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S U M M A R Y
Many rocks and layered/fractured sequences have a clearly expressed electrical anisotropy
although it is rare in practice to incorporate anisotropy into resistivity inversion. In this con-
tribution, we present a series of 2.5-D synthetic inversion experiments for various electrode
configurations and 2-D anisotropic models. We examine and compare the image reconstruc-
tions obtained using the correct anisotropic inversion code with those obtained using the false
but widely used isotropic assumption. Superior reconstruction in terms of reduced data misfit,
true anomaly shape and position, and anisotropic background parameters were obtained when
the correct anisotropic assumption was employed for medium to high coefficients of anisotropy.
However, for low coefficient values the isotropic assumption produced better-quality results.
When an erroneous isotropic inversion is performed on medium to high level anisotropic data,
the images are dominated by patterns of banded artefacts and high data misfits. Various pole–
pole, pole–dipole and dipole–dipole data sets were investigated and evaluated for the accuracy
of the inversion result. The eigenvalue spectra of the pseudo-Hessian matrix and the formal
resolution matrix were also computed to determine the information content and goodness of
the results. We also present a data selection strategy based on high sensitivity measurements
which drastically reduces the number of data to be inverted but still produces comparable
results to that of the comprehensive data set. Inversion was carried out using transversely
isotropic model parameters described in two different co-ordinate frames for the conductivity
tensor, namely Cartesian versus natural or eigenframe. The Cartesian frame provided a more
stable inversion product. This can be simply explained from inspection of the eigenspectra of
the pseudo-Hessian matrix for the two model descriptions.
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1 I N T RO D U C T I O N

Resistivity tomography is widely used as an effective under-
ground exploration technique in a variety of near-surface appli-
cations, including mineral search, civil engineering site investi-
gations, groundwater hydrology and contaminant investigations
(Butler 2005; Rubin & Hubbard 2005; Reynolds 2009). Imaging
can be conducted either from the surface or between boreholes,
or a combination approach. Nearly all of the published examples
assume electrical isotropy of the ground. This may seem rather sur-
prising given the compelling field and laboratory evidence that many
rocks have a clearly expressed anisotropy (Maillet 1947; Keller &
Frischknecht 1966; Parkomenko 1967; Bhattacharya & Patra 1968).
The cause of this directional dependence in the resistivity can be
microscopic in nature, for instance determined by intrinsic material
properties such as platy mineral fabric or lineation, for example,

clays. Anisotropy may also occur on a macroscopic scale whereby a
series of layers or bands of dissimilar isotropic materials behave as
a single, equivalent anisotropic unit. Layering, fracturing, jointing
or rock cleavage can all produce this type of structural anisotropy.
Typical values of the coefficient of anisotropy λ (square root of the
ratio of maximum to minimum resistivity—see eq. 4) for shale and
sandstone interbeds are in the range 1.05–1.15. Coal typically has a
value between 1.7 and 2.6 due to cleating, while interbedded anhy-
drite and shale have reported values of 4.0–7.5. Even alluvium can
have anisotropy factors of 1.02–1.1 (Hill 1972; Asten 1974).

A detailed discussion on how to detect anisotropy from surface dc
resistivity measurements is beyond the scope of this paper, but may
be found in the article by Greenhalgh et al. (2010). It includes tech-
niques such as azimuthal resistivity surveys (Watson & Barker 1999;
Busby 2000), square electrode arrays (Habberjam 1975; Matias
2002) and tensor measurements (Caldwell & Bibby 1998; Bibby
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et al. 2005). The diagnosis is often improved if cross-hole resistiv-
ity data is available or if electric induction logging can be carried
out in boreholes (Lu et al. 2002).

There are four principal reasons why anisotropy is seldom incor-
porated into practical dc resistivity investigations: (1) the problem
of electrical equivalence, which means that it is impossible to distin-
guish from scalar surface electrical measurements between horizon-
tal layering and macro-anisotropy of the medium, (2) the paradox of
anisotropy (Keller & Frischknecht 1966), whereby the apparent re-
sistivity is lower in the resistive across-strike direction and higher in
the conductive in-strike direction, frustrating attempts by the geo-
physicist to recognize the counter-intuitive effects of anisotropy,
(3) the geoelectric field is static in nature and limited in resolution
capability, especially with increasing distance/depth distance from
the electrodes and (4) anisotropy means an increase in the number
of parameters to be recovered from the data, for what is already an
often seriously underdetermined inverse problem.

By contrast, anisotropy is often incorporated into diffusive
(ac) field magnetotelluric investigations (Reddy & Rankin 1971;
Loewenthal & Landisman 1973; Dekker & Hastie 1980; Everett
& Constable 1999; Linde & Pedreson 2004; Wannamaker 2005;
Collins et al. 2006) and electromagnetic (EM) induction surveying
(Le Masne & Vasseur 1981; Yu & Edwards 1992; Slater et al. 1998;
Yin & Fraser 2004). A similar paradox of anisotropy occurs for
EM but there are procedures to resolve it (Gianzero 1999; Wang &
Fang 2001; Weiss & Newman 2002; Al-Garnt & Everett 2003). A
list of references on numerical modelling procedures for EM in the
presence of anisotropy is given in the paper by Yin & Fraser (2004).

The literature on dc resistivity modelling incorporating
anisotropy is comparatively rather sparse. The semi-analytic for-
ward solutions for half-spaces, vertical contacts, layered media
and prismatic bodies in an anisotropic background are reviewed by
Greenhalgh et al. (2009a). For general heterogeneous, anisotropic
media, three approaches have been used: the finite difference
method (LaBreque et al. 2004), the finite element method (Pain
et al. 2003; Li & Spitzer 2005) and the Gaussian quadrature grid
method (Zhou et al. 2009).

There are just a handful of published papers on anisotropic resis-
tivity inversion. LaBreque et al. (2004) incorporated anisotropy
into the finite difference modelling formulation of Dey &
Morrison (1979), but assumed that the axes of the conductivity
ellipsoid were aligned with the co-ordinate directions, greatly sim-
plifying the problem. They use an Occam-style inversion scheme
with an objective function including regularization operators to con-
trol the smoothness and the magnitude of anisotropy permitted. Pain
et al. (2003) used a Levenberg–Marquardt type iterative precondi-
tioned conjugate gradient inverse solver and a finite element forward
solver. Their major contribution was to formulate and incorporate
penalty functions for anisotropy and structure within the inversion
objective function. Simple synthetic models with pole–pole array
data sets were used to validate the inversion routine and highlight
the non-linear nature of the problem. Suites of inversions were run
to select the optimal penalty functions to minimize data residu-
als. Herwanger et al. (2004) extended the analysis by presenting
a case study in which cross-hole resistivity and seismic methods
were used to independently recover anisotropic model parameters.
A good agreement of spatial structures with high anisotropy was
found between the two techniques. The other notable inversion pa-
pers are those of Kim et al. (2006) and Yi et al. (2011), who present
a case study in which 2-D and 3-D cross-hole tomography was able
to delineate subsurface cavities having isotropic electric properties
situated in a highly anisotropic biotite-gneiss subsurface. The ori-

entations of the anisotropy axes were assumed to be in-line with the
measurement (Cartesian) frame, an often questionable assumption.
Anisotropy penalty terms were added to the objective function along
with spatially varying Lagrange multipliers which increased stabil-
ity and resolution in the inversion process. Unfortunately, precise
details on the forward and sensitivity calculations are not provided
for this case study in either paper.

