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Background. Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) has been shown to modulate multiple

cellular processes, including apoptosis. The aim of this study was to assess the effects of HCV NS5A on apoptosis

induced by Toll-like receptor (TLR) 4 ligand, lipopolysaccharide (LPS).

Methods. Apoptotic responses to TLR4 ligands and the expression of molecules involved in TLR signaling

pathways in human hepatocytes were examined with or without expression of HCV NS5A.

Results. HCV NS5A protected HepG2 hepatocytes against LPS-induced apoptosis, an effect linked to reduced

TLR4 expression. A similar downregulation of TLR4 expression was observed in Huh-7–expressing genotype 1b and

2a. In agreement with these findings, NS5A inhibited the expression of numerous genes encoding for molecules

involved in TLR4 signaling, such as CD14, MD-2, myeloid differentiation primary response gene 88, interferon

regulatory factor 3, and nuclear factor–jB2. Consistent with a conferred prosurvival advantage, NS5A diminished

the poly(adenosine diphosphate–ribose) polymerase cleavage and the activation of caspases 3, 7, 8, and 9 and

increased the expression of anti-apoptotic molecules Bcl-2 and c-FLIP.

Conclusions. HCV NS5A downregulates TLR4 signaling and LPS-induced apoptotic pathways in human

hepatocytes, suggesting that disruption of TLR4-mediated apoptosis may play a role in the pathogenesis of HCV

infection.

Hepatitis C virus (HCV), a member of Flaviviridae, is

a causative agent of acute and chronic hepatitis, cirrhosis,

and hepatocellular carcinoma (HCC) [1, 2]. The HCV

genome containing positive-strand RNA is �9.6 kb and

encodes a polyprotein precursor of �3000 amino acids,

which is cleaved by both viral and host proteases into

structural (core, E1, E2, and p7) and nonstructural (NS2,

NS3, NS4A, NS4B, NS5A, and NS5B) proteins. HCV

nonstructural protein 5A (NS5A) exists as 2 phospho-

proteins, p56 and p58, which are both phosphorylated at

serine residues after the mature protein is released from

the polyprotein [3]. Other studies have shown that HCV

NS5A interacts with the proteins of oncogene and in-

terferon (IFN) signaling pathways [4–7].

The immune system provides the first line of host

defenses against microbial pathogens. Toll-like receptors

(TLRs) are type I transmembrane proteins that have

evolved to sense structurally conserved microbial com-

ponents, known as microbial-associated molecular pat-

terns. Thus, TLRs play a primary role in host responses

to infection and in bridging innate and adaptive
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immunity [8, 9]. Thirteen TLRs have been identified in mam-

mals. TLRs 1–9 are conserved between humans and mice. TLR10

is expressed in humans but not in mice, whereas TLRs 11–13 are

present in mice but either absent or nonfunctional in humans.

Activation of intracellular signaling pathways through TLRs is

initiated by the recruitment of adapter proteins, such as myeloid

differentiation primary response gene 88 (MyD88), Toll/in-

terleukin (IL)–1 receptor (TIR) domain–containing adapter

protein (TIRAP)/MyD88 adapter–like, TIR domain–con-

taining adapter-inducing IFN-b (TRIF)/TIR domain–

containing adapter molecule 1, and TRIF-related adapter

molecule to the TIR domain of TLRs. TLR4, primarily located

on the cell surface, is essential for sensing lipopolysaccharide

(LPS) from gram-negative bacteria. Ligand binding to TLR4

stimulates the MyD88-dependent signaling pathway involved

in the production of proinflammatory cytokine genes and the

TRIF-dependent/MyD88-independent signaling pathway, which

is critical for the production of type I IFNs [8]. Interestingly,

concentrations of LPS inducing the production of proin-

flammatory cytokines, such as IL-1b and tumor necrosis factor

(TNF)–a, are similar to those that induce antiviral activity.

