X € 4 is strongly (y, U)-irreducible if there is no = € % such that £ (y’<U) >,
Remark 7.5. Arguing as in [13] one can prove that, for every A’ € €, there exist a

constant ¢ =1 (depending on &, g(A’) and %2(/\’)) and a sequence of surfaces X;,
j=1,...,k, such that

(7.1) k Zc,

(7.2) Se%, j=1,....k

(7.3) 5, "y 0Dy
(7.4) AT AN) < 3¢y,

(7.5) ¥ is strongly (y, U)-irreducible.

Compare with [13], Section 3, and in particular with (3.3), (3.4), (3.8) and (3.9) therein.

7.2. Proof of Proposition 7.2. Applying Lemma 5.3, we conclude that a susbse-
quence, not relabeled, of A* converges to a stationary varifold ¥ in U such that
U nsupp(V) = dA. Next, arguing as in Section 6.1, we conclude that ||V]|(0A) = 0, and
hence that || V||(0U) = 0. Arguing as in [13], pages 364-365 (see (3.22)—(3.26) therein), we
find a y, > 0 and a sequence of y,-strongly irreducible surfaces =¥ with the following
properties:
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e 3 is obtained from A through a number of surgeries which can be bounded inde-
pendently of k.

e > converges, in the sense of varifolds, to V.

This allows to apply [13], Theorem 2 and Section 5 to the surfaces ¥ to conclude that
supp(¥)\dU is a smooth embedded stable minimal surface.

Remark 7.6. This procedure cannot be applied if the minimality of the sequence
AF in 3s(U) were replaced by the minimality in Js;(U). In fact, the proof of [13], The-
orem 2 uses heavily the minimality in J3s(U) and we do not know how to overcome this
issue.

7.3. Proof of Lemma 7.1. Let A* and V' be as in Proposition 3.2 and in Lemma 7.1.
Let x € U and consider a U’ = B,(x) = U as in Lemma 6.1. Applying Lemma 6.1 we can
modify A* in B,(x) getting a minimizing sequence {Ak’j }; for Ss(BC(x)). Applying Pro-
position 7.2, we can assume that Ak converges, as j T oo to a varifold V] which in B,(x)
is a stable minimal surface X*. By the curvature estimates for minimal surfaces (cp. also
with the Choi-Schoen Compactness Theorem), we can assume that ** converges to a stable
smooth minimal surface X*. Extracting a diagonal subsequence AR = AR e can as-
sume that A* is still minimizing for problem Js;(U) and hence that it converges to a vari-
fold V'. V' coincides with X in B,(x) and with V outside B;(x) and hence it is a replace-
ment according to [8], Definition 6.2 (see Section 7 therein). By [8], Proposition 6.3, V'
coincides with a smooth embedded minimal surface in U.

Remark 7.7. Note that the arguments of [13], Section 3 cannot be applied directly
to the sequence A*. It is indeed possible to modify A* in B,(x)=: U’ to a strongly y-
irreducible A¥. However, the number of surgeries needed is controlled by .#> (Ak N B,(x))
and g(Ak N U’). Though the first quantity can be bounded independently of k, on the sec-
ond quantity (i.e. g(A* N U’)) we do not have any a priori uniform bound.

8. Proof of Proposition 3.2
Part IV: Boundary regularity

In this section we conclude the proof of the first part of Propositions 3.2 and 3.3.
More precisely, we show that the surface A of Lemma 7.1 is regular up to the boundary

and its boundary coincides with 0X.

Lemma 8.1 (Boundary regularity). Let A be as in Lemma 7.1. Then A has a smooth
boundary and 0A = 0X.

As a corollary, we conclude that the multiplicity of A is everywhere 1.
Corollary 8.2. There exist finitely many stable embedded connected disjoint mini-
mal surfaces Ty,..., Uy < U with disjoint smooth boundaries and with multiplicity 1

such that

(8.1) A=T1u---ully and O0A=7l'yu---udly.
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Proof. Lemmas 7.1 and 8.1 imply that A is the union of finitely many disjoint con-
nected components 'y U--- U 'y contained in U and that either 0I'; = 0 or dI'; is the
union of some connected components of 0X. In this last case, the multiplicity of I'; is nec-
essarily 1. On the other hand, 0I"; = 0 cannot occur, otherwise I'; would be a smooth em-
bedded minimal surface without boundary contained in a convex ball of a Riemannian
manifold, contradicting the classical maximum principle. []

8.1. Tangent cones at the boundary. Consider now x € supp|| V|| n dU. We follow
Subsection 6.1 and consider the chart fy ,: B,(x) — %) given by f. ,(y) = exp;'(»)/p.
We then denote by V, , the varifolds (f ,), V. Moreover, if A >0, we will denote by
0, : R* — R the rescaling 0;(x) = x//.

