Radiochimica Acta 50, 33-39 (1990) © R. Oldenbourg Verlag, München 1990 - 0033-8230/90 \$ 3.00 + 0.00

The Production of ⁵²Fe by Means of a Medium Energy Proton Accelerator

By Peter Smith-Jones¹, Rolf Schwarzbach and Regin Weinreich

Paul Scherrer Institute, Würenlingen and Villigen, CH-5232 Villigen-PSI, Switzerland Dedicated to Professor G. Stöcklin on the occasion of his 60th birthday

(Received November 17, 1989; revised January 3, 1990)

Proton induced reactions | Radionuclide production | ⁵²Fe | Thick target yield | PET radionuclide

Summary

The possible reactions induced by a 72 MeV proton beam for the formation of ⁵²Fe are explored. For the most plausible target material of ^{nat}Ni, both production rates and thick target yields are given for the relevant iron radionuclides produced. Various chemical aspects are explored and a feasible chemical separation leading to the isolation of large amounts of no carrier added ⁵²Fe is given. The overall yield and specific activity of ⁵²Fe production by medium energy proton irradiation of a natural nickel target is more favorable than that of the reported Mn target.

Introduction

Proton induced reactions for the large-scale production of positron emitting radionuclides, suitable for PET investigations, using proton beams in the region of 40-72 MeV, are being investigated as part of the research and development programme at the Paul Scherrer Institute (PSI). Since most of the lower energy proton induced reactions have been well documented [1-3], and since the lower energy part of the 72 MeV beam of the Injector II cyclotron is presently occupied in routine production purposes, the attention was focused on the upper energy range available (40-72 MeV), with the goal of a simultaneous bombardment of several targets.

Iron-52 $(t_{1/2} \ 8.27 \ h)$ is a useful radionuclide for studying the biochemistry of iron based compounds with potential applications in nuclear medicine (Ref. [4-5], and further references therein). Moreover ⁵²Fe can be used as parent material in a radionuclide generator for the short-lived ^{52m}Mn $(t_{1/2} \ 21.1m) \ [6-7]$. Both ⁵²Fe and ^{52m}Mn are positron emitters and their decay characteristics [8] make them preferable to other iron and manganese radionuclides for quantitative PET studies. Various production routes for 52 Fe have been demonstrated and are summarized in Table 1. Despite the different production conditions cited in the literature and despite the questionable character of such comparisons at all, it seems that for a medium energy proton cyclotron the most favorable reaction reported is the 55 Mn(p,4n). However since the cross section for 55 Fe production is an order of magnitude higher than that for 52 Fe [9], this reaction gives a significant 55 Fe impurity. This 55 Fe impurity seems to be undesirable because of its long half life and associated patient radiation dose [10].

The proton bombardment of a nickel target to produce ⁵²Fe has only been reported for proton energies above 200 MeV [11-13]. With respect to the formation of the three radionuclides ⁵²Fe, ⁵⁵Fe [14, 15] and ⁵⁹Fe [16], the proton energy range of the PSI injector cyclotrons (<72 MeV) is covered by the nuclear reactions given in Table 2. Thus, these routes are occurring in a rather complex way, and the number of the reactions mentioned both in Table 2 and investigated in more detail by physical measurements is limited [17-22] and these measurements omit even the energy range under question. Moreover from the data given, it became apparent that the ${}^{58}Ni(p,\alpha p2n){}^{52}Fe$ reaction should reach its maximum cross section in the 60-65 MeV energy region. In addition to this the indirect formation of ⁵⁵Fe will be limited by the 17.54 h half-life of the 55Co precursor, and in comparison the direct reactions leading to ⁵⁵Fe are thought to be of a lower probability.

The separation of iron from nearby transition metals by anion or cation exchange chromatography using quarternary ammonium or sulphonic acid functional groups attached to a divinylbenzene styrene copolymer lattice and a medium of hydrochloric acid has been proven to be very effective [23]. In high concentrations of hydrochloric acid both iron(III) and gallium(III) form very stable anionic chloride complexes which are strongly retained by both types of resin. Other elements in the first row transition metal group show little or no absorption with cation exchange, but with anion exchange the selective elution of nickel, manganese, cobalt and iron has been demonstrated [24].

¹ On leave of absence from the National Accelerator Centre, Faure 7131, South Africa. Present address: Paul Scherrer Institute, Würenlingen and Villigen, CH-5232 Villigen-PSI, Switzerland.