Apoptosis is a mode of cell death that disposes of unwanted

cells [10]. Fas ligand and TNF-a are peptide ligands that induce

apoptosis. After Fas ligand binding to its receptor, the cyto-

plasmic domain of the receptor recruits the adapter protein,

Fas-associated death domain–containing protein (FADD), and

the initiator caspase (caspase 8) [11]. Formation of this com-

plex, called the death-inducing signal complex, must be strictly

regulated, because it directly induces activation of the initiator

caspase and apoptotic cascade. The regulation of mitochon-

drial membrane integrity is another important process con-

trolling apoptosis. Mitochondria play an important role in the

activation of apoptosis by releasing apoptogenic factors, such

as cytochrome c, into the cytoplasm. Cytochrome c, caspase 9,

and apoptosis-protease activating factor 1 together form the

apoptosome. Caspase 9 is activated in this complex and sub-

sequently processes executioner caspases 3 and 7. Nuclear

fragmentation and cleavage of poly(adenosine diphosphate–

ribose) polymerase (PARP) are used as apoptotic hallmarks.

Mitochondrial integrity is controlled by the Bcl-2 family of

proteins, such as Bcl-2 and Bcl-XL. Bcl-2 is an anti-apoptotic

protein, blocking cell death via a mitochondria-dependent

pathway.

LPS also induces apoptosis via a death pathway involving

TLR4 signaling. MyD88 subsequently binds FADD, which

promotes activation of caspase 8. These steps are essential for

apoptosis induction [12]. When caspase 8 activation is pre-

vented by anti-apoptotic FLICE-like inhibitory protein (FLIP;

FLICE, FADD-like IL-1-b–converting enzyme), LPS-mediated

apoptosis is blocked. Thus, the apoptotic signaling mechanism

at the cytoplasmic portion of TLR is believed to be similar to

that of the death receptor Fas. However, it was also reported that

disruption of mitochondrial integrity caused by LPS occurs in

a caspase-independent manner [13].

HCV NS5A has been shown to block cell apoptosis in vitro

and in vivo [14, 15]. Taking into account that TLRs modulate

a wide range of cellular functions, including inflammation and

cell proliferation, differentiation, and apoptosis [16, 17], we hy-

pothesized that NS5A influences the TLR4-dependent signaling

pathways and apoptosis.

In the present study, we compared the response of hep-

atocytes expressing or not expressing HCV NS5A to TLR1-7

and TLR9 agonists. We showed that LPS-induced apoptosis

of hepatocytes is inhibited by NS5A. Moreover, NS5A down-

regulates TLR4 expression and proapoptotic pathways in

hepatocytes exposed to LPS. Altogether, our data indicate that

NS5A is a powerful modulator of TLR4 signaling and suggest

that disruption of TLR4-mediated apoptosis may play a role

in the pathogenesis of HCV infection.

METHODS

Plasmids, Cells, and Virus
pCXN2, pCXN2-HCV NS5A, and pCDNA3 and pCDNA3-full-

length human TLR4 vectors were generously provided by J.

Miyazaki (Osaka University), N. Kato (Institute of Medical

Science, Tokyo University), and Scott L. Friedman (Mount Sinai

School of Medicine), respectively. The TLR4 promoter luciferase

reporter vector (2518 construct) was described elsewhere [18].

Human hepatoma cell lines HepG2 and Huh-7 were grown in

Dulbecco’s modified Eagle’s medium (Invitrogen) containing

10% heat-inactivated fetal bovine serum. HepG2 cells were stably

transfected with pCXN2 (HepG2 control cells) or pCXN2-HCV

NS5A genotype 1b (HepG2-NS5A cells). Cells were collected

after 3 weeks of G418 selection, stocked, and used for further

studies. Huh-7 cells harboring HCV subgenomic replicon

genotype 1b and HCV Japanese fulminant hepatitis 1 (JFH1)

genotype 2a were obtained as described elsewhere [19–21].

Treatment of Cells With TLR Ligands
HepG2 control or HepG2-NS5A cells were plated in 6-well

plates and incubated with agonists of TLR1/TLR2 (Pam3CSK4.