Let next W be the limit of a subsequence V' ,. Again following the discussion of
Subsection 6.1, we can choose a system of coordinates (y;, 2, y3) such that:

e ¥V is integer rectifiable and supp( W) is contained in the wedge
Wed := {(y1, 12, »3) : [32| < yitanbo} 0 %:(0).

e supp(W) containes the line 7 = {(0,0,7) : t € [—1,1]} (which is the limit of the
curves fy ,(0Z N B,(x))).

e If we denote by r: R®* — R® the reflection given by r(z1,2,23) = (—z1, —22,23),
then ry W 4 W is a stationary cone.

By the Boundary Regularity Theorem of Allard (see [3], Section 4), in order to show
regularity it suffices to prove that:

(TC) Any W as above (i.e. any varifold limit of a subsequence (fy"), V" with p, | 0)
is a half-disk of the form

(8.2) Py = {(yl,yz,y3) :y1 >0, y3 = ytan 0} ﬂggl(O)
for some angle 0 € |—7/2,7/2].

In the rest of this section we aim, therefore, at proving (TC). As a first step we now
show that

N
(8.3) W= kP
i=1

where k; = 1 are integers and 0; are angles in [—0y, 0y]. There are two possible ways of
seeing this. One way is to use the classification of stationary integral varifolds proved by
Allard and Almgren in [1].

The second, which is perhaps simpler, is to observe that, on %" the varifold W is
actually smooth. Indeed, by the interior regularity, V' is a smooth minimal surface in
B,(x) n V and it is stable, therefore, by Schoen’s curvature estimates, a subsequence of
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V.., converges smoothly in compact subsets of 7. It follows that W’ := W + ry W coin-
cides with a smooth minimal surface outside on %;(0)\/. On the other hand W is a cone
and therefore we conclude that 0%, ,(0) n W"\{(0,0,1/2),(0,0,—1/2)} is a smooth 1-d
manifold consisting of arcs of great circles. Since supp(W) = Wed, we conclude that in
fact 02, ,,(0) n W\{(0,0,1/2),(0,0,—1/2)} consists of finitely many planes (mupltiplicity
is allowed) passing through /. This proves (8.3).

8.2. Diagonal sequence. We are now left with the task of showing that N =1 and
k1 = 1. We will, indeed, assume the contrary and derive a contradiction. In order to do
so, we consider a suitable diagonal sequence f (A ") converging, in the sense of varifolds,
to W. We can select A in such a way that the following minimality property holds:

(F) If A is any surface isotopic to A* with an isotopy fixing G(U NnB, (x)), then
HN) z AP(A") = p3.

Indeed, we appply the Squeezing Lemma 6.1 with f = 1/(16/) and let n be so large that p,
is smaller than the constant &, given by the lemma. Since A* is 1 /j-a.m. in U, we conclude

therefore that, if we set
My, = inf{CI)(l,Ak) ONS 35(U me”(x))},
then

II(ITIE H? (Ak N B, (x)) — My = 0.

Therefore, having fixed p, < &, we can choose k,, so large that M, , = AP (AR — P

Next, it is convenient to introduce a slightly perturbed chart g%* which maps
oU n B, (x) onto #; n{y1 =0} and 0X N B, () onto /. This can be done in such a way
that fy ,, o g, and gy, o f,, converge smoothly to the identity map as p, | 0.

Having set I', = g, ), (A*), we have that T, converges to W in the sense of varifolds.

Moreover, our discussion implies that #°> (Ak" N B, (x)) = p2#.2(T,) + O(p3). Therefore
we conclude from (F) that:

(F') Let m, be the minimum of #,?(A) over all surfaces A isotopic to T', with an
isotopy which fixes o(U n #;). Then #*(T,,) —m, | 0.

We next claim that

N
(8.4) 1iml2)nf H) (T, 0%B,) Z o> k; forevery g el0,1],
n i=1

Indeed, using the squeezing homotopies of Section 6.2 it is easy to see that

HAT,) —my = ATy By) — oA (T, 0 0B,).

e
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Letting n T 0 and using (8.3) with the convergence of ', to the varifold W we conclude
lin% inf (A#(T,) —my) = a(an S ki — liml%)nf AT a%) :

Therefore, from (F’) we conclude (8.4).