A key component of any local search minimization style inver-
sion strategy is the ability to compute the Fréchet derivatives or
sensitivity functions. Recently, Greenhalgh et al. (2009b) presented
a general adjoint method for computing the dc resistivity sensi-
tivity kernels in 2.5-D and 3-D anisotropic heterogeneous media.
In a companion paper (Greenhalgh et al. 2009a) they give explicit
expressions for the various sensitivity functions in homogeneous
anisotropic media, and in other contributions (Wiese et al. 2009;
Greenhalgh et al. 2010) the anisotropic sensitivities are computed
for various electrode arrays and compared with the isotropic sen-
sitivities, showing the dangers of making an isotropic assumption
when the ground is anisotropic.

In this paper, we go the next step and perform a series of 2.5-D
inversion experiments for point electrode sources in 2-D synthetic
anisotropic models. We examine image recovery for isotropic blocks
(inclusions) within an anisotropic background, as well as anisotropic
blocks within an isotropic background, and see what is possible un-
der favourable three-sided recording conditions (i.e. combination
cross-hole/borehole to surface). The purpose of the paper is not to
present an optimized anisotropic inversion code per se but rather to
compare these solutions against the distorted images obtained by
inverting the synthetic (anisotropic) data under the false assump-
tion of medium isotropy everywhere, which is the usual approach.
We investigate the effect of changes in the dip angle of the plane
of isotropy and changes in the degree of anisotropy. Various pole–
pole, pole–dipole and dipole–dipole data sets are investigated and
evaluated from the accuracy of the inversion result, by eigenspectra
analysis of the pseudo-Hessian matrix and the relative resolution
plots. We also present a data selection strategy based on high sensi-
tivity measurements which produces inversion products comparable
to that of comprehensive data sets. Reconstruction is attempted on
equivalent anisotropic models with model parameters described in
different co-ordinate frames (Cartesian and the principal axes or
eigenframe).

2 B A C KG RO U N D T H E O RY

2.1 2-D TI media

In its most general form, electrical anisotropy is described by a
symmetric, second rank conductivity tensor with six independent
components (Greenhalgh et al. 2009b). In this paper, we consider a
more specific but prevalent class of anisotropy, that of a 2-D tilted
transversely isotropic (TTI) medium involving just three indepen-
dent components of the tensor (see Fig. 1a). In this model resistivity
is equal in all directions within a specific plane termed the plane
of isotropy (e.g. plane of stratification or foliation) but different
in all other directions outside that plane. In optics, when dealing
with the dielectric or refractive index tensor, this particular class of
anisotropy is referred to as uniaxial and many minerals conform to
it.

Here we will consider 2.5-D modelling which entails a point
source of current and a 2-D model in which the resistivity
parameters do not change in the y-direction or strike direction.
The TTI model properties may be described with reference to
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Figure 1. (a) Simplified diagram of anisotropic 2-D TTI media, showing
axis of symmetry and principal resistivities. (b) The resistivity ellipse shown
in relation to the (a) the geographic co-ordinate frame (X, Z), and (b) in the
principal axis frame (or natural rock frame) (X′, Z′). The lengths of the semi
major axes are equal to the inverse square roots of the principal resistivities
(or eigenvalues of the 2 × 2 resistivity matrix). The directions of the principal
axes are the corresponding eigenvectors.

either a geographic (measurement) co-ordinate frame involving the
tensor elements ρXX, ρXZ, ρZZ or a principal axis frame (or eigen-
axis frame) involving the components ρL, ρT and θ0. Here ρL is
the longitudinal resistivity, ρT is the transverse resistivity and θ0 is
the angle of the symmetry axis relative to the vertical that is the
transverse (uniaxial) direction. The principal axis frame is physi-

cally meaningful since the eigenvectors are aligned with the natural
rock frame. This is illustrated schematically in Fig. 1(b). The semi-
major and minor axes of the resistivity ellipse correspond to the two
eigenvectors, and their lengths a and b are related to the eigenvalues
or principal values according to the relations:

a = √
ρT and b = √

ρL. (1)

The third eigenvector is in the y or medium-invariant direction.
The two co-ordinate systems are related in terms of a rotation matrix
derived in Greenhalgh et al. (2009b):⎛
⎜⎜⎝

ρxx

ρyy

ρxz

ρzz

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ρL cos2 θ0 + ρT sin2 θ0

ρL

0.5(−ρL + ρT) sin 2θ0

ρL sin2 θ0 + ρT cos2 θ0

⎞
⎟⎟⎠ . (2)

The above formulae may be used to transform from ρXX, ρXZ, ρZZ

to ρL, ρT, θ0:

θ0 = tan−1

( −2ρxz

ρxx − ρzz

)

ρL = cos2 θ0ρxx − sin2 θ0ρzz

cos 2θ0

ρT = − sin2 θ0ρxx + cos2 θ0ρzz

cos 2θ0
. (3)

By rearranging the orthogonal anisotropic resistivity model pa-
rameters (ρL and ρT) we may introduce an alternative form of
description for TTI media, namely, the mean resistivity ρm and the
coefficient of anisotropy λ, given by:

ρm = √
ρLρT, λ =

√
ρT/ρL. (4)

The (ρM, λ) description is particularly insightful when gauging
or comparing the magnitude of electrical anisotropy (λ) in material
media. The quantity ρm is the geometric mean of the longitudinal
and transverse resistivities. It is equal to the measured apparent
resistivity

ρa = KU

I
(5)

on the ground surface in a direction parallel to the stratification in
a medium having a vertical axis of symmetry (e.g. horizontal beds)
known as a VTI medium or in the strike direction for a medium
having a horizontal axis of symmetry (e.g. vertically dipping beds)
known as a HTI medium. In eq. (5) U is the potential difference, I is
the current strength and K is the geometric factor for the electrode
array. The paradox of anisotropy (Keller & Frischknecht 1966) is
that the apparent resistivity measured transverse to the layering in
a HTI medium is actually equal to the longitudinal resistivity and
not the transverse resistivity. In its most general form for uniaxial
systems, the apparent resistivity measured in any one of the three
principal directions will be equal to the geometric mean of the true
resistivities in the other two orthogonal directions.

For isotropic media, ρm = ρL = ρT, and λ = 1.
Many papers work with the conductivity tensor σ rather than the

resistivity tensor ρ. They are simple inverses of each other such
that ρσ = I, where I is the identity matrix. In terms of the principal
values in the rotated co-ordinate frame:

σL = 1/ρL, σT = 1/ρT, σyy = σL = 1/ρL. (6)

The Cartesian element components σ xx, σ zz, σ yy, σ xz obey iden-
tical equations to the resistivity components of eq. (2) if we replace
the ρL and ρT terms by the principal conductivities σ L and σ T,
respectively.
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2.2 GQG forward modelling

An essential requirement of any inversion scheme is a forward solver
to compute the theoretical model response. For a point source of
current in a 2-D medium, the governing equations for this so-called
2.5-D problem may be written as (Zhou et al. 2009):⎧⎪⎨
⎪⎩

∇ · (σ · ∇G̃) + k2
yσyy G̃ = −1

2
δ(r − rs), r = (x, z) ∈ �,

(σ∇G̃) · n + νG̃ = 0, r = (x, z) ∈ 	,
(7)

Here σ is the Cartesian symmetric conductivity matrix described
above, n is the unit normal vector to the boundary 	, ν is a known
function of the spatial coordinates and the conductivity and spec-
ifies the mixed boundary condition, rs is the current point-source
location, ky is the wavenumber or spatial Fourier transform vari-
able corresponding to the y-direction. The quantity G̃ is the spa-
tially Fourier transformed Green’s function, which is equal to the
impedance (or resistance) U/I. It is simply the voltage response for
a unit current injection.

Zhou et al. (2009) presented the Gaussian quadrature grid nu-
merical scheme for 2.5-D dc resistivity modelling in which the
variational principle was applied to (7) to reformulate the problem
in functional (
) form:⎧⎪⎪⎨
⎪⎪⎩

min{
(G̃)}


(G̃)= 1

2

∫
�

[∇G̃ · σ · ∇G̃ + σyyk2
y G̃2]d� +

∫
	

νG̃2d	 − G̃s
.

