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ABSTRACT

Tandem repeats (TRs) are often present in proteins
with crucial functions, responsible for resistance,
pathogenicity and associated with infectious
or neurodegenerative diseases. This motivates
numerous studies of TRs and their evolution,
requiring accurate multiple sequence alignment.
TRs may be lost or inserted at any position of a TR
region by replication slippage or recombination, but
current methods assume fixed unit boundaries, and
yet are of high complexity. We present a new global
graph-based alignment method that does not
restrict TR unit indels by unit boundaries. TR
indels are modeled separately and penalized using
the phylogeny-aware alignment algorithm. This
ensures enhanced accuracy of reconstructed align-
ments, disentangling TRs and measuring indel
events and rates in a biologically meaningful way.
Our method detects not only duplication events
but also all changes in TR regions owing to recom-
bination, strand slippage and other events inserting
or deleting TR units. We evaluate our method by
simulation incorporating TR evolution, by either
sampling TRs from a profile hidden Markov model
or by mimicking strand slippage with duplications.
The new method is illustrated on a family of type III
effectors, a pathogenicity determinant in agricultur-
ally important bacteria Ralstonia solanacearum. We
show that TR indel rate variation contributes to
the diversification of this protein family.

INTRODUCTION

Today accurate multiple sequence alignment (MSA) is fre-
quently needed in genomics and molecular biology
studies. In an alignment defined by the evolution of
sequence residues (rather than by its molecular structure),
characters in the same column are assumed to be homolo-
gous, indicating that they have evolved from a common

ancestral character. Recent successful additions to the
alignment tools arsenal are the phylogeny-aware algo-
rithms that reduce alignment errors producing biologically
more meaningful alignments (1). Graph-based representa-
tion of ancestral sequences helps to further reduce error by
allowing alternative splicings and tolerating errors in the
branching pattern of the guide tree. A similar approach
has been applied to next-generation sequences from envir-
onmental samples to provide more accurate extensions of
reference alignments (2). Recent drive for biologically
more meaningful alignments (3) included developments
to account for special sequence features such as protein
domains, repeats, rearrangements and promoter regions
(4–9). Indeed, the global alignment of proteins with
shuffled, duplicated, missing or inverted segments may
present a substantial challenge. Here, we focus on improv-
ing the strategy for aligning sequences with tandem
repeats (TRs).
A TR is a consecutive repetition of sequence segments

with a similar character pattern. In coding regions, TR
mutations have direct effects on the protein product,
and even non-coding TRs mutations can seriously
impact genetic fitness (10). A number of human proteins
with TRs are known to perform important biological
functions or to be related to infectious and
neurodegenerative diseases. Non-coding TRs in human
cells were discovered incidentally, and ever since have
been used as biological markers in forensics and genetic
profiling (11,12). TRs in genomic sequences may be much
more frequent than is typically thought (13,14), covering
large parts of proteins (in some cases up to 100%: e.g.
collagens that form muscle and connective tissues in
animals).
TRs are usually thought to evolve rapidly, but many

exceptions of this rule exist (15). Moreover, little is
known about the biological processes that shape TRs.
TR units may mutate over time or undergo duplications
or loss. As time passes, the TR unit similarity fades,
making the shared ancestry of multiple repeat units
more difficult to detect. Furthermore, accumulating
evidence suggests that TRs often mutate by replication
slippage (16,17). In sequences with TRs, the mispairing
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of a slipping-strand during the DNA synthesis may lead to
loss or gain of TR units as loops of TR units form hairpin
structures (18). The real biological process does not neces-
sarily preserve the ‘phase’ in which TR units are lost or
gained. Figure 1 shows an example of slippage mutations
starting at different positions of a TR region, yet both
resulting in the same protein sequence. As slippage-
caused loss or gain of TR units may happen at every
position of a TR region, fixed TR unit boundaries are
an artificial constraint. When applied to homologous
sequences, TR predictors usually will not preserve the
phase of TR units (Supplementary Figure S10). Despite
this, to ease the modeling and computation, current
methods typically assume fixed unit boundaries but are
still of high complexity [at least Oðn4Þ (4,6,7)]. Both our
new method and the simulation allow for TR mutations at
any position of a TR region and are thus not restricted to
unit boundaries.
In addition, most current alignment methods for se-

quences with rearrangements and repeats (5,19) infer
local alignments of all TR units, which are uninformative
about the evolutionary events separating the whole

sequences. To our knowledge, the only global MSA
solution for sequences with repeats assumes fixed repeat
unit boundaries (4), and, unfortunately, the respective im-
plementation RAlign currently is not available. Here, we
present a method to infer global MSAs of homologous
sequences with TRs. A global alignment restricts the
homology representation so that not all possible
homologies can be identified owing to the requirement
to retain the order of sequence characters (Figure 2): A
global alignment informs about the sequence-level
homology but cannot show the TR-level homology (i.e.
between TR duplicate copies). However, the global align-
ment format is indispensable for many evolutionary
analyses, including phylogenetic inference, positive selec-
tion, TR unit indel rate estimation and so forth.

