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On the positive, “radial” solutions of
a semilinear elliptic equation in HN

Catherine Bandle and Yoshitsugu Kabeya

Abstract. We discuss various kinds of existence and non existence results for positive so-
lutions of Emden–Fowler type equations in the hyperbolic space. The main tools are per-
turbation analysis, variational methods, Pohozeav type identities and reduction to Matu-
kuma equations.
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1 Introduction

In this paper we consider the equation

�HNuC �uC up D 0; u > 0; (1.1)

where�HN is the Laplace–Beltrami operator on the hyperbolic space HN ,N � 3,
� is a real parameter and p > 1.

The corresponding equation in the Euclidean space arises in geometry and phys-
ics and has led to interesting mathematical studies. It is called scalar field equation
if � < 0, the Emden–Fowler equation if � D 0 and the conformal scalar curvature
equation if p D NC2

N�2
.

We are interested in solutions which depend only on the hyperbolic distance
from a fixed center. In order to express (1.1) for such “radial” solutions, we recall
that the hyperbolic space HN is the set of points of the hyperboloid

H WD ¹.x1; x2; : : : ; xNC1/ W x
2
NC1 � . x

2
1 C x

2
2 C � � � C x

2
N / D 1; xNC1 > 1º

in RNC1 endowed with the Lorentz metric

dH .x; y/ D arccosh.�x1y1 � � � � � xNyN C xNC1yNC1/:

Note that the distance from an arbitrary point to the origin eNC1 WD .0; 0; : : : ; 1/

is d.eNC1; y/ D arccosh.yNC1/.
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For the analysis it is more convenient to use the ball model. It is obtained by a
stereographic projection from H onto RN . A point x 2 H is mapped to the point
z 2 RN which is obtained by intersecting the line joining x and �eNC1 with
¹x 2 RNC1 W xNC1 D 0º. Then HN is given by the unit ball B1 � RN with the
Riemannian metric

ds2 D
4

.1 � jzj2/2
jdzj2; z 2 B1:

In these coordinates the hyperbolic distance from z to the origin becomes

dH .z; 0/ D 2 arctanh.jzj/:

In polar coordinates we have z D �� , where jzj D � and � is a point on the unit
sphere SN�1. The change of variable � D tanh.t=2/ leads to

ds2 D dt2 C sinh2.t/jd� j2:

Consequently

�HN D sinh�.N�1/.t/
@

@t

�
sinhN�1.t/

@

@t

�
C sinh�2.t/�S ;

where �S is the spherical Laplacian and t D dH .0; z/ is the hyperbolic distance.
This reduction is well known, cf. e.g. [9, Section 3.9]. The “radial” solutions of
(1.1) satisfy the ordinary differential equation

u00.t/C .N � 1/ coth.t/u0.t/C �u.t/C up.t/ D 0 in RC; u > 0: (1.2)

Kumaresan and Prajapat [13] observed that the moving plane method of Gidas, Ni
and Nirenberg [7, 8] extends to HN . Thus the radial solutions play an important
role.

The goal of this paper is to present a general picture of the set of positive, radial
solutions. Particular results have been obtained by Stapelkamp [18, 19], Mancini
and Sandeep [15] and Bonforte, Gazzola, Grillo and Vazquez [4]. We also mention
the paper [1] where more general solutions of (1.1) are considered.

In [15] and [4] it was observed that for any solution u the energy functional

E.t/ WD
u02.t/

2
C �

u2.t/

2
C
upC1.t/

p C 1

is monotonically decreasing since E 0.t/ D �.N � 1/ coth.t/u02.t/ < 0. This im-
plies that u is bounded for t > 0. Notice that u can be singular at the origin. Denote
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by J D .d0; d1/ the maximal interval of existence of a positive solution u. Hence
if 0 < d0 < d1 < 1, then u vanishes at its endpoints and yields a solution in an
annulus. This class will be denoted by S.d0; d1/. If J D .0; d1/ where d1 < 1,
then u vanishes at d1. The class of these solutions defined in a (possibly punctured)
ball will be denoted by B.d1/. Similarly if J D .d1;1/ where 0 < d1, then u
vanishes at d1. These solutions defined in outer balls belong to the class Bc.d1/.
All other solutions exist for all t > 0 and form the class E.0;1/.

This paper is organized as follows. In Section 2 we discuss the local behavior
of the solutions at the origin and at infinity. The main tool is perturbation analysis
([3,10]). This method provides also the existence of local solutions. We then study
their global behavior. The first approach carried out in Section 3 is by combining
the local results of Section 2 with variational methods proposed in [15] and nonex-
istence results derived by means of Pohozaev type identities. The second approach
in Section 4 consists in transforming (1.2) into a Matukuma equation and applying
the criteria derived by Yanagida and Yotsutani [20, 22].

It should be pointed out that the local structure is almost completely understood
whereas many questions concerning the global behavior and uniqueness are still
open.

2 Classification of the positive radial solutions

2.1 Asymptotic behavior as t ! 1

2.1.1 General remarks

Throughout this section we shall assume that u.t/ exists for large t . Then either
u.t/ 2 Bc.d1/ or u.t/ 2 E.0;1/. Because E.t/ is decreasing and bounded from
below, u.t/ converges to a constant solution as t !1. Hence as t !1 we have

u.t/!