3HCL; 100 lg/mL), TLR3 (poly[I:C]; 50 lg/mL), TLR4 (LPS

from Escherichia coli; 5 lg/mL), TLR5 (purified flagellin;

100 lg/mL), TLR6/TLR2 (macrophage-activating lipopeptide

2; 100 lg/mL), TLR7 (Imiquimod [R-837]; 2.5 lg/mL), and

TLR9 (type B CpG ODN; 0.5 lg/mL) (all purchased from

Imgenex). After 24 hours of incubation, cells were fixed for

30 minutes with methanol, washed 3 times with water, air

dried, and stained for 30 minutes with 0.1% crystal violet.

Luciferase Assays
HepG2 cells (5 3 105) were transfected with 0.2 lg of reporter

plasmid pTLR4-luc and pCXN2 or pCXN2-HCV NS5A using
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Effectene (Qiagen). The total amount of DNA was kept constant.

Cells were lysed with reporter lysis buffer (Promega), and lucif-

erase activity was determined by luminometer (Luminescencer-

JNR II AB-2300; ATTO), as described elsewhere [22].

RNA Purification and Real-Time Reverse-Transcription
Polymerase Chain Reaction
Total RNA was isolated using the RNeasy Mini Kit (Qiagen),

and 5 lg of RNA was reverse-transcribed using the First

Strand cDNA Synthesis Kit (SuperArray). Quantitative am-

plification of complementary DNA (cDNA) was monitored

with SYBR Green by real-time polymerase chain reaction

(PCR) analysis. Amplification was carried out in 25 lL of

ROX PCR Master Mix (SuperArray) containing each primer

(0.2 lmol/L) and 1 lL of the reverse-transcription reaction

mixture, using 7300 Real-Time PCR system (Applied Bio-

systems) according to the manufacturer’s protocol. Primers

were purchased from SuperArray. Data analysis was based on

the comparative threshold cycle method. The expression of

the genes of interest was normalized to the expression of

glyceraldehyde 3-phosphate dehydrogenase (GAPDH).

Western Blot Analysis
Cells were harvested using sodium dodecyl sulfate sample

buffer. Proteins were subjected to electrophoresis on 10%

polyacrylamide gels and transferred onto polyvinylidene di-

fluoride membranes (ATTO). Membranes were probed with

antibodies specific for TLR4 (AnaSpec); HCV NS5A and HCV

core protein (Biodesign International); PARP and cleaved

PARP; procaspase 3 and caspases 3, 7, 8, and 9; Bax; Bcl-2;

cellular FLIP (c-FLIP; official name, CFLAR [CASP8 and

FADD-like apoptosis regulator]) (Cell Signalling Technology);

and GAPDH and b-tubulin (Santa Cruz Biotechnology). After

washing, membranes were incubated with secondary horse-

radish peroxidase–conjugated antibodies. Signals were detected

by means of enhanced chemiluminescence (GE Healthcare)

and scanned by image analyzer LAS-1000 and Image Gauge

(version 3.1) (Fuji Film) and Scion Image (Scion) software.

Cell Viability Assay
3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium, inner salt (MTS) assays were per-

formed (CellTiter 96 AQ One Solution Cell Proliferation Assay;

Promega) [23]; 20 lL/well of the MTS reagent was added to 100

lL of media containing cells in each well of 96-well plates and left

for 4 hours at 37�C in a humidified 5% carbon dioxide atmo-

sphere. For analysis, absorbance at 490 nm was measured

using a Bio-Rad iMark microplate reader (Bio-Rad).

Apoptosis Assay
The APOPercentage Apoptosis Assay (Biocolor) was used to

quantify apoptosis according to the manufacturer’s instructions.

Purple-red stained cells were identified as apoptotic cells. The

number of purple-red cells per 300 cells was counted [23].

Enzyme-Linked Immunosorbent Assay
HCV core protein was quantified in HCV-infected cell culture

supernatants with a commercially available enzyme-linked

immunosorbent assay kit (Ortho Diagnostics). The detection

limit was 44 fmol/L.

Statistical Analysis
Results were expressed as means 6 standard deviations. Student

t test was used to determine statistical significance.