We describe and implement a model of TR unit evolu-
tion, capitalizing on the advantages of a recent graph-
based phylogeny-aware MSA algorithm (20). In our new
algorithm, the TR unit indels are distinguished from
normal character indels. Therefore, unlike any previous
tools, our implementation ProGraphMSA+TR enables
the rate estimation for TR unit indels. This helps to
disentangle TR units and to measure indel events in a
biologically meaningful way, improving the overall
quality of reconstructed global alignments. This work
paves the way for further analyses of this important
category of proteins and their evolutionary properties.
We model the TR evolution by incorporating special in-
sertions and deletions spanning whole multiple TR units
into the common evolutionary model of character substi-
tutions, insertions and deletions. The new method is thus
not constrained to duplication events and should be able
to detect all changes in TR regions due to recombination,
strand slippage and other events which insert or delete one
or multiple TR units.

ProGraphMSA+TR inherits all other advantages of our
previous graph-based alignment method (20), including
context-specific profiles (21) and phylogeny-aware penal-
ization of indels (22), and adds an affine cost model for
TR unit indels. Information about putative TR regions is
obtained automatically by transparent calls to third-party

Figure 2. Not all alignable character pairs can be detected by global alignment. In the shown example, two homologous sequences seqA and seqB
are separated by one TR unit duplication and two subsequent deletions. Each character in the TR region of seqA retains a corresponding hom-
ologous character in seqB, but the global alignment is unable to detect all such relationships owing to the requirement of retaining the character
order of each sequence (character A in seqA is not aligned to the homologous A in seqB). Although such alignment does not fully reflect the
homology in terms of aligned pairs, it nevertheless correctly reflects the three indels.

Figure 1. Examples of TR unit duplication: (A) in phase and (B) not in
phase. TR unit deletions or insertions (i.e. duplications) can occur at
any position of a TR unit. The structure of the protein is retained
independently of the ‘phase’ at which a duplication occurs.
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TR detectors such as T-REKS (23) or TRUST (24).
Additional TR prediction software can be integrated
with wrapper scripts.

We evaluate the new algorithm in a simulation frame-
work incorporating TR evolution, by either sampling TR
units from a profile hidden Markov model (HMM) or by
mimicking strand replication slippage with duplications.

MATERIALS AND METHODS

The new TR indel method has been implemented within
ProGraphMSA (20), a framework for global progressive
alignment with a graph-based representation of ancestral
sequences. The algorithm starts by aligning linear graphs
representing leaf sequences in a pairwise fashion as
indicated by a guide tree. In further steps, these graphs
are coalesced to directed acyclic graphs at the internal
nodes of the guide tree—the paths through the graph rep-
resenting possible ancestral sequences. The edges of the
sequence graphs encode the indel history during the align-
ment. The alignment of two directed acyclic graphs boils
down to the selection of homologous paths in both
graphs. Although classic progressive alignment penalizes
insertions multiple times (22), this method allows
differentiating insertions from deletions by selecting the
corresponding paths through the graph and thus penalizes
them correctly.

Modeling TR unit indels

TR unit indels were modeled by paths in the graph that
bypass whole repeat units. This is achieved by adding
edges to the leaf sequences to allow for skipping one or
multiple repeat units. The edge penalties are adjusted to
account for unit indel costs. Although theoretically, an
arbitrary cost model is possible, we used affine gap
penalties. Also for TR unit indels, the graph-based
approach is able to differentiate insertions from deletions
and thus penalizes them correctly.

To annotate the TR regions in a sequence with add-
itional edges, ProGraphMSA+TR requires an MSA of
homologous TR units (TR-MSA) for each type of TR in
the given sequence. For each sequence to be aligned,
ProGraphMSA+TR transparently calls TR detector
programs T-REKS (23) or TRUST (24) to obtain TR pre-
dictions and TR unit alignments (Figure 3). For ancestral
graphs at internal guide tree nodes, the TR information
from all descendant leaves is incorporated. Each type of
TR is processed separately, and edges are added to the
sequence graph to allow for skipping one or multiple
TR units at each possible position inside the TR region.
To enable skipping of whole TR units, the target character
of an edge has to follow a character that is TR-level hom-
ologous to the source character of the edge. When the
homologous position is not present (e.g. as a result of a
deletion), the target becomes the character following the
virtual position of the absent homologous character
(Figure 3). If during alignment, a TR edge is selected to
be a part of the aligned paths, it is permanently added to
the graph and henceforth represents an alternative path in
the ancestral sequence due to an insertion or deletion.

