On the positive, "radial" solutions of a semilinear elliptic equation in \mathbb{H}^{N}

Catherine Bandle and Yoshitsugu Kabeya

Abstract

We discuss various kinds of existence and non existence results for positive solutions of Emden-Fowler type equations in the hyperbolic space. The main tools are perturbation analysis, variational methods, Pohozeav type identities and reduction to Matukuma equations.

Keywords. Nonlinear elliptic equations, hyperbolic space, regular/singular solutions.
2010 Mathematics Subject Classification. 35J15, 35J61, 58J05.

1 Introduction

In this paper we consider the equation

$$
\begin{equation*}
\Delta_{\mathbb{H}^{N}} u+\lambda u+u^{p}=0, \quad u>0, \tag{1.1}
\end{equation*}
$$

where $\Delta_{\mathbb{H}^{N}}$ is the Laplace-Beltrami operator on the hyperbolic space $\mathbb{H}^{N}, N \geq 3$, λ is a real parameter and $p>1$.

The corresponding equation in the Euclidean space arises in geometry and physics and has led to interesting mathematical studies. It is called scalar field equation if $\lambda<0$, the Emden-Fowler equation if $\lambda=0$ and the conformal scalar curvature equation if $p=\frac{N+2}{N-2}$.

We are interested in solutions which depend only on the hyperbolic distance from a fixed center. In order to express (1.1) for such "radial" solutions, we recall that the hyperbolic space \mathbb{H}^{N} is the set of points of the hyperboloid

$$
\mathscr{H}:=\left\{\left(x_{1}, x_{2}, \ldots, x_{N+1}\right): x_{N+1}^{2}-\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{N}^{2}\right)=1, x_{N+1}>1\right\}
$$

in \mathbb{R}^{N+1} endowed with the Lorentz metric

$$
d_{H}(x, y)=\operatorname{arccosh}\left(-x_{1} y_{1}-\cdots-x_{N} y_{N}+x_{N+1} y_{N+1}\right) .
$$

Note that the distance from an arbitrary point to the origin $e_{N+1}:=(0,0, \ldots, 1)$ is $d\left(e_{N+1}, y\right)=\operatorname{arccosh}\left(y_{N+1}\right)$.

[^0]For the analysis it is more convenient to use the ball model. It is obtained by a stereographic projection from \mathscr{H} onto \mathbb{R}^{N}. A point $x \in \mathscr{H}$ is mapped to the point $z \in \mathbb{R}^{N}$ which is obtained by intersecting the line joining x and $-e_{N+1}$ with $\left\{x \in \mathbb{R}^{N+1}: x_{N+1}=0\right\}$. Then \mathbb{H}^{N} is given by the unit ball $B_{1} \subset \mathbb{R}^{N}$ with the Riemannian metric

$$
d s^{2}=\frac{4}{\left(1-|z|^{2}\right)^{2}}|d z|^{2}, \quad z \in B_{1}
$$

In these coordinates the hyperbolic distance from z to the origin becomes

$$
d_{H}(z, 0)=2 \operatorname{arctanh}(|z|)
$$

In polar coordinates we have $z=\rho \theta$, where $|z|=\rho$ and θ is a point on the unit sphere \mathbb{S}^{N-1}. The change of variable $\rho=\tanh (t / 2)$ leads to

$$
d s^{2}=d t^{2}+\sinh ^{2}(t)|d \theta|^{2}
$$

Consequently

$$
\Delta_{\mathbb{H}}{ }^{N}=\sinh ^{-(N-1)}(t) \frac{\partial}{\partial t}\left(\sinh ^{N-1}(t) \frac{\partial}{\partial t}\right)+\sinh ^{-2}(t) \Delta_{S},
$$

where Δ_{S} is the spherical Laplacian and $t=d_{H}(0, z)$ is the hyperbolic distance. This reduction is well known, cf. e.g. [9, Section 3.9]. The "radial" solutions of (1.1) satisfy the ordinary differential equation

$$
\begin{equation*}
u^{\prime \prime}(t)+(N-1) \operatorname{coth}(t) u^{\prime}(t)+\lambda u(t)+u^{p}(t)=0 \quad \text { in } \mathbb{R}^{+}, \quad u>0 \tag{1.2}
\end{equation*}
$$

Kumaresan and Prajapat [13] observed that the moving plane method of Gidas, Ni and Nirenberg [7,8] extends to \mathbb{H}^{N}. Thus the radial solutions play an important role.

The goal of this paper is to present a general picture of the set of positive, radial solutions. Particular results have been obtained by Stapelkamp [18, 19], Mancini and Sandeep [15] and Bonforte, Gazzola, Grillo and Vazquez [4]. We also mention the paper [1] where more general solutions of (1.1) are considered.

In [15] and [4] it was observed that for any solution u the energy functional

$$
\mathcal{E}(t):=\frac{u^{\prime 2}(t)}{2}+\lambda \frac{u^{2}(t)}{2}+\frac{u^{p+1}(t)}{p+1}
$$

is monotonically decreasing since $\mathcal{E}^{\prime}(t)=-(N-1) \operatorname{coth}(t) u^{\prime 2}(t)<0$. This implies that u is bounded for $t>0$. Notice that u can be singular at the origin. Denote
by $J=\left(d_{0}, d_{1}\right)$ the maximal interval of existence of a positive solution u. Hence if $0<d_{0}<d_{1}<\infty$, then u vanishes at its endpoints and yields a solution in an annulus. This class will be denoted by $S\left(d_{0}, d_{1}\right)$. If $J=\left(0, d_{1}\right)$ where $d_{1}<\infty$, then u vanishes at d_{1}. The class of these solutions defined in a (possibly punctured) ball will be denoted by $B\left(d_{1}\right)$. Similarly if $J=\left(d_{1}, \infty\right)$ where $0<d_{1}$, then u vanishes at d_{1}. These solutions defined in outer balls belong to the class $B^{c}\left(d_{1}\right)$. All other solutions exist for all $t>0$ and form the class $E(0, \infty)$.

This paper is organized as follows. In Section 2 we discuss the local behavior of the solutions at the origin and at infinity. The main tool is perturbation analysis ($[3,10]$). This method provides also the existence of local solutions. We then study their global behavior. The first approach carried out in Section 3 is by combining the local results of Section 2 with variational methods proposed in [15] and nonexistence results derived by means of Pohozaev type identities. The second approach in Section 4 consists in transforming (1.2) into a Matukuma equation and applying the criteria derived by Yanagida and Yotsutani [20,22].

It should be pointed out that the local structure is almost completely understood whereas many questions concerning the global behavior and uniqueness are still open.

2 Classification of the positive radial solutions

2.1 Asymptotic behavior as $\boldsymbol{t} \rightarrow \infty$

2.1.1 General remarks

Throughout this section we shall assume that $u(t)$ exists for large t. Then either $u(t) \in B^{c}\left(d_{1}\right)$ or $u(t) \in E(0, \infty)$. Because $\mathcal{E}(t)$ is decreasing and bounded from below, $u(t)$ converges to a constant solution as $t \rightarrow \infty$. Hence as $t \rightarrow \infty$ we have

$$
u(t) \rightarrow \begin{cases}0 & \text { if } \lambda \geq 0 \\ 0 \text { or } \Lambda:=(-\lambda)^{1 /(p-1)} & \text { if } \lambda<0\end{cases}
$$

For the next considerations it will be useful to transform (1.2) into a first order system. Set

$$
U:=\binom{u}{u^{\prime}}, \quad A(t):=\left(\begin{array}{cc}
0 & 1 \\
-\lambda & -(N-1) \operatorname{coth} t
\end{array}\right), \quad \mathscr{F}(U):=\binom{0}{-|u|^{p-1} u}
$$

In this notation (1.2) reads as

$$
\begin{equation*}
U^{\prime}=A(t) U+\mathcal{F}(U) \tag{2.1}
\end{equation*}
$$

By the variation of constants the system (2.1) can be written in the form

$$
\begin{equation*}
U(t)=y(t)+\int_{t_{0}}^{t} e^{A(t-s)} \mathcal{F}(U)(s) d s \tag{2.2}
\end{equation*}
$$

where $y(t)$ is a solution of the linear system $y^{\prime}=A y$.
The results on the asymptotic behavior of the solutions as $t \rightarrow \infty$ are based on well-known stability analysis for perturbed linear systems, cf. [3] and [10, Chapter VIII and X]. Let us now recall the principal results.

Let $\|A\|=\sum_{i, j=1}^{N}\left|a_{i j}\right|$ be the matrix norm. Assume that there exists $t_{0}>0$ such that $A(t)=A_{0}+B(t)$ where A_{0} is a constant matrix and $B(t)$ has the property $\int_{t_{0}}^{\infty}\|B(s)\| d s<\infty$. Under these assumptions the behavior of the perturbed nonlinear system (2.1) is very similar to the behavior of the linear system $Y^{\prime}=A_{0} Y$.