´
0 if � � 0;
0 or ƒ WD .��/1=.p�1/ if � < 0:

For the next considerations it will be useful to transform (1.2) into a first order
system. Set

U WD

 
u

u0

!
; A.t/ WD

 
0 1

�� �.N � 1/ coth t

!
; F .U / WD

 
0

�jujp�1u

!
:

In this notation (1.2) reads as

U 0 D A.t/U C F .U /: (2.1)
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By the variation of constants the system (2.1) can be written in the form

U.t/ D y.t/C

Z t

t0

eA.t�s/F .U /.s/ ds; (2.2)

where y.t/ is a solution of the linear system y0 D Ay.
The results on the asymptotic behavior of the solutions as t !1 are based on

well-known stability analysis for perturbed linear systems, cf. [3] and [10, Chap-
ter VIII and X]. Let us now recall the principal results.

Let kAk D
PN
i;jD1 jaij j be the matrix norm. Assume that there exists t0 > 0

such that A.t/ D A0 C B.t/ where A0 is a constant matrix and B.t/ has the
property

R1
t0
kB.s/k ds <1. Under these assumptions the behavior of the per-

turbed nonlinear system (2.1) is very similar to the behavior of the linear system
Y 0 D A0Y .

Let !1 and !2 be the eigenvalues of A0 and '1 and '2 be the corresponding
eigenfunctions. Then the following lemma holds true.

Lemma 2.1. Let U.t/ be a solution of (2.1) such that U.t/! 0 as t !1.

(i) If !k D ˛˙ iˇ, ˛ < 0 and ˇ ¤ 0, then there exist constants c1; c2 such that

U.t/ D c1e
˛t Œcosˇt Re¹'1º � sinˇt Im¹'1º C o.1/�

C c2e
˛t Œsinˇt Re¹'2º C cosˇt Im¹'2º C o.1/�

as t !1. Conversely for given c1; c2 such a solution exists for large t .

(ii) If !1 < !2 < 0, then there exist constants c1; c2 such that

U.t/ D c1e
!1t .1C o.1//'1 or U.t/ D c2e

!2t .1C o.1//'2 as t !1:

Moreover, such solutions exist for large t .

(iii) If !1 < 0 � !2, then there exists for large t a one-parameter family of solu-
tions to (2.1) such that U.t/! 0 as t !1. In addition,

U.t/ D ce!1t .1C o.1//'1 if t !1:

(iv) If!1 D !2 < 0 and '1 D const.�'2, then eitherU.t/ D c1e!1t .1Co.1//'1
or U.t/ D c2e!1t t .1C o.1//'1. Moreover, such solutions exist for large t .

(v) If !2 > 0, then U D 0 is unstable.1

1 The case !2 D 0 is more involved and no general statements are possible.
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2.1.2 The case u.t/ ! 0 as t ! 1

In this case we set

A0 WD

 
0 1

�� �.N � 1/

!
; B.t/ D

 
0 0

0 .N � 1/.1 � coth t /

!
:

The eigenvalues of A0 are

!1 D �

q
�20 � � � �0; where �0 WD

N � 1

2
; (2.3)

!2 D

q
�20 � � � �0:

From Lemma 2.1 it follows immediately that no positive solution tending to zero
exists if � > �20.

Definition 2.2. Let u be a positive solution of (1.2) tending to zero a infinity. It is
said that u decays rapidly at infinity if e�0tu.t/! u1 <1 as t !1. However,
if limt!1 e

�0u D1, then we say that u decays slowly at infinity.

Lemma 2.1 applied to (1.2) yields

Lemma 2.3. (i) Let 0 < � < �20. If u is a solution inE.0;1/ or inBc.d1/, then
two possibilities can occur if t !1:

u.t/e
.�0C

q
�2

0��/t ! u1 (rapidly decaying solution),

u.t/e
.�0�

q
�2

0��/t ! Qu1 (slowly decaying solution).

Moreover for fixed t0 > 0 and sufficiently small ju.t0/j2Cju0.t0/j2 there ex-
ists a one-parameter family of rapidly decaying and a two-parameter family
of slowly decaying solutions of (1.2).

(ii) Assume � < 0. Every solution u 2 E.0;1/ or u 2 Bc.d1/ tending to zero
satisfies

u.t/e
.�0C

q
�2

0��/t ! u1 as t !1 (rapidly decaying solution).

In addition for fixed t0 and sufficiently small ju.t0/j2 C ju0.t0/j2 there exists
a one-parameter family of rapidly decaying solutions.

(iii) Let � D �20. Then as t !1

u.t/e�0t ! u1 (rapidly decaying solution),

u.t/e�0t t�1 ! Qu1 (slowly decaying solution).

Conversely such solutions exist for large t .
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Let us now discuss the case � D 0 which requires an additional argument be-
cause!2 D 0 (cf. the footnote to Lemma 2.1 (v)). It has already been studied in [4].
We give here a different proof.

Suppose that u.t/ exists and tends to zero for t ! 1. It is not difficult to see
that all solutions tending to zero are either monotone decreasing if they belong to
E.0;1/ or they have at most one local maximum if they are inBc.d1/. In fact, this
follows immediately from (1.2) in the case � � 0. If � < 0, we need in addition
the monotonicity of E.t/. Hence there exists t0 > 0 such that u0 ¤ 0 for t � t0.
Consider the function w WD u0

u
. For large t it is negative and satisfies the Riccati

type equation

w0 C w2C.N � 1/.1C ı.t//w C up�1 D 0; (2.4)

where ı.t/ WD coth.t/ � 1! 0 as t !1.

Proposition 2.4. The solutions of (2.4) satisfy either

lim
t!1

w.t/ D 0 or lim
t!1

w.t/ D �.N � 1/:

Proof. It is easy to see that w is bounded from above. We claim that w is also
bounded from below. Suppose the contrary. Then

w0 D �w2.1C o.1// implies w.t/ D
1

.t � t0/.1C o.1//C w�1.t0/
:

Sincew.t0/ is negative for large t0, it follows thatw blows up for finite t , in contra-
diction to our assumption. Hence limt!1w

0.t/ D 0 implies that we have w ! 0

or w ! �.N � 1/ as t !1.