Intuitively, our method should offer the best perform-
ance in reconstructing the evolution of TRs in homologs
of moderate divergence and while the TR unit indel rate is
low enough to produce non-overlapping events. Our
approach allows only for TR unit indel events and does
not enforce the alignment to be consistent in terms of TR-
level homologies, i.e. two TR-level homologous characters
in a sequence can be aligned to two non-homologous char-
acters in the second sequence. Although such consistency
could be achieved by column-wise alignment [e.g. profile-
profile alignment (25)] of the TR unit MSAs of the two
sequences, we chose not to enforce this consistency by
default owing to possible errors in the TR unit alignments
provided by TR detectors.

Simulation of proteins with TR regions

To evaluate ProGraphMSA+TR, we designed a simula-
tion algorithm, which evolved an ancestral sequence con-
taining TRs into a set of extant sequences. The mutation
process was modeled using the WAG substitution model
(26) with character insertions and deletions along six-taxa
trees randomly sampled from birth–death models for spe-
ciation and extinction (27). Ten thousand MSAs with TRs
were simulated for each of the total 60 parameter combin-
ations (summarized in Table 1) and for both simulation
scenarios (Figure 4). Each simulated ancestral sequence
included two random flanking regions at the terminals
and a core of 6 to 20 TR units (Figure 4) generated
from their corresponding profile HMM (28). To allow
for different functional and structural constraints of TRs
as well as unit lengths, we simulated TRs representing
different structural categories (29). We thus constructed
four profile HMMs from TRs of the anti-freeze protein
(AFP), GALA leucine rich repeats (LRR), zinc finger
domain (ZNF) and spectrin repeats (SPT). These
examples not only represent TRs with a wide range of
unit length and numbers but also correspond to some of
the most abundant and well-studied cases of TRs. AFPs
facilitate organism’s survival at extremely low tempera-
tures. APFs are remarkably diverse and widely found in
vertebrates, fungi, plants and bacteria. LRRs are another
diverse and frequent group of protein TRs. They are
intensively studied because of their crucial role in the
formation of protein–protein interactions. The most

X X A B C A C A B X X

TR-detection A B C

A - C

A B -

TR-MSA:

linear graph

X X A B C A C A B X X

add TR edges

X X A B C A C A B X X

Figure 3. Possible TR unit indels are inferred from a TR-MSA. This
TR-MSA is obtained transparently by running a TR detection
program. For each character in the TR region, edges ending at the
character after a TR-homologous character are added to the
sequence graph.
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abundant known TR is probably the zinc finger motif,
which forms zinc-coordinating 3D structures. ZNFs play
versatile binding roles and thus facilitate a great variety of
protein functions from translation and transcription to
more specialized functions such as chromatin remodeling
and cytoskeleton organization (30). Finally, SPT repeats
are an interesting example of long TRs that nevertheless
exhibit large unit numbers. SPTs play role in a number of
proteins involved in cytoskeletal structure.
Simulated TRs had average unit lengths between 10 and

100 amino acids. In the core TR region, we additionally
simulated insertions and deletions of whole TR units with
different insertion/deletion rates and different length dis-
tributions (one or multiple units at once). Most import-
antly two distinct modes were used for simulating TR unit
indel events.
‘The profile method’ sampled all inserted TR units

(including the ancestral units) from a profile HMM
(Figure 4a). As unit insertions were allowed to occur at
each position inside the TR region, a randomly sampled
TR unit insertion was ‘rotated’ to a suitable phase before
the insertion. Deletions were performed similarly on whole
TR units, i.e. starting at a random position inside the TR
region and up to a subsequent TR-level homologous char-
acter according to the assumed length distribution. When
a corresponding TR-level homologous character was
missing (due to a deletion), the profile-based simulation
still performed a deletion of the given number of units up
to the next position following the missing character
homolog (Figure 3).
‘The duplication method’ mimicked strand slippage mu-

tations (33) by duplicating or deleting parts of the TR
region between two randomly chosen TR-level homolo-
gous characters. The required number of ancestral TR
units is evolved from a single copy on a star topology
and then concatenated to form the TR region (Figure 4b).