Let ω_{1} and ω_{2} be the eigenvalues of A_{0} and φ_{1} and φ_{2} be the corresponding eigenfunctions. Then the following lemma holds true.

Lemma 2.1. Let $U(t)$ be a solution of (2.1) such that $U(t) \rightarrow 0$ as $t \rightarrow \infty$.
(i) If $\omega_{k}=\alpha \pm i \beta, \alpha<0$ and $\beta \neq 0$, then there exist constants c_{1}, c_{2} such that

$$
\begin{aligned}
U(t)=c_{1} e^{\alpha t}[& \left.\cos \beta t \operatorname{Re}\left\{\varphi_{1}\right\}-\sin \beta t \operatorname{Im}\left\{\varphi_{1}\right\}+o(1)\right] \\
& +c_{2} e^{\alpha t}\left[\sin \beta t \operatorname{Re}\left\{\varphi_{2}\right\}+\cos \beta t \operatorname{Im}\left\{\varphi_{2}\right\}+o(1)\right]
\end{aligned}
$$

as $t \rightarrow \infty$. Conversely for given c_{1}, c_{2} such a solution exists for large t.
(ii) If $\omega_{1}<\omega_{2}<0$, then there exist constants c_{1}, c_{2} such that

$$
U(t)=c_{1} e^{\omega_{1} t}(1+o(1)) \varphi_{1} \quad \text { or } U(t)=c_{2} e^{\omega_{2} t}(1+o(1)) \varphi_{2} \quad \text { as } t \rightarrow \infty
$$

Moreover, such solutions exist for large t.
(iii) If $\omega_{1}<0 \leq \omega_{2}$, then there exists for large t a one-parameter family of solutions to (2.1) such that $U(t) \rightarrow 0$ as $t \rightarrow \infty$. In addition,

$$
U(t)=c e^{\omega_{1} t}(1+o(1)) \varphi_{1} \quad \text { if } t \rightarrow \infty
$$

(iv) If $\omega_{1}=\omega_{2}<0$ and $\varphi_{1}=$ const. $\times \varphi_{2}$, then either $U(t)=c_{1} e^{\omega_{1} t}(1+o(1)) \varphi_{1}$ or $U(t)=c_{2} e^{\omega_{1} t} t(1+o(1)) \varphi_{1}$. Moreover, such solutions exist for large t.
(v) If $\omega_{2}>0$, then $U=0$ is unstable. ${ }^{1}$

[^1]
2.1.2 The case $u(t) \rightarrow 0$ as $t \rightarrow \infty$

In this case we set

$$
A_{0}:=\left(\begin{array}{cc}
0 & 1 \\
-\lambda & -(N-1)
\end{array}\right), \quad B(t)=\left(\begin{array}{cc}
0 & 0 \\
0 & (N-1)(1-\operatorname{coth} t)
\end{array}\right) .
$$

The eigenvalues of A_{0} are

$$
\begin{align*}
& \omega_{1}=-\sqrt{\lambda_{0}^{2}-\lambda}-\lambda_{0}, \quad \text { where } \lambda_{0}:=\frac{N-1}{2} \tag{2.3}\\
& \omega_{2}=\sqrt{\lambda_{0}^{2}-\lambda}-\lambda_{0}
\end{align*}
$$

From Lemma 2.1 it follows immediately that no positive solution tending to zero exists if $\lambda>\lambda_{0}^{2}$.

Definition 2.2. Let u be a positive solution of (1.2) tending to zero a infinity. It is said that u decays rapidly at infinity if $e^{\lambda_{0} t} u(t) \rightarrow u_{\infty}<\infty$ as $t \rightarrow \infty$. However, if $\lim _{t \rightarrow \infty} e^{\lambda_{0}} u=\infty$, then we say that u decays slowly at infinity.

Lemma 2.1 applied to (1.2) yields
Lemma 2.3. (i) Let $0<\lambda<\lambda_{0}^{2}$. If u is a solution in $E(0, \infty)$ or in $B^{c}\left(d_{1}\right)$, then two possibilities can occur if $t \rightarrow \infty$:

$$
\begin{array}{ll}
u(t) e^{\left(\lambda_{0}+\sqrt{\lambda_{0}^{2}-\lambda}\right) t} \rightarrow u_{\infty} & \text { (rapidly decaying solution) } \\
u(t) e^{\left(\lambda_{0}-\sqrt{\lambda_{0}^{2}-\lambda}\right) t} \rightarrow \tilde{u}_{\infty} & (\text { slowly decaying solution })
\end{array}
$$

Moreover for fixed $t_{0}>0$ and sufficiently small $\left|u\left(t_{0}\right)\right|^{2}+\left|u^{\prime}\left(t_{0}\right)\right|^{2}$ there exists a one-parameter family of rapidly decaying and a two-parameter family of slowly decaying solutions of (1.2).
(ii) Assume $\lambda<0$. Every solution $u \in E(0, \infty)$ or $u \in B^{c}\left(d_{1}\right)$ tending to zero satisfies

$$
u(t) e^{\left(\lambda_{0}+\sqrt{\lambda_{0}^{2}-\lambda}\right) t} \rightarrow u_{\infty} \quad \text { as } t \rightarrow \infty \quad \text { (rapidly decaying solution). }
$$

In addition for fixed t_{0} and sufficiently small $\left|u\left(t_{0}\right)\right|^{2}+\left|u^{\prime}\left(t_{0}\right)\right|^{2}$ there exists a one-parameter family of rapidly decaying solutions.
(iii) Let $\lambda=\lambda_{0}^{2}$. Then as $t \rightarrow \infty$

$$
\begin{aligned}
u(t) e^{\lambda_{0} t} & \rightarrow u_{\infty} \quad \text { (rapidly decaying solution) }, \\
u(t) e^{\lambda_{0} t} t^{-1} & \rightarrow \tilde{u}_{\infty} \quad \text { (slowly decaying solution) } .
\end{aligned}
$$

Conversely such solutions exist for large t.

Let us now discuss the case $\lambda=0$ which requires an additional argument because $\omega_{2}=0$ (cf. the footnote to Lemma 2.1 (v)). It has already been studied in [4]. We give here a different proof.

Suppose that $u(t)$ exists and tends to zero for $t \rightarrow \infty$. It is not difficult to see that all solutions tending to zero are either monotone decreasing if they belong to $E(0, \infty)$ or they have at most one local maximum if they are in $B^{c}\left(d_{1}\right)$. In fact, this follows immediately from (1.2) in the case $\lambda \geq 0$. If $\lambda<0$, we need in addition the monotonicity of $\mathcal{E}(t)$. Hence there exists $t_{0}>0$ such that $u^{\prime} \neq 0$ for $t \geq t_{0}$. Consider the function $w:=\frac{u^{\prime}}{u}$. For large t it is negative and satisfies the Riccati type equation

$$
\begin{equation*}
w^{\prime}+w^{2}+(N-1)(1+\delta(t)) w+u^{p-1}=0 \tag{2.4}
\end{equation*}
$$

where $\delta(t):=\operatorname{coth}(t)-1 \rightarrow 0$ as $t \rightarrow \infty$.
Proposition 2.4. The solutions of (2.4) satisfy either

$$
\lim _{t \rightarrow \infty} w(t)=0 \quad \text { or } \quad \lim _{t \rightarrow \infty} w(t)=-(N-1)
$$

Proof. It is easy to see that w is bounded from above. We claim that w is also bounded from below. Suppose the contrary. Then

$$
w^{\prime}=-w^{2}(1+o(1)) \quad \text { implies } \quad w(t)=\frac{1}{\left(t-t_{0}\right)(1+o(1))+w^{-1}\left(t_{0}\right)}
$$

Since $w\left(t_{0}\right)$ is negative for large t_{0}, it follows that w blows up for finite t, in contradiction to our assumption. Hence $\lim _{t \rightarrow \infty} w^{\prime}(t)=0$ implies that we have $w \rightarrow 0$ or $w \rightarrow-(N-1)$ as $t \rightarrow \infty$.

This proposition leads to
Lemma 2.5. Assume $\lambda=0$. If $u \in E(0, \infty)$ or in $B^{c}\left(d_{1}\right)$, then one of the two possibilities occur as $t \rightarrow \infty$:

$$
\begin{aligned}
u(t) e^{(N-1) t} & \rightarrow u_{\infty} & & \text { (rapidly decaying solution) }, \\
u(t) t^{\frac{1}{p-1}} & \rightarrow c(N, p):=\left(\frac{N-1}{p-1}\right)^{\frac{1}{p-1}} & & (\text { slowly decaying solution }) .
\end{aligned}
$$

Moreover, there exist locally a one-parameter family of rapidly decaying solutions and a two-parameter family of slowly decaying solutions.