This proposition leads to

Lemma 2.5. Assume � D 0. If u 2 E.0;1/ or inBc.d1/, then one of the two pos-
sibilities occur as t !1:

u.t/e.N�1/t ! u1 (rapidly decaying solution),

u.t/t
1

p�1 ! c.N; p/ WD

�
N � 1

p � 1

� 1
p�1

(slowly decaying solution).

Moreover, there exist locally a one-parameter family of rapidly decaying solutions
and a two-parameter family of slowly decaying solutions.

Proof. The first case occurs if in Proposition 2.4 we have w ! �.N � 1/. Then
u.t/e.N�1/t ! u1 as t !1 and u is a rapidly decaying solution. The existence
of such local solutions follows from Lemma 2.1 (ii).
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If w ! 0, we deduce from

u00

u0
CN � 1C ı.t/C

up

u0
D 0

and from Bernoulli–L’Hospital’s rule that 0 D limt!1
u0

u
D limt!1

u00

u0
that

lim
t!1

up

u0
D �.N � 1/:

This implies that

lim
t!1

t
1

p�1u.t/ D c.N; p/:

It remains to prove the existence of such a solution. Set

G .t/ WD w2.t/C .N � 1/ coth.t/w.t/C up�1.t/:

Choose u.t0/ and u0.t0/ such that G .t0/ < 0 and w.t0/ > 1 � N . Then by equa-
tion (2.4), w0 > 0 near t0. Observe that w.t/ increases until w0.�/ D 0 or equiv-
alently G .�/ D 0. This is impossible because w.t/ > 1 � N . Consequently w.t/
increases and tends to zero as t !1: This completes the proof.

2.1.3 The case � < 0 and u.t/ ! ƒ as t ! 1.

The goal of this section is to determine the decay rate of u near ƒ. The arguments
will be exactly the same as for Lemma 2.3.

Replace u in (1.2) by ƒC v. Then v solves for large t the linearized equation

v00 C .N � 1/ coth.t/v0 � �.p � 1/v CO.v2/ D 0: (2.5)

Exactly the same arguments as in Section 2.1.2 apply. The only differences are the
matrix A0 which has to be replaced by

QA0 WD

 
0 1

�.p � 1/ �.N � 1/

!
;

and the inhomogeneous term F .V /, V D .v; v0/ which has to be changed accord-
ingly. The eigenvalues of QA0 are

ˇ˙ D ˙

q
�20 C �.p � 1/ � �0:
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This implies that either

e
.�0C

q
�2

0C�.p�1//tv.t/! v1 as t !1; (2.6)

or

e
.�0�

q
�2

0C�.p�1//tv.t/! Qv1 as t !1: (2.7)

In accordance with the solutions u tending to 0 we say that u tends rapidly toƒ in
the first case of (2.6) and it decays slowly to ƒ in the second case.

Lemma 2.6. Suppose that u is a solution of (1.2) which exists for t > t0 and tends
to ƒ as t !1.

(i) If ��20 < .p � 1/� < 0, then either

e�tˇ�.u.t/ �ƒ/! v1 or e�tˇC.u.t/ �ƒ/! Qv1 as t !1:

Moreover for .u; u0/ close to .ƒ; 0/ there exists a one-parameter family of
rapidly decaying local solutions and a two-parameter family of slowly de-
caying solutions.

(ii) Assume �.p � 1/ < ��20. Then u oscillates around � and tends eventually
toƒ. Moreover for .u; u0/ close to .ƒ; 0/ there exists locally a two-parameter
family of solutions of this type.

(iii) Let ��.p � 1/ D �20. Then

.u.t/ �ƒ/e�0t ! v1 or .u.t/ �ƒ/e�0t t�1 ! Qv1 as t !1:

Conversely such solutions exist for large t .

2.2 Behavior at t D 0

Assume that u exists at t D 0. It belongs therefore either to B.d1/ or to E.0;1/.
For small t we can write (1.2) as

u00 C
N � 1

t
.1C a.t//u0 C �uC up D 0;

where a.t/ D t coth t � 1 D O.t2/. Proceeding as in [2] we shall first perform the
Emden–Fowler transformation

x D .2 �N/ log.t/; v D t
2

p�1u; � WD
2

.p � 1/.N � 2/
:

Then, setting v0 WD dv=dx we have

v00 � .1� 2�/v0 � �.1� �/vCO.e�
2x

N�2 /.vC v0/C vp.N � 2/�2 D 0: (2.8)
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We are interested in the behavior of v.x/ as x ! 1. According to the results in
[2] which are based on the analysis of perturbed linear systems [10] considered in
the previous sections, it follows that v is bounded and converges either to v0 WD 0
or, in the case � < 1, to v1 WD ¹�.1 � �/.N � 2/2º

1
p�1 .

If v ! 0 at x !1, then the corresponding linear system is

Y 0 D

 
0 1

�.1 � �/ 1 � 2�

!
Y:

The eigenvalues of the matrix are �� and 1 � � . Hence for all positive � there is
a family of solutions behaving like

v.x/ D e��x.c C o.1//

(equivalently u.t/ D u0.1C o.t// as t ! 0).
If � > 1, there is an additional family of solutions behaving like

v.x/ D e.1��/x.c C o.1//

(equivalently u.t/ D t�.N�2/.c C o.t// as t ! 0).