All simulation parameters were identical for the two
methods and the four TR types, except for the ancestral
unit counts and the length distributions of TR unit indels
(Table 1). Although the profile method used the geometric
distribution to determine the number of inserted/deleted
units per event, the TR unit duplication method
exponentially weighted each possible pair of TR-homolo-
gous sequence characters by the length of the inserted/
deleted segment. Based on these weights, a pair was
chosen randomly and the region in between either
duplicated or deleted. Our weighting scheme resulted in
the average TR indel length 1.1–3.7 units per indel,
depending on the TR unit length and the number of
units, which was influenced by the tree length and the
TR unit indel rate.

RESULTS AND DISCUSSION

The comparative performance of different methods was
evaluated on simulated data generated with different TR
unit types, different mutation and indel rates, and for two
distinct simulation modes of TR unit indels (Table 1). To
assess the advantage of our TR-aware alignment algo-
rithm, ProGraphMSA+TR was executed either with no
prior knowledge of TR units, with true TR units as
known from the simulation, or with TR information re-
constructed by the TR predictor TRUST (24). The per-
formance has been measured with regard to (i) the number
of correctly aligned character pairs as compared with the
true reference alignment and (ii) the number of inferred
TR unit indels (as one of the goals of the method was the
inference of TR unit evolution).

Performance assessment based on pairwise measures

To evaluate the inferred MSAs in terms of cor-
rectly aligned residue pairs, we used two common

Table 1. Simulation parameters

Insertion rate 0.005 (per site)

Deletion rate 0.005 (per site)
Indel length distribution geometrical (mean=3.5)
Substitution model WAG
Tree taxa in sample 6
Tree topology constant rate birth-death model
Tree lengths 0.1 0.5 1.0
Flanking region length geometrical (mean=100)
TR unit type AFP, LRR, ZNF, SPT
TR unit length 10, 24, 24, 100
Ancestral TR units 20, 6, 6, 10
TR insertion rates 0.1 0.5 1 2 4 (per unit)
TR deletion rates 0.1 0.5 1 2 4 (per unit)

(i) Simulation from the profile HMM:
TR indel length distribution geometrical (mean=1.5 units)

(ii) Simulation by TR unit duplication:
TR indel length distribution empirical (mean=1.1 � 3.7 units)

Two simulation methods were used to generate protein sequences with
TRs. (i) Simulation from the profile HMM: Each TR unit in a sequence
was sampled from a profile HMM and (ii) Simulation by TR unit dupli-
cation: one TR unit is sampled from a profile HMM but the consequent
TR units are generated by duplicating a part of the existing TR sequence.
AFP=AFP repeat (PF02420); LRR=GALA LRR (31,32);
ZNF=zink finger domain (PF00096); SPT=spectrin repeat (PF00435).

Figure 4. Simulated sequences consist of flanking regions of variable
length (�100 aa) and 6–20 TR units. These TR units are either sampled
directly from a profile HMM (profile version) or a single unit is
sampled and mutated at distance 0.2 expected substitutions per site
(duplication version).
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alignment-quality statistics fD and fM. The ‘developer
score’ (fD) is the fraction of correct pairs relative to the
total number of pairs in the reference alignment, i.e. it is a
measure of ‘sensitivity’ (also known as power). The
‘modeler score’ (fM) is computed relative to the number
of pairs in the reconstructed MSA and thus provides a
measure of specificity (or accuracy).

For profile-based simulation of protein alignments with
TRs, the definition of fD and fM is straightforward as
TR unit insertions do not create ambiguous pairings.
However, in the presence of TR unit duplication events,
a global MSA becomes ambiguous: each copy of a unit
can be treated either as homologous or as an insertion, i.e.
every character of the corresponding TR region in the
ancestral sequence has two (or more) possible pairings in
the alignment, but only one can be realized owing to the
nature of global alignments.