We next claim the existence of a o€ [l/2,1] and a subsequence n(j) such that
[yj) N 0%, is a smooth 1-dimensional manifold with boundary (0,0,) — (0,0, —0) and,
at the same time,

N
(8.5) hm ATy O 0B,) =70 > ki
i=1

and

(8.6) hm ATy 0 0B,\K) =0 for every compact K = -%\U Py,.

In fact, let {K;}, be an exhaustion of %\ U Py, by compact sets. Observe that, by the
convergence of I', to W, we get

. N T
(8.7) 1le (J/g(rn NBN\B12) + 27 A2 (T,\K A (.@1\931/2))> = §Zki.
oo =0 i

Using the coarea formula, we conclude

1
fanZk do = hTm j(]f (Thynon )+22 I% (T, m@ﬂg\Kl)>
1/2 i R 5)

Therefore, by Fatou’s Lemma, for a.e. g € [1/2, 1] there is a subsequence 7(j) such that

(8.8)  lim <cy/;1(rn NORB,) + 327N T, A a,@,,\K,)> =70 ki
! i

JToo

Clearly, (8.4) and (8.8) imply (8.5) and (8.6). On the other hand, by Sard’s Theorem, for
a.e. o € [1/2,1] every surface 0%, n I, is a smooth 1-dimensional submanifold with bound-
ary (0,0,0) — (0,0, —0).

8.3. Disks. From now on we fix the radius ¢ found above and we use I',, in place of
[,y (i.e. we do not relabel the subsequence). Consider now the Jordan curves yf, ... ,yﬁ/l( ")

forming I'" " 04, (by %, we understand the half ball 4, N {y1 = 0}).

Since dI'" n {1 = 0} is given by the segment /, there is one curve, say y}, which con-
tains the segment /. All the others, i.e. the curves ;! with i = 2 lie in 0%, n {y; > 0}.

Next, for every y/' consider the number

8.9 k) := inf{#*(D) : D is an embedded smooth disk bounding y/'}.
/ e !
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yiwithi =2

Figure 11. The curves y;".

We will split our proof into several steps.

(a) In the first step, we combine a simple desingularization procedure with the funda-
mental result of Almgren and Simon (see [4]), to show that

there are disjoint embedded smooth disks Dy, ..., Dy, s.t.

) 1

M(n M (n)
(8.10) S AFD]) S Y K] A -
i=1 i=1 n

A simple topological observation (see Lemma C.1 in the Appendix C) shows that, for each
fixed n, there exist isotopies ®@; keeping 693: fixed and such that ®;(T", N %,) converges, in
the sense of varifolds, to the union of the disks D. Combining (F’), (8.10) and the conver-
gence of I, to the varifold W we then conclude

M(n)
(8.11) limsup 3« = no? > k;.

nfoo i=l J

(b) In the second step we will show the existence of a J > 0 (independent of ) such
that

1
(8.12) Kl < a(z — 6) A (") for every i = 2 and every n.

A simple cone construction shows that

n o g n
(5.13) < = 2AG
So, (8.5), (8.12) and (8.13) imply
. M(n) .
(8.14) lim Y2 A7) =0 and lim £!() = ok
n|oo i=2 n|oo i

J
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which in turn give

2
(8.15) lim x! = %zk,-.
J

nfoo

(c) We next fix a parameterization ] : S' — 0%, of y with a multiple of the arc-
length and extract a further subsequence, not relabeled such that ] converges to a .
By (8.6), the image of ™ is then contained in the union of the curves Py, n 04, . We will
then show that

2
(8.16) limsup x{ = %.

nloo

(8.15) and (8.16) finally show that ¥ consists of a single half-disk Py n 4", counted once.
This will therefore complete the proof.

8.4. Proof of (8.10). In this step we fix n and prove the claim (8.10). First of all, note
that each ! with 7 = 2 is a smooth Jordan curve lying in 0B, n {y; > 0}.

We recall the following result of Almgren and Simon (see [4]).

Theorem 8.3.  For every curve y" with i = 2 consider a sequence of smooth disks D’
with %Z(Dj ) converging to k. Then a subsequence, not relabeled, converges, in the sense of
varifolds, to an embedded smooth disk D! = % bounding y!' and such that #*(D!') = K"
(The disk is smooth also at the boundary.)

For each y/ select therefore a disk D" as in Theorem 8.3. We next claim that these
disks are all pairwise disjoint. Fix in fact two such disks. To simplify the notation we call
them D' and D? and assume they bound, respectively, the curves y; and y,. Clearly, D!
divides 4, into two connected components A and B and 7, lies in one of them, say A.
We will show that D? lies in A4.