Proof. The first case occurs if in Proposition 2.4 we have $w \rightarrow-(N-1)$. Then $u(t) e^{(N-1) t} \rightarrow u_{\infty}$ as $t \rightarrow \infty$ and u is a rapidly decaying solution. The existence of such local solutions follows from Lemma 2.1 (ii).

If $w \rightarrow 0$, we deduce from

$$
\frac{u^{\prime \prime}}{u^{\prime}}+N-1+\delta(t)+\frac{u^{p}}{u^{\prime}}=0
$$

and from Bernoulli-L'Hospital's rule that $0=\lim _{t \rightarrow \infty} \frac{u^{\prime}}{u}=\lim _{t \rightarrow \infty} \frac{u^{\prime \prime}}{u^{\prime}}$ that

$$
\lim _{t \rightarrow \infty} \frac{u^{p}}{u^{\prime}}=-(N-1)
$$

This implies that

$$
\lim _{t \rightarrow \infty} t^{\frac{1}{p-1}} u(t)=c(N, p)
$$

It remains to prove the existence of such a solution. Set

$$
\mathcal{E}(t):=w^{2}(t)+(N-1) \operatorname{coth}(t) w(t)+u^{p-1}(t)
$$

Choose $u\left(t_{0}\right)$ and $u^{\prime}\left(t_{0}\right)$ such that $\mathscr{E}\left(t_{0}\right)<0$ and $w\left(t_{0}\right)>1-N$. Then by equation (2.4), $w^{\prime}>0$ near t_{0}. Observe that $w(t)$ increases until $w^{\prime}(\tau)=0$ or equivalently $\mathscr{E}(\tau)=0$. This is impossible because $w(t)>1-N$. Consequently $w(t)$ increases and tends to zero as $t \rightarrow \infty$. This completes the proof.

2.1.3 The case $\lambda<0$ and $u(t) \rightarrow \Lambda$ as $t \rightarrow \infty$.

The goal of this section is to determine the decay rate of u near Λ. The arguments will be exactly the same as for Lemma 2.3.

Replace u in (1.2) by $\Lambda+v$. Then v solves for large t the linearized equation

$$
\begin{equation*}
v^{\prime \prime}+(N-1) \operatorname{coth}(t) v^{\prime}-\lambda(p-1) v+O\left(v^{2}\right)=0 \tag{2.5}
\end{equation*}
$$

Exactly the same arguments as in Section 2.1.2 apply. The only differences are the matrix A_{0} which has to be replaced by

$$
\tilde{A}_{0}:=\left(\begin{array}{cc}
0 & 1 \\
\lambda(p-1) & -(N-1)
\end{array}\right)
$$

and the inhomogeneous term $\mathcal{F}(V), V=\left(v, v^{\prime}\right)$ which has to be changed accordingly. The eigenvalues of \tilde{A}_{0} are

$$
\beta_{ \pm}= \pm \sqrt{\lambda_{0}^{2}+\lambda(p-1)}-\lambda_{0}
$$

This implies that either

$$
\begin{equation*}
e^{\left(\lambda_{0}+\sqrt{\lambda_{0}^{2}+\lambda(p-1)}\right) t} v(t) \rightarrow v_{\infty} \quad \text { as } t \rightarrow \infty \tag{2.6}
\end{equation*}
$$

or

$$
\begin{equation*}
e^{\left(\lambda_{0}-\sqrt{\lambda_{0}^{2}+\lambda(p-1)}\right) t} v(t) \rightarrow \tilde{v}_{\infty} \quad \text { as } t \rightarrow \infty \tag{2.7}
\end{equation*}
$$

In accordance with the solutions u tending to 0 we say that u tends rapidly to Λ in the first case of (2.6) and it decays slowly to Λ in the second case.

Lemma 2.6. Suppose that u is a solution of (1.2) which exists for $t>t_{0}$ and tends to Λ as $t \rightarrow \infty$.
(i) If $-\lambda_{0}^{2}<(p-1) \lambda<0$, then either

$$
e^{-t \beta_{-}}(u(t)-\Lambda) \rightarrow v_{\infty} \quad \text { or } \quad e^{-t \beta_{+}}(u(t)-\Lambda) \rightarrow \tilde{v}_{\infty} \quad \text { as } t \rightarrow \infty
$$

Moreover for $\left(u, u^{\prime}\right)$ close to $(\Lambda, 0)$ there exists a one-parameter family of rapidly decaying local solutions and a two-parameter family of slowly decaying solutions.
(ii) Assume $\lambda(p-1)<-\lambda_{0}^{2}$. Then u oscillates around λ and tends eventually to Λ. Moreover for $\left(u, u^{\prime}\right)$ close to $(\Lambda, 0)$ there exists locally a two-parameter family of solutions of this type.
(iii) Let $-\lambda(p-1)=\lambda_{0}^{2}$. Then

$$
(u(t)-\Lambda) e^{\lambda_{0} t} \rightarrow v_{\infty} \quad \text { or } \quad(u(t)-\Lambda) e^{\lambda_{0} t} t^{-1} \rightarrow \tilde{v}_{\infty} \quad \text { as } t \rightarrow \infty
$$

Conversely such solutions exist for large t.

2.2 Behavior at $t=0$

Assume that u exists at $t=0$. It belongs therefore either to $B\left(d_{1}\right)$ or to $E(0, \infty)$. For small t we can write (1.2) as

$$
u^{\prime \prime}+\frac{N-1}{t}(1+a(t)) u^{\prime}+\lambda u+u^{p}=0
$$

where $a(t)=t \operatorname{coth} t-1=O\left(t^{2}\right)$. Proceeding as in [2] we shall first perform the Emden-Fowler transformation

$$
x=(2-N) \log (t), \quad v=t^{\frac{2}{p-1}} u, \quad \sigma:=\frac{2}{(p-1)(N-2)} .
$$

Then, setting $v^{\prime}:=d v / d x$ we have

$$
\begin{equation*}
v^{\prime \prime}-(1-2 \sigma) v^{\prime}-\sigma(1-\sigma) v+O\left(e^{-\frac{2 x}{N-2}}\right)\left(v+v^{\prime}\right)+v^{p}(N-2)^{-2}=0 \tag{2.8}
\end{equation*}
$$

We are interested in the behavior of $v(x)$ as $x \rightarrow \infty$. According to the results in [2] which are based on the analysis of perturbed linear systems [10] considered in the previous sections, it follows that v is bounded and converges either to $v_{0}:=0$ or, in the case $\sigma<1$, to $v_{1}:=\left\{\sigma(1-\sigma)(N-2)^{2}\right\}^{\frac{1}{p-1}}$.

If $v \rightarrow 0$ at $x \rightarrow \infty$, then the corresponding linear system is

$$
Y^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
\sigma(1-\sigma) & 1-2 \sigma
\end{array}\right) Y
$$

The eigenvalues of the matrix are $-\sigma$ and $1-\sigma$. Hence for all positive σ there is a family of solutions behaving like

$$
v(x)=e^{-\sigma x}(c+o(1))
$$

(equivalently $u(t)=u_{0}(1+o(t))$ as $\left.t \rightarrow 0\right)$.
If $\sigma>1$, there is an additional family of solutions behaving like

$$
v(x)=e^{(1-\sigma) x}(c+o(1))
$$

(equivalently $u(t)=t^{-(N-2)}(c+o(t))$ as $\left.t \rightarrow 0\right)$.
Lemma 2.1 does not apply if $\sigma=1$ because $\omega_{2}=0$. The arguments of Theorem 5.1 (iii) in [2] show that if a solution u exists which is singular at the origin, then

$$
\begin{align*}
& \lim _{t \rightarrow 0} t^{N-2} u(t)=0 \\
& \limsup _{t \rightarrow 0} t^{\beta} u(t)=\infty \quad \text { for all } 0<\beta<N-2 \tag{2.9}
\end{align*}
$$

Let us now discuss the case when $v \rightarrow v_{1}$ and consequently $\sigma<1$. To this end, set $v(x)=v_{1}+\eta$ and observe that for small η

$$
\eta^{\prime \prime}-(1-2 \sigma) \eta^{\prime}+\sigma(1-\sigma)(p-1) \eta+O\left(\eta^{2}\right)=0
$$

The linear equation has solutions of the form

$$
\begin{array}{ll}
\eta_{1}=c_{1} e^{\left(\gamma_{1}+\gamma_{2}\right) x} & \text { and } \quad \eta_{2}=c_{2} e^{\left(-\gamma_{1}+\gamma_{2}\right) x} \\
\gamma_{2}=\frac{1-2 \sigma}{2} & \text { and }
\end{array} \quad \gamma_{1}=\sqrt{\gamma_{2}^{2}-\sigma(1-\sigma)(p-1)} .
$$

Notice that these solutions tend to zero at $x=\infty$ only if $\sigma>1 / 2$.
In conclusion we have the following lemma.