Target		Nuclear	Energy	Pr	oduction	rate (a:	μCi/μAh,	b: MBq/µA	Ah, c: %	of tota	1)	Reference
material		reaction	(MeV) -	52	Fe		⁵⁵ Fe			⁵⁹ Fe		-
			-	a	b	a	b	c	a	b	c	-
Chromium	50 µm	$^{nat}Cr(\alpha, xn)$	30	3.3	0.12	0.46	0.017	14	ND	_	_	32
Chromium	40 µm	$^{nat}Cr(\alpha, xn)$	30	3.8	0.14	0.43	0.016	11.3	ND	_	_	33, 34
Chromium	40 µm	$^{nat}Cr(\alpha, xn)$	40	8.2	0.30	0.52	0.019	6.3	ND	_	_	33, 34
Enriched ⁵⁰ Cr	40 µm	${}^{50}\mathrm{Cr}(\alpha,2n)$	40	160	5.9	ND	-	-	ND	-	-	34
Chromium	55 um	$^{nat}Cr(\alpha,xn)$	65	3.8	0.14	0.19	0.007	5.0	ND	_	_	35
Cr ₂ O ₇	$0.1 g/cm^2$	$^{nat}Cr(\alpha,xn)$	85-53	30	1.11	ND	_	_	ND	_	_	36
Chromium	7.2 µm	$^{nat}Cr(^{3}He,xn)$	23	0.7	0.03	0.002	0.00007	0.3	ND	_	_	37
Chromium	40 µm	$^{nat}Cr(^{3}He,xn)$	30	13	0.48	0.032	0.0009	0.25	ND	_	_	34, 38
Chromium	250 µm	$^{nat}Cr(^{3}He,xn)$	35	20	0.74	0.014	0.0005	0.07	ND	_	_	39, 40
Chromium	40 µm	$^{nat}Cr(^{3}He,xn)$	40	50	1.85	0.036	0.0013	0.07	ND	_	_	34, 38
Chromium	30 µm	$^{nat}Cr(^{3}He, xn)$	45	50	1.85	—		< 0.001	ND	-	—	41
MnO ₂		⁵⁵ Mn(p,4n)	65	160	5.9	4.8	0.18	3	ND	_	_	42
Manganese	$2.6g/cm^2$	⁵⁵ Mn(p,4n)	70 — 50	200	7.4	1.4	0.05	0.7	ND			12
Manganese	0,	55Mn(p,4n)	60-44	600	22	2.7	0.1	0.45	ND	_	_	9
Manganese	$2.0g/cm^2$	⁵⁵ Mn(p,4n)	63-48	327	12.1	1.2	0.05	0.38	ND	-	—	30
Nickel	0.5 mm	^{nat} Ni(p,xn)	200 - 198	120	4.4	2.4	0.09	2.0	0.2	0.008	0.17	11
Nickel	6.5 mm	$^{nat}Ni(p,xn)$	588 — 580	700	26	23	0.85	3.3	3.5	0.13	0.5	11
Nickel	8.0 mm	$^{nat}Ni(p,xn)$	800 — 790	134	5.0	ND	_	_	0.7	0.03	0.52	13
Nickel	2.0 mm	$^{nat}Ni(p,xn)$	68 — 54	590	22	2.9	0.07	0.5	0.20	0.007	0.03	this work
Nickel	1.9g/cm ²	$^{nat}Ni(p,xn)$	63-48	491	18.1	10.1	0.37	2.0	0.24	0.008	0.05	30
Ferrocene	1 g	^{nat} Fe(y,2n)	40	0.03	0.001	3.10-4	10 ⁻⁵	1	ND		_	43
Iron	1 g	^{nat} Fe(y,2n)	90	0.10	0.004	ND	—	-	ND	_	_	44

Table 1. Production methods for ⁵²Fe

ND: Not determined.

Table 2. Q values for the production of 52 Fe, 55 Fe, 59 Fe and 55 Co($\rightarrow {}^{55}$ Fe) by interaction of protons with nickel isotopes [45]