Lemma 2.1 does not apply if � D 1 because !2 D 0. The arguments of Theo-
rem 5.1 (iii) in [2] show that if a solution u exists which is singular at the origin,
then

lim
t!0

tN�2u.t/ D 0;

lim sup
t!0

tˇu.t/ D1 for all 0 < ˇ < N � 2:
(2.9)

Let us now discuss the case when v ! v1 and consequently � < 1. To this end,
set v.x/ D v1 C � and observe that for small �

�00 � .1 � 2�/�0 C �.1 � �/.p � 1/�CO.�2/ D 0:

The linear equation has solutions of the form

�1 D c1e
.
1C
2/x and �2 D c2e

.�
1C
2/x;


2 D
1 � 2�

2
and 
1 D

q

22 � �.1 � �/.p � 1/:

Notice that these solutions tend to zero at x D1 only if � > 1=2.
In conclusion we have the following lemma.
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Lemma 2.7. (i) If t ! 0, then either u is regular and behaves like u.t/ ! u0
and u0.t/! 0, or u is singular and behaves like

u.t/ D

´
t�.N�2/.c C o.t// if p < N

N�2
;

t�
2

p�1 .1C o.1// if N
N�2

< p:

Furthermore there exists for all p > 1 a one-parameter family of regular so-
lutions. In the cases listed above there is a two-parameter family of singular
solutions.

(ii) If p D N=.N � 2/, then the singular solutions satisfy (2.9)

(iii) If p > NC2
N�2

, no solutions exist which are singular at t D 0.

Remark 2.8. From the monotonicity of E.t/ it follows that if u.t/! ƒ as t ! 0,
then u.t/ � ƒ.

If � D 1=2, then the linear system has a center in v1. A more subtle analysis is
required to determine the behavior of � for the nonlinear equation.

3 Global behavior

In this section we study the different classes of solutions. For the sake of com-
pleteness we shall also list some known results.

Write Err for the set of solutions in E.0;1/ which are regular at zero and
rapidly decreasing at infinity and Ess for the set solutions in E.0;1/ which are
singular at zero and slowly decaying at infinity. Likewise we define Ers, Esr, Br ,
Bs , Bcr and Bcs .

3.1 The case S.d0; d1/, 0 < d0 < d1

By classical arguments the variational problem

J.v/ D

Z d1

d0

.v02 � �v2/ sinhN�1 t dt ! min;

where v 2K and

K WD

´
v 2 C 1.d0; d1/ W v.d0/ D v.d1/ D 0;

Z d1

d0

jvjpC1 sinhN�1 t dt D 1

µ
;

has a positive solution for every p > 1 provided � < �S .d0; d1/where �S .d0; d1/
is the Dirichlet eigenvalue of the radial part of �HN in .d0; d1/.
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3.2 Pohozaev type identity: Integral form

An important tool for proving the nonexistence of solutions is the Pohozaev iden-
tity. We present a version which has been derived in [19] for the study of the
Brezis–Nirenberg problem in HN and also in [15]. Since we use here different co-
ordinates, we shall state it for the sake of completeness.

In a first step we transform (1.2) into an equation without first order derivatives.
For this purpose set

u.t/ D sinh�
N�1

2 .t/v.t/ D sinh��0.t/v.t/:

Then v.t/ solves
v00 � a.t/v C b.t/vp D 0; (3.1)

where

a.t/ D �0 � �C �0
N � 3

2
coth2.t/ and b.t/ D sinh��0.p�1/.t/:

If we multiply (3.1) with v0g and integrate, we obtain

1

2

Z T

0

g0v02 dt D
v02g

2

ˇ̌̌T
0
�
agv2

2

ˇ̌̌T
0
C
bgvpC1

p C 1

ˇ̌̌T
0

C
1

2

Z T

0

.ag/0v2 dt �
1

p C 1

Z T

0

.bg/0vpC1 dt:

(3.2)

Multiplication of (3.1) with g0v and integration yields

1

2

Z T

0

g0v02 dt D
1

2
g0vv0

ˇ̌̌T
0
�
1

4
v2g00

ˇ̌̌T
0

C

Z T

0

�
g000

4
�
ag0

2

�
v2 dt C

Z T

0

g0b

2
vpC1 dt:

(3.3)

Suppose that

v.0/ D v.T / D 0; jv0.T /j <1 and lim
t!0

v.t/v0.t/ D 0: (3.4)

Then (3.2) and (3.3) lead to the following Pohozaev type identity:

v02g

2

ˇ̌̌T
0
C

Z T

0

�
a0g

2
C ag0 �

g000

4

�
v2dt D

Z T

0

�
.bg/0

p C 1
C
g0b

2

�
vpC1dt: (3.5)



12 C. Bandle and Y. Kabeya

3.3 B.T /

Let �B.T / be the first Dirichlet eigenvalue of �HN in the geodesic ball BT . Ob-
serve that �B.T / > �20 and that for N D 3 we have �B.T / D 1C .�T /

2.

The variational method described in Section 3.1 for subcritical exponents ap-
plies also in this case. Mancini and Sandeep [15] established the uniqueness. More
precisely

� if 1 < p < NC2
N�2

and � < �B.T /, then there exists a unique, positive solution
of (1.2) in B.0; T / which is regular at the origin.

S. Stapelkamp [19] (cf. also [18]) has studied the case of the critical exponent
p D NC2

N�2
and she has obtained the following result:

� If

�B.T / > � > �
�
WD

´
N.N�2/

4
if N > 3;

1C
�
�
2T

�2 if N D 3;

then there exists a unique solution in B.0; T / which is regular at the origin.
� If � � �� or � � �B.T /, no solution exists in B.0; T / which is regular at the

origin.

She has established the existence by means of the method of concentration com-
pactness and the uniqueness by an argument of Kwong and Li [14]. The nonexis-
tence was shown by means of (3.5).

Next we extend this nonexistence result.

