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Let k be a field of characteristic �= 2, and let G be a finite group. The aim of this article is

to give a cohomological criterion for the isomorphism of multiples of trace forms of G-

Galois algebras over k. The proof uses results concerning multiples of hermitian forms

over division algebras with involution that are of independent interest.

1 Introduction

Let k be a field of characteristic �= 2, and let L be a Galois extension of k with group G. Let

qL : L × L → k

qL(x, y) = TrL/k(xy)

be the trace form. It is well known that L has a normal basis over k, in other words there

exists x ∈ L such that {gx}g∈G is a basis of L as a k-vector space. Such a basis is called a

self-dual normal basis if qL(gx,hx) = δg,h for all g,h ∈ G.

The following question was studied in [1], [2], [3], [4], [5], [6]:

QUESTION 1.1. Which Galois extensions have a self-dual normal basis ? �
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This question is settled in some cases, for instance, when G has odd order [3],

when the 2–Sylow subgroups of G are elementary abelian [5], but it is open in general.

Note that the existence of a normal basis is equivalent with the fact that L is

a free k[G]–module of rank 1. A similar reformulation can be given for the self-dual

normal basis question. Indeed, remark that the quadratic form qL is invariant by G, that

is qL(gx, gy) = qL(x, y) for all x, y ∈ L and for all g ∈ G. In other words, qL is a G–

quadratic form (cf. 2). Let us define the unit G–quadratic form as being q0 : k[G]×k[G] →
k characterized by q0(g,h) = δg,h. Then the existence of a self-dual normal basis is

equivalent with the isomorphism of qL and q0 as G–quadratic forms.

It is more natural to work in the category of G–Galois algebras instead of Galois

extensions with group G. Let us denote by L0 the split G–Galois algebra; then qL0 �G q0.

This leads us to the following question:

QUESTION 1.2. Let L and L ′ be two G–Galois algebras. When are the G–forms qL and qL ′

isomorphic ? �

The results of [3, 5] apply to this more general situation. However, a complete answer

to the question seems out of reach at this point. For this reason, a weaker question was

raised in [1]. Indeed, if φ is a nondegenerate quadratic form and q is a G–quadratic form,

then the tensor product φ ⊗ q is a G–quadratic form. One can ask the following question.

QUESTION 1.3. Let L and L ′ be two G–Galois algebras, and let φ be a nondegenerate

quadratic form. When are the G–forms φ ⊗ qL and φ ⊗ qL ′ isomorphic ? �

If φ is an odd–dimensional form, then this question is equivalent with the previous one.

Let W(k) be the Witt ring of k, and let I be the ideal of W(k) consisting of the Witt classes

of the even–dimensional forms. Let ks be a separable closure of k, and set Γk = Gal(ks/k).

For every positive integer n, let us denote by en : In/In+1 → H1(Γk,Z/2Z) the Milnor–

Voevodsky isomorphism (see 2). Let cd2(Γk) be the 2–cohomological dimension of Γk (cf.

2), and let d ≥ 0 be an integer. The following two statements are easy consequences of

the above isomorphisms (cf. 2.2, 2.5):

I. Suppose that cd2(Γk) ≤ d. Let q and q ′ be two quadratic forms with dim(q) = dim(q ′),

and let φ ∈ Id. Then

φ ⊗ q � φ ⊗ q ′.
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II. Suppose that cd2(Γk) ≤ d. Let q and q ′ be two quadratic forms with dim(q) = dim(q ′),

and let φ ∈ Id−1. Then

φ ⊗ q � φ ⊗ q ′ if and only if ed−1(φ) ∪ (disc(q)) = ed−1(φ) ∪ (disc(q ′)) in Hd(k).