RESULTS

HCV NS5A and Protection of HepG2 Cells From LPS-Induced
Apoptosis
We and others have previously shown that retinoic acid-

inducible gene I and TLR3 are the 2 major host defense pathways

triggered by HCV in hepatocytes [24, 25]. In contrast, little is

known about the role played by other TLRs in response to HCV

infection [26]. It has been demonstrated that inhibition by HCV

NS5A of TNF-mediated apoptosis may contribute to viral per-

sistence and eventually to HCV-associated disease progression

[4], in a manner similar to that seen with other viruses [27].

Moreover, some TLR ligands induced apoptosis in the liver [28,

29]. To examine the effects of HCV NS5A on TLR signaling in

hepatocytes, we treated HepG2-NS5A and HepG2 control cells

with TLR1-9 ligands and analyzed cell death 24 hours later

(Figure 1A and 1B). Stimulation with LPS (TLR4 ligand) induced

massive death of HepG2 control cells but not HepG2-NS5A cells.

Quantification of apoptosis showed a significant, 3-fold increase

in apoptosis in HepG2 cells, compared with HepG2-NS5A cells

(Figure 1, A and B). Other TLR ligands, sensed through TLR1/2,

TLR2/6, TLR3, TLR5, TLR7, and TLR9, did not significantly

alter the viability of HepG2 control or HepG2-NS5A cells.

HCV NS5A Downregulation of TLR4 Expression in Human
Hepatoma Cell Lines
It has been reported elsewhere that adenovirus infection enhanced

TLR4 expression in wild-type but not in HCV NS5A transgenic

mice [7]. Therefore, we hypothesized that HCV NS5A impaired

TLR4 expression in hepatocytes. To verify this, we compared

TLR4 protein levels in HepG2 and HepG2-NS5A cells. Western

blot analysis showed that TLR4 expression was markedly down-

regulated in HepG2 cells expressing NS5A (Figure 2A).

To further substantiate this observation, we next analyzed

TLR4 expression in HCV subgenomic replicon genotype 1b

and its parental Huh-7 cells [18]. Western blot analyses

demonstrated a significant downregulation of TLR4 expres-

sion along with stable expression of HCV NS5A in replicon

cells (Figure 2B). Finally, Huh-7 cells infected for 3 days with

HCV genotype 2a (JFH1) expressed strongly reduced levels of

TLR4 compared with mock-infected cells (Figure 2C). Con-

firming effective viral replication of JFH1 in Hu-7 cells, cell
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culture supernatants contained 627 fmol/L HCV core protein

3 days after infection (Figure 2D). These data suggested that

HCV NS5A downregulated TLR4 expression in hepatocytes

independently of HCV genotype.

HCV NS5A Inhibition of TLR4 Transcription
To unravel the molecular mechanisms by which NS5A decreased

TLR4 expression in hepatocytes, we first tested whether NS5A

interacted with TLR4. Cell lysates were prepared from HepG2

cells cotransfected with FLAG-tagged NS5A and TLR4 expression

constructs [30], immunoprecipitated with FLAG antibodies, and

probed with TLR4 antibodies. No coprecipitation of TLR4 and

NS5A was detected under our experimental conditions (data not

shown). TLR4 messenger RNA levels, quantified by means of

real-time reverse-transcription PCR, were dramatically reduced

in HepG2-NS5A cells (35-fold), compared with HepG2 cells. In

agreement, transient transfection of HepG2 cells with the pCXN2

HCV NS5A expression plasmid reduced TLR4 promoter driven

luciferase activity (Figure 2E). Overall, these data suggested that

NS5A reduced TLR4 expression, at least in part, by inhibiting

TLR4 transcription in hepatocytes, but not by TLR4 de-

stabilization through direct protein–protein interactions.

HCV NS5A and Expression of Numerous Innate Immune Genes
To further characterize the influence of NS5A on host defense

genes in hepatocytes, we used real-time PCR to quantify the

expression of several genes in HepG2 and HepG2-NS5A cells.