Reaction	% Abun- dance of tar- get nuclide	Q value (MeV)	Comments
⁵⁸ Ni(p,αp2n) ⁵² Fe	68.27	- 30.5	Main route
⁵⁸ Ni(p,3p4n) ⁵² Fe	68.27	- 54.4	
60 Ni(p, α p4n) 52 Fe	26.11	- 50.9	
$^{61}Ni(p,\alpha p5n)^{52}Fe$	1.13	- 58.7	
⁶² Ni(p,αp6n) ⁵² Fe	3.59	-69.3	
⁵⁸ Ni(p,3pn) ⁵⁵ Fe	68.27	-25.4	
60 Ni(p, α pn) 55 Fe	26.11	-17.5	
⁶⁰ Ni(p,3p3n) ⁵⁵ Fe	26.11	-45.8	
${}^{61}Ni(p,\alpha p2n){}^{55}Fe$	1.13	-25.3	
⁶¹ Ni(p,3p4n) ⁵⁵ Fe	1.13	- 53.6	
⁶² Ni(p,αp3n) ⁵⁵ Fe	3.59	-35.9	
⁶² Ni(p,3p5n) ⁵⁵ Fe	3.59	-64.2	
⁶⁴ Ni(p,αp5n) ⁵⁵ Fe	0.91	- 52.4	
⁵⁸ Ni(p,α) ⁵⁵ Co	68.27	-1.4	Indirect
⁵⁸ Ni(p,2p2n) ⁵⁵ Co	68.27	-29.7	Indirect
60 Ni(p, $\alpha 2n$) 55 Co	26.11	-21.7	Indirect
⁶⁰ Ni(p,2p4n) ⁵⁵ Co	26.11	-50.0	Indirect
$^{61}Ni(p,\alpha 3n)^{55}Co$	1.13	29.6	Indirect
⁶¹ Ni(p,2p5n) ⁵⁵ Co	1.13	57.9	Indirect
62 Ni(p, $\alpha 4n$) 55 Co	3.59	-40.2	Indirect
⁶² Ni(p,2p6n) ⁵⁵ Co	3.59	-68.5	Indirect
⁶⁴ Ni(p,2p8n) ⁵⁵ Co	0.91	- 56.7	Indirect
⁶¹ Ni(p,3p) ⁵⁹ Fe	1.13	-18.1	
⁶² Ni(p,3pn) ⁵⁹ Fe	3.59	-28.7	
⁶⁴ Ni(p,3p3n) ⁵⁹ Fe	0.91	-45.2	
⁶⁴ Ni(p,apn) ⁵⁹ Fe	0.91	-16.1	

Hence the purpose of this work was to measure the production functions for ⁵²Fe for the energy region below 72 MeV as well as the formation of the contaminants ⁵⁵Fe and ⁵⁹Fe. In addition to this it was of paramount importance to produce ⁵²Fe with a high specific activity (suitable for biological applications) so that a statement about the suitability of ⁵²Fe produced by proton irradiation of natural nickel could be made.

Experimental

Targetry and irradiations

Irradiations were performed with both the 72 MeV Philips Injector I cyclotron and the newer Injector II cyclotron at the PSI. Circular discs from 13 mm to 30 mm in diameter were cut from 0.125 mm, 0.3 mm, 1.0 mm and 2.0 mm metallic nickel sheets (99.98% Goodfellow Metals, Cambridge, UK). Monitor foils of a corresponding diameter were cut from 0.13 and 0.457 mm metallic aluminum sheets (99.9% Goodfellow Metals, Cambridge, UK). The stacks were encased in aluminum cans 40 mm in diameter and up to 10 mm thick and bombarded at currents from 1 μ A to 40 µA for maximum periods of up to 20 minutes in the existing radioisotope production vault using the off line ¹²³I production beamline [25]. The target foils

were aligned perpendicular to the proton beam in such a way that successive foils received only the degraded beam coming from the preceding foil in the stack. The beam was focused to a diameter of 10-15 mm. In the experiments performed some 30 to 40% of the beam passed through the 13 mm foils and 99% of the beam was on target for the larger foils.

Several stacks of ^{nat}Ni were bombarded, early experiments used alternate 0.125 mm Ni and 0.13 mm Al foils (13 mm diameter) to determine if product recoil was significant and in later experiments only 0.5 mm Al foils at 10 MeV intervals were used to check the position and scattering of the proton beam. Thick target yields used 1 mm and 2 mm thick foils (20 – 30 mm diameter) and a corresponding energy region of 67.8 - 53.9 MeV.

Beam currents were determined by analyzing the aluminum foils for the induced ⁷Be, ²²Na and ²⁴Na activities, and by using the known cross section values [26]. Proton ranges were determined by using one of the more recently available proton range energy tables [27].

Radionuclidic assays

An 84 cm³ high purity germanium detector (n type) in conjunction with a 916 MCB card (EG & G ORTEC, Oak Ridge, Tennessee, USA) fitted in an IBM PC-AT was used to collect the γ -ray spectra. Analysis of the spectra was performed with the GELIGAM routine (EG & G ORTEC, Oak Ridge, Tennessee, USA). Calibration of the system in terms of both energy and detector efficiency was performed using various certified point sources of reference date 25/6/86 (Laboratoire de Métrologie des Rayonnements Ionisants, Gif-sur-Yvette, France). Foils were assayed at distances of 35 to 5 cm from the detector at times ranging from EOB + 8 h to EOB + 90 d depending on the activity induced therein. The "dead time" of the counting system was not allowed to exceed 20%.