Consider a scenario in which an ancestral TR unit was
duplicated independently in disjoint clades (Figure 5).
Each character in the TR unit of one leaf sequence has
two possible homologous pairings with characters in the
other leaf sequence, i.e. a total of four possible pairings for

a single ancestral character. As the aim is to estimate the
correct number of insertions rather than reconstruct all
possible pairwise homologies, only one of four possible
pairs can be assumed correct. Moreover, there exist scen-
arios in which not all possible pairings can be realized in
the alignment owing to the representation of global align-
ments (Figure 2). Thus, the maximum achievable sensitiv-
ity is not always 1. However, and more importantly, in
contrast to local alignments, the number of inferred TR
unit indels will be inferred correctly.
The quality of the inferred MSAs was assessed separ-

ately for TR regions and their flanking sequences. Table 2
summarizes the command line parameters used to run the
alignment programs. The inferred MSAs were compared
in terms of the fD and fM statistics for ProGraphMSA
(without TR information), ProGraphMSA+TR and the
popular programs MUSCLE (34) and MAFFT (35).
As the observed performance was similar for all types of

TR units, full results are shown only for LRR-containing
MSAs (Figures 6 and 7). The results for the MSAs con-
taining AFP, ZNF and SPT are provided as supplemen-
tary material (Supplementary Figures S1–S6).

Table 2. Command line parameters

Program (version) Parameters Description

ProGraphMSA

-i 2 –mldist Iterate distance and guide tree estimation two times
–no_force_align –end_indel_prob -1 No special treatment of terminal gaps
–fasta -o prograph.fasta input.fasta Input/output

ProGraphMSA+TR

–repeats –custom_tr_cmd trust2treks.py Use TRUST for TR detection
–repeat_indel_rate 0.1 TR unit insertion/deletion rate (per site)
–repeat_indel_ext 0.3 TR units insertion/deletion length coefficient
-i 2 –mldist Iterate distance and guide tree estimation two times
–no_force_align –end_indel_prob -1 No special treatment of terminal gaps
–fasta -o prographTR.fasta input.fasta Input/output

ProGraphMSA+realTR

–read_repeats repeats.treks Use true repeat information
–repeat_indel_rate 0.1 TR unit insertion/deletion rate (per site)
–repeat_indel_ext 0.3 TR units insertion/deletion length coefficient
-i 2 –mldist Iterate distance and guide tree estimation two times
–no_force_align –end_indel_prob -1 No special treatment of terminal gaps
–fasta -o prographRealTR.fasta input.fasta Input/output

MAFFT 6.843-with-ext
–maxiterate 1000 –globalpair Iterative refinement (suggested for best results)
–quiet input.fasta>mafft.fasta Input/output

MUSCLE 3.8.31 -quiet -in input.fasta -out muscle.fasta Input/output

All versions of ProGraphMSA have common parameters to iterate the estimation of distances and guide tree and to disable the special treatment of
terminal gaps, which are enabled by default to deal with real sequence data. Further, the TR versions use the same TR unit indel distributions but
use different sources for TR information. ProGraph+TR uses a TR-MSA produced by TRUST, whereas ProGraph+realTR uses the true TR unit
information provided by the simulation algorithm. MUSCLE was executed with the default parameters and MAFFT with the parameters that were
suggested in the command line help for best results.

Figure 5. Only one aligned pair is allowed per ancestral character. Consider the central characters C and A, which are independently duplicated in
both leaf sequences. By allowing only one aligned pair per ancestral character, the number of indel events is reconstructed correctly.
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For programs that do not account for TR presence
(ProGraphMSA, MAFFT and MUSCLE), we observed
similar fD and fM values, which decreased, as expected,
with increasing TR unit indel rates. In contrast, account-
ing for the presence of TRs significantly improved the
performance: In general, we can observe that
ProGraphMSA+TR outperformed ProGraphMSA—
both in terms of sensitivity and specificity. Moreover,
with true TRs (as known from simulation)
ProGraphMSA+TR had better sensitivity and specificity
compared with using the predicted TR units (compare
ProGraphMSA+realTR versus ProGraphMSA+TR in
Figures 6 and 7). Even though the TR prediction by
TRUST is often far from perfect (14), it nevertheless
aids to infer a more accurate MSA for sequences with
TRs (Supplementary Figure S10). Interestingly, the aware-
ness of TRs helps to improve the alignment of both the
TR region and the flanking regions, even if not always
significantly.
Overall, the simulation results for duplication and profile

methods were similar, also when comparing data sets with
different types of TR units. The differences in absolute
values of fD and fM for the two simulation methods
appear to be due to different lengths and divergences of

simulated TR regions. Indeed, on average, the profile simu-
lation method increased the number of TR units during
evolution for longer trees and high TR unit indel rates,
whereas the duplication simulation method decreased
the total length of the TR region. Only in the case of low
TR unit indel rates or short trees for data simulated with
the profile method, we observed a significant but still small
decrease in specificity or sensitivity of ProGraphMSA+TR
compared with ProGraphMSA. Particularly, owing to the
high divergence between TR units sampled from the profile
HMM, the lower quality of TR predictions led to
slightly lower specificity compared with ProGraphMSA
without TR information. We similarly observe that the
TR detection performs worse for short repeat units
(Supplementary Figures S7–S9). Remarkably, the net per-
formance advantage was always in favor of modeling TRs,
as ProGraphMSA+TR achieved the best balance of
combining sufficiently high specificity with clear gains in
sensitivity.