(8)

Here G̃S is the value of the Green’s function at the source position.
The model is parametrized into subdomains which are populated
with nodes distributed at Gaussian quadrature abscissae points and
are assigned weights corresponding to their positions (see Fig. 2).

The key step is to calculate the values of the functional at the
Gaussian quadrature abscissae, which involves sampling the model
parameters, the Green’s function and its gradient based on the grid.
The forward modelling reduces to solving a linear equation sys-
tem and accuracy increases by increasing the abscissae number
(Gaussian order) per dimension in the subdomain (for details, see
Zhou et al. 2009). The main advantages of the method are its ability
to deal with a complex geological model involving anisotropy and
an arbitrary surface topography, whilst retaining the computational
advantages of the spectral element method, yet a complex mesh
generator is not needed as in the FEM (Greenhalgh 2008).

2.3 Fréchet derivatives

The sensitivity (Fréchet derivative) gives the change in measured
potential (or apparent resistivity) due to a perturbation of the model
parameter in a particular model. It is an essential component of any
local search minimization type inversion scheme (Greenhalgh et al.
2006). In a recent paper (Greenhalgh et al. 2009b), we developed
a new formulation for the anisotropic sensitivities for both the 3-D
and the 2.5-D problems. For the latter, the result can be stated as:

∂Gs(rp)

∂mυ

= −F−1
c

{[
∇G̃s(r ) · ∂σ

∂mυ

]
· ∇G̃ p(r )

+ k2
y

∂σyy

∂mυ

G̃s(r )G̃ p(r )

}
. (9)

This equation shows that sensitivity can be computed in terms of
the source G̃s (current electrode s) and adjoint source G̃ p (potential
electrode p) Green’s functions and their gradients, as well as the

Figure 2. Blue crosses indicate the Gaussian quadrature grid of Gaussian
order 5 used for forward modelling. The position of the 64 surface–borehole
electrode array is shown by red dots.

derivatives of the conductivity tensor with respect to the principal
model values. Here F−1

c is the inverse Fourier cosine transform
with respect to wavenumber. The model parameter mv may assume
any of the anisotropic model parameters in either the Cartesian or
eigenframes, which for the 2.5-D TTI problem under consideration
comprises ρL, ρT, θ 0 or ρxx, ρxz and ρzz. (Note that ρyy = ρL).
Explicit expressions for the derivative term ∂σ/∂mv may be found in
Greenhalgh et al. (2009b). A comprehensive study into the various
anisotropic sensitivity functions in homogeneous anisotropic media
for various arrays is given in Wiese et al. (2009). In a companion
paper (Greenhalgh et al. 2010), these sensitivities are compared with
those for an isotropic medium and the prominent differences in both
the sign and magnitude of the sensitivities highlighted, showing the
dangers of using an isotropic assumption when inverting anisotropic
data.

Some authors express the isotropic sensitivities in a slightly dif-
ferent form than that used above (viz., ∂G/∂σ ), involving apparent
resistivity ρa, or its logarithm log ρa, or even in terms of resistance R,
for example ∂ρa/∂ρ, ∂ log(ρa)/∂ log(ρ), ∂ R/∂ρ. Conversion from
one form to another is simple using implicit differentiation and the
basic linking equations:

U = I G, ρa = KU/I, σ = ρ−1 . (10)

The Jacobian matrix (J = ∂d/∂m, where d = U or ρa) is tra-
ditionally constructed with the rows related to the different mea-
surement configurations and the columns corresponding to each
model cell. The elements of the matrix are sensitivities, which are
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dependent on the electrode configuration for the data point and the
location of the model cell. In geo-electrics it is well documented
that sensitivity decreases with distance from the electrodes because
of the dc nature of the problem. Current lines are not straight, even
in a homogeneous, isotropic medium.

2.4. Inversion approach

2.4.1. Gauss–Newton solution

Rather than building complicated smoothing and anisotropy penalty
functions into the objective function, as has been previously done
(e.g. Pain et al. 2003), here we concentrate on quantifying the
effects of using an isotropic assumption to invert anisotropic data
Comparisons between a (correct) anisotropic inversion with the
isotropic reconstruction can only be done if the same inversion
routine with similar regularization is used for both. For this reason
the inversion scheme is chosen to be the well understood, widely
used and easily implemented Gauss–Newton approach.

Central to any linearized least squares (or Gauss–
Newton/Levenberg–Marquardt) inversion scheme is the forward
operator (F) (GQG, see Section 2.2) used to calculate the syn-
thetic or predicted data (dpred) which can be in the form of voltage
or apparent resistivity for a given model (m):

dpred = F(m). (11)

The inverse operator (F−1) then seeks an estimate of the adjust-
ments to the initial model parameters that best fit the observed data
(dobs):


mest = F−1(dobs − dpred). (12)

The inverse operator may be written as an optimization (mini-
mization) of an objective function (φ):

min{ϕ(m)} = min{ϕd (m) + γϕm(m)} (13)

γ is the damping factor that determines the trade-off between the
data fit and the a priori knowledge on the model. The latter can
be included through structural constraints, closeness to a preferred
model or smoothing. Selection of the damping factor is discussed
in Section 2.4.2.

The quantities φd and φm are the data and model misfit functions
(or norms, respectively)

φd(m) = ‖Wd(dobs − d(m)‖2 (14)

φm = ‖Wm(m − m0)‖2 , (15)

where m0 is the starting or preferred model, and Wm and Wd are the
model and data weighting matrices, respectively, for which various
choices are available, depending on the definition of the solution
(Greenhalgh et al. 2006). In this study, we set the weighting matrices
W to the identity matrix I.

By calculating the derivatives of the data and model misfit func-
tions we may derive the stationary point equation (Greenhalgh et al.
2006):

γ (m − m0) =
(

∂dpred

∂m

)T

[dobs − dpred(m)]. (16)

The stationary point equation may then be solved by an iteratively
linearized scheme:

dpred(mk+1) ≈ dpred(mk) +
(

∂dpred

∂m

)
k

[mk+1 − mk)], (17)

where ( ∂dpred

∂m )k is the Jacobian matrix (Jk) at iteration k. The inverse
operator can be written in Gauss–Newton form as:

mest
k+ 1 = (

JT
k Jk + γ C−1

m

)−1
JT

k

[
(dobs − dpred(mk)) + Jkmk

]
. (18)

Here Cm is the a priori model covariance matrix which al-
lows regularization constraints such as smoothness (roughness),
or minimum variation from some reference model. The resulting
rectangular system can be solved by a conjugate gradient scheme
(Greenhalgh et al. 2006).

2.4.2 Program description

The inverse problem requires that regularization be imposed to
stabilize the solution and reduce the inherent non-uniqueness. It
also helps to ensure that the inversion does not fall into a local
minima but rather reaches the global minimum of the objective
function

The damping factor choice specifies the trade-off between the
pre-conceived ideas of the true model (a priori knowledge) and data
fit. Smoothing was included through a finite difference operator that
allowed variable weighting so that smoothness could be varied in
different directions (deGroot-Hedlin & Constable 1990).

Since the experiments conducted were synthetic in nature without
added noise (only numerical modelling errors were involved) the
true model was known, making it possible to visually gauge the
success of an inversion. A suite of inversions were carried out
with various levels of damping. The inversions having the highest
damping factor and which still converged to within numerical noise
levels (<2 per cent) were selected for presentation. This way we
neither oversmooth nor introduce false detail into the image. These
inversions were the most optimal reconstructions of the true model
with the least amount of artefacts. The inversion stopping criteria
were that the desired data misfit of <2 per cent was reached (which
we deemed to be below numerical noise inherent in our program),
the number of iterations exceeded 20 or the difference between
successive iterations produced an rms difference of less than 0.5
per cent. Convergence was calculated as the percentage ratio of the
initial data misfit over the data misfit of the jth iteration. A flow
chart showing the main elements of the inversion approach is given
in Fig. 3.