Besides TLR4, NS5A downregulated the expression of molecules

involved in the formation of the TLR4 receptor complex (MD-2

[22-fold] and CD14 [38-fold]) and the expression of down-

stream signaling molecules (MyD88 [.100-fold], nuclear fac-

tor–jB2 [100-fold], and IFN regulatory factor 3 [6.4-fold]).

HCV NS5A and LPS-Induced Apoptosis
It has been reported that the combined effects of HCV and

alcohol on various host cell types, via reactive oxygen species

production, LPS signaling, and cytokine production, produce an

environment of impaired antiviral response, greater hepatocel-

lular injury, and activation of cell proliferation and differentiation

responsible for a range of diseases [31]. Thus, we examined the

effects of LPS with or without ethanol on hepatocytes. Cell trig-

gering through TLR4 has been shown to stimulate apoptotic

signaling pathways [29]. Considering that NS5A sustained sur-

vival of LPS-stimulated HepG2 cells (Figure 1), we investigated

whether NS5A interfered with apoptosis, using Western blot

analysis to detect PARP cleavage and expression of mature cas-

pases 3 and 7. Whereas PARP was expressed at higher levels in

resting HepG2-NS5A cells (1.10 6 0.053 vs 1.0 6 0.026;

P 5 .042), cleavage of PARP induced by LPS with or without

ethanol was observed in HepG2 control cells but was barely

detectable in HepG2-NS5A cells (LPS, 4.57 6 0.65 vs 44 6 1.37

[P , .001]; LPS plus ethanol, 4.71 6 1.13 vs 43.1 6 0.24

[P , .001]) (all n 5 3) (Figure 3A). Accordingly, activation of

procaspase 3 into caspase 3 by LPS with or without ethanol was

strongly reduced in HepG2-NS5A cells versus HepG2 control cells

(LPS, 0.96 6 0.22 vs 3.27 6 0.24 [P , .001]; LPS plus ethanol,

0.93 6 0.052 vs 3.51 6 0.29 [P, .001]) and increased expression

of caspase 7 (LPS, 1.21 6 0.18 vs 2.24 6 0.13 [P 5 .0013]; LPS

plus ethanol, 1.15 6 0.20 vs 2.87 6 0.69 [P 5 .014]) (all n 5 3)

(Figure 3B). These data demonstrated that HCV NS5A protected

HepG2 hepatocytes from LPS-induced apoptosis. It has been

reported that LPS may recruit extrinsic apoptotic signals, and

Figure 1. Hepatitis C virus (HCV) nonstructural protein 5 A (NS5A) protects
hepatocytes from lipopolysaccharide (LPS)–induced cell death. A, B, HepG2
control (A) and HepG2-NS5A (B ) hepatocytes were cultured for 24 hours with
ligands of Toll-like receptor (TLR) 1/TLR2 (Pam3CSK4), TLR3 (poly[I:C]), TLR4
(LPS), TLR5 (flagellin), TLR6/TLR2 (macrophage-activating lipopeptide 2),
TLR7 (Imiquimod [R-837]), TLR9 (type B CpG oligonucleotide), and control
oligonucleotide, as indicated in Materials and Methods. Cells were washed
and stained with crystal violet, and experiments were performed 3 times.
PBS, phosphate-buffered saline. C, HCV NS5A protects hepatocytes from
LPS-induced apoptosis. HepG2 control and HepG2-NS5A hepatocytes were
cultured for 24 hours with LPS (5 lg/mL). Cell apoptosis was quantified
using the APOPercentage Apoptosis Assay. Data are expressed as means6
standard deviations of triplicate determinations from 1 experiment represen-
tative of 3 independent experiments.
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alcohol increases liver apoptosis predominantly through intrinsic

signaling [32], but we did not observe a significant difference in

PARP cleavage and the activation of caspases 3 and 7 between LPS

with and LPS without ethanol, suggesting that LPS may also

increase apoptosis through intrinsic signaling in hepatocytes.