TR unit indel rate estimation

To our knowledge, the presented algorithm and its imple-
mentation is currently the only method that allows the

fD (sensitivity) TR fM (specificity) TR
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Figure 6. Results for the profile simulation method simulation of MSAs with GALA-LRR-like repeats. The vertical facets represent sequence
divergence (i.e. total tree lengths measured in expected substitutions per site) used in simulation. ProGraphMSA was executed without any additional
information on TRs, whereas ProGraphMSA+TR used TR information detected by TRUST, and ProGraphMSA+realTR was executed with the
true TR-MSA provided (as known from simulation). Results for the popular programs MAFFT and MUSCLE are depicted for a qualitative
comparison.

e162 Nucleic Acids Research, 2013, Vol. 41, No. 17 PAGE 6 OF 11

very 
 -- 
to 
.
]
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt628/-/DC1
very 
ile
very 
very 
to 
due 
to 
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt628/-/DC1


detection of TR unit indels from sequence data during
alignment. The rate of TR unit indels cannot be reliably
inferred based only on TR unit counts in homologous
sequences, as TR detection methods are not sufficiently
accurate (14). In particular for distantly related TRs,
they often fail to detect individual units or identify a dif-
ferent repeat unit size (see example in Supplementary
Figure S10). Methods based on global alignment usually
provide better power to infer indels, especially if they are
able to discriminate between insertions and deletions in
ancestral states during phylogenetically guided alignment
(22,36).

However, TR-unaware MSA algorithms tend to merge
TR unit indels if their cost model does not account for
frequent and long indels. In addition, TR unit indels can
be split if gaps of the correct unit length are not favored
(compare examples in Supplementary Figure S11). Hence,
these methods do not facilitate accurate inference of TR
unit indel events. Conversely, ProGraphMSA+TR expli-
citly marks possible TR unit indels in its reconstructed
ancestral sequences. Combined with an appropriate cost
model our approach facilitates accurate inference of TR
unit indels.

We assessed the robustness of TR unit indel estimation
by comparing the number of inferred TR indel events with
the true numbers as known from the simulation. Overall,
we observed a strong correlation of estimated and true
indel counts. For example, Figure 8 shows the results of
a linear regression for sequences with moderate TR unit
indel rate (1.0 per unit) and moderate divergence (tree
length=0.5 expected substitutions per character) for
MSAs with GALA LRRs. As expected, for high indel
counts, the number of events was underestimated owing
to overlapping indels and erroneous merging of close
indels. Again, for the profile-based simulation, the TR
detector TRUST (24) failed to detect several repeat units
owing to higher divergence between the units emitted
by the profile HMM. This trend is even stronger for
short repeat units (Supplementary Figures S7–S9).
Consequently, the number of detected TR unit indel
events was significantly lower compared with when the
true TR information was used.
We note that the results were affected by the choice of

input parameters in ProGraphMSA+TR, namely, the TR
unit indel rate and its extension probability. These param-
eters should be provided by the user; yet, they are rarely
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Figure 7. Results for the duplication method simulation of MSAs with GALA-LRR-like repeats. The vertical facets represent sequence divergence
(i.e. total tree lengths measured in expected substitutions per site) used in simulation. ProGraphMSA was executed without any additional infor-
mation on TRs, whereas ProGraphMSA+TR used TR information detected by TRUST, and ProGraphMSA+realTR was executed with the true
TR-MSA provided (as known from simulation). Results for the popular programs MAFFT and MUSCLE are depicted for a qualitative comparison.
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known. We suggest default values (Table 2); however, for
more reliable TR unit rate estimation, we recommend to
perform ProGraphMSA+TR in an iterative fashion, ad-
justing the parameters to newly estimated values until con-
vergence. Indeed, our simulation experiment (Table 3)
demonstrated that in practice, the indel rate parameter
had only a small effect. One additional iteration was
already sufficient to obtain an estimate of the correct
order of magnitude. Using this estimate from the first
analysis to re-estimate the TR unit indel rate yielded
results, which were close to those obtained with the true
value. We also observed some improvement in alignment
quality related to a better choice of the input TR indel rate
(results not shown).
The input TR unit indel rate is the indel rate per TR

site. To obtain a comparable parameter value from
ProGraphMSA+TR, the inferred TR unit indel rate has
to be divided by the estimated length of the TR region.