2.4.3 Information content and resolution

The optimization of geophysical experimental design is an area
of active and current research (Maurer & Boerner 1998; Stummer
et al. 2004; Blome 2009; Loke et al. 2010, 2014; Maurer et al.
2010; Blome et al. 2011; Wilkinson et al. 2012), but compared
to numerical forward modelling and inversion theory, this field of
knowledge is far less developed.

Inversion algorithms are largely based on linearized theory
(Menke 1989) and as such, methods for quantifying the benefits
of a particular survey exist. The quality of an inversion result of a
truly linear forward model can be appraised by examining the model
resolution matrix formally defined as:

R = (
JT J + γ C−1

m

)−1
JT J. (19)

It relates the estimated model parameters to the true model pa-
rameters (mtrue) through the equation:

mest ≈ Rmtrue. (20)
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Figure 3. The inversion program flow chart shows the iterative methodology
and convergence stopping criteria.

Of particular interest are the diagonal elements of R. Values close
to zero indicate poorly resolved model parameters, whereas values
close to one indicate well-resolved model parameters.

The choice of a survey layout, configuration type and selection of
data governs the structure of the Jacobian J, which is the foundation
of the approximate Hessian matrix H = JT J. The reliability of the
model update depends primarily on our ability to invert the matrix
(JT J + C−1

m ). Without the regularization (damping and smoothing)
this matrix would likely be singular. The eigenvalue spectrum of the
approximate Hessian matrix is related to the null space or unresolv-
able model space of a particular data set. This allows comparison of
spectra from various experimental designs as a quantitative method
to rate specific information content, resolving ability and goodness
of an experiment.

3 . S Y N T H E T I C I N V E R S I O N
E X P E R I M E N T M E T H O D O L O G Y

3.1 Experimental setup

The focus of the experiments was to determine the effect of the
actual assumptions (anisotropy or isotropy) used in the forward
solver and sensitivity calculations for the same inversion routine
on a number of different anisotropic models. Therefore, most ex-
periments were conducted with a three-sided geometry (combined
cross-hole and borehole-to-surface) chosen because it delivered the
most optimal possibility for data collection and model coverage.
Such configurations are becoming more popular in field surveying.
This type of electrode placement allows one to overcome the am-
biguity from the principle of equivalence (Keller & Frischknecht
1966) associated with pure surface measurements when the axis of
symmetry is vertical.

The experimental setup consisted of 78 electrodes, 32 in each
borehole and the remaining 14 positioned along the surface. The
positions of electrodes are shown by triangles in Fig. 2. Electrodes
are placed at 5 m spacing. The two boreholes extend to a depth of
155 m and are spaced 75 m apart.

3.2 Forward and inverse parametrization

The model domain was discretized for inversion with a regular grid
of rectangular model cells of size 5 m × 5 m. Inversion cell size was
chosen to be the electrode spacing so as to limit the total number of
model parameters because of the already increased number of pa-
rameters which must be considered when anisotropy is incorporated.
There were 465 (31 × 15) inversion model cells for each param-
eter. The forward modelling was conducted with the same subdo-
main parametrization as the inversion cells. The forward calcula-
tion used a Gaussian nodal order of five for each subdomain along
with 20 wavenumbers. This gave rise to 6897 nodes in the forward
GQG grid ([(NX1 − 1).(Nord − 1) + 1] . [(NZ1 − 1).(Nord − 1) + 1]
where NX1 = 31, NZ1 = 15, Nord = 5). This was deemed to be a
good compromise between accuracy and computational efficiency
(Greenhalgh 2008; Zhou et al. 2009).

To provide a comparison with the optimal three-sided cross-hole
experiment, and to show what is possible with surface measurements
alone in the presence of anisotropy, a surface electrode array nu-
merical experiment was also conducted. Sixty-one electrodes were
placed along the surface at a spacing of 5 m. The model (inner)
domain extended from x = 0 to 300 m and in depth to z = 60 m. The
same forward and inversion discretization was used as in the three
sided experiments, that is 720 inversion cells of size 5 m × 5 m with
720 forward subdomains and 10 845 Gaussian nodes (Gaussian
nodal order of 5).

3.3 Electrode array types

The three most widely used measurement configurations in cross-
hole or surface-to-borehole geo-electric surveying are the pole–
pole, pole–dipole and dipole–dipole arrays involving 2, 3 and 4
mobile electrodes, respectively. For pole–dipole and pole–pole the
remote electrodes are located at a considerable distance away from
the survey area so that there is no effective contribution from the
current sink. This section of the paper explains the basis and se-
lection for the comprehensive data sets used. Secondly, we explain
a method for selection of the highest sensitivity data sets obtained
from calculation of the Jacobian for comprehensive data sets.

A comprehensive data set (Xu & Noel 1993) consists of every
possible non-reciprocal measurement, whereas a complete data set
is composed of all linearly independent measurements. It is possible
to reconstruct the comprehensive data set from the complete set
(Lehmann 1995; Blome 2009). The pole–pole comprehensive and
complete data sets are equivalent and consist of 3003 recording
configurations (78 × 77 / 2) for a 78 electrode surface to cross-hole
experiment.

Zhou & Greenhalgh (2000) conducted a thorough investigation
into the sensitivity of various cross-hole electrode configurations,
finding that sensitivity was improved along the midpoint region of
the boreholes for configurations such as the bipole–bipole AM–BN
in which current source (A) and sinks (B) and potential electrodes
(M, N) are in different boreholes, that is borehole 1: A, M; borehole
2: B, N. This array also produces relatively large signals. Pole–dipole
arrays were found to produce good results, however configurations
such as A-MN and MN-A are susceptible to noise due to low voltage
drop readings. The same is true for the 4-point configuration AB-
MN and even though it offers improved resolution, it is at the
expense of noise capture, especially due to the borehole fluid effect
as recently investigated by Doetch et al. (2010).

It has been commonplace for some time with other geophysical
techniques (e.g. seismic) to collect vast data sets. In geoelectrics
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it only became feasible in recent times to record massive data sets
efficiently; currently a 64 channel resistivity system exists having
capacity to collect such sets (Zhe et al. 2007), and a 120 channel
parallel recording system has recently been described by Blome
et al. (2011). This, combined with advances in computer memory
and parallel processing techniques, could make inversion with com-
prehensive data sets possible in the future. However currently the
massive amount of data involved in comprehensive pole–dipole and
dipole–dipole data sets for even 78 electrodes is usually prohibitive
for inversion because of time and computer memory constraints. To
reduce the computational burden, it is normal practice to discard
data points corresponding to high geometric factors K, which often
correspond to low signal levels and therefore likely to be contami-
nated by noise. To illustrate the point, by eliminating all data having
geometric factors K > 500 m, a comprehensive pole–dipole data set
of 78 electrodes still has ∼76 000 data. This is still a large amount
of data to invert. For the same number of electrodes but in a 4-point
comprehensive AM–BN (bipole–bipole) configuration, eliminating
data with K > 500 m) results in a set of >500 000 data points.