Lemma 2.7. (i) If $t \rightarrow 0$, then either u is regular and behaves like $u(t) \rightarrow u_{0}$ and $u^{\prime}(t) \rightarrow 0$, or u is singular and behaves like

$$
u(t)= \begin{cases}t^{-(N-2)}(c+o(t)) & \text { if } p<\frac{N}{N-2} \\ t^{-\frac{2}{p-1}}(1+o(1)) & \text { if } \frac{N}{N-2}<p\end{cases}
$$

Furthermore there exists for all $p>1$ a one-parameter family of regular solutions. In the cases listed above there is a two-parameter family of singular solutions.
(ii) If $p=N /(N-2)$, then the singular solutions satisfy (2.9)
(iii) If $p>\frac{N+2}{N-2}$, no solutions exist which are singular at $t=0$.

Remark 2.8. From the monotonicity of $\mathcal{E}(t)$ it follows that if $u(t) \rightarrow \Lambda$ as $t \rightarrow 0$, then $u(t) \equiv \Lambda$.

If $\sigma=1 / 2$, then the linear system has a center in v_{1}. A more subtle analysis is required to determine the behavior of η for the nonlinear equation.

3 Global behavior

In this section we study the different classes of solutions. For the sake of completeness we shall also list some known results.

Write E_{rr} for the set of solutions in $E(0, \infty)$ which are regular at zero and rapidly decreasing at infinity and E_{ss} for the set solutions in $E(0, \infty)$ which are singular at zero and slowly decaying at infinity. Likewise we define $E_{\mathrm{rs}}, E_{\mathrm{sr}}, B_{r}$, B_{s}, B_{r}^{c} and B_{s}^{c}.

3.1 The case $S\left(d_{0}, d_{1}\right), 0<d_{0}<d_{1}$

By classical arguments the variational problem

$$
\mathcal{L}(v)=\int_{d_{0}}^{d_{1}}\left(v^{\prime 2}-\lambda v^{2}\right) \sinh ^{N-1} t d t \rightarrow \min
$$

where $v \in \mathcal{K}$ and

$$
\mathcal{K}:=\left\{v \in C^{1}\left(d_{0}, d_{1}\right): v\left(d_{0}\right)=v\left(d_{1}\right)=0, \int_{d_{0}}^{d_{1}}|v|^{p+1} \sinh ^{N-1} t d t=1\right\},
$$

has a positive solution for every $p>1$ provided $\lambda<\lambda_{S}\left(d_{0}, d_{1}\right)$ where $\lambda_{S}\left(d_{0}, d_{1}\right)$ is the Dirichlet eigenvalue of the radial part of $\Delta_{\mathbb{H}^{N}}$ in $\left(d_{0}, d_{1}\right)$.

3.2 Pohozaev type identity: Integral form

An important tool for proving the nonexistence of solutions is the Pohozaev identity. We present a version which has been derived in [19] for the study of the Brezis-Nirenberg problem in \mathbb{H}^{N} and also in [15]. Since we use here different coordinates, we shall state it for the sake of completeness.

In a first step we transform (1.2) into an equation without first order derivatives. For this purpose set

$$
u(t)=\sinh ^{-\frac{N-1}{2}}(t) v(t)=\sinh ^{-\lambda_{0}}(t) v(t)
$$

Then $v(t)$ solves

$$
\begin{equation*}
v^{\prime \prime}-a(t) v+b(t) v^{p}=0 \tag{3.1}
\end{equation*}
$$

where

$$
a(t)=\lambda_{0}-\lambda+\lambda_{0} \frac{N-3}{2} \operatorname{coth}^{2}(t) \quad \text { and } \quad b(t)=\sinh ^{-\lambda_{0}(p-1)}(t)
$$

If we multiply (3.1) with $v^{\prime} g$ and integrate, we obtain

$$
\begin{align*}
\frac{1}{2} \int_{0}^{T} g^{\prime} v^{\prime 2} d t=\left.\frac{v^{\prime 2} g}{2}\right|_{0} ^{T} & -\left.\frac{a g v^{2}}{2}\right|_{0} ^{T}+\left.\frac{b g v^{p+1}}{p+1}\right|_{0} ^{T} \\
& +\frac{1}{2} \int_{0}^{T}(a g)^{\prime} v^{2} d t-\frac{1}{p+1} \int_{0}^{T}(b g)^{\prime} v^{p+1} d t \tag{3.2}
\end{align*}
$$

Multiplication of (3.1) with $g^{\prime} v$ and integration yields

$$
\begin{align*}
\frac{1}{2} \int_{0}^{T} g^{\prime} v^{\prime 2} d t=\frac{1}{2} g^{\prime} v v^{\prime} & \left.\right|_{0} ^{T}-\left.\frac{1}{4} v^{2} g^{\prime \prime}\right|_{0} ^{T} \\
& +\int_{0}^{T}\left[\frac{g^{\prime \prime \prime}}{4}-\frac{a g^{\prime}}{2}\right] v^{2} d t+\int_{0}^{T} \frac{g^{\prime} b}{2} v^{p+1} d t \tag{3.3}
\end{align*}
$$

Suppose that

$$
\begin{equation*}
v(0)=v(T)=0, \quad\left|v^{\prime}(T)\right|<\infty \quad \text { and } \quad \lim _{t \rightarrow 0} v(t) v^{\prime}(t)=0 \tag{3.4}
\end{equation*}
$$

Then (3.2) and (3.3) lead to the following Pohozaev type identity:

$$
\begin{equation*}
\left.\frac{v^{\prime 2} g}{2}\right|_{0} ^{T}+\int_{0}^{T}\left[\frac{a^{\prime} g}{2}+a g^{\prime}-\frac{g^{\prime \prime \prime}}{4}\right] v^{2} d t=\int_{0}^{T}\left[\frac{(b g)^{\prime}}{p+1}+\frac{g^{\prime} b}{2}\right] v^{p+1} d t \tag{3.5}
\end{equation*}
$$

$3.3 \quad B(T)$

Let $\lambda_{B}(T)$ be the first Dirichlet eigenvalue of $\Delta_{\mathbb{H}^{N}}$ in the geodesic ball B_{T}. Observe that $\lambda_{B}(T)>\lambda_{0}^{2}$ and that for $N=3$ we have $\lambda_{B}(T)=1+\left(\frac{\pi}{T}\right)^{2}$.

The variational method described in Section 3.1 for subcritical exponents applies also in this case. Mancini and Sandeep [15] established the uniqueness. More precisely

- if $1<p<\frac{N+2}{N-2}$ and $\lambda<\lambda_{B}(T)$, then there exists a unique, positive solution of (1.2) in $B(0, T)$ which is regular at the origin.
S. Stapelkamp [19] (cf. also [18]) has studied the case of the critical exponent $p=\frac{N+2}{N-2}$ and she has obtained the following result:
- If

$$
\lambda_{B}(T)>\lambda>\lambda^{*}:= \begin{cases}\frac{N(N-2)}{4} & \text { if } N>3 \\ 1+\left(\frac{\pi}{2 T}\right)^{2} & \text { if } N=3\end{cases}
$$

then there exists a unique solution in $B(0, T)$ which is regular at the origin.

- If $\lambda \leq \lambda^{*}$ or $\lambda \geq \lambda_{B}(T)$, no solution exists in $B(0, T)$ which is regular at the origin.

She has established the existence by means of the method of concentration compactness and the uniqueness by an argument of Kwong and Li [14]. The nonexistence was shown by means of (3.5).

Next we extend this nonexistence result.
Lemma 3.1. (i) Assume

$$
\lambda \leq \begin{cases}\frac{N(N-2)}{4} & \text { if } N>3 \\ 1+\left(\frac{\pi}{2 T}\right)^{2} & \text { if } N=3\end{cases}
$$

If $p \geq \frac{N+2}{N-2}$, then $B_{r}=\emptyset$.
(ii) If $p>\frac{N+2}{N-2}$, then for any $\lambda, B_{s}=\emptyset$.

Proof. (i) If $u \in B(0, T)$ is regular at the origin, then the properties (3.4) are satisfied. Set $g=\sinh t$. Then the left-hand side of (3.5) becomes

$$
\frac{v^{\prime 2}(T) g(T)}{2}+\int_{0}^{T}\left[\frac{N(N-2)}{4}-\lambda\right](\cosh t) v^{2} d t
$$

For $\lambda \leq \frac{N(N-2)}{4}$ and $v \neq 0$ this expression is positive. The right-hand side of (3.5) however is positive if and only if $p<\frac{N+2}{N-2}$. If $N=3$, we obtain a sharper result by choosing $g=\sin (\omega t), \omega=\frac{\pi}{2 T}$. Then the left-hand side of (3.5) is positive if
$\lambda \leq 1+\left(\frac{\pi}{2 T}\right)^{2}$. The right-hand side is

$$
\int_{0}^{T} b \omega \cos \omega t\left[\frac{1}{2}+\frac{1}{p+1}-\frac{(p-1) \tan \omega t \operatorname{coth} t}{(p+1) \omega}\right] v^{p+1} d t
$$

Since $\tan \omega t \operatorname{coth} t / \omega \geq 1$, the integral above is negative if $p \geq 5$.
(ii) The second assertion follows from Lemma 2.7.