Assume by contradiction that D? intersects D'. By perturbing D? a little we modify it
to a new disk E/ such that #*(E/) < #*(D?) + 1/j and E/ intersects D' transversally in
finitely many smooth Jordan curves a,,.

Each a,, bounds a disk F™ in E/. We call «,, maximal if it is not contained in any F’.
Each maximal «, bounds also a disk G” in D'. By the minimality of D', clearly
H2(G™) < #2(F™). We therefore consider the new disk H/ given by

D2\< U F’">u U am

o, maximal o, maximal

Clearly #*(H’/) < #(E’) + 1/j. With a small perturbation we find a nearby smooth em-
bedded disk K/ which lies in 4 and has #*(K/) < #*(E’) + 1/(2j). By letting j T oo and
applying Theorem 8.3, a subsequence of K/ converges to a smooth embedded minimal disk
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D? in the sense of varifolds. On the other hand, by choosing K/ sufficiently close to H/, we
conclude that H/ converges as well to the same varifold. But then,

D2\< U Fm) - D3
o, maximal

and hence D?> N D* # (). Since D? lies on one side of D? (i.e. in A) this violates the maxi-
mum principle for minimal surfaces.

Having chosen D7, ..., DXM) as above, we now choose a smooth disk £} bounding
7 and with
2 nY < 4N 1
A, (EY) = K1 + i

In fact we cannot apply directly Theorem 8.3 since in this case the curve p{ is not smooth
but has, in fact, two corners at the points (0,0, ) and (0,0, —0).

1 lies in one connected component A of 93‘_j . We now find a new smooth embedded
disk D} with
1

H#Z(DY) S5+

and lying in the interior of 4. This suffices to prove (8.10).

Consider the disks Dj, ..., D; which, among the D} with j =2, bound A. We first
perturb E' to a smooth embedded F|" which intersects all the D/. We then inductively mod-
ify E{' to a new disk which does not intersect D; and looses at most 1/(3/n) in area. This is
done exactly with the procedure outlined above and since the distance between different
Djf ’s is always positive, it is clear that while removing the intersections with Djf we can do
it in such a way that we do not add intersections with D] for i < j.

8.5. Proof of (8.12). In this step we show the existence of a positive 0, independent

of n and j, such that
" 1 v

(8.17) K; §a<§—5>%1(yj) Vj =2, Vn.
Observe that for each y/' we can construct the cone with vertex the origin, which is topolog-
a
2
not stationary, because y/" is not a circle, and therefore there is a disk diffeomorphic to the

ically a disk and achieves area equal to ,%’el(y;’ ). On the other hand, this cone is clearly

cone with area strictly smaller than %er ! (yjf’). A small perturbation of this disk yields a

smooth embedded disk D bounding y/" such that

g
(8.18) HD) < ZH ).

Therefore, it is clear that it suffices to prove (8.17) when 7 is large enough.
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Next, by the isoperimetric inequality, there is a constant C such that, any curve y in
04, bounds, in %4,, a disk D such that

(8.19) HA(D) < C(A ()"
Therefore, (8.17) is clear for every ;' with Vs (/) S a/4C.

We conclude that the only way of violating (8.17) is to have a subsequence, not re-
labeled, of curves y" := y;“(n> such that

° 1%1 (") converges to some constant ¢y > 0;

n

® "= Kf(n) converges to cy/2.

Consider next the wedge Wed = {|y2| < y1tan 6y} containing the support of the varifold
V. If we enlarge this wedge slightly to

Wed" := {[y2] < yi(tan 6y + 1)},
we conclude, by (8.6), that
(8.20) liTm A (y"\Wed') = 0.

Perturbing y" slightly we find a nearby smooth Jordan curve " contained in
0%, nWed'. Consider next

(8.21)  u":= min{#*(D) : smooth embedded disk D bounding "}

Given a D bounding ", it is possible to construct a D’ bounding y” with
HZ(D') £ AZ(D) + o(1).

Therefore, we conclude that

o #!(B") converges to ¢y > 0;

e 1" converges to acy/2;

e 3" is contained in Wed'.

Consider next the projection of the curve o = Wed’ n %, on the plane 7 = y;y3. This
projection is an ellypse bounding a domain Q in 7. Clearly « is the graph of a function over
this ellypse. The function is Lipschitz (actually it is analytic except for the two points (0, o)
and (0, —0)) and we can therefore find a function f : Q — R which minimizes the area of
its graph. This function is smooth up to the boundary except in the points (0, o) and (0, —0o)

where, however, it is continuous. Therefore, the graph of f is an embedded disk.