3.4 Selecting the high sensitivity configurations

From examination of the Jacobian matrix for the comprehensive
data sets, there exists a large subset of data that has extremely small
sensitivity magnitude. The motivation of saving computer memory
and run time resources directs us to investigate the effect of discard-
ing low sensitivity data from comprehensive data sets and working
with a reduced (filtered or selected) version. Such an approach was
recently advocated by Athanasiou et al. (2009). In earlier optimized
experimental design strategies described by Stummer et al. (2002)
and Wilkinson et al. (2006), configurations were progressively se-
lected in accordance with linear independence or contributing most
towards improving model resolution. The latter approach entails
having to sequentially compute the model resolution matrix for
each electrode configuration added to the set, and is very computa-
tionally intensive. By contrast, our sensitivity selection strategy is
far less demanding than that based on incremental improvements to
resolution, and seems adequate for the purpose.

An initial choice must be made for the model used to calcu-
late the Jacobian. This is an arbitrary choice and may include
any a priori knowledge. We chose an isotropic model having
ρL = ρT = 500 Ohm m because this is the starting model given
for our inversions.

The method of filtering (or selecting entries from) the Jacobian
was, first, to split the matrix into separate model parameters: ρL and
ρT. The separate matrices (of dimension number of electrode con-
figurations times the number of model cells) were then sorted along
the model cell column in order of increasing sensitivity magnitude.
Data may then be selected from each model cell column subject
to either the absolute magnitude of the sensitivity or the number
of data to include per model cell. Non-unique (dependent) data
points are eliminated. A secondary beneficial outcome of the filter-
ing process originates from prior knowledge of resolution patterns.
Regions of low resolution model cells such as at the centre section
of the boreholes can be allotted increasing numbers of selected high
magnitude sensitivity data. The data inclusion method we used for
our selected (filtered) data set was to take progressively increasing
amounts of data for model cell columns as one moved from the
boreholes towards the central column of cells. This is illustrated
diagrammatically in Fig. 4.

Figure 4. A representative graph of the data selection strategy that filters
out ineffective low sensitivity data by sorting and selecting high sensitivity
data. The x-axis represents the model cell column number (numbers 1 and
15 define the edge of the model/borehole). Increasing amounts of data
are included towards the model cell column 8 which represents the lowest
resolution along the central axis between the boreholes.

With the filtering/selection strategy used, the comprehensive
pole–dipole data set of 77 000 pole-measurements is reduced to
8036 data points. The corresponding dipole–dipole comprehensive
set of 549 000 configurations is reduced to 159 000 data points

3.4 Types of models

Three types of anisotropic model were investigated: first, an
anisotropic background (TTI) having an embedded isotropic block
anomaly. This type of model could simulate the geological situation
of tilted shale or fractured limestone as the background rock, and
an igneous inclusion or a pure water or air filled cavity causing the
high resistivity anomaly. The second type of model is the reverse of
the first type, involving an isotropic background with an anisotropic
inclusion. This type of model could be representative of sandstone
with enclosed clay or jointed ore body inclusion. The third model
involves a layered anisotropic sequence that could simulate volcanic
flows or metamorphic units of dissimilar dip.

The anisotropic model parameters allow for the possibility of
changing the magnitude (coefficient) of anisotropy and/or the ori-
entation of the axis of symmetry.

4 R E S U LT S

4.1 Anisotropic background with an isotropic
block inclusion

The models used to create the synthetic data sets in this section
consisted of an anisotropic background with a rectangular high re-
sistivity isotropic target (1250 � m) centred between the boreholes.
This section of the paper focuses on the effects of inversion recon-
structions for variations in the orientation of the plane of isotropy
(i.e. the θ0 angle) and the strength (coefficient) of anisotropy (λ).

For this preliminary experiment the comprehensive pole–pole
data set (3003 data points) was employed for two reasons. First, this
basis of measurements contains all possible linearly independent
subsurface information, and secondly, the relatively small data set
minimized the computational time required.
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Figure 5. The comprehensive pole–pole data set inversion reconstruction of an anisotropic background model (constant λ = 1.22) with isotropic inclusion
(1250 Ohm m). The left-hand (ρL) and middle (ρT) columns are produced with the anisotropic assumption while the right-hand column assumes isotropy (ρ).
The axis of symmetry (normal to plane of isotropy) varies from θ0 = 0◦, 45◦, 90◦ in the top, middle and bottom rows, respectively.

Fig. 5 exhibits the inversion results for a set of true models
in which the axis of symmetry angle θ0 has three distinct val-
ues of 0, 45◦ and 90◦, as shown in the top, middle and bottom
rows, respectively. This is physically equivalent to the orientation
of the plane of isotropy (stratification or foliation) being horizon-
tal, dipping and vertical. The coefficient of anisotropy is fixed at
λ = 1.22 (ρL = 400 � m, ρT = 600 � m). The starting resistivity
given for the inversion was a homogeneous and isotropic model

having ρL = ρT = 490 � m, which is equal to the geometric mean
resistivity ρm. The isotropic nature of the starting model ensured
that the anisotropic and isotropic assumption-based inversions could
be made as nearly equivalent as possible, at least from the initial
model viewpoint.

The left-hand and middle columns of Fig. 5 represent the in-
version results (damping factor of 0.000005) after 20 iterations
for ρL and ρT produced with the correct anisotropic assumption
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for forward modelling and sensitivity calculations. Note that only
the parameters ρL and ρT are inverted for, with θ0 held fixed.
The right-hand column gives the corresponding inversion result
for the scalar resistivity ρ produced with the widely used isotropic
assumption. The ρL and ρT images show accurate reconstruction
of the anisotropic nature of the true background resistivity for all
angles of the plane of isotropy. It can be seen that for all θ0 val-
ues the positions of the true high resistivity isotropic embedded
anomaly (outlined by the black square) are well resolved for both
ρL and ρT images. An underestimate of the true high resistivity
anomaly is notable in the ρL image; however, the contrast between
the background and the reconstructed anomaly is equal to that of
the ρT images. The reconstructed target anomalies were somewhat
smeared over the borders of the true known geometry, although im-
portantly they were centred in the correct position. This smearing
is a product of the inversion scheme which we made with basic
functionality. More complicated inversion objective functions (e.g.
L1 norm, different smoothing in horizontal and vertical directions,
penalty terms for anisotropy) exist that could likely improve the
results (see Pain et al. 2003; Greenhalgh et al. 2006), however these
were not included so as to not deflect from the main objectives of
the experiment, which was to compare inversion of anisotropic data
using both anisotropic and isotropic algorithms.

The images obtained with the incorrect isotropic assumption
(right-hand column Fig. 5) after 20 iterations (damping factor
0.000001) show a notable banding effect which follows a paral-
lel orientation to the plane of isotropy for each of the different
values (0◦, 45◦ and 90◦). The data misfits obtained by the set of
inversions using the isotropic assumption were more than eight
times higher than those produced with the anisotropic assump-
tion, which were deemed to be within the numerical noise level
(1–2 per cent). The anisotropic inversion data rms values lie in
the range 1.66–1.92 whereas the isotropic inversion values range
from 15.6 to 20.3. The corresponding model rms error values vary
from 0.016 to 0.050 (anisotropic inversion) to 20.7–21.9 (isotropic
inversion). The higher rms values and the banded artefacts both
result from the inability of the isotropic inversion to fit the data
derived from an anisotropic synthetic model. The source of the
banding is the difference of sign in regions of the subsurface for
isotropic Fréchet derivatives in anisotropic media. This has been
described in Wiese et al. (2009) and quantified in Greenhalgh
et al. (2010).

We now present in Fig. 6 the effects of the magnitude of
anisotropy of the background medium for the same style of model
as above. Anisotropy was varied from slight (almost isotropic)
values to highly anisotropic values, where conductivity was four
times larger parallel to the plane of isotropy than perpendicular
to it. The true models used had θ0 = 45◦, with the coefficient of
anisotropy varied from λ = 1.05 (ρL = 475 � m, ρT = 525 � m),
λ = 1.5 (ρL = 300 � m, ρT = 700 � m) and λ = 2 (ρL = 200 � m,
ρT = 800 � m) in the top, middle and bottom rows, respectively.
The isotropic anomaly resistivity value is 1250 � m. The inversion
results presented in Fig. 6 are in the same format as in Fig. 5, that
is, ρL and ρT in the left-hand and middle columns with ρ in the
right-hand column. The starting model used for the inversions was
again the homogeneous isotropic resistivity equal to the geometric
mean of the true anisotropic values of the background. All involved
a damping factor of 0.000005 and the number of iterations varied
from 6 to 20.