It is natural to look for similar statements concerning trace forms of G–Galois algebras,

as proposed in [1]. As an analog of I, we have the following :

THEOREM 1.4. (Chabloz, [9]) Suppose that cd2(Γk) ≤ d. Let L and L ′ be two G–Galois

algebras, and let φ ∈ Id. Then φ ⊗ qL �G φ ⊗ qL ′ . �

In order to go further, we need some invariants defined in [5]. Let fL : Γk → G be a con-

tinuous homomorphism corresponding to the G–Galois algebra L. The homomorphism fL

induces f ∗
L : H1(G,Z/2Z) → H1(Γk,Z/2Z). For all x ∈ H1(G,Z/2Z), set xL = f ∗

L (x). Then

xL is an invariant of the G–quadratic form qL (cf. [5], 2.2.3). The following statement is

inspired by II, and is proved in Section 4 :

THEOREM 1.5. Suppose that cd2(Γk) ≤ d. Let L and L ′ be two G–Galois algebras, and let

φ ∈ Id−1. Then the G–quadratic forms φ ⊗ qL and φ ⊗ qL ′ are isomorphic if and only if

ed−1(φ) ∪ xL = ed−1(φ) ∪ xL ′ for all x ∈ H1(G,Z/2Z). �

This was conjectured in [1], and proved in special cases by Chabloz, Monsurro, Morales,

Parimala and Schoof (see [4],[9]-[12]). The proof uses results concerning hermitian forms

over algebras with involution (see Section 2.5 and Section 3 for details). Let (D,σ)

be a division algebra with involution over k, and let W(D,σ) be the Witt group of

hermitian forms over (D,σ). Then W(D,σ) is a W(k)–module. Let us denote by J the W(k)–

submodule of W(D,σ) consisting of even dimensional hermitian forms over D.

THEOREM 1.6. Suppose that cd2(Γk) ≤ d. Then

(a) We have IdJ = 0.

(b) If σ is of the second kind, then Id−1J = 0.

(c) If σ is of the first kind and of the symplectic type, then Id−2J = 0. �

Part (a) is due to Chabloz [9]. Parts (b) and (c) are proved in Section 3, and are used in the

proof of the main result of this article in Section 4. In order to deal with involutions of

the first kind and of the orthogonal type, we need the following:
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THEOREM 1.7. Suppose that cd2(Γk) ≤ d. Let (D,σ) be a quaternion algebra with an

orthogonal involution, and let (V,h) and (V ′,h ′) be two hermitian forms over (D,σ) with

dimD(V) = dimD(V ′). Let φ ∈ Id−1. Then φ ⊗ h � φ ⊗ h ′ if and only if

ed−1(φ) ∪ (disc(h)) = ed−1(φ) ∪ (disc(h ′)). �

This follows from the results of Parimala, Sridharan and Suresh [14] and of Berhuy [8].

2 Definitions, Notation and Basic Facts

2.1 Galois cohomology

Let ks be a separable closure of k, and set Γk = Gal(ks/k). For any discrete Γk–module

C, set Hi(k,C) = Hi(Γk,C). We say that the 2–cohomological dimension of Γk is at most

d, denoted by cd2(Γk) ≤ d, if Hi(k,C) = 0 for all i > d and for every finite 2–primary

Γk–module C.

Set Hi(k) = Hi(k,Z/2Z), and recall that H1(k) � k∗/k∗2. For all a ∈ k∗, let us denote

by (a) ∈ H1(k) the corresponding cohomology class. We use the additive notation for

H1(k). If a1, . . . ,an ∈ k∗, we denote by (a1) ∪ · · · ∪ (an) ∈ Hn(k) their cup product.

If U is a linear algebraic group defined over k, let H1(k,U) be the pointed set

H1(Γk,U(ks)) (cf. [16, 17] Ch. 10).

2.2 Quadratic forms

All quadratic forms are supposed to be nondegenerate. We denote by W(k) the Witt ring

of k, and by I = I(k) the fundamental ideal of W(k). For all a1, . . . ,an ∈ k∗, let us denote

by << a1, . . . ,an >>=< 1,−a1 > ⊗ · · ·⊗ < 1,−an > the associated n-fold Pfister form.

It is well known that In is generated by the n-fold Pfister forms. The following has been

conjectured by Milnor, and proved by Voevodsky (see also Orlov–Vishik–Voevodsky [13]-

[19], and the survey paper [10]) :

THEOREM 2.1 (Voevodsky). For every positive integer n, there exists an isomorphism

en : In/In+1 → Hn(k)

such that

en(<< a1, . . . ,an >>) = (a1) ∪ · · · ∪ (an)

for all a1, . . . ,an ∈ k∗. �
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It is easy to see that the above theorem has the following consequences:

COROLLARY 2.2. Suppose that cd2(Γk) ≤ d. Let q and q ′ be two quadratic forms with

dim(q) = dim(q ′), and let φ ∈ Id. Then

φ ⊗ q � φ ⊗ q ′. �

PROOF. Note that by Theorem 2.1, cd2(Γk) ≤ d implies that Id+1 = 0. As dim(q) = dim(q ′),

we have q⊕(−q ′) ∈ I. Therefore, φ⊗(q⊕(−q ′)) ∈ Id+1 = 0. This implies that φ⊗q � φ⊗q ′.