Lemma 3.1. (i) Assume

� �

´
N.N�2/

4
if N > 3;

1C
�
�
2T

�2 if N D 3:

If p � NC2
N�2

, then Br D ;.

(ii) If p > NC2
N�2

, then for any �, Bs D ;.

Proof. (i) If u 2 B.0; T / is regular at the origin, then the properties (3.4) are sat-
isfied. Set g D sinh t . Then the left-hand side of (3.5) becomes

v02.T /g.T /

2
C

Z T

0

�
N.N � 2/

4
� �

�
.cosh t /v2 dt:

For � � N.N�2/
4

and v ¤ 0 this expression is positive. The right-hand side of (3.5)
however is positive if and only if p < NC2

N�2
. If N D 3, we obtain a sharper result

by choosing g D sin.!t/, ! D �
2T

. Then the left-hand side of (3.5) is positive if
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� � 1C . �
2T
/2. The right-hand side isZ T

0

b! cos!t
�
1

2
C

1

p C 1
�
.p � 1/ tan!t coth t

.p C 1/!

�
vpC1 dt:

Since tan!t coth t=! � 1, the integral above is negative if p � 5.
(ii) The second assertion follows from Lemma 2.7.

Remark 3.2. (i) In general it is not clear if for 1 < p � NC2
N�2

and � < �B.T /

there exist solutions in Bs .

(ii) From the maximum principle it follows that for any p no positive solutions
exist in Br if � > �B.T /.

(iii) There is an interval .��; �B.T // which is not covered by the nonexistence
result of Lemma 3.1 above. Stapelkamp [19] has shown that in the critical
case p D NC2

N�2
, B.T / has a regular solution in this interval. We conjecture

that this is also true for p close to NC2
N�2

.

3.4 E.0;1/

Notice that �20 is the lowest point in the L2-spectrum of�HN . It follows therefore
from the maximum principle that E.0;1/ does not contain a solution which is
regular at the origin if � > �20. Mancini and Sandeep [15] proved that there exists
a unique, rapidly decreasing solution which is regular at zero, in the following
cases:
� 1 < p < NC2

N�2
and � � �20,

� N � 4, p D NC2
N�2

and N.N�2/
4

< � � �20.

The existence was established by means of variational methods and the uniqueness
followed from an argument of Kwong and Li [14].

Mancini and Sandeep [15] observed that (3.5) implies the nonexistence of solu-
tions in E.0;1/ which are regular at zero and rapidly decreasing at infinity in the
following cases:
� N � 3, p � NC2

N�2
and � � N.N�2/

4
,

� N D 3, p � 5 and � � 1.

Lemma 3.3. (i) Assume 1 < p < NC2
N�2

. Then at least one of the classes B.t/ or
E.0;1/ contains a solution which is singular at the origin.

(ii) If � < 0, then for any p > 1, E.0;1/ contains solutions which are regular
at zero and converge to ƒ as t !1.

(iii) If p � NC2
N�2

and � � N.N�2/
4

, then Ers contains a continuum of solutions.
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Proof. The first assertion follows from Lemma 2.7 and the second is a conse-
quence of the monotonicity of E.t/. In fact, if u.0/ is so small that E.0/ < 0, then
E.t/ stays negative and converges eventually to its minimum E.ƒ/. The third as-
sertion is a consequence of Lemma 2.7 which guarantees the existence of a regular
local solution at the origin. By Lemma 3.1 (i) this solution cannot vanish and be-
longs therefore toE.0;1/. In view of Mancini and Sandeep’s result,Err D ;.

3.5 Bc.T /

The previous considerations lead to the following

Lemma 3.4. If we have p > NC2
N�2

and � � N.N�2/
4

if N > 3 or � � 1 if N D 3,
then Bc.d1/ contains a rapidly decreasing solution for some d1.

Proof. By Lemma 2.3 there exists locally a one-parameter family of rapidly de-
creasing solutions. By Mancini and Sandeep’s nonexistence result this solutions
are not in Err.0;1/ and by Lemma 2.7 (iii) and Remark 2.1 this solution cannot
belong to Esr.0;1/. Hence it vanishes at some d1. The case N D 3 is treated in
Theorem 4.4.

4 Global results for N D 3

4.1 Main results

The aim of this section is to transform (1.2) into a Matukuma equation and to use
the existence and uniqueness results by Yanagida and Yotsutani [20].

Throughout this section we shall assume that N D 3. The arguments used here
apply also to higher dimensions, but the discussion is much more involved and
difficult to carry out.

Observe that for N D 3 we have �0 D 1. According to Lemma 2.3 a rapidly
decaying solution behaves like e�.1C

p
1��/t and a slowly decreasing solutions

like e�.1�
p
1��/t .

The main results of this section are stated in the next theorems. In order to ex-
press our first theorem, we introduce the following notation: u.t I˛/ is the unique
(local) solution of (1.2) such that u.0I˛/ D ˛ > 0 and u0.0I˛/ D 0.

Theorem 4.1. If 1 < p < 5 and if � � 1, then there exists a unique positive rapidly
decaying solution to (1.2). More precisely, there exists an ˛� > 0 such that for all
˛ 2 .0; ˛�/

(i) u.t I˛/ converges slowly to 0 as t !1 if � � 0,

(ii) u.t I˛/! ƒ as t !1 if � < 0.
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In addition u.t I˛�/ decays rapidly to 0 as t !1 and u.t I˛/ has a finite zero
if ˛ > ˛�.

Theorem 4.1 is a sightly more precise version of Theorem 1.3 in [15] whereas
the next results are new to our knowledge.

Theorem 4.2. If 1 < p < 5 and if � � 1, then there exists a continuum of positive
solutions inE.0;1/which decay rapidly to zero as t D1 and which are singular
at t D 0. Also, there exists a continuum of solutions in Bc.d1/ for some d1, which
decay rapidly at t D1.