Remark 3.2. (i) In general it is not clear if for $1<p \leq \frac{N+2}{N-2}$ and $\lambda<\lambda_{B}(T)$ there exist solutions in B_{s}.
(ii) From the maximum principle it follows that for any p no positive solutions exist in B_{r} if $\lambda>\lambda_{B}(T)$.
(iii) There is an interval $\left(\lambda^{*}, \lambda_{B}(T)\right)$ which is not covered by the nonexistence result of Lemma 3.1 above. Stapelkamp [19] has shown that in the critical case $p=\frac{N+2}{N-2}, B(T)$ has a regular solution in this interval. We conjecture that this is also true for p close to $\frac{N+2}{N-2}$.

$3.4 \quad E(0, \infty)$

Notice that λ_{0}^{2} is the lowest point in the L^{2}-spectrum of $\Delta_{\mathbb{H}^{N}}$. It follows therefore from the maximum principle that $E(0, \infty)$ does not contain a solution which is regular at the origin if $\lambda>\lambda_{0}^{2}$. Mancini and Sandeep [15] proved that there exists a unique, rapidly decreasing solution which is regular at zero, in the following cases:

- $1<p<\frac{N+2}{N-2}$ and $\lambda \leq \lambda_{0}^{2}$,
- $N \geq 4, p=\frac{N+2}{N-2}$ and $\frac{N(N-2)}{4}<\lambda \leq \lambda_{0}^{2}$.

The existence was established by means of variational methods and the uniqueness followed from an argument of Kwong and Li [14].

Mancini and Sandeep [15] observed that (3.5) implies the nonexistence of solutions in $E(0, \infty)$ which are regular at zero and rapidly decreasing at infinity in the following cases:

- $N \geq 3, p \geq \frac{N+2}{N-2}$ and $\lambda \leq \frac{N(N-2)}{4}$,
- $N=3, p \geq 5$ and $\lambda \leq 1$.

Lemma 3.3. (i) Assume $1<p<\frac{N+2}{N-2}$. Then at least one of the classes $B(t)$ or $E(0, \infty)$ contains a solution which is singular at the origin.
(ii) If $\lambda<0$, then for any $p>1, E(0, \infty)$ contains solutions which are regular at zero and converge to Λ as $t \rightarrow \infty$.
(iii) If $p \geq \frac{N+2}{N-2}$ and $\lambda \leq \frac{N(N-2)}{4}$, then E_{rs} contains a continuum of solutions.

Proof. The first assertion follows from Lemma 2.7 and the second is a consequence of the monotonicity of $\mathcal{E}(t)$. In fact, if $u(0)$ is so small that $\mathcal{E}(0)<0$, then $\mathcal{E}(t)$ stays negative and converges eventually to its minimum $\mathcal{E}(\Lambda)$. The third assertion is a consequence of Lemma 2.7 which guarantees the existence of a regular local solution at the origin. By Lemma 3.1 (i) this solution cannot vanish and belongs therefore to $E(0, \infty)$. In view of Mancini and Sandeep's result, $E_{\mathrm{rr}}=\emptyset$.

$3.5 \quad B^{c}(T)$

The previous considerations lead to the following
Lemma 3.4. If we have $p>\frac{N+2}{N-2}$ and $\lambda \leq \frac{N(N-2)}{4}$ if $N>3$ or $\lambda \leq 1$ if $N=3$, then $B^{c}\left(d_{1}\right)$ contains a rapidly decreasing solution for some d_{1}.

Proof. By Lemma 2.3 there exists locally a one-parameter family of rapidly decreasing solutions. By Mancini and Sandeep's nonexistence result this solutions are not in $E_{\mathrm{rr}}(0, \infty)$ and by Lemma 2.7 (iii) and Remark 2.1 this solution cannot belong to $E_{\mathrm{sr}}(0, \infty)$. Hence it vanishes at some d_{1}. The case $N=3$ is treated in Theorem 4.4.

4 Global results for $N=3$

4.1 Main results

The aim of this section is to transform (1.2) into a Matukuma equation and to use the existence and uniqueness results by Yanagida and Yotsutani [20].

Throughout this section we shall assume that $N=3$. The arguments used here apply also to higher dimensions, but the discussion is much more involved and difficult to carry out.

Observe that for $N=3$ we have $\lambda_{0}=1$. According to Lemma 2.3 a rapidly decaying solution behaves like $e^{-(1+\sqrt{1-\lambda}) t}$ and a slowly decreasing solutions like $e^{-(1-\sqrt{1-\lambda}) t}$.

The main results of this section are stated in the next theorems. In order to express our first theorem, we introduce the following notation: $u(t ; \alpha)$ is the unique (local) solution of (1.2) such that $u(0 ; \alpha)=\alpha>0$ and $u^{\prime}(0 ; \alpha)=0$.

Theorem 4.1. If $1<p<5$ and if $\lambda \leq 1$, then there exists a unique positive rapidly decaying solution to (1.2). More precisely, there exists an $\alpha^{*}>0$ such that for all $\alpha \in\left(0, \alpha^{*}\right)$
(i) $u(t ; \alpha)$ converges slowly to 0 as $t \rightarrow \infty$ if $\lambda \geq 0$,
(ii) $u(t ; \alpha) \rightarrow \Lambda$ as $t \rightarrow \infty$ if $\lambda<0$.

In addition $u\left(t ; \alpha^{*}\right)$ decays rapidly to 0 as $t \rightarrow \infty$ and $u(t ; \alpha)$ has a finite zero if $\alpha>\alpha^{*}$.

Theorem 4.1 is a sightly more precise version of Theorem 1.3 in [15] whereas the next results are new to our knowledge.

Theorem 4.2. If $1<p<5$ and if $\lambda \leq 1$, then there exists a continuum of positive solutions in $E(0, \infty)$ which decay rapidly to zero as $t=\infty$ and which are singular at $t=0$. Also, there exists a continuum of solutions in $B^{c}\left(d_{1}\right)$ for some d_{1}, which decay rapidly at $t=\infty$.

Remark 4.3. We can describe the structure of solutions, shooting from infinity. Let

$$
\beta^{*}:=\lim _{t \rightarrow \infty} e^{(1+\sqrt{1-\lambda}) t} u\left(t ; \alpha^{*}\right)
$$

where α^{*} is defined in Theorem 4.1. Then
(i) any solution u to (1.2) with $\lim _{t \rightarrow \infty} e^{(1+\sqrt{1-\lambda}) t} u=\beta \in\left(0, \beta^{*}\right)$ is singular at $t=0$.
(ii) any solution u to (1.2) with $\lim _{t \rightarrow \infty} e^{(1+\sqrt{1-\lambda}) t} u=\beta>\beta^{*}$ must have finite zero.
(iii) the solution u to (1.2) with $\lim _{t \rightarrow \infty} e^{(1+\sqrt{1-\lambda}) t} u=\beta^{*}$ is nothing but the unique solution $u\left(t ; \alpha^{*}\right)$ in Theorem 4.1.

We note that Chern, Z.-H. Chen, J.-H Chen and Tang [5] investigated the structure of positive singular solutions of $\Delta u-u+u^{p}=0$ in the Euclidean whole space case.

In accordance with Lemma 3.3 we have

Theorem 4.4. If $p \geq 5$ and if $\lambda \leq 1$, then any solution of (1.2) which decays rapidly at $t=\infty$ vanishes at some $d_{0}>0$.

This result corresponds to the nonexistence result in Theorem 3.2 by Ni and Serrin [16] for the equation $\Delta u+f(u)=0$ in the Euclidean space.

Theorem 4.5. Suppose that $p \geq 5$.
(i) If $\lambda<0$, then for any positive $\alpha, u(t ; \alpha)$ belongs to $E(0, \infty)$ and converges to Λ.
(ii) If $0 \leq \lambda \leq 1$, then for any positive $\alpha, u(t ; \alpha)$ belongs to $E(0, \infty)$ and converges slowly to 0 .