We denote by A the graph of f. A is in fact the unigue area-minimizing current span-
ning «, by a well-known property of area-minimizing graphs. By the classical maximum
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principle, A is contained in the wedge Wed’ and does not contain the origin. Consider next
the cone C” having vertex in 0 and " as base. Clearly, this cone intersects A in a smooth
Jordan curve " and hence there is a disk D" in A bounding this curve. Moreover, we call
E" the cone constructed on " with vertex 0 (see Figure 12).

Figure 12. The minimal surface A, the cones C” and E” and the domain D".

Clearly,
(8.22) lirr%inf A (B > 0.

Consider next the current given by D" u (C"\E"). These coverge, up to subsequences, to
some integer rectifiable current. Therefore, the disks D" converge, in the sense of currents,
to a 2-dimensional current D supported in A. It is easy to check that D must be the current
represented by a domain of A, counted with multiplicity 1. Therefore

(8.23) liTm H2A(D") = #2(D).
njoo
Similarly, E” converges, up to subsequences, to a current £. By the minimizing property of
A, #72(D) < M(E), unless #*(D) = M(E) = 0, where M(E) denotes the mass of E.
So, if M(E) > 0, we then have

liminf #%(E") = M(E) > #*(D) = liTm A2 (D).

ntoo

If M(E) = 0, by (8.22), we conclude
lin% inf #2(E") > 0= liTm H2(D").

In both cases we conclude that the embedded disk H" = (C"\E") u D" bounds " and
satisfies

aco .
=— = lim u".

(8.24) liTm J/f(H”)<liTrn HE(C™) 5 =l
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Therefore, there exists an n such that u" > J(j_,z(H ™). A small perturbation of H” gives a
smooth embedded disk bounding " with area strictly smaller than x”. This contradicts

the minimality of 4" (see (8.21)) and hence proves our claim.

8.6. Proof of (8.16). In this final step we show (8.16). Our arguments are inspired by
those of [4], Section 7.

Consider the curve y}. Again applying (8.6) we conclude that, for every compact set

K< r@:\LJ Py,
we have
(8.25) lim ! (7\K) = 0.

Consider next the solid sector S := Wed' n %4, Clearly #(0S) = (3n — n)a?, where

n is a positive constant. Clearly a curve contained in 05 bounds always a disk with area at
3 oo - . .

most 7z<§ - g) o?. For large y! we can modify it to a new curve 3" contained in S, and

n

hence find a smooth embedded disk bounding 7" with area at most « (% — Z) o2. This and

(8.15) implies that

. 3
Yok =lim k] < —noz.
i nloo 2

no?
2

Therefore we conclude that > k; < 2.

Extracting a subsequence, not relabeled, we can assume that ' converges to an inte-
ger rectifiable current y. The intersection of the support of y with 0%4,\{(0,0,s), (0,0, —a)}
is then contained in the arcs «; := Py, N 0%,. Therefore if we denote by [[o;]] the current
induced by o, then we have

- &%, = zl:hl[[d,“

where the /; are integers.
On the other hand, y{ L_ 4, is given by the segment /. Therefore we conclude that
YL By = [[/]).
It turns out that

v =[]+ 22 hil[o]

i

and of course > || < > k.
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Since 0y = 0, we conclude that

0= 6[[1]] + Zh,@[[a,]] =0p—On + Zhl(éN — 513)

where N = (4,0,0), P=(—0,0,0) and Jx denotes the Dirac measure in the point X.

Hence we conclude
(1 _ m)ap _ (1 _ m)aN 0

and therefore > h; = 1. This implies that > |/;] is odd. Since > || < > k; < 2, we con-
clude > || = 1.

Therefore, y consists of the segment / and an arc, say, o;. Clearly, y bounds Py,,
which has area ng?/2. Consider next the closed curve " made by joining y! N 0%,
and —a;. These curves might have self-intersections, but they are close. Moreover, they
have bounded length and they converge, in the sense of currents, to the trivial current
oA — o = 0.

There are therefore domains D" = %, such that 6D" = " and #*(D") | 0. It is not
difficult to see that the union of the domains D" and of Py, gives embedded disks E"
bounding ! and with area converging to na?/2 (see Figure 13). Approximating these disks
E" with smooth embedded ones, we conclude that

Iim u, < 7102
nloo o = 2 ’

This shows that > k; < 1. Hence the varifold W is either trivial or it consists of at most one

1
half-disk. Since it cannot be trivial by the considerations of Subsections 6.1 and 8.1, we
conclude that W consists in fact of exactly one half-disk.