Remark 4.3. We can describe the structure of solutions, shooting from infinity.
Let

ˇ� WD lim
t!1

e.1C
p
1��/tu.t I˛�/;

where ˛� is defined in Theorem 4.1. Then

(i) any solution u to (1.2) with limt!1 e
.1C
p
1��/tu D ˇ 2 .0; ˇ�/ is singular

at t D 0.

(ii) any solution u to (1.2) with limt!1 e
.1C
p
1��/tu D ˇ > ˇ� must have fi-

nite zero.

(iii) the solution u to (1.2) with limt!1 e
.1C
p
1��/tu D ˇ� is nothing but the

unique solution u.t I˛�/ in Theorem 4.1.

We note that Chern, Z.-H. Chen, J.-H Chen and Tang [5] investigated the struc-
ture of positive singular solutions of �u � u C up D 0 in the Euclidean whole
space case.

In accordance with Lemma 3.3 we have

Theorem 4.4. If p � 5 and if � � 1, then any solution of (1.2) which decays
rapidly at t D1 vanishes at some d0 > 0.

This result corresponds to the nonexistence result in Theorem 3.2 by Ni and
Serrin [16] for the equation �uC f .u/ D 0 in the Euclidean space.

Theorem 4.5. Suppose that p � 5.

(i) If � < 0, then for any positive ˛, u.t I˛/ belongs to E.0;1/ and converges
to ƒ.

(ii) If 0 � � � 1, then for any positive ˛, u.t I˛/ belongs to E.0;1/ and con-
verges slowly to 0.



16 C. Bandle and Y. Kabeya

4.2 Transformation to a Matukuma type equation

Let ˆ.t/ be a solution to the linear problem2

1

sinh2 t
¹.sinh2 t /ˆ0º0 C �ˆ D 0: (4.1)

Assume in the sequel that � � 1. For simplicity we shall set

� D
p
1 � �:

The solutions which are regular at the origin are multiples of

ˆ.t/ D

´
sinh�t
sinh t if � > 0 .� < 1/;
t

sinh t if � D 0 .� D 1/:

Substituting u.t/ D v.t/ˆ.t/ into (1.2), we get3

v00 C 2

�
coth t C

ˆ0

ˆ

�
v0 C vpˆp�1 D

1

g.t/
¹g.t/v0º0 C vpˆp�1 D 0; (4.2)

where g.t/ D sinh2 tˆ2.t/. We now introduce the new variable (see e.g. [21])

1

�
D

Z 1
t

1

g.s/
ds:

Hence

��1 D

´
1
�
.coth�t � 1/ if � < 1;

1
t

if � D 1:

Note that � D .�e2�t � 1/=2 if � < 1.
The function w.�/ D v.t.�// satisfies the 3-dimensional Matukuma equation

1

�2
.�2w0/0 CQ.�/wp D 0 in .0;1/; (4.3)

where

Q.�/ D
g2ˆp�1

�4
D

´
��4 sinh4.�t/ˆ.t/p�1.coth�t � 1/4 if � > 0;
ˆ.t/p�1 if � D 0:

Observe that the same classification holds for positive solutions w.�/ as for u.t/.
If u decays rapidly to zero at t D 1, then by the Lemmas 2.3 and 2.5, we have
lim�!1 �w.�/ D u1. If u is a slowly decaying solution or if u tends to ƒ as t
tends to infinity, then lim�!1 �w.�/ D1. If u is regular at t D 0, thenw.0/ > 0
and w0.0/ D 0, and finally if u is singular at zero, the same is true for w and is
classified according to Lemma 2.7.

2 The argument in this subsection is also valid for N � 4.
3 This process is called Doob’s h-transform, see p. 252 of [9].
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4.3 Auxiliary tools for the study of Matukuma equations

The basic tools used in this chapter to study (4.3) hold under the assumptions

(Q)

´
Q 2 C 1..0;1// \ C.Œ0;1//; Q > 0 in .0;1/;

�Q 2 L1.Œ0; 1�/; �2�pQ 2 L1.1;1/:

The third hypothesis guarantees the existence of a local solution which is regular at
the origin. By the classical results of the oscillation theory, if �2�pQ 62 L1.1;1/,
then any solution must have a finite zero. Thus the last condition is necessary for
the existence of a positive solution for large � .

The expressionQ in (4.3) satisfies (Q). For a positive solution of (4.3) we have
(cf. Lemma 2.1 (c) in [22])

Lemma 4.6. The function �w.�/ is concave. Hence for a positive solution defined
in .0;1/, �w is increasing.

Next we introduce a function used by Ding and Ni [6] (originally an integral
form) to classify positive solutions. For a positive solution w to (4.3), set

P.� Iw/ D
1

2
�2w0.�w0 C w/C

1

p C 1
�3Q.�/wpC1:

In the sequel we set

� WD
p � 5

2
and Q�.�/ WD �

��Q.�/

Direct calculations yields

dP

d�
D

1

p C 1
�3C�Q0�w

pC1: (4.4)

Hence P is monotone increasing. Kawano, Yanagida and Yotsutani [12] de-
scribed the asymptotic behavior for large � of the solutions of (4.3) by means of
P.� Iw/.

Proposition 4.7. Suppose that Q� is monotone near � D1. Then the following
statements hold:

(i) lim
�!1

P.� Iw/ < 0 if and only if w is a slowly decaying solution.

(ii) lim
�!1

P.� Iw/ D 0 if and only if w is a rapidly decaying solution.

(iii) lim
�!1

P.� Iw/ > 0 if and only if w vanishes at a finite point.