Iron-55 activities were determined by isolating the iron isotopes from any other radionuclides and the target matrix, after a decay time of 90 days, by cation exchange chromatography. The foils were dissolved in 10 M HCl and 1 µg of Fe(III) carrier added. The solution obtained was oxidized using H₂O₂, adjusted to 8 M HCl and then loaded onto a 5 ml column of AG50-X8 resin (H form, 100-200 mesh). The nickel target material as well as induced cobalt and manganese activities were easily eluted on loading and further washing with 20 ml of 8 M HCl removed traces. Iron was stripped from the column using 4.0 M HCl and excess acid removed. The sample remaining was dissolved in 0.05 M HCl and was counted by means of Liquid Scintillation Counting as a 10% aqueous cocktail in "Instagel" (a standard 55 Fe reference solution was obtained from Amersham International plc, Buckinghamshire, UK). ⁵⁹Fe was determined in the isolated iron fraction prior to LSD counting. A known amount of 52 Fe was similarly separated from a simulated target matrix and γ -ray analysis showed the separation to be quantitative.

The errors involved in the radionuclidic assays were estimated by obtaining the sum of all the contributing errors.

The energy calculations were estimated to be within 3.4% of the energy window chosen and were determined using the following errors; incident proton energy (0.1%), proton range energy values (1.0%), target density (1.0%) and proton straggling (1.3%). The well known straggling of the proton energy by interaction with materials [27] seems to be proportional (for the energy range investigated) to the target density (atoms/cm²) and for the degradation of a 70 MeV beam to 60, 50 and 40 MeV in a nickel target it was estimated to be 0.7, 1.5 and 2.3 MeV, respectively.

The beam current determinations were estimated to be within 10.8% of the values obtained and were determined from the following errors: target density (1%), proton range energy values (1%), cross-section measurements (3.0%), standard calibration sources (2.6%), extrapolated detector efficiencies (1.5%), counting geometries (0.2%), decay corrections (0.3% for ²²Na only), gamma ray abundances (0.4%), photopeak integrations (1%). Recoil losses were considered to be negligible.

The production yields were estimated to be within 16% of the values obtained for 52 Fe (16% for 55 Fe (via 55 Co), 29% for 55 Fe and 19% for 59 Fe) and were determined from the following errors: target density (1%), proton range energy values (1%), cross-section determination (10.8%), extrapolated detector efficiencies (1.5%), counting geometries (0.2%), decay corrections (0.1%), gamma ray abundances (0.4%), photopeak integrations (1% for 52 Fe, 1% for 55 Co and 5% for 59 Fe) and, for 55 Fe, LSD counting uncertainty (15%).

Radiochemistry

Cation exchange chromatography is an exceedingly good tool for the separation of iron from all nonferrous first row transition metals but it necessitates the use of concentrated acids. Iron is an impurity found in most chemical reagents and as a result of this relatively large amounts of carrier iron can be introduced by this technique. Anion exchange on the other hand uses less concentrated reagents for the removal of non-ferrous cations.

The anion exchange separation of the first nickel targets ($25 \text{ mm} \times 2 \text{ mm}$) was performed by initially dissolving the metal in 100 ml 7 M HNO₃. The solution obtained was evaporated down to near dryness and 60 ml 6 M HCl were added. The cold solution obtained was loaded onto a 25 ml column of Dowex 1-X8 ($125 \text{ mm} \times 15 \text{ mm}$, 100-200 mesh, prewashed with 200 ml 0.1 M HCl and equilibrated with 6 M

		Production ra	Impurities (%)				
(MeV)	⁵² Fe ⁵⁵ Fe		⁵⁵ Fe (via ⁵⁵ Co)	⁵⁹ Fe	⁵⁵ Fe	⁵⁵ Fe (via ⁵⁵ Co)	⁵⁹ Fe
69.1-67.6	2770	18.0	15.1	0.73	0.65	0.55	0.026
67.6-66.2	2860	15.6	14.8	0.69	0.54	0.52	0.024
66.2-64.7	2930	12.0	14.1	0.71	0.46	0.48	0.024
64.7-63.3	2870	13.4	14.4	0.74	0.46	0.50	0.026
63.3-61.8	2750	13.9	15.0	0.67	0.50	0.55	0.024
61.8 - 60.4	2620	13.3	15.0	0.65	0.51	0.57	0.024
60.4-58.9	2480	12.9	14.1	0.72	0.52	0.57	0.029
58.9-57.5	2360	11.2	14.5	0.62	0.47	0.61	0.026
57.5-56.0	2160	9.23	15.1	0.65	0.43	0.70	0.030
56.0 - 54.6	1820	8.83	14.6	0.85	0.48	0.81	0.047
54.6 - 53.1	1470	9.52	13.8	0.78	0.65	0.94	0.035
53.1 - 51.6	1180	10.5	13.2	0.56	0.89	1.12	0.047
51.6 - 50.2	980	11.1	12.6	0.45	1.13	1.29	0.046
50.2 - 48.7	750	10.5	11.7	0.44	1.40	1.56	0.058
48.7-47.3	376	8.59	9.67	0.37	2.28	2.57	0.099
47.3-45.8	52	6.78	7.55	0.31	13.04	14.52	0.59