4.2 Transformation to a Matukuma type equation

Let $\Phi(t)$ be a solution to the linear problem ${ }^{2}$

$$
\begin{equation*}
\frac{1}{\sinh ^{2} t}\left\{\left(\sinh ^{2} t\right) \Phi^{\prime}\right\}^{\prime}+\lambda \Phi=0 \tag{4.1}
\end{equation*}
$$

Assume in the sequel that $\lambda \leq 1$. For simplicity we shall set

$$
\mu=\sqrt{1-\lambda}
$$

The solutions which are regular at the origin are multiples of

$$
\Phi(t)= \begin{cases}\frac{\sinh \mu t}{\sinh t} & \text { if } \mu>0(\lambda<1) \\ \frac{t}{\sinh t} & \text { if } \mu=0(\lambda=1)\end{cases}
$$

Substituting $u(t)=v(t) \Phi(t)$ into (1.2), we get ${ }^{3}$

$$
\begin{equation*}
v^{\prime \prime}+2\left(\operatorname{coth} t+\frac{\Phi^{\prime}}{\Phi}\right) v^{\prime}+v^{p} \Phi^{p-1}=\frac{1}{g(t)}\left\{g(t) v^{\prime}\right\}^{\prime}+v^{p} \Phi^{p-1}=0 \tag{4.2}
\end{equation*}
$$

where $g(t)=\sinh ^{2} t \Phi^{2}(t)$. We now introduce the new variable (see e.g. [21])

$$
\frac{1}{\tau}=\int_{t}^{\infty} \frac{1}{g(s)} d s
$$

Hence

$$
\tau^{-1}= \begin{cases}\frac{1}{\mu}(\operatorname{coth} \mu t-1) & \text { if } \lambda<1 \\ \frac{1}{t} & \text { if } \lambda=1\end{cases}
$$

Note that $\tau=\left(\mu e^{2 \mu t}-1\right) / 2$ if $\lambda<1$.
The function $w(\tau)=v(t(\tau))$ satisfies the 3-dimensional Matukuma equation

$$
\begin{equation*}
\frac{1}{\tau^{2}}\left(\tau^{2} w^{\prime}\right)^{\prime}+Q(\tau) w^{p}=0 \quad \text { in }(0, \infty) \tag{4.3}
\end{equation*}
$$

where

$$
Q(\tau)=\frac{g^{2} \Phi^{p-1}}{\tau^{4}}= \begin{cases}\mu^{-4} \sinh ^{4}(\mu t) \Phi(t)^{p-1}(\operatorname{coth} \mu t-1)^{4} & \text { if } \mu>0 \\ \Phi(t)^{p-1} & \text { if } \mu=0\end{cases}
$$

Observe that the same classification holds for positive solutions $w(\tau)$ as for $u(t)$. If u decays rapidly to zero at $t=\infty$, then by the Lemmas 2.3 and 2.5 , we have $\lim _{\tau \rightarrow \infty} \tau w(\tau)=u_{\infty}$. If u is a slowly decaying solution or if u tends to Λ as t tends to infinity, then $\lim _{\tau \rightarrow \infty} \tau w(\tau)=\infty$. If u is regular at $t=0$, then $w(0)>0$ and $w^{\prime}(0)=0$, and finally if u is singular at zero, the same is true for w and is classified according to Lemma 2.7.

[^2]
4.3 Auxiliary tools for the study of Matukuma equations

The basic tools used in this chapter to study (4.3) hold under the assumptions

$$
\left\{\begin{array}{l}
Q \in C^{1}((0, \infty)) \cap C([0, \infty)), \quad Q>0 \text { in }(0, \infty) \tag{Q}\\
\tau Q \in L^{1}([0,1]), \quad \tau^{2-p} Q \in L^{1}(1, \infty)
\end{array}\right.
$$

The third hypothesis guarantees the existence of a local solution which is regular at the origin. By the classical results of the oscillation theory, if $\tau^{2-p} Q \notin L^{1}(1, \infty)$, then any solution must have a finite zero. Thus the last condition is necessary for the existence of a positive solution for large τ.

The expression Q in (4.3) satisfies (\mathbf{Q}). For a positive solution of (4.3) we have (cf. Lemma 2.1 (c) in [22])

Lemma 4.6. The function $\tau w(\tau)$ is concave. Hence for a positive solution defined in $(0, \infty), \tau w$ is increasing.

Next we introduce a function used by Ding and Ni [6] (originally an integral form) to classify positive solutions. For a positive solution w to (4.3), set

$$
P(\tau ; w)=\frac{1}{2} \tau^{2} w^{\prime}\left(\tau w^{\prime}+w\right)+\frac{1}{p+1} \tau^{3} Q(\tau) w^{p+1}
$$

In the sequel we set

$$
\theta:=\frac{p-5}{2} \quad \text { and } \quad Q_{*}(\tau):=\tau^{-\theta} Q(\tau)
$$

Direct calculations yields

$$
\begin{equation*}
\frac{d P}{d \tau}=\frac{1}{p+1} \tau^{3+\theta} Q_{*}^{\prime} w^{p+1} \tag{4.4}
\end{equation*}
$$

Hence P is monotone increasing. Kawano, Yanagida and Yotsutani [12] described the asymptotic behavior for large τ of the solutions of (4.3) by means of $P(\tau ; w)$.

Proposition 4.7. Suppose that Q_{*} is monotone near $\tau=\infty$. Then the following statements hold:
(i) $\lim _{\tau \rightarrow \infty} P(\tau ; w)<0$ if and only if w is a slowly decaying solution.
(ii) $\lim _{\tau \rightarrow \infty} P(\tau ; w)=0$ if and only if w is a rapidly decaying solution.
(iii) $\lim _{\tau \rightarrow \infty} P(\tau ; w)>0$ if and only if w vanishes at a finite point.

If $Q_{*}(\tau)$ is monotone on the whole positive axis, we have the following propositions which are found in [12].

Proposition 4.8. If $Q_{*}^{\prime}<0$ on $(0, \infty)$, then any solution of (4.3) which is regular at zero decays slowly.

Proof. First note that $P(0, w)=0$ for any $w(0)>0$. By (4.4), we see that

$$
P(\tau ; w)=\frac{1}{p+1} \int_{0}^{\tau} s^{3+\theta} Q_{*}^{\prime}(s) w_{+}^{p+1} d s \leq 0, \not \equiv 0
$$

The assertion now follows from Proposition 4.7 (i).
A similar argument yields
Proposition 4.9. If $Q_{*}^{\prime}>0$ on $(0, \infty)$, then any solution of (4.3) which is regular at zero has a finite zero.

We now study the case where Q_{*} is not monotone everywhere. We will provide a criterion for the uniqueness of rapidly decaying solutions belonging to $E(0, \infty)$.

In order to state the result, we need the following two functions:

$$
\begin{aligned}
& G(\tau):=\frac{1}{p+1} \tau^{3} Q(\tau)-\frac{1}{2} \int_{0}^{\tau} s^{2} Q(s) d s \\
& H(\tau):=\frac{1}{p+1} \tau^{2-p} Q(\tau)-\frac{1}{2} \int_{0}^{\tau} s^{1-p} Q(s) d s
\end{aligned}
$$

Straightforward calculations yield

$$
G^{\prime}(\tau)=\tau^{p+1} H^{\prime}(\tau)=\frac{1}{p+1} \tau^{(p+1) / 2} Q_{*}^{\prime}(\tau)
$$

and

$$
\begin{equation*}
\frac{d}{d \tau} P(\tau ; w)=G^{\prime}(\tau) w^{p+1}=H^{\prime}(\tau)(\tau w)^{p+1} \tag{4.5}
\end{equation*}
$$

Integrating (4.5) and keeping in mind that $P(0, w)=0$, we find

$$
\begin{equation*}
P(\tau ; w)=G(\tau) w^{p}-(p+1) \int_{0}^{\tau} G(s) w^{p} w^{\prime} d s \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
P(\tau ; w)=H(\tau)(\tau w)^{p+1}-(p+1) \int_{0}^{\tau} H(s)(s w)^{p}(s w)^{\prime} d s \tag{4.7}
\end{equation*}
$$

In the sequel we assume

$$
\begin{cases}G>0 \text { in }\left(0, \tau_{G}\right), & G<0 \text { in }\left(\tau_{G}, \infty\right) \tag{1}\\ H<0 \text { in }\left(0, \tau_{H}\right), & H>0 \text { in }\left(\tau_{H}, \infty\right)\end{cases}
$$

Thus, we assume that G and H has only one zero. The following result is essentially Theorem 1 in [20].

Proposition 4.10. If there exists $\tau_{*}>0$ such that

$$
Q_{*}^{\prime}(\tau)>0, \quad \tau \in\left(0, \tau_{*}\right), \quad Q_{*}^{\prime}(\tau)<0, \quad \tau>\tau_{*}
$$

and if the properties $\left(Q_{1}\right)$ hold, then there exists a unique positive rapidly decaying solution to (4.3). More precisely, there exists $\gamma_{*}>0$ such that $w(\tau ; \gamma)$ is positive and $\lim _{\tau \rightarrow \infty} \tau w(\tau ; \gamma)=\infty$ as $\tau \rightarrow \infty$ for $\gamma \in\left(0, \gamma_{*}\right), w\left(\tau ; \gamma_{*}\right)$ is positive and decays rapidly, and $w(\tau ; \gamma)$ has a finite zero for $\gamma>\gamma_{*}$.