If Q�.�/ is monotone on the whole positive axis, we have the following propo-
sitions which are found in [12].
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Proposition 4.8. If Q0� < 0 on .0;1/, then any solution of (4.3) which is regular
at zero decays slowly.

Proof. First note that P.0;w/ D 0 for any w.0/ > 0. By (4.4), we see that

P.� Iw/ D
1

p C 1

Z �

0

s3C�Q0�.s/w
pC1
C

ds � 0; 6� 0:

The assertion now follows from Proposition 4.7 (i).

A similar argument yields

Proposition 4.9. If Q0� > 0 on .0;1/, then any solution of (4.3) which is regular
at zero has a finite zero.

We now study the case whereQ� is not monotone everywhere. We will provide
a criterion for the uniqueness of rapidly decaying solutions belonging to E.0;1/.

In order to state the result, we need the following two functions:

G.�/ WD
1

p C 1
�3Q.�/ �

1

2

Z �

0

s2Q.s/ ds;

H.�/ WD
1

p C 1
�2�pQ.�/ �

1

2

Z �

0

s1�pQ.s/ ds:

Straightforward calculations yield

G0.�/ D �pC1H 0.�/ D
1

p C 1
� .pC1/=2Q0�.�/

and
d

d�
P.� Iw/ D G0.�/wpC1 D H 0.�/.�w/pC1: (4.5)

Integrating (4.5) and keeping in mind that P.0;w/ D 0, we find

P.� Iw/ D G.�/wp � .p C 1/

Z �

0

G.s/wpw0 ds (4.6)

and

P.� Iw/ D H.�/.�w/pC1 � .p C 1/

Z �

0

H.s/.sw/p.sw/0 ds: (4.7)

In the sequel we assume

(Q1)

´
G > 0 in .0; �G/; G < 0 in .�G ;1/;

H < 0 in .0; �H /; H > 0 in .�H ;1/:

Thus, we assume that G and H has only one zero. The following result is essen-
tially Theorem 1 in [20].
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Proposition 4.10. If there exists �� > 0 such that

Q0�.�/ > 0; � 2 .0; ��/; Q0�.�/ < 0; � > ��

and if the properties (Q1) hold, then there exists a unique positive rapidly decaying
solution to (4.3). More precisely, there exists 
� > 0 such that w.� I 
/ is positive
and lim�!1 �w.� I 
/ D 1 as � ! 1 for 
 2 .0; 
�/, w.� I 
�/ is positive and
decays rapidly, and w.� I 
/ has a finite zero for 
 > 
�.

Remark 4.11. Proposition 4.10 holds in fact under the weaker assumption

0 < �H � �G <1;

where �H and �G are the largest positive zero of H and the smallest positive zero
of G, respectively. This is the exact assumption in Theorem 1 in [20].

4.4 Proofs of the Theorems 4.1–4.5

First we want to analyze Q�.�/ in order to apply Propositions 4.8, 4.9 and 4.10.
If � > 0, then

Q�.�/ D .2�/
�.pC3/=2 .1 � e

�2�t /.pC3/=2

sinhp�1 t
: (4.1)

Since d�=dt > 0 and since we are interested in the slope of Q�, it suffices to
examine the derivative of

S.t/ WD
.1 � e�2�t /.pC3/=2

sinhp�1 t
as a function of t . We have

S 0.t/ D
.1 � e�2�t /.pC1/=2

sinhp t

®
�.pC3/e�2�t sinh t � .p�1/.1� e�2�t / cosh t

¯
:

Set

T .t/ WD �.p C 3/
e�2�t

1 � e�2�t
sinh t � .p � 1/ cosh t

so that

�.p C 3/e�2�t sinh t � .p � 1/.1 � e�2�t / cosh t D T .t/.1 � e�2�t /:

Since
e�2�t

1 � e�2�t
D

1

e2�t � 1
;

the essential part in order to determine the sign of S 0.t/ is

X.t/ WD
T .t/

.e2�t � 1/ cosh t
D �.p C 3/ tanh t � .p � 1/.e2�t � 1/:
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For t � 0 the graph of tanh t is monotone increasing and concave, while that of
e2�t � 1 is monotone increasing and convex. Thus, if there exists t0 > 0 such that
X.t0/ D 0, then t0 is a unique solution of X.t/ D 0. Near t D 0, tanh t � t while
e2�t � 1 � 2�t . Hence, if

�.p C 3/ � 2�.p � 1/ > 0;

then X.t/ D 0 has a unique solution for t > 0. This condition is satisfied for all
p < 5. If p � 5, then X.t/ � 0, 6� 0.

If � D 0, then

Q�.�/ D
t .pC3/=2

sinhp�1 t
and Q0�.�/ D

t .pC1/=2

sinhp t

²
p C 3

2
sinh t�.p�1/t cosh t

³
:

Again, we see that the shape of the graph of Q� is the same as for � > 0.

The proof of Theorem 4.5 is now immediate. It follows from the previous ob-
servations, Proposition 4.8 and the Lemmas 2.3 and 3.3.