HCV NS5A and Expression of Caspases 8 and 9, Bcl-2, and FLIP
Activation of effector caspases 3 and 7 is controlled by caspases

8 and 9, which play a central role in the activation of extrinsic

and intrinsic apoptosis pathways [33]. Interestingly, the ex-

pression levels of both caspases 8 and 9 were decreased in

resting HepG2-NS5A cells and those stimulated by LPS with

or without ethanol versus HepG2 control (caspase 8, 0.72

6 0.013 vs 1.0 6 0.013 [P , .001] and 0.77 6 0.028 vs 1.3

6 0.013 [P, .001] or 0.77 6 0.013 vs 1.28 6 0.013 [P, .001])

(caspase 9, 0.71 6 0.035 vs 1.0 6 0.024 [P , .001] and 0.75 6

0.017 vs 1.34 6 0.024 [P , .001] or 0.77 6 0.017 vs 1.35 6

0.010 [P , .001]) (all n 5 3) (Figure 4A). The activation of

caspases 8 and 9 is tightly controlled by regulators, such as

cellular FLICE-like inhibitory protein (c-FLIP), a cellular in-

hibitor of procaspase 8 cleavage into caspase 8, and members

of the Bcl-2 family, including Bax and Bcl-2, which have pro-

and anti-apoptotic activities, respectively [23]. Thus, we in-

vestigated whether NS5A affected the expression of apoptosis

regulators in HepG2 cells. Figure 4B shows the increased levels of

Bcl-2 and c-FLIP in resting HepG2-NS5A cells and those stim-

ulated by LPS with or without ethanol, when compared with

HepG2 cells (Bcl-2, 4.5 6 0.088 vs 1.0 6 0.13 [P, .001] and 4.47

6 0.18 vs 1.02 6 0.22 [P , .001] or 4.58 6 0.26 vs 1.0 6 0.30

[P , .001]; c-FLIP [FLIPL plus FLIPS], 1.29 6 0.059 vs 1.0 6

0.059 [P5 .0038] and 1.25 6 0.049 vs 1.0 6 0.036 [P5 .0020] or

1.29 6 0.059 vs 1.0 6 0.013 [P 5 .0011]) (all n 5 3).

Overexpression of TLR4 and Apoptosis in HepG2-NS5A Cells
Treated With LPS
We also we chose to overexpress TLR4 to examine whether this

would alter Bcl-2 in HepG2-NS5A cells treated with LPS. First,

we examined cell viabilities 1 day after transient transfection of

pCDNA3 or pCDNA3-full-length human TLR4 vectors into

HepG2-NS5A cells and treatment with 5 lg/mL LPS. Cell via-

bilities of TLR4-overexpressed HepG2-NS5A were reduced,

compared with those of control (74.9 6 11.4% vs 100 6 16.6%;

n 5 4; P 5 .046).

Next, we compared TLR4, cleaved PARP, and Bcl-2 expres-

sion in TLR4-overexpressing LPS-treated HepG2-NS5A cells

with that in control LPS-treated HepG2-NS5A cells. Figure 5

Figure 2. Hepatitis C virus (HCV) nonstructural protein 5A (NS5A)
downregulates Toll-like receptor (TLR) 4 expression in hepatocytes. A–C,
Western blot analyses of TLR4, HCV NS5A, HCV core protein, and GAPDH
expression in HepG2 and HepG2-NS5A cells (A), in HCV subgenomic
replicon genotype 1b and parental Huh-7 cells (B ), and in HCV Japanese
fulminant hepatitis 1 (JFH1) genotype 2a–infected Huh-7 and mock-
infected Huh-7 cells (C ). TLR4/glyceraldehyde 3-phosphate dehydroge-
nase (GAPDH) ratios from 3 independent experiments were measured
using Scion Image software. D, HCV core protein concentrations in cell
culture supernatants collected 3 days after infection of Huh-7 cells with
HCV JFH1 were quantified by enzyme-linked immunosorbent assay. No

HCV core protein was detected in cell culture supernatants from mock-
infected cells. E, HepG2 cells were transiently cotransfected with pCXN2
or pCXN2-HCV NS5A and a TLR4 promoter luciferase reporter vector.
Luciferase assays were performed 48 hours after transfection. Data are
expressed as means 6 standard deviations of triplicate determinations
from 1 experiment representative of 3 independent experiments.
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shows the increased levels of TLR4 and PARP in LPS-stimulated

HepG2-NS5A cells transfected with pCDNA3-full-length hu-

man TLR4, compared with those transfected with pcDNA3.