The reconstructions performed under the anisotropic assumption
are accurate in resolving the true background resistivities. The rms
model error values are in the range 0.022 (λ= 1.05) to 0.177 (λ= 2).

The corresponding data misfit rms values vary from 1.35 to 1.95.
The increasing anisotropy (i.e. difference between ρL and ρT) is
especially apparent by the intensifying colour values (both red and
blue) from the top to bottom rows of the figure. The high resistivity
anomaly is centred over the true position (outlined in black) for all
coefficients of anisotropy. However, the reconstructed anomaly in
the ρL image decreases in resistivity with increasing λ, whereas the
opposite trend occurs for ρT. The ratio between the background and
the anomaly resistivity is comparable for both ρL and ρT resistivities
for the intermediate and high λ values. The effect of the angle of
the symmetry axis (θ0 = 45◦) is apparent, since the reconstructions
undertaken with the incorrect isotropic assumption show the target
to be elongated along this orientation for large anisotropy coefficient
values. The high resistivity target was harder to image for the high
λ value (bottom row) because the ρT background increased to such
an extent that the difference between the background resistivity and
that of the anomaly became much less significant.

The image obtained using an isotropic inversion algorithm shows
superior recovery of the isotropic block for slight anisotropy (top
row) to that obtained with an anisotropic inversion, specifically
in terms of the resistivity structure resolved compared to the true
model. However, for increasing coefficients of anisotropy (middle
and bottom rows), spurious low resistivity artefacts become appar-
ent. A region of high resistivity is resolved but it is greatly stretched
in the direction parallel to the plane of isotropy. The banded artefacts
also parallel this orientation. The data misfits for these inversions
increased with the coefficient of anisotropy from 0.99 to 14.9 (>7
times the numerical noise), apart from the almost isotropic model
in which the isotropic inversion converged to the numerical noise
levels of 1–2 per cent. All the inversions undertaken with the cor-
rect anisotropic assumption converged to within numerical noise
levels of 1–2 per cent. The model rms error values for the isotropic
inversions range from 127 (λ = 1.5) to 153 (λ = 2), which are very
much larger than the corresponding anisotropic inversions.

We next investigate a similar type of anisotropic background
model but this time with two embedded isotropic targets, one high
resistivity (1250 �m), the other low resistivity (50 �m), and us-
ing a purely surface electrode array involving 61 electrodes. The
pole–dipole comprehensive set (but with large geometry factor
(K > 500 m) data filtered out) of 12 511 electrode configurations
was employed for the reconstruction. The true models used had an
axis of symmetry of θ0 = 45◦, with the coefficient of anisotropy for
the background varied from λ = 1.1 (ρL = 450 �m, ρT = 550 � m),
λ = 1.4 (ρL = 325 � m, ρT = 675 � m) and λ = 2 (ρL = 200 � m,
ρT = 800 � m), corresponding to the top, middle and bottom rows
of Fig. 7, respectively. The inversion results are given in the same
format as before, with the reconstructed ρL and ρT values shown
in the left-hand and middle columns of Fig. 7, and the isotropic
inversion result for ρ given in the right-hand column. Inversions
were again started with isotropic resistivities equal to the geometric
mean of the true values. A damping factor of 0.00005 was used and
the number of iterations varied from 8 to 17.

The reconstructions carried out with the anisotropic assumption
are accurate (model rms error values in the range 0.04–0.31, cor-
responding data rms values in the range 0.60–1.9), and able to re-
solve the increasing anisotropy which is apparent from the changing
colours from the top to bottom rows. Both high and low resistivity
anomalies are centred over their true positions (outlined in black)
for all magnitudes of anisotropy. However, the reconstructed high
resistivity target in the ρL image decreases in resistivity magnitude
notably at λ = 2. In the ρT images, the high resistivity target be-
comes poorly resolved as λ increases. The resolving power of the
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Figure 6. The comprehensive pole–pole data set reconstruction of anisotropic background model (θ0 = 45◦) with isotropic inclusion (1250 Ohm m). The true
model magnitude of anisotropy varies λ = 1.05, 1.5, 2 from top to bottom rows. The columns are in the same format as Fig. 5.
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ρT parameter drops with depth far more significantly than ρL (see
Wiese et al. 2009).

The image obtained with the incorrect isotropic assumption
(isotropic inversion code) shows superior recovery of the isotropic
blocks for the slight anisotropy case (top row) compared to that
using an anisotropic inversion, specifically in terms of the level of
target resistivity resolved (although the overall model rms error is
higher at 2.59; the rms data misfit is also higher at 1.56). However,
for the model with a high level of anisotropy (bottom row), spuri-
ous low resistivity artefacts become apparent in the isotropic image.
The data misfits with the isotropic inversion (rms values 1.5–9.6)
are not as high as in the three-sided experiments (Figs 5 and 6),
but the same trend of increasing data rms with increasing levels of
anisotropy is again observed. The corresponding model rms errors
are 5.76 (λ = 1.4) and 6.67 (λ = 2), two orders of magnitude higher
than for the anisotropic inversions.

4.2 Isotropic background with an anisotropic
block inclusion

In this section, we present inversion results for an anisotropic target
(block) in an isotropic background. The target is located midway
between the boreholes and has square geometry; its electrical prop-
erties are ρL = 250 � m, ρT = 750 � m (λ = 1.7) with θ0 = 45

◦
. The

isotropic background is ρL = ρT = 500 � m. Inversion results from
a range of different electrode configurations and data sets are pre-
sented and compared. All inversions were started with an isotropic
assumption ρ = ρL = ρT = 500 � m.

Fig. 8 shows the inversion results for the pole–pole comprehen-
sive (top row), the pole–dipole selected (middle row) and pole–
dipole comprehensive (bottom row) data sets. The left-hand and
middle columns correspond to anisotropic reconstruction ρL and
ρT and the right-hand column is the isotropic ρ. The damping fac-
tors were 0.000005 (anisotropic inversion) and 0.0005 (isotropic
inversion). The number of iterations reached the maximum (20)
for the anisotropic inversions but convergence was reached sooner
(iterations 4–8) in the isotropic case.

The pole–pole anisotropic inversion updated the ρL and ρT model
parameters in the correct direction (data rms of 1.91, model rms
error of 0.0088), with the spatial reconstruction giving the target
anomaly at the true position (outlined by the black square). Resolu-
tion is more limited towards the centre of the boreholes, especially
for ρT. The corresponding isotropic inversion produced artificial
banding which is oriented in a direction parallel to the plane of
isotropy. The data misfit value of 10.82 is much higher, as is the
model rms error of 4.92.

The pole–dipole comprehensive data, when inverted, resolved the
anisotropic anomaly in terms of spatial sharpness and yielded resis-
tivities closer to the true values than in the pole–pole case. It gave
a slightly lower model rms error value of 0.0073 but comparable
data rms of 1.92. Although the resistivity scale of the pole–dipole
filtered data set inversion was slightly inferior to the comprehen-
sive set, the reconstruction was very efficient by comparison, with
similar results achieved using considerably less data and computer
resources. The data rms was marginally higher at 1.98. The isotropic
assumption inversions had data misfits more than ten times larger
than the numerical noise limits inherent in the forward modelling
scheme, and 5–10 times higher than for the anisotropic inversions.
The cause of the large misfits is the trend of artificial banding
patterns of alternating high and low resistivity that lie parallel to the
orientation of the plane of isotropy. The model rms errors for the
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Figure 8. The pole–pole comprehensive (top), pole–dipole selected (middle) and pole dipole comprehensive (bottom row) inversion images for a model
consisting of an isotropic background (500 Ohm m) with an anisotropic inclusion (λ = 1.7) and θ0 = 45◦.

isotropic case are in the range 4.9–9.5, very much larger than for
the anisotropic inversions.