Table 3. Thick target yields for ⁵²Fe and radionuclidic contaminants

HCl). Manganese, cobalt and nickel were eluted with 400 ml of 3 M HCl at a flow rate of 1.7 ml/min. Finally ⁵²Fe was eluted with 50 ml of 0.1 M HCl at a flow rate of 1.7 ml/min. Later improvements in the targetry reduced the target size to $18 \times 18 \times 1$ mm which reduced the volume of 7 M HNO₃ required to dissolve the target to 80 ml. The solution obtained was then treated as above.

Determination of active components was performed using the aforementioned HPGE counting system after appropriate waiting times. Determination of carrier iron concentrations was performed by the standard thiocyanate method [28] and a Hewlett Packard 8452A diode array spectrophotometer.

Results and discussion

Production rates

Figure 1 and Table 3 give the production rates and thick target yields, respectively, observed in this study for 52 Fe, 55 Fe and 59 Fe from a natural nickel target. The shapes of the curves are generally as expected considering the Q values for the numerous reactions possible in this energy region. The agreement with the only other data set by Steyn *et al.* [30] is fairly good except for the reported levels of directly produced 55 Fe, which they report as being about twice as high as the present work, but this could possibly be due to their chemical separation technique which, in practice, results in a very poor decontamination factor for cobalt and vanadium.

Figure 2 shows the yields of 52 Fe measured in this study and three others. Production rates obtained from the work of Tanaka *et al.* [17] and Dmitriev [31] come from cross section measurements and thick target yields (1 MeV window) for the reaction of 56 and 60 MeV protons with enriched 58 Ni. These two

Fig. 1. Production rates for ⁵²Fe, ⁵⁵Fe and ⁵⁹Fe from the 72 MeV proton bombardment of natural nickel. (⁵⁵Fe(⁵⁵Co) indicates indirectly produced ⁵⁵Fe and is based on ⁵⁵Co measurements.)

works can be directly compared to our work because the contribution from ⁶⁰Ni can be considered to be negligible in comparison. Data obtained from Steyn *et al.* [30] however relates to tabulated production rates for 100 MeV and 66 MeV protons on ^{nat}Ni. The

Fig. 2. Comparison of various reported production rates for ⁵²Fe from the proton bombardment of nickel. (a)This work, (b) Ref. 31, (c) Ref. 30, (d) Ref. 17.

agreement with Steyn *et al.* [30], about 10% lower at higher energies, is good considering that their in house determination of the 27 Al(p,xn) ${}^{22/24}$ Na reactions are some 10% out from those given by Grütter [26] and used in this work. The values obtained from Tanaka *et al.* [17] and Dmitriev [31] however are consistently lower. In the region 60–70 MeV the curve is fairly flat, but a maximum is observed at about 65 MeV.

Figure 3 shows the comparison of our data with four other data sets for the indirect production of ⁵⁵Fe via decay of ⁵⁵Co. As in the previous figure the production rates of Tanaka *et al.* [17] were derived from cross section measurements on ⁵⁸Ni as were those of Michel *et al.* [18] except that they used 45 MeV protons on ^{nat}Ni. Also the data given by Dmitriev [31] is derived from thick target data (2 MeV windows) as is that of Steyn *et al.* [30]. In general the agreement is quite good (except for Tanaka *et al.* [17]) if one considers the effect of proton straggling for the higher energy degradation produced in the larger foil stacks.

From the point of view of radioisotopic purity the best production route demonstrated for the production of ⁵²Fe is the ^{nat}Cr(³He, xn), but the low production rates (ca. 50 μ Ci/ μ Ah) would place unacceptable demands on beam time. The manganese target and proton irradiation has been shown to give

Fig. 3. Comparison of various production rates for indirectly produced ⁵⁵Fe based on the reported production rates for ⁵⁵Co. (a) This work, (b) Ref. 31, (c) Ref. 17, (d) Ref. 18, (e) Ref. 30.

production rates comparable to those of a nickel target and with a similar ⁵⁵Fe contamination level.