For every quadratic form q, let us denote by disc(q) ∈ H1(k) its discriminant. Recall that

if n = dim(q), then disc(q) = (−1)
n(n−1)

2 det(q). We need the following proposition: �

PROPOSITION 2.3. Let q and q ′ be two quadratic forms with dim(q) = dim(q ′), and let

φ ∈ Id−1. Then

ed(φ ⊗ (q ⊕ (−q ′)) = ed−1(φ) ∪ (disc(q)) + ed−1(φ) ∪ (disc(q ′)). �

PROOF. Set Q = q ⊕ (−q ′), and let m = dim(q) = dim(q ′), n = 2m = dim(Q). Note

that (−1)
n(n−1)

2 = (−1)m, hence (disc(Q)) = (disc(q)) + (disc(q ′)). We have Q ∈ I, and

e1(Q) = (disc(Q)) = (disc(q)) + (disc(q ′)). Therefore,

ed(φ ⊗ Q) = ed−1(φ) ∪ e1(Q) = ed−1(φ) ∪ (disc(q)) + ed−1(φ) ∪ (disc(q ′)),

and hence the proposition is proved. �

COROLLARY 2.4. Let q and q ′ be two quadratic forms with dim(q) = dim(q ′), and let

φ ∈ Id−1. If φ ⊗ q � φ ⊗ q ′, then ed−1(φ) ∪ (disc(q)) = ed−1(φ) ∪ (disc(q ′)) ∈ Hd(k). �

PROOF. As φ ⊗ q � φ ⊗ q ′, the quadratic form φ(⊗(q ⊕ (−q ′))) is hyperbolic. Hence

ed(φ ⊗ (q ⊕ (−q ′))) = 0. By Proposition 2.3, we have

ed(φ ⊗ (q ⊕ (−q ′))) = ed−1(φ) ∪ (disc(q)) + ed−1(φ) ∪ (disc(q ′)),

therefore ed−1(φ) ∪ (disc(q)) = ed−1(φ) ∪ (disc(q ′)), as claimed. �

COROLLARY 2.5. Suppose that cd2(Γk) ≤ d. Let q and q ′ be two quadratic forms with

dim(q) = dim(q ′), and let φ ∈ Id−1. Then φ⊗ q � φ⊗ q ′ if and only if ed−1(φ)∪ (disc(q)) =

ed−1(φ) ∪ (disc(q ′)) ∈ Hd(k). �
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PROOF. Set Q = q ⊕ (−q ′). By Proposition 2.3, we have

ed(φ ⊗ Q) = ed−1(φ) ∪ (disc(q)) + ed−1(φ) ∪ (disc(q ′)).

Hence ed(φ ⊗ Q) = 0 is equivalent to ed−1(φ) ∪ (disc(q)) = ed−1(φ) ∪ (disc(q ′)). But by

Theorem 2.1, ed(φ ⊗ Q) = 0 is equivalent to φ ⊗ Q hyperbolic, hence to φ ⊗ q � φ ⊗ q ′. �

2.3 G–quadratic forms

Let G be a finite group, and let us denote by k[G] the associated group ring. A G–quadratic

form is a pair (M, q), where M is a k[G]–module that is a finite dimensional k–vector

space, and q : M × M → k is a nondegenerate symmetric bilinear form such that

q(gx, gy) = q(x, y)

for all x, y ∈ M and all g ∈ G. We say that two G–quadratic forms (M, q) and (M ′, q ′)

are isomorphic if there exists an isomorphism of k[G]–modules f : M → M ′ such that

q(f (x), f (y)) = q ′(x, y) for all x, y ∈ M. If this is the case, we write (M, q) �G (M ′, q ′), or

q �G q ′. If φ is a quadratic form over k, and q a G–quadratic form, then the tensor product

φ ⊗ q is a G–quadratic form.