In Fig. 9, we show inversion results for the pole–dipole com-
prehensive data set using the same model as in Fig. 8, but the

axis of symmetry of the target is varied through θ0 = 0◦, 45◦, 90◦

from the top to the bottom row. An alternative form of presenta-
tion is used for the anisotropic parameters this time, with ρm and
λ shown in the left- and right-hand columns, respectively. The λ
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Figure 9. Alternative representation of the anisotropic model parameters produced by inversion using the pole–dipole comprehensive set. The mean resistivity
(ρm) and the coefficient of anisotropy (λ) are displayed in the left-hand and right-hand columns, respectively. The true model is the same as Fig. 8 except the
rows correspond to differing axis of symmetry angles: θ0 = 0◦, 45◦, 90◦ from top to bottom.

plot is particularly revealing, indicating the correct true isotropic
background (λ ≈ 1). The anisotropic anomaly region is accurately
represented with reddish colours, slightly underestimating the true
value of (λ = 1.7). Data rms values are all close to 1.9 and the

model rms errors range from 0.0088 (θ0 = 0◦) to 0.054 (θ0 = 90◦).
The ρm images are hard to use for direct interpretation because it
is a derived rather than physical quantity, and the anomaly region
is dominated by the lower resistivity of ρL and ρm. This type of
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Figure 10. Raw (top panel) and normalized (bottom panel) eigenspectra of the pseudo-Hessian matrix (JT J) for the pole–pole comprehensive (pp), pole–dipole
selected (pdp SELECT) and pole–dipole comprehensive (pdp COMP) data sets. The calculation was based on the same model as in Fig. 8.

representation nevertheless has interpretative value, as demon-
strated in Kim et al. (2006), who were able to successfully delineate
cavities by identifying regions of isotropy amongst an anisotropic
background. The isotropic regions were cavities filled with either
water or air.

To further quantify the goodness of the different data sets, we
show in Fig. 10 the normalized eigenvalue spectra calculated based
on the true model (i.e. ρL = 250 � m, ρT = 750 � m (i.e., λ = 1.7)
with θ0 = 45◦) First, it is notable that the spectra for ρL and ρT gener-
ally follow the same pattern except for low indices for the pole–pole
data set. There is a distinct difference between the pole–pole and
pole–dipole dominant eigenvalues, with the pole–dipole sets be-
ing larger by more than five orders of magnitude. The pole–dipole

filtered and comprehensive sets are indistinguishable until approx-
imately the 75th eigenvalue, where the comprehensive set assumes
a gentler slope. The slopes of the spectra from the 200th eigenvalue
onwards are close to parallel but the pole–dipole comprehensive
curve is offset two orders of magnitude higher than the pole–pole
data set and has the smallest null space of the three sets. Here the
null space can be thought of as the unresolvable model parameters
and therefore gives a good comparison between information content
of the different data sets.

Fig. 11 displays the diagonal elements of the formal model reso-
lution matrix, Rii (see eq. 19) plotted at the respective model cells.
The model used for this calculation was the anisotropic block model
used throughout this section. The left-hand columns of Fig. 11
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Figure 11. The formal model resolution (Rii) is displayed in the two left-most columns for the pole–pole (top row), pole–dipole comprehensive (middle row)
and selective pole–dipole data sets (bottom row). The calculation was based on the same model as in Fig. 8. The two right-most columns display the ratio of
the formal model resolution for the pole–pole (top row) and the pole–dipole selective (bottom row) with respect to the optimal pole–dipole comprehensive
resolution.

display the resolution for pole–pole (top) and pole–dipole compre-
hensive (middle) and the pole–dipole selective data sets for both
ρL and ρT model parameters. For both ρL and ρT parameters the
highest resolution is seen closest to the electrodes for all data sets.
The difference in resolution values between ρL and ρT is due to
the difference in sensitivity patterns, which is documented in Wiese
et al. (2009). In general, parameter ρL exhibits superior resolution
at the centre of the model than does ρT.

A direct comparison of the resolving power for each data set
is presented in the right-hand columns of Fig. 11. The top panel
shows the model resolution ratio of the pole–pole with respect to
the pole–dipole comprehensive set, the bottom panel shows the
pole–dipole selected data set with respect to the pole–dipole com-

prehensive set. The top ratio plot clearly show the superiority of
the pole–dipole comprehensive set over the pole–pole set, with ra-
tios below 20 per cent in the majority of model cells. The selective
(filtered) pole–dipole set shows high ratios greater than 70 per cent
of the pole–dipole comprehensive set for the central model region,
which illustrates the merits of selecting data based on sensitivity
considerations.

4.3. Three parameter inversion

In the previous sections we focused on resistivity inversion incor-
porating anisotropy, and the erroneous results obtained using an
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Figure 12. Three parameter eigenspectra comparison between eigen (or rock) frame (top panel) and Cartesian (bottom panel) parameters for an anisotropic
block model with λ = 1.4 and θ0 = 45◦. Note the orders of magnitude difference between the eigenframe parameters, whereas the Cartesian parameters are
all of similar order.

incorrect isotropic inversion scheme. The anisotropic inversions
were established for the two parameters ρL and ρT, with a fixed but
arbitrary angle defining the orientation of the symmetry axis. This
method of constraint, by decreasing the number of model param-
eters to be solved for, effectively stabilizes the inversion without
specifically penalizing anisotropy. In this section we broaden the
inversion to obtain all three parameters at each cell for a 2-D TTI
model. Previous studies (e.g. Herwanger et al. 2004; LaBreque et al.
2004; Kim et al. 2006; Yi et al. 2011) have all ignored the angle
of anisotropy by assuming the principal resistivitiy directions co-
incide with the co-ordinate frame. The implication of including the
extra model parameter (the orientation of the axis of symmetry) is
to increase the non-uniqueness and non-linearity of the inversion
problem. In Section 2.1, two equivalent descriptions for the three
anisotropic model parameters were given, the Cartesian and the
principal axis (eigen) frame.

As an instructive preliminary investigation to assess the preferred
model description to use in the inversion, we computed the eigen-
value spectra of the pseudo-Hessian matrix for the two different
formulations: ρL, ρT, θ0 and ρXX, ρXZ, ρZZ. These are shown in the
top and bottom panels, respectively, of Fig. 12. The eigenspectra
were calculated for a homogeneous anisotropic model with λ = 1.4
and θ 0 = 45◦. The spectra are extremely similar, with the exception
of the newly introduced parameters: θ0, ρXZ. The spectra related to
θ 0 are five orders of magnitude higher than ρL, ρT and the Carte-
sian parameters ρXX, ρXZ and ρZZ. The sensitivities for the θ0 angle
are also orders of magnitude larger than the anisotropic resistivity
model parameters. The source of the amplitude difference in the
sensitivity and the eigenvalues most probably stems from the differ-
ent units of the eigenframe model parameters θ0 (◦) versus ρL, ρT

(� m). Such large differences in sensitivity magnitude can destabi-
lize an inversion (see later). This difference is not encountered in
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Figure 13. Three parameter inversion for a layered TTI media: (a) the true four layered synthetic model, (b) inversion result conducted in the eigen (or rock)
frame, (c) inversion result conducted in the Cartesian co-ordinate frame and converted for presentation.

the Cartesian frame, because all parameters have similar sensitivity
magnitude. However, the ρxz parameter is less intuitively meaning-
ful than the θ0 angle (which has its physical meaning described in
the Background Theory section).