Remark 4.11. Proposition 4.10 holds in fact under the weaker assumption

$$
0<\tau_{H} \leq \tau_{G}<\infty
$$

where τ_{H} and τ_{G} are the largest positive zero of H and the smallest positive zero of G, respectively. This is the exact assumption in Theorem 1 in [20].

4.4 Proofs of the Theorems 4.1-4.5

First we want to analyze $Q_{*}(\tau)$ in order to apply Propositions 4.8, 4.9 and 4.10. If $\mu>0$, then

$$
\begin{equation*}
Q_{*}(\tau)=(2 \mu)^{-(p+3) / 2} \frac{\left(1-e^{-2 \mu t}\right)^{(p+3) / 2}}{\sinh ^{p-1} t} \tag{4.1}
\end{equation*}
$$

Since $d \tau / d t>0$ and since we are interested in the slope of Q_{*}, it suffices to examine the derivative of

$$
S(t):=\frac{\left(1-e^{-2 \mu t}\right)^{(p+3) / 2}}{\sinh ^{p-1} t}
$$

as a function of t. We have

$$
S^{\prime}(t)=\frac{\left(1-e^{-2 \mu t}\right)^{(p+1) / 2}}{\sinh ^{p} t}\left\{\mu(p+3) e^{-2 \mu t} \sinh t-(p-1)\left(1-e^{-2 \mu t}\right) \cosh t\right\}
$$

Set

$$
T(t):=\mu(p+3) \frac{e^{-2 \mu t}}{1-e^{-2 \mu t}} \sinh t-(p-1) \cosh t
$$

so that

$$
\mu(p+3) e^{-2 \mu t} \sinh t-(p-1)\left(1-e^{-2 \mu t}\right) \cosh t=T(t)\left(1-e^{-2 \mu t}\right)
$$

Since

$$
\frac{e^{-2 \mu t}}{1-e^{-2 \mu t}}=\frac{1}{e^{2 \mu t}-1}
$$

the essential part in order to determine the sign of $S^{\prime}(t)$ is

$$
X(t):=\frac{T(t)}{\left(e^{2 \mu t}-1\right) \cosh t}=\mu(p+3) \tanh t-(p-1)\left(e^{2 \mu t}-1\right)
$$

For $t \geq 0$ the graph of $\tanh t$ is monotone increasing and concave, while that of $e^{2 \mu t}-1$ is monotone increasing and convex. Thus, if there exists $t_{0}>0$ such that $X\left(t_{0}\right)=0$, then t_{0} is a unique solution of $X(t)=0$. Near $t=0, \tanh t \approx t$ while $e^{2 \mu t}-1 \approx 2 \mu t$. Hence, if

$$
\mu(p+3)-2 \mu(p-1)>0
$$

then $X(t)=0$ has a unique solution for $t>0$. This condition is satisfied for all $p<5$. If $p \geq 5$, then $X(t) \leq 0, \not \equiv 0$.

If $\mu=0$, then
$Q_{*}(\tau)=\frac{t^{(p+3) / 2}}{\sinh ^{p-1} t} \quad$ and $\quad Q_{*}^{\prime}(\tau)=\frac{t^{(p+1) / 2}}{\sinh ^{p} t}\left\{\frac{p+3}{2} \sinh t-(p-1) t \cosh t\right\}$.
Again, we see that the shape of the graph of Q_{*} is the same as for $\mu>0$.
The proof of Theorem 4.5 is now immediate. It follows from the previous observations, Proposition 4.8 and the Lemmas 2.3 and 3.3.

Proof of Theorem 4.1. We apply Proposition 4.10; we have only to check the values of

$$
\begin{aligned}
\lim _{\tau \rightarrow \infty} G(\tau) & =\int_{0}^{\infty} \frac{d}{d \tau} G(\tau) d \tau=\frac{1}{p+1} \int_{0}^{\infty} \tau^{(p+1) / 2} \frac{d}{d \tau} Q_{*}(\tau) d \tau \\
\lim _{\tau \rightarrow 0} H(\tau) & =\int_{0}^{\infty} \frac{d}{d \tau} H(\tau) d \tau=\frac{1}{p+1} \int_{0}^{\infty} \tau^{-(p+1) / 2} \frac{d}{d \tau} Q_{*}(\tau) d \tau
\end{aligned}
$$

for $1<p<5$. Since

$$
\tau=\frac{\mu}{\operatorname{coth} \mu t-1}=\frac{\mu \sinh \mu t}{\cosh \mu t-\sinh \mu t}=\frac{\mu e^{2 \mu t}-1}{2}=\frac{\mu}{2}\left(e^{2 \mu t}-1\right)
$$

we see that $\tau \sim t$ and

$$
\frac{d Q_{*}}{d \tau}=(2 \mu)^{-(p+3) / 2} \frac{\left(1-e^{-2 \mu t}\right)^{(p+3) / 2}}{\sinh ^{p} t} T(t) \sim t^{-(p-3) / 2}
$$

near $t=0$. Also, $\tau \sim e^{2 \mu t}$ and $d Q_{*} / d \tau \sim e^{-(p-1) t}$ near $t=\infty$. Hence, we get

$$
d G / d \tau \in L^{1}([0,1]) \quad \text { and } \quad d H / d \tau \in L^{1}([1, \infty))
$$

and we have only to check the signs of $\lim _{\tau \rightarrow \infty} G(\tau)$ and $\lim _{\tau \rightarrow 0} H(\tau)$ to ensure that Proposition 4.10 applies. In the following, note that $G(\tau), H(\tau)$ and $Q_{*}(\tau)$ are indeed functions of t although we use these expressions.

By change of variables, we have

$$
\int_{0}^{\infty} \frac{d}{d \tau} G(\tau) d \tau=\int_{0}^{\infty} \frac{d}{d t} G(\tau) d t
$$

and

$$
\int_{0}^{\infty} \frac{d}{d \tau} H(\tau) d \tau=\int_{0}^{\infty} \frac{d}{d t} H(\tau) d t
$$

Again first, we consider the case $\mu>0$. Near $t=\infty$, we see that

$$
\frac{d}{d t} G(\tau) \sim e^{\{(p+1) \mu-(p-1)\} t}
$$

if $(p+1) \mu-(p-1) \geq 0$. Then $d G / d t \notin L^{1}([1, \infty))$ and G must have a finite zero.

If $(p+1) \mu-(p-1)<0$, then integration by parts yields, in view of $d \tau / d t>0$ and $Q_{*}>0$,

$$
\begin{aligned}
\int_{0}^{\infty} \frac{d}{d t} G(\tau) d t & =\left[\frac{1}{p+1} \tau^{(p+1) / 2} Q_{*}(\tau)\right]_{t=0}^{t=\infty}-\frac{1}{2} \int_{0}^{\infty} \tau^{(p-1) / 2} Q_{*}(\tau) \frac{d \tau}{d t} d t \\
& =-\frac{1}{2} \int_{0}^{\infty} \tau^{(p-1) / 2} Q_{*}(\tau) \frac{d \tau}{d t} d t<0
\end{aligned}
$$

Here we used the facts that

$$
\tau^{(p+1) / 2} Q_{*}(\tau) \sim e^{(p+1) \mu t-(p-1) t} \rightarrow 0 \quad \text { as } t \rightarrow \infty
$$

and that

$$
\left.\tau^{(p+1) / 2} Q_{*}(\tau)\right|_{t=0}=0
$$

Thus, in any case G has a finite zero.
For H, since $d Q_{*} / d t \sim t^{-(p-3) / 2}$ near $t=0$ we always have for all $\mu>0$, $d H / d t \notin L^{1}([0,1])$. Hence, H also has a finite zero. In case of $\mu>0$, all the conditions of Proposition 4.10 are satisfies and the conclusion follows.

If $\mu=0$, we have $\tau=t$ and therefore

$$
\frac{d}{d \tau} G=t^{(p+1) / 2} \frac{d}{d t} Q_{*}(\tau) \sim t^{p+2} e^{-(p-1) t}
$$

near $t=\infty$ and the integration by parts shows us

$$
\lim _{\tau \rightarrow \infty} G(\tau)<0
$$

Similarly, we have

$$
\frac{d}{d \tau} H=t^{-(p+1) / 2} \frac{d}{d t} Q_{*}(\tau) \sim t^{-(p-1) t}
$$

If $p \in[2,5)$, we see that $d H / d \tau \notin L^{1}([0,1])$. If $p \in(1,2)$, then integration by parts again yields

$$
\begin{aligned}
\int_{0}^{\infty} \frac{d}{d t} H(\tau) d t= & {\left[\frac{1}{p+1} \tau^{-(p+1) / 2} Q_{*}(\tau)\right]_{t=0}^{t=\infty} } \\
& -\frac{1}{2} \int_{0}^{\infty} \tau^{-(p-1) / 2} Q_{*}(\tau) \frac{d \tau}{d t} d t \\
= & -\frac{1}{2} \int_{0}^{\infty} \tau^{-(p-1) / 2} Q_{*}(\tau) d t<0
\end{aligned}
$$

Here also note that $\tau^{-(p+1) / 2} Q_{*}(\tau) \sim t / \sinh ^{p-1} t$ near $t=0$ and $t=\infty$ and that the value converges to 0 as $t \rightarrow 0$ or $t \rightarrow \infty$ if $1<p<2$. Thus, H has a finite zero near $t=0$. Hence, all the conditions of Proposition 4.10 are satisfied if $1<p<5$ and if $\mu \geq 0$. Thus, we have proved Theorem 4.1.