Importantly, Bcl-2 expression was lower in LPS-stimulated

HepG2-NS5A cells transfected with pCDNA3-full-length hu-

man TLR4 than in those transfected with pCDNA3. Therefore,

these results confirmed that NS5A counteracted LPS-induced

apoptosis of hepatocytes by favoring the expression of the anti-

apoptotic signaling molecule Bcl-2.

DISCUSSION

Here we report that downregulation of TLR4 expression by

HCV NS5A is a key step in the negative regulation of LPS-

induced hepatocyte apoptosis. This process negatively influences

TLR4 signaling, including caspase activation and PARP cleavage,

presumably to counteract the deleterious effects of LPS on

hepatocyte viability (Figure 6).

The host defense system against pathogens involves both in-

nate and adaptive immunity. Whereas HCV-specific CD41 and

CD81 T cells are specific for a given antigen, innate immune cells,

such as natural killer and dendritic cells, recognize patterns ex-

pressed by infectious agents, thereby shaping cytokine production

and adaptive immune responses. TLR4 plays an important role in

apoptosis in the liver [34]. The liver is involved at the end of an

immune response, and its cells experience apoptosis, a phenom-

enon that is impaired in mice lacking TLR4 [35]. TLR4 deletion

Figure 3. Hepatitis C virus nonstructural protein 5A (NS5A) inhibits
poly(adenosine diphosphate–ribose) polymerase (PARP) cleavage and
expression of caspases 3 and 7 in HepG2 cells. Western blot analyses
show expression of PARP and cleaved PARP (A) and procaspase 3,
caspase 3, and caspase 7 (B ) in HepG2 control and HepG2-NS5A cells
treated for 24 h with or without lipopolysaccharide (LPS) (5 lg/mL)
and ethanol (100 mmol/L). Blots were reprobed with glyceraldehyde
3-phosphate dehydrogenase (GAPDH)–specific antibodies to assess equal
protein loading. Uncleaved and cleaved PARP/GAPDH ratios (A) and
procaspase 3–GAPDH, caspase 3–GAPDH, and caspase 7–GAPDH ratios
(B ) were measured (all from 3 independent experiments) using Scion
Image software; data are expressed as means 6 standard deviations.

Figure 4. Hepatitis C virus nonstructural protein 5A (NS5A) interferes
with the activation of the apoptotic pathways induced by lipopolysac-
charide (LPS) and ethanol in HepG2 cells. Western blot analyses show
expression of caspases 8 and 9 (A) and Bax, Bcl-2, and FLICE-like
inhibitory protein (FLIP; FLICE, FADD-like IL-1-b–converting enzyme) (B ) in
HepG2 and HepG2-NS5A cells treated for 24 hours with or without LPS (5
lg/mL) and ethanol (100 mmol/L). Blots were reprobed with glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH)–specific antibodies to assess
equal protein loading. Caspase 9/GAPDH and caspase 8/GAPDH ratios (A)
and Bax/GAPDH, Bcl-2/GAPDH and FLIP (FLIPS and FLIPL)/GAPDH ratios
(B ) (all from 3 independent experiments) were measured using Scion
Image software; data are expressed as means 6 standard deviations.
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was reported to attenuate pancreatitis-induced mouse liver

cell apoptosis [36] and to reduce ischemia and reperfusion

injury in a murine liver transplantation model [37].

Why does HCV downregulate TLR4 expression by hep-

atocytes? HCV induces a lifelong infection and has evolved

multiple strategies to evade host immune clearance, including

downregulation of major histocompatibility complex class II by

HCV core protein [38], cleavage of IFN promoter stimulator-1

by HCV NS3/NS4A [39], suppression of intrahepatic IFN-c
production by HCV NS5A [7], and inhibition of TNF-mediated

apoptosis by HCV core protein [41] and NS5A [15]. The results

presented here suggest an additional role of HCV NS5A in tar-

geting TLR4 signaling and inhibiting LPS-induced proapoptotic

signals. Our results showing that HCV NS5A downregulated

TLR4 also support an earlier report in macrophage cell lines [6].