The ρL, ρT, θ0 model employed to produce the first set of syn-
thetic data for the three parameter inversion experiment is shown
in Fig. 13(a). The model is a four-layered TTI medium, where each
layer has a different coefficient of anisotropy and axis of symmetry
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(or dip of the plane of isotropy). The ρL, ρT (or alternatively: ρXX,
ρZZ) parameters control the degree of anisotropy, which for this ex-
periment is λ = 1.4 in the top and bottom layers and λ = 2.4 in the
middle layer. The θ0 parameters control the orientation of the TTI
axis of symmetry, which varies in the four layers (from the top to
bottom layer the values are θ0 = 45, 37.5, 0, −45◦, respectively).

Inversions of synthetic data from the same model were carried out
using two different approaches. First, the natural rock frame model
parameters were used directly. Secondly, the values were initially
converted into the Cartesian domain values with forward calcula-
tions, sensitivity calculations and inversion model updates made
with respect to the Cartesian model parameters. On completion of
the inversion procedure, the Cartesian output values for the final
images were transformed back into the ρL, ρT, θ 0 parameter form
for display. An equivalent slightly anisotropic starting model was
given for both inversions (e.g. ρL = 260 � m and ρT = 300 � m,
θ 0 = 0◦). Larger smoothing parameters were applied to both in-
versions to counteract the increased non-uniqueness of the inverse
problem.

One attraction of working with the Cartesian frame is that all three
parameters have the same units and comparable sensitivities. This is
not the case for the eigenframe, because the dip angle parameter has
different dimensions and far greater sensitivity values, as mentioned
above. The effects of this will be evident later.

Fig. 13(b) shows the inversion results for the pole–dipole com-
prehensive data set carried out in the ρL, ρT, θ 0 domain, whereas
Fig. 13(c) displays the corresponding results for the inversion per-
formed in the ρXX, ρXZ, ρZZ domain then converted to ρL, ρT, θ 0 for
presentation. Both inversions involved damping factors of 0.00005
but the natural rock frame inversion involved fewer iterations (7)
than for the Cartesian frame inversion (ITS = 18). Visual compar-
ison of the reconstructions shows superior results for the inversion
carried out in the Cartesian domain, although both yielded almost

the same model rms error of 0.24. However the data rms for the
Cartesian frame was just 2.25, almost a factor of 6 smaller than
for the natural rock frame inversion. The Cartesian frame inversion
was successful in delineating all layer boundaries and resolving
the correct orientations of the resistivity ellipses of the true model.
The large difference in magnitude of sensitivity between the model
parameters destabilizes the linearized inversion carried out in the
ρL, ρT, θ 0 domain. Resistivity artefacts are observed in the ρL and
ρT reconstructions. They are especially notable in the ρT model
parameter, where a section of low resistivity is observed at depths
between 5 and 10 m close to the left-hand side borehole. This region
indicates that the inversion update has actually been in the wrong
direction. The other noteworthy point is the large scale difference
between the Cartesian and eigenframe inversions, especially for the
θ 0 and ρxz parameters (see Fig. 12). Values for θ0 are updated to
magnitudes as high as 80◦, though it is important to point out the
region in which the high angle values occur corresponds to a region
of relative isotropy. For an isotropic model the θ0 angle has no real
meaning because any angle will still satisfy isotropy. The data misfit
converges to 12 per cent for the ρL, ρT, θ0 inversion, compared to
2.25 per cent for the inversion in the ρXX, ρXZ, ρZZ domain.

Fig. 14 shows an inversion reconstruction for a second model
consisting of two anisotropic blocks in an otherwise isotropic back-
ground of 500 �m. The anisotropic targets both have ρL = 300 �

and ρT = 700 � m, with the blocks having an axis of symmetry
defined by θ0 = +45◦ (top block) and θ0 = −45◦ (bottom block).
The coefficient of anisotropy was not extreme at λ ∼ 1.5, so as
to keep the non-uniqueness of the inversion to manageable levels.
The inversion (damping factor of 0.0001 and 14 iterations) was
carried out in the Cartesian frame as this produced the more ac-
curate results in the previous experiment. After convergence, the
model parameters were converted to the eigenframe for presen-
tation. An isotropic starting model of ρXX = ρZZ = 500 �m and

Figure 14. Three parameter inversion of anisotropic block in isotropic background. The block position is outlined in black. The true model parameters are:
ρL = 300 � and ρT = 700 � m, with the target having an axis of symmetry defined by θ0 = +45◦. The inversion was carried out in the Cartesian co-ordinate
frame and transformed back into the eigen (or rock) frame.
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ρxz = 0 � m was employed. The reconstruction of the true targets
in terms of resistivity values (ρL and ρT) and true locations is ac-
curate for both cases. The model rms error is just 0.0025. Slight
smearing effects are observed especially for the ρT parameter be-
neath the target away from the increased sensitivity of the surface
electrodes.

The θ0 reconstruction shows relatively poor spatial resolution of
the target. The target angles themselves were well resolved, with
angles of up to +45◦ recovered for the top block and −45◦ for the
bottom block. Considerable smearing of the anomalies is apparent
in both cases along the axes of symmetry directions. Despite these
artefacts the inversion converged to a data misfit of below 2 per
cent. This example is important because it illustrates the problems
associated with non-uniqueness when inverting for the third model
parameter: ρxz or θ .

5 C O N C LU S I O N S

We have conducted 2.5-D resistivity inversion experiments in TTI
media. The synthetic data were computed for the true anisotropic
models but the inversion scheme used forward solvers and sensitiv-
ity calculations for either the correct anisotropic assumption (two or
three parameters at each cell defining the conductivity tensor) or the
incorrect isotropic assumption (single conductivity value for each
cell). This enabled direct comparison of the effect of the assumption
(anisotropic vs isotropic) on the image constructions.

Synthetic models included isotropic targets embedded in a TI
anisotropic background, as well as TI anisotropic blocks within an
isotropic background, and in which the magnitude of anisotropy
and the dip angle of the axis of symmetry were varied. These mod-
els were investigated through a series of experiments with varying
orientation and magnitude of anisotropy. Superior reconstructions
in terms of rms data misfit, the true anomaly shape and position,
and the anisotropic background parameters were achieved when the
correct anisotropic assumption was employed. When the false (but
widely practised) isotropic assumption was used the tomograms
were dominated by patterns of banded artefacts. For increasing lev-
els of anisotropy, the isotropic reconstructions became increasingly
poor, with high data misfits. For weakly anisotropic media, isotropic
inversions performed adequately, especially for surface electrode
arrays.

Various cross-hole data set types were investigated by examining
the accuracy of the inversion result, the eigenspectra spectra of the
pseudo-Hessian matrix and the relative resolution plots. The pole–
dipole comprehensive data set produced the best reconstructions.
However, we found that a data selection scheme based on using
only the high sensitivity measurements produced tomograms of
comparable quality to those of the comprehensive data sets, but
involving far fewer measurements and hence reduced computer
memory and run time.

Reconstruction experiments conducted with the simplistic in-
version scheme were successfully extended to resolving three
anisotropic parameters at each model cell (dip angle of the symme-
try axis in addition to the transverse and longitudinal resistivities).
For a layered anisotropic model with model parameters described
in different co-ordinate frames (Cartesian and the eigenframe) the
Cartesian frame provided a more accurate inversion results and a
smaller rms data misfit. The eigenframe-based inversion instability
was explained by means of the eigen-spectrum of the Hessian ma-
trix which showed orders of magnitude difference between various
parameters.
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