Figure 13. The curves | and o.
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9. Proof of Proposition 3.2
Part V: Convergence of connected components

In this section we complete the proofs of Proposition 3.2 and Proposition 3.3. In par-
ticular, building on Corollary 8.2, we show the following.

Lemma 9.1. Let X and A* be as in Proposition 3.2 (or as in Proposition 3.3) and con-
sider their varifold limit V. According to Lemma 7.1, Lemma 8.1 and Corollary 8.2, V is a
smooth stable minimal surface with boundary O0A = 0¥ and with multiplicity 1. Let
I'y,..., Ty be the connected components of A.

If A% is an arbitrary union of connected components of A* which converges, in the sense
of varifolds, to a W, then W is given by I';, U --- U Ty, for some 1 < i) <ip <---<ij<N.

Proof. This lemma is indeed a simple consequence of some known facts in geomet-

ric measure theory. Fix a sequence A¥ and a W as in the statement of the lemma. Note that
OAx = OA* = 0.

We can therefore apply the compactness of integer rectifiable currents and, after a
further extraction of subsequence, assume that the A* are converging, as currents, to an in-
teger rectifiable current 7" with boundary 07 which is the limit of the boundaries dAX. Since

these boundaries are all contained in dU, we conclude that 07 is also contained in 0U. It is
a known fact in geometric measure theory that

(9.1) 1T < W]
On the other hand,

(9:2) W=V =X A% T

So T is actually supported in the current given by the union of the currents induced by the
I';’s, which we denote by [[I';]]. Since 07" and JT'; lie both on dU, a second standard fact in

geometric measure theory implies the existence of integers /4y, ..., hy such that
N
nghWM
Therefore,
(9.3) T = Z|h,~|ff2 LI
1

Hence, (9.1), (9.2) and (9.3) give h; € {—1,0,1}. On the other hand, since each dAX is the
union of connected components of 0% (with positive orientation), it turns out that 07 is the
union of the currents induced by some connected components of 0Z, with positive orienta-
tion. Moreover, since U is a sufficiently small ball, by the maximum principle each surface
I'; must have nontrivial boundary. Hence, we conclude that #; € {0, 1}.
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Arguing in the same way, we conclude that A¥\A¥ converge, as currents, to a current
T’, and, as varifolds, to a varifold W' with the properties that

0.4) T/ = S KT

(9.5) 171 < [IW]]
and h! € {0,1}. Since W + W' =V (and hence ||W| + |W|" = ||V]|), we conclude that

h! =h! 4+ h; € {0,1}. On the other hand, A" converges, in the sense of currents, to
T + T', which is given by

(9.6) T+ T =5 (h+ )[4

1

Moreover, since IAF = 0%,

©.7) [02]) = o(T + T") = 32 (hi + hp) ([T 4]).

1

Since the 0I'; are all nonzero, disjoint and contained in 0%, we conclude that /; + i) = 1 for
every i.

Summarizing, we conclude that
VI =W+ 1w 2T+ 1T 2 1T+ T = [|V]]-

This implies that ||W|| + ||W'|| = ||T|| + ||T’|| and hence that ||W|| = || T||. Therefore
W =S ha#* _T;
i

and since &; € {0, 1}, this last claim concludes the proof. []

10. Considerations on (0.5) and (0.4)

10.1. Coverings. In this subsection we discuss why (0.5) seems ultimately the correct
estimate. Fix a sequence {Z;} which is 1//-a.m. in suffciently small annuli and assume for
simplicity that each element is a smooth embedded surface and that the varifold limit is
given by

=S nl'+ 3 ol

rieo Tiew

Then, one expects that, after appropriate surgeries (which can only bring the genus down)
Z{/ split into three groups.
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e The first group consists of

my = Zni

T'eo
surfaces, each isotopic to a I'" € (.
® The second group consists of
1
np = B D ni
e

surfaces, each isotopic to the boundary of a regular tubular neighborhood of e
(which is a double cover of I'").

e The sum of the areas of the third group vahishes as j T oo.

As a consequence one would conclude that »; is even whenever I'” € ./ and that (0.5)
holds.

The type of convergence described above is exactly the one proved by Meeks, Simon
and Yau in [13] for sequences of surfaces which are minimizing in a given isotopy class. The
key ingredients of their proof is the y-reduction and the techniques set forth by Almgren
and Simon in [4] to discuss sequences of minimizing disks. However, in their situation there
is a fundamental advantage: when the sequence {X’/} is minimizing in a given isotopy
class, one can perform the y-reduction “globally”, and conclude that, after a finite number
of surgeries which do not increase the genus, there is a constant ¢ > 0 with the following

property:
e For any ball B with radius o, each curve in dB N X/ bounds a small disk in X/.