2.4 Trace forms

Let L be a G–Galois algebra, and let

qL : L × L → k, qL(x, y) = TrL/k(xy),

be its trace form. Then qL is a G-quadratic form. Let : k[G] → k[G] be the canonical invo-

lution of the group ring k[G], in other words the k–linear involution of k[G] characterized

by g = g−1 for all g ∈ G. Let UG be the linear algebraic group defined over k such that

for every commutative k–algebra A, we have UG(A) = {x ∈ A[G] | xx = 1}. Recall that we

denote by H1(k,UG) the pointed set H1(Γk,U(ks)).

Let fL : Γk → G be a continuous homomorphism corresponding to L. The

composition of fL with the inclusion of G in UG(ks) is a 1–cocycle Γk → UG(ks). Let us

denote by u(L) its class in the cohomology set H1(k,UG). The following is proved in [5],

Proposition 1.5.1:
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PROPOSITION 2.6. Let L and L ′ be two G-Galois algebras. Then the G–quadratic forms qL

and qL ′ are isomorphic if and only if u(L) = u(L ′) ∈ H1(k,UG). �

The trace form of a G–Galois algebra, considered as a G–form, determines the trace forms

of all of its subalgebras of fixed points (see [5], Section 1.4). We have a similar result for

multiples of trace forms, as follows:

PROPOSITION 2.7. Let L and L ′ be two G–Galois algebras. Let H be a subgroup of G, and

set E = LH , E ′ = L ′H. Let φ be a quadratic form over k. Suppose that φ ⊗ qL �G φ ⊗ qL ′ .

Then we have (a) The quadratic forms φ⊗qE and φ⊗qE ′ are isomorphic. (b) If moreover

H is a normal subgroup of G, then the (G/H)–quadratic forms φ ⊗ qE and φ ⊗ qE ′ are

isomorphic. �

PROOF. The proof of this statement is similar to the proof of 1.5.1, in [5]. The homo-

morphism fL : Γk → G induces f ∗
L : H1(G,Z/2Z) → H1(k). For any x ∈ H1(G,Z/2Z), set

xL = f ∗
L (x). Then the elements xL are invariants of the G–quadratic form qL (cf. [5], 2.2.3).

Let x ∈ H1(G,Z/2Z), and let χ : G → Z/2Z the corresponding homomorphism. Let H be

the kernel of χ, and let Eχ = LH be the invariant subalgebra; it is a quadratic subalgebra

of L. The discriminant of the quadratic algebra Eχ is equal to xL. �

The following is a generalization of [5], 2.2.3:

PROPOSITION 2.8. Let L and L ′ be two G–Galois algebras. Let φ ∈ Id−1. Suppose that

φ ⊗ qL �G φ ⊗ qL ′ . Then ed−1(φ) ∪ xL = ed−1(φ) ∪ xL ′ for all x ∈ H1(G,Z/2Z). �

PROOF. Let x ∈ H1(G,Z/2Z), and let χ : G → Z/2Z the corresponding homomorphism. Let

H be the kernel of χ, and set Eχ = LH , E ′
χ = L ′H . By Proposition 2.7, the quadratic forms

φ⊗qE and φ⊗qE ′ are isomorphic. Using 2.4,we have ed−1(φ)∪disc(qE) = ed−1(φ)∪disc(qE ′).

As the discriminant of a quadratic algebra is equal to the discriminant of its trace form,

we obtain ed−1(φ) ∪ xL = ed−1(φ) ∪ xL ′ , and so the proposition is proved. �

2.5 Hermitian forms over division algebras with involution

Let D be a division algebra over k. An involution of D is a k–linear anti–automorphism

σ : D → D of order 2. Let K be the center of D. We say that (D,σ) is a division algebra

with involution over k if the fixed field of σ in K is equal to k. If K = k, then σ is said to

be of the first kind. After extension to ks, the involution σ is determined by a symmetric

or a skew–symmetric form. In the first case, σ is said to be of the orthogonal type, and

in the second one, of the symplectic type. If K �= k, then K is a quadratic extension of k
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and the restriction of σ to K is the non–trivial automorphism of K over k. In that case, the

involution is said to be of the second kind, or a unitary involution, or a K/k–involution.