Large scale production

Some 20 production runs of 52 Fe for in house PET experiments and for 52 Fe/ 52m Mn generator studies have resulted in a yield some 90% of the theoretical value. A γ -spectrum taken from a sample of 52 Fe some 250 hours after production revealed only the expected decay product 52 Mn and the byproduct 59 Fe. Estimation of the most expected radionuclidic impurities of 56 Co, 58 Co and 56 Ni were all less than $1 \cdot 10^{-6}$ % compared to the initial 52 Fe activity.

Initially, in our routine production runs, we obtained iron levels typically in the $80-90 \mu g$ range for one batch production regardless of activity produced. Further analysis revealed that the nickel target (8.8 g) contained $60-65 \mu g$ of iron and the remainder $20-25 \mu g$ was coming from the reagents used (all Merck Pro Analysis grade).

The only other data for carrier iron levels were given by Steyn *et al.* [30] as 2170 μ g for a manganese target and 120 μ g for a nickel target. These levels are clearly unacceptable for iron studies, particularly for smaller animals since the natural iron balance will be perturbed (in humans the levels of iron bound to transferrin are around 1 mg/l whole blood [28]).

An alternative to longer bombardment times is to use purer materials and, since recently a commercial supplier (Goodfellow) has included a high purity nickel (stated as <2 ppm Fe but found to be 1 ppm) in their catalogue, we have altered our targetry to accommodate a smaller target ($18 \times 18 \times 1$ mm). This has resulted in reducing the production rate by a factor of 2 but iron levels are now about 5 µg with 3.4 - 3.6 µg coming from the nickel and about 1.5 µg coming from the chemical processing (Merck Suprapur grade reagents). This enables ⁵²Fe of a suitable specific activity for protein labelling ($10 \text{ mCi}/\mu g$) to be produced with only a 4 hour bombardment.

Conclusion

The bombardment of a nickel target with 72 MeV protons has been shown to be the best option for 52 Fe production regardless of whether it is to be used for labelling purposes or in the 52 Fe/ 52m Mn generator system. The yield of 52 Fe is higher than for other reported reactions and the formation of 55 Fe is comparable to that from the manganese target. The physical properties of nickel make it ideally suited to direct water cooling and consequently higher beam currents may be used. Since nickel is relative easy to refine, it is available in a highly pure metallic form which makes it more readily suited to the production of 52 Fe with a high specific activity.

Acknowledgements

The authors would like to thank Mr. R. Maag and Mr. J. Jegge for their valuable assistance in target preparation and irradiation, Dr. H. W. Reist for his advice concerning proton energy degradation and energy straggling, Mr. H. Hügli for the analysis of ⁵⁵Fe and the National Accelerator Centre of South Africa for allowing P. M. Smith-Jones to take leave of absence.

References

- 1. Waters, S. L., Silvester, D. J.: Inorganic Cyclotron Radionuclides. Radiochim. Acta 30, 163-173 (1982).
- Qaim, S. M.: Nuclear Data Relevant to Cyclotron Produced Short-lived Medical Radioisotopes. Radiochim. Acta 30, 147-162 (1982).
- Qaim, S. M.: Cyclotron Production of Generator Radionuclides. Radiochim. Acta 41, 111-117 (1987).
- Knospe, W. H., Rayudu, G. V. S., Cardello, M., Friedman, A. M., Fordham, E. W.: Bone Morrow Scanning with ⁵²Iron (⁵²Fe). Regeneration and Extension of Marrow after Ablative Doses of Radiotherapy. Cancer 37, 1432 (1976).
- Chauncey, D. M., Schelbert, H. R., Halpern, S. E., Delano, F., McKegney, M. L., Ashburn, W. L., Hagan, P. L.: Tissue Distribution Studies with Radioactive Manganese: A Potential Agent for Myocardial Imaging. J. Nucl. Med. 18, 933-936 (1977).