Applications to bacterial GALA proteins with LRR

To illustrate the advantages of ProGraphMSA+TR, we
analyzed TR unit evolution in the GALA proteins with
LRRs arranged in tandem—from the phytopathogenic
bacteria Ralstonia solanacearum. These proteins are a
family of type III effectors—the major pathogenicity
determinant of the R. solanacearum species complex
(37,38). Each LRR forms a coil, and together in tandem,
GALA-LRR regions fold in a horse-shoe shaped structure,
which was proposed to have a key functional role: the
convex surface of each LRR structure is hypothesized to
be a binding site important for GALA’s adaptor function
(31). Consequently, variation in LRR numbers and
the indel process governing LRRs is of relevance for
studies of the functional diversification of different

GALA subfamilies and their differential virulence
properties.

We analyzed the GALA paralogs from two different
studies (31,32). ProGraphMSA+TR was applied to re-
align different GALA data sets and to infer estimates of
TR unit indel counts. These numbers and rates are
summarized in Table 4. Such analyses usually require
known tree root position. In an absence of such, the
problem may require an additional optimization for the
location of the root based on minimizing the total TR
indel number on the phylogeny relating the homologous
set under consideration. Inferred indel event counts were
mapped on the GALA phylogeny (32) and are depicted in
Figure 9 together with the distribution of numbers of
LRR units in GALA paralogs. The numbers of TR
units were detected by a profile HMM as implemented
in HMMER (39) based on the GALA-LRR profile.
Although LRR numbers varied substantially between
the different paralogs, we observed strong conservation
of LRR unit numbers within all individual GALA
clades with an exception of GALA1. Consequently, the
TR indel rate in GALA1 was the highest with 0.43 of
expected TR indels per unit. In contrast, TR indel rates
were particularly low in GALAs 2, 4 and 5, suggesting
that the preservation of LRR numbers may be relevant
to the preservation of advantageous properties that differ-
ent GALAs have evolved. The number of LRRs in differ-
ent paralogs may be relevant to their pathogenicity
properties in different hosts, particularly owing to the
hypothesized role of LRR regions to be involved in
protein binding. This is consistent with experimental
studies that show that pathogenesis on a specific host
plant is defined by the differential GALA requirement.
However, the clear phylogenetic division of GALA
paralogs on two subfamilies 2, 6, 7 and 1, 3, 4, 5 does
not imply homogeneous forces acting on each subfamily.
Rather the diversity within each subclade may play a
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Figure 8. Real versus estimated number of TR unit indel events for
MSAs with GALA-LRRs, tree length 0.5 and high TR unit indel rate
of 1.0. As expected, the number of TR unit indel events was usually
underestimated because of nested indels on single branches and
multiple indels being erroneously merged.

Table 3. Effect of ProGraphMSA+TR’s unit indel rate parameter on

TR rate estimation

Initial 1 iteration Real

Parameter 0.1 0.00779 0.0083
Error 0.081±0.036 �0.053±0.027 �0.070±0.028
Abs. error 0.225±0.034 0.135±0.025 0.138±0.027

Parameter 0.1 0.342 0.417
Error 1.60±0.11 1.42±0.11 1.38±0.11
Abs. error 1.67±0.11 1.59±0.10 1.54±0.10

In the upper half of the table, the indel rate was chosen to be lower
than ProGraph+TR’s default parameter. With an indel rate of 0.2 per
unit and a unit length of 24 (GALA-LRR), the ideal setting for the
parameter would be 0.0083. After one iteration with the wrong param-
eter, we estimated the rate parameter to 0.00779, which was already
close to the true value and also yielded results, which were similar to
those obtained with the true parameter value. The reported error and
absolute error are in terms of TR unit indel counts and should be
contrasted to the expected number of unit indels, which is 2 under
the simulated tree length and unit count. In the lower half of the
table, we used a unit indel rate of 10 and therefore expected on
average 10 unit indels per tree. Again, after one iteration, the parameter
was estimated sufficiently close to the true value.
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specific role. For example, Remigi et al. (32) suggested
that some degree of recombination coupled with selec-
tion operate on GALA 3, 4, 6 and 7. However, neither
selection nor recombination can be detected on GALA 1,
2 and 5. Likewise, we do not observe homogeneity of TR
indel rates within each of these two subclades.

Overall, our analysis clearly supports that GALA
proteins evolve through diversification, possibly using
LRR number variation (in combination with positive diver-
sifying selection on the protein) to create a specific reper-
toire contributing to pathogenesis on different plant hosts.