See for instance [11] or [15], ch 7, for more details on algebras with involution. Let (D,σ)

be a division algebra with involution over k. A hermitian form over (D,σ) is by definition

a pair (V,h), where V is a finite dimensional D–vector space, and h : V × V → D is

hermitian with respect to σ. We say that (V,h) is hyperbolic if there exists a sub D–vector

space W of V with dim(V) = 2dim(W) and such that h(x, y) = 0 for all x, y ∈ W. This

leads to a notion of Witt group W(D,σ) (cf. for instance [15],Ch 7. §2). Note that the tensor

product of a quadratic form over k with a hermitian form over (D,σ) is a hermitian form

over (D,σ), hence W(D,σ) is a W(k)–module. Let (V,h) be a hermitian form over (D,σ),

as above. Let n = dimD(V), and let H be the matrix of h with respect to some D–basis

of V. Let us denote by Nrd : Mn(D) → k the reduced norm. The discriminant of h is by

definition disc(h) = (−1)
n(n−1)

2 Nrd(H) ∈ k∗/k∗2.

3 Multiples of Hermitian Forms

Let (D,σ) a division algebra with involution over k. Let us denote by J the sub W(k)–

module of W(D,σ) consisting of the hermitian forms (V,h) with dimD(V) even. Suppose

that cd2(Γk) ≤ d.

THEOREM 3.1. (a) We have IdJ = 0.

(b) If σ is of the second kind, then Id−1J = 0.

(c) If σ is of the first kind and of the symplectic type, then Id−2J = 0. �

Part (a) was proved by Chabloz in [9]. We need the following lemma:

LEMMA 3.2. Let a ∈ D∗ such that σ(a) = a. We have:

(a) If φ ∈ Id, then φ⊗ < 1,a > is hyperbolic.

(b) If φ ∈ Id−1 and σ is of the second kind, then φ⊗ < 1,a > is hyperbolic.

(c) If φ ∈ Id−2 and σ is of the first kind and of the symplectic type, then

φ⊗ < 1,a > is hyperbolic. �

PROOF.

(a) Let F = k(a), and let f : W(F) → W(D,σ) be the base change homomorphism.

We have f (φ⊗ < 1,a >) = φ⊗ < 1,a >, and hence it suffices to check that

φ⊗ < 1,a >= 0 in W(F). Note that φ⊗ < 1,a >∈ Id+1(F). As cd2(k) ≤ d,
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we have cd2(F) ≤ d, therefore by Theorem 2.1, we have Id+1(F) = 0. Hence

φ⊗ < 1,a > is hyperbolic, and this concludes the proof of (a).

(b) Suppose that σ is a K/k–involution, and set E = K(a), F = k(a). Let us denote

by τ : E → E the restriction of σ : D → D to E. Then τ is an E/F–involution,

an involution of the second kind. Let f : W(E, τ ) → W(D,σ) be the base

change homomorphism. We have f (φ⊗ < 1,a >) = φ⊗ < 1,a >, hence it

suffices to check that φ⊗ < 1,a >= 0 in W(E). Let E = F(
√

δ), for some

δ ∈ F. Let trE/F : W(E, τ ) → W(F) be the W(F)–homomorphism given by

the trace of hermitian forms. It is well–known that trE/F is injective, and

its image is equal to < 1,−δ > W(F) (cf. for instance [15], Ch 10, §1). We

have

trE/F(< 1,a >)) =< 1,−δ > ⊗ < 1,a >,

hence trE/F(φ⊗ < 1,a >) = φ⊗ < 1,−δ > ⊗ < 1,a >. This implies that

trE/F(φ⊗ < 1,a >) ∈ Id+1(F).

As in (a), we see that Id+1(F) = 0. Therefore, φ⊗ < 1,a >= 0 in W(E, τ ),

and (b) is proved.

(c) Suppose that σ is symplectic. Then the degree of D is even. Set deg(D) = 2m,

and let us prove the statement by induction on m. If m = 1, then D is a

quaternion algebra and σ is the canonical involution of D. As σ(a) = a,

we have a ∈ k∗. Let trd : W(D,σ) → W(k) be the W(k)–homomorphism

given by the reduced trace of hermitian forms. It is well known that this

homomorphism is injective, and its image is equal to nDW(k), where nD

is the norm form of the quaternion algebra D (cf. [15], ch. 10, §1). We have

trd(< 1,a >) = nD⊗ < 1,a >∈ I3. Let φ ∈ Id−2. Then

trd(φ⊗ < 1,a >) = φ ⊗ nD⊗ < 1,a >∈ Id+1
= 0.