- Lambrecht, R. M.: Radionuclide Generators. Radiochim. Acta 34, 9-24 (1983).
- Herscheid, J. D. M., Vos, C. M., Hoekstra, A.: Manganese-52m for Direct Application: A New ⁵²Fe/^{52m}Mn Generator Based on a Hydroxamate Resin. Int. J. Appl. Radiat. Isot. 34, 883-886 (1983).
- Beene, J. R.: Nuclear Data Sheets for A = 52. Nucl. Data Sheets 25, 235-374 (1978).
 Suzuki, K.: Production of ⁵²Fe by the ⁵⁵Mn(p,4n)⁵²Fe Re-
- Suzuki, K.: Production of ⁵²Fe by the ⁵⁵Mn(p,4n)⁵²Fe Reaction and Milking of ^{52m}Mn from ⁵²Fe. Radioisotopes (Tokyo) 34, 537-542 (1985).
- Robertson, J. S., Price, R. R., Budinger, T. F., Fairbanks, V. F., Pollycove, M.: MIRD Dose Estimate Report No. 11. Radiation Absorbed Doses from Iron-52, Iron-55 and Iron-59 Used to Study Ferrokinetics. J. Nucl. Med. 24, 339-348 (1983).
- Sodd, V. J., Scholz, K. L., Blue, J. W.: ⁵²Fe Production for Medical Use from 588-MeV-Proton Irradiation of Mn, Co, Ni and Cu Targets. Med. Phys. 1, 25-28 (1974).
- Ku, T. H., Richards, P., Stang, L. G., Prach, T.: Preparation of ⁵²Fe and its Use in a ⁵²Fe/^{52m}Mn Generator. Radiology 132, 475-477 (1979).
- Steinkruger, F. J., Bentley, G. E., O'Brien, H. A., Ott, M. A., Steurer, F. H., Taylor, W. A., Barnes, J. W.: Production and Recovery of Large Quantities of Radionuclides for Nuclear Medicine Generator Systems. ACS Symposium Series 241 (F. F. Knapp and T. A. Butler, eds.) ACS, Washington DC (1984).
- 14. Campbell, J. L., Perujo, A., Teesdale, W. J., Millman, B. M.: $K\alpha$, $K\beta$, and Irradiated Auger Photon Intensities in K X-ray Spectra from Atoms in the $20 \le Z \le 40$ Region. Phys. Rev. A, 33, 2410-2417 (1986).
- Debertin, K., Furnari, J. C., Walz, K. F.: Standard Sources for the Efficiency Calibration of Photon Detectors in the Energy Range from 5 to 40 keV. Int. J. Appl. Radiat. Isot. 36, 977-980 (1985).
- Andersson, P., Ekstrom, L. P., Lyttkens, J.: Nuclear Data Sheet for A = 59. Nucl. Data Sheets 39, 641-740 (1983).
- Tanaka, S., Furukawa, F., Chiba, M.: Nuclear Reactions of Nickel with Protons up to 56 MeV. J. Inorg. Nucl. Chem. 34, 2419-2426 (1972).
- Michel, R., Weigel, H., Herr, W.: Proton induced Reactions on Nickel with Energies Between 12 and 45 MeV. Z. Physik A, 286, 393-400 (1978).
- Grant, P. M., O'Brien, H. A., Bayhurst, B. P., Gilmore, J. S., Prestwood, R. J., Whipple, R. E., Wanek, P. M.: Spallation Yields of Fe-52, Cu-67, Ga-67 and Tl-201 from Reactions of 800 MeV Protons with Ni, As, Pb, and Bi Targets. J. Lab. Comp. Radiopharm. 16, 212 (1979).
- Sadler, M. E., Singh, P. P., Jastrzebski, J.: Interaction of 80-164 MeV Protons with Nickel Isotopes. Phys. Rev. C, 21, 2303-2321 (1980).
- Jastrzebski, J., Karwowski, H. J., Sadler, M., Singh, P. P.: Recoil Ranges of Nuclei Produced in the Interaction of 80– 164 MeV Protons with Ni. Phys. Rev. C, 22, 1443–1453 (1980).
- Asano, T., Asano, Y., Iguchi, Y., Kudo, H., Mori, S., Noguchi, M., Takada, Y., Hirabayashi, H., Ikeda, H., Katoh, K., Kondo, K., Takasaki, M., Tominaka, T., Yamamoto, A.: Target Dependence of Charge Distributions in Spallation Reactions of Medium Mass Nuclei with 12 GeV Protons. Phys. Rev. C, 28, 1718-1724 (1983).
- Saito, N.: Selected Data on Ion Exchange Separations in Radioanalytical Chemistry. Pure Appl. Chem. 56, 523-539 (1984).
- Kraus, K. A., Moore, G. E.: Absorption of Divalent Transition Elements from Manganese to Zinc. J. Am. Chem. Soc. 75, 1460-1462 (1953).
- Weinreich, R., Reist, H. W., Maag, R., Oehniger, H.: Production of Short-Lived Positron Emitters Using a Splitted Beam of 72 MeV Protons. Nucl. Med. 26, 196-197 (1987).
- 26. Grütter, A.: Excitation Functions for Radioactive Isotopes Produced by Proton Bombardment of Cu and Al in the

Energy Range of 16 to 70 MeV. Nucl. Phys. A383, 98-108 (1982).