Proof of Theorem 4.1. We apply Proposition 4.10; we have only to check the val-
ues of

lim
�!1

G.�/ D

Z 1
0

d

d�
G.�/ d� D

1

p C 1

Z 1
0

� .pC1/=2
d

d�
Q�.�/ d�;

lim
�!0

H.�/ D

Z 1
0

d

d�
H.�/ d� D

1

p C 1

Z 1
0

��.pC1/=2
d

d�
Q�.�/ d�

for 1 < p < 5. Since

� D
�

coth�t � 1
D

� sinh�t
cosh�t � sinh�t

D
�e2�t � 1

2
D
�

2
.e2�t � 1/;

we see that � � t and

dQ�

d�
D .2�/�.pC3/=2

.1 � e�2�t /.pC3/=2

sinhp t
T .t/ � t�.p�3/=2

near t D 0. Also, � � e2�t and dQ�=d� � e�.p�1/t near t D1. Hence, we get

dG=d� 2 L1.Œ0; 1�/ and dH=d� 2 L1.Œ1;1//

and we have only to check the signs of lim�!1G.�/ and lim�!0H.�/ to ensure
that Proposition 4.10 applies. In the following, note that G.�/, H.�/ and Q�.�/
are indeed functions of t although we use these expressions.
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By change of variables, we haveZ 1
0

d

d�
G.�/ d� D

Z 1
0

d

dt
G.�/ dt

and Z 1
0

d

d�
H.�/ d� D

Z 1
0

d

dt
H.�/ dt:

Again first, we consider the case � > 0. Near t D1, we see that

d

dt
G.�/ � e¹.pC1/��.p�1/ºt

if .p C 1/� � .p � 1/ � 0. Then dG=dt 62 L1.Œ1;1// and G must have a finite
zero.

If .pC1/��.p�1/ < 0, then integration by parts yields, in view of d�=dt > 0
and Q� > 0,Z 1
0

d

dt
G.�/ dt D

�
1

p C 1
� .pC1/=2Q�.�/

�tD1
tD0

�
1

2

Z 1
0

� .p�1/=2Q�.�/
d�

dt
dt

D �
1

2

Z 1
0

� .p�1/=2Q�.�/
d�

dt
dt < 0:

Here we used the facts that

� .pC1/=2Q�.�/ � e
.pC1/�t�.p�1/t

! 0 as t !1

and that
� .pC1/=2Q�.�/jtD0 D 0:

Thus, in any case G has a finite zero.
For H , since dQ�=dt � t�.p�3/=2 near t D 0 we always have for all � > 0,

dH=dt 62 L1.Œ0; 1�/. Hence,H also has a finite zero. In case of� > 0, all the con-
ditions of Proposition 4.10 are satisfies and the conclusion follows.

If � D 0, we have � D t and therefore

d

d�
G D t .pC1/=2

d

dt
Q�.�/ � t

pC2e�.p�1/t

near t D1 and the integration by parts shows us

lim
�!1

G.�/ < 0:
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Similarly, we have

d

d�
H D t�.pC1/=2

d

dt
Q�.�/ � t

�.p�1/t :

If p 2 Œ2; 5/, we see that dH=d� 62 L1.Œ0; 1�/. If p 2 .1; 2/, then integration by
parts again yieldsZ 1

0

d

dt
H.�/ dt D

�
1

p C 1
��.pC1/=2Q�.�/

�tD1
tD0

�
1

2

Z 1
0

��.p�1/=2Q�.�/
d�

dt
dt

D �
1

2

Z 1
0

��.p�1/=2Q�.�/ dt < 0:

Here also note that ��.pC1/=2Q�.�/ � t= sinhp�1 t near t D 0 and t D 1 and
that the value converges to 0 as t ! 0 or t ! 1 if 1 < p < 2. Thus, H has a
finite zero near t D 0. Hence, all the conditions of Proposition 4.10 are satisfied if
1 < p < 5 and if � � 0. Thus, we have proved Theorem 4.1.

To prove Theorems 4.2 and 4.4, we first reduce our problem to (4.3) and then
use the Kelvin transform. Let � D 1=t and W.�/ D �w.�/. Then we see that

1

�2
.�2w0/0 D �3.�2W 0/0;

and (4.3) is reduced to

1

�2
.�2W 0/0 C �p�5Q

�
1

�

�
W p
D 0: (4.2)

Then we need to consider the behavior of

QQ�.�/ WD �
�.p�5/=2

²
�p�5Q

�
1

�

�³
D ��.p�5/=2Q.�/:

More precisely, we have to investigate the sign of

d

d�
QQ�.�/ D

d

d�

�
��.p�5/=2Q.�/

� d�
d�
: (4.3)

Proof of Theorem 4.2. If 1 < p < 5, then as in the proof of Theorem 4.1, we see
that QQ�.�/ has the properties asQ�.�/ has. Thus the conclusion comes from Pro-
position 4.10 and the structure of solutions which decay rapidly at t D 1 is the
same as in Theorem 4.1.



Semilinear elliptic equation in HN 23

Proof of Theorem 4.4. If p � 5, then QQ� becomes monotone increasing in � by
equation (4.3) and d�=d� D ���2. Thus, we can apply Proposition 4.9 to show
Theorem 4.4.

5 Concluding remarks and open problems

(1) The method presented here can be extended to more general problems, for
instance:

� �HNuCK.cosh.xN //up D 0; for particular functions K,

� boundary value problems in balls with Robin boundary conditions

�HNuC �uC up D 0 in B; u > 0 in B; uC �
@u

@�
D 0 on @B;

where B is the geodesic unit ball in HN and � is the unit outer normal, as
considered by Kabeya, Yanagida and Yotsutani [11] in the Euclidean space,

� to other semilinear quasilinear equations which can be reduced to an ordinary
differential equations.

(2) Except for Br.d1/ and Err.0;1/ the question of uniqueness is still open. We
expect that there is at most one solution in S.d0; d1/ for fixed 0 < d0 < d1 <1,
and in Bcr .d1/ for fixed d1.

This conjecture is supported by the fact that in contrast to the singular solutions
the regular and rapidly decreasing solutions form only a one-parameter family. For
singular solutions no uniqueness is to be expected.

(3) Since there are variational solutions in Err.0;1/ for p < NC2
N�2

and � < �20, it
is reasonable that there are also variational solutions in Bcr .d1/ for any d1 > 0.
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