This implies that trd(φ⊗ < 1,a >) = 0 in W(k), hence φ⊗ < 1,a >= 0

in W(D,σ). Suppose that m > 1. If a �∈ k, set F = k(a). If a ∈ k, take

any b ∈ D∗ such that σ(b) = b and that b �∈ k (this is possible as m > 1)

and set F = k(b). Let D ′ = ZD(F) be the centralizer of F in D. Note that F

is invariant by σ. By [11], 2.9. we know that [F : k] ≤ m. The F–algebra
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D ′ is also invariant by σ. We have [F : k] > 1, hence degD ′ < deg(D).

Let deg(D ′) = 2m ′. As m ′ < m, we can apply the induction hypothesis,

hence φ⊗ < 1,a >= 0 in W(D ′,σ). Let f : W(D ′,σ) → W(D,σ) be the base

change homomorphism. We have f (φ⊗ < 1,a >) = φ⊗ < 1,a >. Hence

φ⊗ < 1,a >= 0 in W(D,σ), as claimed. �

PROOF OF THEOREM 3.1. Let q ∈ J. We have q =< a1, . . . ,an >, with ai ∈ D∗, σ(ai) = ai.

Note that n is even, as q ∈ J. Set m =
n
2 . Let H =< 1,−1 >, and let us denote by [m]H the

orthogonal sum of m copies of H. Then in W(D,σ), we have q = q ⊕ [m]H =< 1,a1 > ⊕ <

−1,a2 > ⊕ · · ·⊕ < −1,an >. By the lemma, φ⊗ < 1,ai > and φ⊗ < −1,ai > are hyperbolic

for all i whenever φ ∈ Id, or φ ∈ Id−1 and σ is unitary, or φ ∈ Id−2 and σ is symplectic.

Hence φ ⊗ q is hyperbolic in these cases too, so the theorem is proved.

The following is a consequence of results of Parimala, Sridharan and Suresh [14]

and of Berhuy [8]. �

THEOREM 3.3. Suppose that D is a quaternion algebra, and that σ is of the first kind and

of the orthogonal type. Let h ∈ J, and let φ ∈ Id−1. Then φ ⊗ h is hyperbolic if and only if

ed−1(φ) ∪ (disc(h)) = 0. �

PROOF. By Berhuy [8], Th. 13, it suffices to show that ed−1(φ) ∪ (disc(h)) = 0 if and

only if en,D(φ ⊗ h) = 0 for all n ≥ 0 (cf. [8], 2.2 for the definition of the invariant

en,D). As cd2(Γk) ≤ d, we have en,D(φ ⊗ h) = 0 for n > d, so it suffices to check that

ed−1(φ) ∪ (disc(h)) = 0 is equivalent with en,D(φ ⊗ h) = 0 for all n = 0, . . . ,d. Let k(D)

be the function field of the quadric associated to D. Then D ⊗ k(D) � M2(k(D)), and

hk(D) corresponds, via Morita equivalence, to a quadratic form qh over k(D). Note that

disc(qh) = disc(h). Similarly, the hermitian form (φ ⊗ h)k(D) corresponds to a quadratic

form qφh over k(D), and we have qφh � φ⊗qh. For all n = 0, . . . ,d, we have by construction

that en,D(φ ⊗ h) = 0 if and only if en(qφh) = 0 (cf. [8], 2.2). But qφh � φ ⊗ qh and hence

en(qφh) = en(φ ⊗ qh) = en−1(φ) ∪ (disc(qh)) = en−1(φ) ∪ (disc(h)).

If n < d, then en(φ) = 0 as φ ∈ Id−1. We have ed(qφh) = ed−1(φ) ∪ (disc(h)). Hence

en(qφh) = 0 for all n ≥ 0 if and only if ed−1(φ) ∪ (disc(h)) = 0. This concludes the proof. �

COROLLARY 3.4. Suppose that D is a quaternion algebra, and that σ is of the first kind

and of the orthogonal type. Let h and h ′ be two hermitian forms over (D,σ), and let