In the case of min-max sequences, their weak 1/j-almost minimizing property on sub-
sets of the ambient manifold allows to perform the y-reduction only to surfaces which are
appropriate local modifications of the X/’s, see the Squeezing Lemma of Section 6 and the
modified y-reduction of Section 6. Unfortunately, the size of the open sets where this can be
done depends on ;. In order to show that the picture above holds, it seems necessary to
work directly in open sets of a fixed size.

10.2. An example. In this section we show that (0.4) cannot hold for sequences
which are 1/j-a.m. Consider in particular the manifold M =]—1,1[ x S? with the stan-
dard product metric. We parameterize S* with {|w| =1:® e R*}. Consider on M the
orientation-preserving diffeomorphism ¢ : (#, w) — (—t, —w) and the equivalence relation
x~yifx=yorx=¢(y). Let N= M/ _ be the quotient manifold, which is an oriented
Riemannian manifold, and consider the projection = : M — N, which is a local isometry.
Clearly, T' := ({1} x S?) is an embedded 2-dimensional (real) projective plane. Consider a
sequence # | 1. Then, each A/ := {#;} x S? is a totally geodesic surface in M and, there-
fore, X/ = n(A,) is totally geodesic as well. Let r be the injectivity radius of N and consider
a smooth open set U — N with diameter smaller than r such that dU intersects ¥/ trans-
versally. Then X/ n U is the unique area-minimizing surface spanning U N /.
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Hence, the sequence of surfaces {(T/}is 1 /j-a.m. in sufficiently small annuli of N.
Each %/ is a smooth embedded minimal sphere and X/ converges, in the sense of varifolds,
to 2I'. Since g(X£/) = 0 and g(I') = 1, the inequality

g(l’) < liminf g(2/),
jleo

which corresponds to (0.4), fails in this case.

Appendix A. Proof of Lemma 4.2

Proof. Let X be a smooth minimal surface with 0X = dB,(x), where o < ry and ry is
a positive constant to be chosen later. We recall that, for every vector field X € C! (B,(x)),
we have

(A1) [ divg X =0.
B.(v)

We assume ry < Inj(M) (the injectivity radius of M) and we use geodesic coordinates
centered at x. For every y € B,(x) we denote by r(y) the geodesic distance between y and
x. Recall that r is Lipschitz on B,(x) and C* in B,(x)\{x}, and that |Vr| =1, where

|Vr| = /g(Vr,Vr).
We let y € C'([0, 1]) be a cut-off function, i.e. y = 0 in a neighborhood of 1 and y = 1

2
in a neighborhood of 0. We set X = y(r)rVr = y(r)Vﬂ. Thus, X € C” (B,(x)) and from

(A.1) we compute 2
(A.2) 0= i|"y(r) divs (rVr) + if 1y (r) > 0erg(Vr,ei),

where {e},e,} is an orthonormal frame on 7Z. Clearly

(A3) S 0erg(Vrer) = 3 (0er)” = [Var|* = Ve = V5> = 1 — [V,

i
where V*r denotes the projection of Vr on the normal bundle to £. Moreover, let V¢ be the
Euclidean connection in the geodesic coordinates and consider a 2-d plane = in 7, M, for
¥ € By(x). Then

divz (r(»)Vr(»)) = divy(|¥IV¢|5]) = O(|y]) = O(o).

Since div, (] y|V¢|y|) = 2, we conclude the existence of a constant C such that
(A4) [y(r)divs(rVr) =2 [p(r)]| < C||y||oo(71f2 (Z N Bﬂ(x)).
b z

Inserting (A.3) and (A.4) in (A.2), we conclude

(A.5) i[2]/(r) + zj ry'(r) = i[ry’(r)|VLr\2 + Err
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where, if we test with functions y taking values in [0, 1], we have
(A.6) |Ert| < Co#? (20 B,(x)).

We test now (A.5) with functions taking values in [0, 1] and approximating the character-
istic functions of the interval [0, g]. Following the computations of [18], pages 83-84, we

conclude
d 12
= ( j v 2r| ) + ¢ 3 Err.
p=0 dp XNB,(x) r

p=0

(A7) di’p (p2#2(En B,()))

Straightforward computations lead to

(A8)  A*(ZnB,(x))

od add V|2
=— — (A#*(ZN B,(x) —< | ) + Err.
2 dp( ( g )) p=0 2 dp ZNB,(x) r? p=0
=(4)
Moreover, by the coarea formula, we have
a 1 a3 \VLr|? o 1- IVLr|?