To prove Theorems 4.2 and 4.4, we first reduce our problem to (4.3) and then use the Kelvin transform. Let $\sigma=1 / t$ and $W(\sigma)=\tau w(\tau)$. Then we see that

$$
\frac{1}{\tau^{2}}\left(\tau^{2} w^{\prime}\right)^{\prime}=\sigma^{3}\left(\sigma^{2} W^{\prime}\right)^{\prime}
$$

and (4.3) is reduced to

$$
\begin{equation*}
\frac{1}{\sigma^{2}}\left(\sigma^{2} W^{\prime}\right)^{\prime}+\sigma^{p-5} Q\left(\frac{1}{\sigma}\right) W^{p}=0 \tag{4.2}
\end{equation*}
$$

Then we need to consider the behavior of

$$
\tilde{Q}_{*}(\sigma):=\sigma^{-(p-5) / 2}\left\{\sigma^{p-5} Q\left(\frac{1}{\sigma}\right)\right\}=\tau^{-(p-5) / 2} Q(\tau)
$$

More precisely, we have to investigate the sign of

$$
\begin{equation*}
\frac{d}{d \sigma} \tilde{Q}_{*}(\sigma)=\frac{d}{d \tau}\left(\tau^{-(p-5) / 2} Q(\tau)\right) \frac{d \tau}{d \sigma} \tag{4.3}
\end{equation*}
$$

Proof of Theorem 4.2. If $1<p<5$, then as in the proof of Theorem 4.1, we see that $\tilde{Q}_{*}(\sigma)$ has the properties as $Q_{*}(\tau)$ has. Thus the conclusion comes from Proposition 4.10 and the structure of solutions which decay rapidly at $t=\infty$ is the same as in Theorem 4.1.

Proof of Theorem 4.4. If $p \geq 5$, then \tilde{Q}_{*} becomes monotone increasing in σ by equation (4.3) and $d \tau / d \sigma=-\sigma^{-2}$. Thus, we can apply Proposition 4.9 to show Theorem 4.4.

5 Concluding remarks and open problems

(1) The method presented here can be extended to more general problems, for instance:

- $\Delta_{\mathbb{H}^{N}} u+K\left(\cosh \left(x_{N}\right)\right) u^{p}=0$, for particular functions K,
- boundary value problems in balls with Robin boundary conditions

$$
\Delta_{\mathbb{H}^{N}} u+\lambda u+u^{p}=0 \text { in } B, \quad u>0 \text { in } B, \quad u+\kappa \frac{\partial u}{\partial v}=0 \text { on } \partial B,
$$

where B is the geodesic unit ball in \mathbb{H}^{N} and v is the unit outer normal, as considered by Kabeya, Yanagida and Yotsutani [11] in the Euclidean space,

- to other semilinear quasilinear equations which can be reduced to an ordinary differential equations.
(2) Except for $B_{r}\left(d_{1}\right)$ and $E_{\mathrm{rr}}(0, \infty)$ the question of uniqueness is still open. We expect that there is at most one solution in $S\left(d_{0}, d_{1}\right)$ for fixed $0<d_{0}<d_{1}<\infty$, and in $B_{r}^{c}\left(d_{1}\right)$ for fixed d_{1}.

This conjecture is supported by the fact that in contrast to the singular solutions the regular and rapidly decreasing solutions form only a one-parameter family. For singular solutions no uniqueness is to be expected.
(3) Since there are variational solutions in $E_{\mathrm{rr}}(0, \infty)$ for $p<\frac{N+2}{N-2}$ and $\lambda<\lambda_{0}^{2}$, it is reasonable that there are also variational solutions in $B_{r}^{c}\left(d_{1}\right)$ for any $d_{1}>0$.

Bibliography

[1] C. Bandle, A. Brillard and M. Flucher, Green's function, harmonic transplantation and best Sobolev constant in spaces of constant curvature, Trans. Amer. Math. Soc. 350 (1998), 1103-1128.
[2] C. Bandle and M. Marcus, The positive radial solutions of a class of semilinear elliptic equations, J. Reine Angew. Math. 401 (1989), 25-59.
[3] R. Bellman, Stability Theory of Differential Equations, Dover, New York, 1969.
[4] M. Bonforte, F. Gazzola, G. Grillo and J. L. Vazquez, Classification of radial solutions to the Emden-Fowler equation on the hyperbolic space, submitted.
[5] J.-L. Chern, Z.-Y. Chen, J-H. Chen and Y.-L. Tang, On the classification of standing wave solutions for the Schrödinger equation, Comm. Partial Differential Equations 35 (2010), 275-301; Erratum, ibid., 1920-1921.
[6] W.-Y. Ding and W.-M. Ni, On the elliptic equation $\Delta u+K(|x|) u^{p}=0$ and related topics, Duke Math. J. 52 (1985), 485-506.
[7] B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243.
[8] B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in \mathbb{R}^{n}, Adv. Math. Suppl. Stud. 7A (1981), 369-402.
[9] A. Grigor'yan, Heat Kernel and Analysis on Manifolds, American Mathematical Society, Providence, 2009.
[10] P. Hartman, Ordinary Differential Equations, Second edition, Birkhäuser-Verlag, Basel, 1982.
[11] Y. Kabeya, E. Yanagida and S. Yotsutani, Global structure of solutions for equations of Brezis-Nirenberg type on the unit ball, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), 647-665.
[12] N. Kawano, E. Yanagida and S. Yotsutani, Structure theorems for positive radial solutions to $\Delta u+K(|x|) u^{p}=0$ in \mathbf{R}^{n}, Funkcial. Ekvac. 36 (1993), 557-579.
[13] S. Kumaresan and J. Prajapat, Analogue of Gidas-Ni-Nirenberg result in hyperbolic space and sphere, Rend. Istit. Mat. Univ. Trieste 30 (1998), 107-112.
[14] M.-K. Kwong and Y. Li, Uniqueness of radial solutions of semilinear elliptic equations, Trans. Amer. Math. Soc. 333 (1992), 339-363.
[15] G. Mancini and K. Sandeep, On a semilinear elliptic equation in \mathbb{H}^{n}, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7 (2008), 635-671.
[16] W.-M. Ni and J. Serrin, Nonexistence theorems for singular solutions of quasilinear partial differential equations, Comm. Pure Appl. Math. 39 (1986), 379-399.
[17] W.-M. Ni and S. Yotsutani, Semilinear elliptic equations of Matukuma-type and related topics, Japan J. Appl. Math. 5 (1988), 1-32.
[18] S. Stapelkamp, The Brezis-Nirenberg problem on \mathbb{H}^{n} : Existence and uniqueness of solutions, in: Elliptic and Parabolic Problems (Rolduc and Gaeta 2001), World Scientific, Singapore (2002), 283-290.
[19] S. Stapelkamp, Das Brezis-Nirenberg Problem im \mathbb{H}^{n}, Dissertation, Universität Basel, 2003.
[20] E. Yanagida and S. Yotsutani, Classifications of the structure of positive radial solutions to $\Delta u+K(|x|) u^{p}=0$ in \mathbb{R}^{n}, Arch. Ration. Mech. Anal. 124 (1993), 239-259.
[21] E. Yanagida and S. Yotsutani, Pohozaev identity and its applications, RIMS Kokyuroku 834 (1993), 80-90.
[22] E. Yanagida and S. Yotsutani, Existence of positive radial solutions to $\Delta u+$ $K(|x|) u^{p}=0$ in \mathbb{R}^{n}, J. Differential Equations 115 (1995), 477-502.

Received October 4, 2011; accepted November 27, 2011.

Author information

Catherine Bandle, Universität Basel,
Rheinsprung 21, CH-4051 Basel, Switzerland.
E-mail: catherine.bandle@unibas.ch
Yoshitsugu Kabeya, Osaka Prefecture University, Gakuencho 1-1, Sakai, 599-8531, Japan.
E-mail: kabeya@ms.osakafu-u.ac.jp

[^0]: Y. Kabeya is supported in part by the Grant-in-Aid for Scientific Research (C) (No. 23540248), Japan Society for the Promotion of Science.

[^1]: ${ }^{1}$ The case $\omega_{2}=0$ is more involved and no general statements are possible.

[^2]: ${ }^{2}$ The argument in this subsection is also valid for $N \geq 4$.
 ${ }^{3}$ This process is called Doob's h-transform, see p. 252 of [9].