φ ∈ Id−1. Then φ ⊗ h � φ ⊗ h ′ if and only if ed−1(φ) ∪ (disc(h)) = ed−1(φ) ∪ (disc(h ′)). �
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PROOF. The hermitian forms φ⊗h and φ⊗h ′ are isomorphic if and only if φ⊗ (h⊕ (−h ′))

is hyperbolic. By Theorem 3.3, this is equivalent with ed−1(φ) ∪ disc(h ⊕ (−h ′)) = 0. Note

that as dimk(D) is even, disc(−h ′) = disc(h ′). Therefore

ed−1(φ) ∪ (disc(h ⊕ (−h ′))) = ed−1(φ) ∪ (disc(h)) + ed−1(φ) ∪ (disc(h ′)),

and hence the corollary is proved. Let us denote by J2 the sub W(k)–module of J

consisting of the classes of the hermitian forms h such that (disc(h)) = 0. �

COROLLARY 3.5. Suppose that D is a quaternion algebra, and that σ is of the first kind

and of the orthogonal type. Then Id−1J2 = 0. �

PROOF. This is an immediate consequence of Corollary 3.4 �

4 Multiples of Trace Forms

Let L and L ′ be two G-Galois algebras. The aim of this section is to prove a result

concerning multiples of trace forms (see Corollary 4.2) that was conjectured in [1],

and to derive some consequences for generalized self-dual normal bases. Suppose that

cd2(Γk) ≤ d.

THEOREM 4.1. Let φ ∈ Id−1. Then φ⊗qL �G φ⊗qL ′ if and only if ed−1(φ)∪xL = ed−1(φ)∪xL ′

for all x ∈ H1(G,Z/2Z). �

Special cases of this have been proved in [1], [4], [5], [9], [12] and [16].

PROOF. The condition is necessary by Proposition 2.8. Let us prove that it is also

sufficient. By [3], 4.1 and [5], 2.3.1 we can assume that k is perfect. Set A = k[G], and let

us denote by σA : A → A the canonical involution. Let RA be the radical of the algebra

A, and set A = A/R. Then the projection A → A induces a bijection of pointed sets

H1(k,UA) → H1(k,UA). We have

A � A1 × · · · × As × (As+1 × A ′
s+1) × · · · × (Am × A ′

m),

where Ai is a simple algebra for all i = 1, . . . ,m, with σ(Ai) = Ai for i = 1, . . . , s and

σ(Ai) = A ′
i for i = s + 1, . . . ,m. Let σi : Ai → Ai be the restriction of σA to Ai for i = 1, . . . , s,

and let us denote by σi : Ai × A ′
i → Ai → Ai × A ′

i the restriction of σA to Ai × A ′
i if

i = s + 1, . . . ,m. Let Fi be the maximal subfield of the center of Ai such that σi is Fi–linear

if i = 1, . . . , s, and let Ui be the norm–one–group of (Ai,σi). For i = s + 1, . . . ,m, let Fi be
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the center of Ai, and let Ui be the norm–one–group of ((Ai × Ai),σi). Then Ui is a linear

algebraic group defined over Fi for all i = 1, . . . ,m. We have a bijection of pointed sets

H1(k,UA) → ∏
i=1,...,m

H1(Fi,Ui).

If i = s + 1, . . . ,m, then Ui is a general linear group, hence H1(Fi,Ui) = 0. Hence we have a

bijection of pointed sets

H1(k,UA) → ∏
i=1,...,s

H1(Fi,Ui).

Let us denote by ui, u ′
i ∈ H1(Fi,Ui), i = 1, . . . , s, the images of u(L), u(L ′) ∈ H1(k,UA).

For all i = 1, . . . , s, the simple algebra Ai is a matrix algebra over a division algebra

with involution Di, and the classes ui,u ′
i correspond to isomorphism classes of hermitian

forms hi, h ′
i over Di.

Let r = dim(φ), and set B = Mr(A). Let us denote by σB : B → B the involution

induced by σA and the transposition, i.e. σB(ai,j) = (σA(aj,i)) for all ai,j ∈ A. Let RB be the

radical of B, and set B = B/RB.

We have

B � Mr(A1) × · · · × Mr(Am).

As above, we get a bijection of pointed sets

H1(k,UB) → ∏
i=1,...,s

H1(Fi,UMr(Ai)).

Sending a G–quadratic form to its tensor product with the quadratic form φ gives

us a map f : H1(k,UA) → H1(k,UB). The map f induces f : H1(k,UA) → H1(k,UB), and

fi : H1(Fi,Ui) → H1(k,UMr(Ai))

for all i = 1, . . . , s. The image of the isomorphism class of the hermitian form hi is the

hermitian form φ ⊗ hi.