The TR indel process acting on the GALA family
appears to be a characteristic force creating and maintain-
ing the allelic variability.

CONCLUSION

We presented a fast and accurate method for global
alignment of multiple sequences with TRs. In contrast
to local alignment methods, our method is able to
detect insertions and deletions of TR units which are
not restricted to TR unit boundaries. The method is
implemented in ProGraphMSA+TR, which is built on
a graph-based alignment framework (20), and thus
inherits not only its speed but also robustness to
errors in the guide tree or presence of alternative
splicing variants and other features like context-
specific profiles (21) and phylogeny-aware penalization
of insertions (22).
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Figure 9. The evolution of LRR tandem units in GALA proteins from Ralstonia solanacearum. Yellow circles represent the numbers of LRR indels
inferred by ProGraphMSA+TR and are mapped to the corresponding nodes of the GALA phylogeny inferred by Remigi et al. (2011). Colored
taxonomic ranges represent different paralogous GALA families. Numbers of LRR units in each strain are represented by gray columns.

Table 4. TR unit indel counts and rates in GALA LRRs

Data set TR unit indels Total branch length Average TR units Rate per unit Rate per site

Kajava et al. (31)
GALA1345 13 2.8140 15.1428 0.3051 0.0127
GALA267 10 2.4650 25.6667 0.1581 0.00659
All 31 4.3998 20 0.3523 0.0147

Remigi et al. (32)
GALA1 12 2.077 13.3333 0.4333 0.01805
GALA2 2 1.5396 22.7143 0.05719 0.002383
GALA3 6 1.7045 10.7778 0.3266 0.01361
GALA4 1 1.6633 10.5 0.05726 0.002386
GALA5 1 1.5133 14 0.0472 0.001967
GALA6 3 1.6230 13.7778 0.1342 0.00559
GALA7 2 1.8470 12.2222 0.0886 0.003691
All 41 11.3260 14.6531 0.2470 0.01029

Results for the data sets from Kajava et al. and Remigi et al. The rate per unit is computed from the number of TR unit indels divided by the total
branch length of the gene tree and the average number of TR units. The rate per site is just the rate per unit divided by 24, the unit length.
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In this study, ProGraphMSA+TR has been shown to
improve the quality of alignments by incorporating TR
information, which can be obtained using one of many
available TR detection methods, or a combination of dif-
ferent TR detectors and a subsequent statistical scoring of
putative TR units (14). More accurate information about
TR units in sequences leads to better quality of estimated
MSAs. Compared with other alignment programs, the ad-
vantage of ProGraphMSA+TR is stronger for more
divergent sequences or with high TR indel rates.
In addition to improved alignment quality, the new

method allows for an accurate inference of TR unit
indel events, which facilitates the estimation of TR indel
rates. This is enabled by placing indels in a phylogenetic-
ally meaningful fashion (22) as well as distinctive modeling
of TR unit indels in contrast to traditional non-TR events.
Methods that do not specifically account for TR unit
indels will eventually merge or split TR-related events
thus depriving subsequent analyses of an obvious way to
disentangle TR-related evolutionary events.
Here, we demonstrated the utility of ProGraph-

MSA+TR to study the evolution and diversification of
paralogous TR regions on real data, the GALA proteins
with LRRs that act as type III effectors in
phytopathogenic bacteria R. solanacearum. Such studies
may provide additional insight for detecting selective ad-
vantages from phylogenetic patterns of TR indel rates and
evolutionary constraints on TR unit numbers.
Given the high abundance of TRs in genomic sequences

(14), modeling TR indels becomes important to improve
alignments of DNA or protein sequences and to further
study TR evolution and their contribution to functional
changes. Even with imperfect prediction of TRs, our
method performs at least as well as best-performing
aligners, with clear advantages when TR mutation and
indel rates are high. Overall, for easy cases (where most
aligners perform well), our method performs at least as
well as the top-performing aligners, and often with a
small improvement of 1–2%. For difficult cases (high
TR rates, divergence), our new approach can offer a re-
spectable improvement of � 10%. Thus, we can recom-
mend ProGraphMSA+TR to anyone seeking high-quality
global MSAs for protein or DNA sequences. For conveni-
ence of user community, a web server for ProGraph-
MSA+TR is provided.
Finally, our models for simulating sequences with TRs

and their evolution allow for the most realistic to
date simulation scenarios of such sequences. The imple-
mentation of the simulation algorithm is available from
the project website (later in the text) and should be a
useful standalone tool for other studies of TRs and their
evolution.
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