- 27. Janni, J. F.: Proton Range Energy Tables, 1 keV-10 GeV. At. Data Nucl. Data Tables, 27, 341-529 (1982).
- Hughes, E. R.: Human Iron Metabolism. In: Metal Ions in Biological Systems, Volume 7. Iron in Model and Natural Compounds. (H. Sigel, ed.), Marcel Dekker Inc., New York (1974).
- 29. Furman, N. H.: Standard Methods of Chemical Analysis. 6th ed., D. Van Nostrand Company Inc. Princeton, New Jersey (1962).
- Steyn, G. F., Mills, S. J., Nortier, F. M., Simpson, B. R. S., Meyer, B. R.: Production of ⁵²Fe via Proton Induced Reactions on Manganese and Nickel. 41, 315-326 (1990).
- Dmitriev, P. P.: Radionuclide Yield in Reactions with Protons, Deuterons, Alpha Particles and Helium-3. International Nuclear Data Committee, IAEA Nuclear Data Section, INDC(CCP)-263/G+CN+SZ, Vienna 1986.
- Thakur, M. L., Nunn, A. D., Waters, S. L.: Iron-52: Improving its Recovery from Cyclotron Targets. Int. J. Appl. Radiat. Isot. 22, 481-483 (1971).
- 33. Akiha, F., Aburai, T., Nozaki, T., Murakami, Y.: Yield of 52 Fe for the Reactions of 3 He and α on Chromium. Radiochim. Acta 18, 108 (1972).
- 34. Akiha, F., Murakami, Y.: Excitation Curves and Thick Target Yield Curves of ⁵²Fe, ⁵⁵Fe, ⁵⁶Mn, ⁴⁸Cr, ⁴⁹Cr, ⁵¹Cr and ⁴⁸V for the (Cr+³He) Reactions on Natural Chromium. Nippon Kagaku Kaishi 8, 1416-1421 (1972).
- Yano, Y., Anger, H. O.: Production and Chemical Processing of ⁵²Fe for Medical Use. Int. J. Appl. Radiat. Isot. 16, 153-156 (1965).
- Cavallero, A., Cogneau, M. A., Apers, D. J.: Cross Sections and Excitation Functions of 40 to 110 MeV α-Particle In-

duced Reactions in Natural Chromium. Radiochim. Acta 24, 11 - 14 (1977).

- Dahl, J. R., Tilbury, R. S.: The Use of a Compact, Multiparticle Cyclotron for the Production of ⁵²Fe, ⁶⁷Ga, ¹¹¹In and ¹²³I for Medical Purposes. Int. J. Appl. Radiat. Isot. 23, 431-437 (1972).
- 38. Akiha, F.: Studies on Excitation Curves and Thick Target Yield Curves of ⁵²Fe, ⁵⁵Fe, ⁵⁶Mn, ⁴⁹Cr, ⁵¹Cr and ⁴⁸V Formed by Bombardment of α Particles on Natural Chromium. Nippon Kagaku Kaishi 9, 1664-1669 (1972).
- Rayudu, G. V. S., Shirazi, S. P. H., Fordham, E. W.: Comparison of the Use of ⁵²Fe and ¹¹¹In for Hemopoietic Marrow Scanning. Int. J. Appl. Radiat. Isot. 24, 451-454 (1973).
- Atcher, R. W., Friedman, A. M., Huizenga, J. R.: Production of ⁵²Fe for use in a Radionuclide Generator System. Int. J. Nucl. Med. Biol. 7, 75-78 (1980).
- Greene, M. W., Lebowitz, E., Richards, P., Hillman, M.: Production of ⁵²Fe for Medical Use. Int. J. Appl. Radiat. Isot. 21, 719-723 (1970).
- 42. Saha, G. B., Farrer, P. A.: Production of ⁵²Fe by the ⁵⁵Mn(p,4n)⁵²Fe Reaction for Medical Use. Int. J. Appl. Radiat. Isot. 22, 495-498 (1971).
- Lindner, L., Kapteyn, J. C.: A Novel Way to Produce ⁵²Fe. Proc. 15th Int. Ann. Meeting, Eur. Soc. of Nucl. Med., Groningen, The Netherlands (1977).
 Lindner, L., Kapteyn, J. C.: ⁵⁴Fe(γ,2n)⁵²Fe Induced Szilard-
- Lindner, L., Kapteyn, J. C.: ³⁴Fe(y,2n)⁵²Fe Induced Szilard-Chalmers Effect in Ferrocene and Ferricinium Picrate. Radiochim. Acta 26, 97-101 (1979).
- Keller, K. A., Lange, J., Münzel, H.: Q Values and Excitation Functions for Charged Particle Induced Nuclear Reactions. In: Landolt-Börnstein Neue Serie 1/5a (K. H. Hellwege, ed.) Springer-Verlag, Berlin (1973).