Let us show that for all i = 1, . . . , s, we have φ ⊗ hi � φ ⊗ h ′
i . This is equivalent

to proving that φ ⊗ (hi ⊕ (−h ′
i)) is hyperbolic. If Ui is unitary or symplectic, then this

follows from Theorem 3.1. (b) and (c). Suppose that Ui is orthogonal. Then Ai = Mni(Di),
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where Di = Fi or Di is a quaternion field with center Fi (cf. [15], Ch. 8, 13.5. (ii) ). We have

(Ui/U0
i )(ks) � Z/2Z. Let ι : ΓFi → Γk be the inclusion, and let us consider

δi : ΓFi

ι→Γk
φL−→G → UG(ks) → Ui(ks) � Z/2Z

and

δ ′
i : ΓFi

ι→Γk
φL ′−→G → UG(ks) → Ui(ks) � Z/2Z.

Then δi, δ ′
i are 1–cocycles that define elements (δi), (δ

′
i ) ∈ H1(Fi,Z/2Z) corresponding to

the relative discriminants disc(hi) and disc(h ′
i) of the hermitian forms hi and h ′

i with

respect to the unit hermitian form h0.

Note that δi = ιxL and δi = ιxL ′ for all x ∈ H1(G,Z/2Z). By hypothesis, we have

ed−1(φ) ∪ xL = ed−1(φ) ∪ xL ′ for all x ∈ H1(G,Z/2Z). This implies that

ed−1(φ) ∪ (disc(hi)) = ed−1(φ) ∪ (disc(h ′
i))

for all i = 1, . . . , s. By Corollary. 3.4, we conclude that the hermitian forms φ⊗hi and φ⊗h ′
i

are isomorphic, and hence the theorem is proved. Recall that for any G–quadratic form

q, we denote by [m]q the orthogonal sum of m copies of q, in other words the quadratic

form < 1, . . . , 1 > ⊗q. Let us denote by εd−1 ∈ Hd−1(k) the cup product of d − 1 copies of

(−1) ∈ H1(k). The following is an immediate consequence of Theorem 4.1: �

COROLLARY 4.2. Let L and L ′ be two G–Galois algebras. Then [2d−1]qL �G [2d−1]qL ′ if and

only if εd−1 ∪ xL = εd−1 ∪ xL ′ . �

Let L0 be the split G-Galois algebra, and let q0 = qL0 be its trace form. Recall that a

G-Galois algebra is said to have a self-dual normal basis if qL �G q0. For any positive

integer m, we denote by [m]L the product of m copies of the G-Galois algebra L. We say

that [m]L has a self-dual normal basis if [m]qL �G [m]q0. A subalgebra E of L is said to be

a subalgebra of invariants if there exists a subgroup H of G such that E = LH .

COROLLARY 4.3. Let L be a G-Galois algebra. Then the algebra [2d−1]L has a self-dual

normal basis if and only if the discriminant of every quadratic subalgebra of invariants

is a sum of 2d−1 squares. �

PROOF. Let us denote by q the 2d−1–dimensional unit form, and let D(q) be the set of

non–zero elements of k represented by q. Then a ∈ D(q) if and only if a is a sum of 2d−1

squares in k. It is well known that a ∈ D(q) if and only if the quadratic form q⊕ < −a >is
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isotropic. This is equivalent to the 2d–fold Pfister form q⊗ < 1,−a > being hyperbolic;

hence by 2.1 with εd−1 ∪ (a) = 0.

Let x ∈ H1(G,Z/2Z). The argument above shows that xL is a sum of 2d−1 squares

if and only if εd−1 ∪ xL = 0. Let χ : G → Z/2Z the corresponding homomorphism. Let H

be the kernel of χ, and let Ex = LH be the invariant subalgebra. Then, Ex is a quadratic

subalgebra of L, and its discriminant is equal to xL.

By Corollary 4.3, the algebra [2d−1]L has a self-dual normal basis if and only

if εd−1 ∪ xL = 0 for all x ∈ H1(G,Z/2Z). We have just seen that this is equivalent to

the discriminant of the quadratic subalgebra Ex being a sum of 2d−1 squares for all

x ∈ H1(G,Z/2Z); hence the corollary is proved. �
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