Inflammation drives the development of hepatic fibrosis that

leads to cirrhosis in patients with chronic HCV infection. Mul-

tiple variants of the TLR4 gene modulate the risk of liver fibrosis

[30]. Manigold et al [41] reported that TLR4 expression was

downregulated in peripheral blood mononuclear cells of patients

with high serum endotoxin levels at Child-Pugh stage A, irre-

spective of the cirrhosis origin (alcoholic or viral). Machida et al

[42] used transient transfection with plasmids expressing in-

dividual HCV proteins, observing that HCV genotype 1a induced

TLR4 expression in Raji cells and Huh7 cells and increased the

amount of IFN-b and IL-6 with the use of 10 ng/mL LPS, less

than in the present study. Our findings support the previous

report that HCV infection can directly interfere with TLR4 sig-

naling in hepatocytes, peripheral blood mononuclear cells, Raji

cells [42], and dendritic cells [43]. TLR4 signaling itself may

regulate HCV replication [44]. TLR4 missense variants appear to

be associated with the risk of liver fibrosis [45] and other diseases

[46]. HTLV-I p30 also interferes with TLR4 signaling and mod-

ulates the release of pro- and anti-inflammatory cytokines from

human macrophages [47]. These data suggest that TLR4 sig-

naling plays an important role in the pathogenesis of HCV

infection. We also found that upregulation of Bcl-2 and

downregulation of TLR4 is important for blocking LPS-

induced apoptosis in these cells.

Although HCV induced apoptosis as well as the activation of

Bid cleavage and cytochrome c release [48], it remains unknown

whether apoptosis helps in host cell survival or is beneficial for

HCV replication. HCV NS5A may play a fundamental role

during HCV-related HCC development by inhibiting apoptosis.

Further studies will be needed to elucidate the significance of

these results, possibly leading to the development of effective

molecular-targeted treatment against HCC, which is notoriously

resistant to systemic therapies, often recurring even after

aggressive local therapies. Although TLR4 inhibitors are also

now under preclinical and clinical evaluation for the treatment

of sepsis and inflammatory diseases [49], HCV might evade the

innate immune response and also interfere with the adaptive

immune response by functional inactivation of TLR4.

In conclusion, HCV NS5A downregulated TLR4-related sig-

naling pathways and blocked LPS-induced apoptosis in hu-

man hepatocytes, suggesting that it plays an additional

Figure 5. Overexpression of Toll-like receptor (TLR) 4 reduces lipopoly-
saccharide (LPS)–stimulated HepG2-NS5A cell viability. Western blot
analyses of TLR4, cleaved poly(adenosine diphosphate–ribose) polymerase
(PARP), and Bcl-2 expression in pCDNA3 or pCDNA3-full-length human TLR4
(pCDNA3-TLR4)–transfected-HepG2-NS5A cells treated for 24 hours with LPS
(5 lg/mL). Blots were reprobed with tubulin-specific antibodies to assess
equal protein loading. TLR4/tubulin, cleaved PARP/tubulin, and Bcl-2/tubulin
ratios from 3 independent experiments were measured using Scion Image
software; data are expressed as means 6 standard deviations.

Figure 6. Hepatitis C virus (HCV) nonstructural protein 5A (NS5A)
inhibits lipopolysaccharide (LPS)–induced apoptosis in hepatocytes by
downregulating Toll-like receptor (TLR) 4 expression and enhancing Bcl-2
expression, thus impairing activation of initiator (caspases 8 and 9) and
effector (caspases 3 and 7) caspases and downstream signaling, as
shown by reduced poly(adenosine diphosphate–ribose) polymerase
(PARP) cleavage. FADD, Fas-associated death domain–containing protein.
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important role in lasting chronic infection and regulation of

inflammation. The enhancement of TLR4 signaling may have

therapeutic value, and the development of HCV NS5A-targeting

drugs could improve the pathogenesis of HCV infection [50].
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