(A.9) (4) =

J

2om,0002 VeIl 2 05 00nx 0?IVerl 25 V]

=2 [Vsr| £ Z Length(d5).
2 2
Inserting (A.9) into (A.8), we conclude that

(A.10) #*(Z N B,(x)) < = Length(X) + |Err|,

g
2
which, taking into account (A.6), becomes

(A.11) (1 — Co)#* (2N B,(x)) £ = Length(d%).

N Q

So, for ry < min{Inj(M), (2C)™'} we get (4.16). [

Appendix B. Proof of Lemma 5.5

Proof. Let d,(y) be the Euclidean distance of y to U and d(y) the geodesic dis-
tance of y to f(U). The function d, is C? and uniformly convex on the closure of %;\U.
Therefore, if & is sufficiently small, the function d is uniformly convex on the closure
of B,(x)\f(U). Let now yg € B;(x)\f(U). In order to find n(x) it suffices to follow the
flow line of the ODE y = —Vd(y)/|Vd( y)|?, with initial condition y(0) = yo, until the
line hits f(U). Thus, the inequality |Vz(x)| < 1 follows from [7], Lemma 1. On the other

hand, n(x) = x on f(U), and therefore the map is Lipschitz with constant 1. []
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Appendix C. A simple topological fact

We summarize the topological fact used in (a) of Section 8.3 in the following
lemma.

Lemma C.1. Consider a smooth 2-dimensional surface ¥ = % with smooth boundary
0X < 0%y. Let I = %y be a smooth surface with oI = 0X consisting of disjoint embedded
disks. Then there exists a smooth map ® : [0, 1] x |, — %, such that:

(1) @(0,-) is the identity and ®(t,-) is a diffeomorphism for every t.

(i) For every t there exists a neighborhood U, of 0%, such that ®(t,x) = x for every
x e U,.

(iii) ®(¢,X) converges to I in the sense of varifolds as t — 1.

Proof.  The proof consists of two steps. In the first one we show the existence of a
surface I'" and of a map W : [0, 1] x #; — %, such that

® I = 0%,

e T consists of disjoint embedded disks,
e V¥ satisfies (i) and (ii),

o ¥(1,X) T asr— 1.

In the second we show the existence of a ¥ :[0,1] x %, — %, such that (i) and (ii) hold and
¥Y(,T')—>Tast— 1.

In order to complete the proof from these two steps, consider the map
(s, 1, x) = P (t,¥(s,x)). Then, for every smooth g : [0, 1[ — [0, 1[ with g(0) = 0, the map
(1, x) = D(g(1), 1, x) satisfies (i) and (ii) of the lemma. Next, for any fixed 7, if s is suffi-
ciently close to 1, then ®(s,¢,%) is close, in the sense of varifolds, to ¥(z, I'"). This allows
to find a piecewise constant function / : [0, 1[ — [0, 1 such that

lim ®(g(1),#,X) =T (in the sense of varifolds)

t—1
whenever g = / in a neighborhood of 1. If we choose, therefore, a smooth ¢ : [0, 1] — [0, 1]

with g(0) = 0 and g = / on [1/2, 1], the map ®(z,x) = ®(g(¢), , x) satisfies all the require-
ments of the lemma.

We now come to the existence of the maps ¥ and .

Existence of W. Let ¥ be the set of all surfaces I'" which can be obtained as
lirrll ¥(¢,X) for maps ¥ satisfying (i) and (ii). It is easy to see that any I'” which is obtained
—
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from X through surgery as in Definition 2.2 is contained in ¥. Let g, be the smallest genus
of a surface contained in ¢. It is then a standard fact that g(T'’) = g, if and only if the sur-
face is incompressible. However, if this holds, then the first homotopy group of I'' is
mapped injectively in the homotopy group of %, (see for instance [11]). Therefore there is
a I'' € 4 which consists of disjoint embedded disks and spheres. The embedded spheres can
be further removed, yielding a I'” € ¢ consisting only of disjoint embedded disks.

Existence of ¥. Note that each connected component of %,\I"’ (and of %,\I) is a,
piecewise smooth, embedded sphere. Therefore the claim can be easily proved by induction
from the case in which " and I'’ consist both of a single embedded disk. This is, however, a
standard fact (see once again [11]). [
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