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ABSTRACT

Motivation: One of the mutational processes that has been
monitored genome-wide is the occurrence of regional DNA copy
number alterations (CNAs), which may lead to deletion or over-
expression of tumor suppressors or oncogenes, respectively.
Understanding the relationship between CNAs and different cancer
types is a fundamental problem in cancer studies.
Results: This article develops an efficient method that can
accurately model the progression of the cancer markers and
reconstruct evolutionary relationship between multiple types of
cancers using comparative genomic hybridization (CGH) data. Such
modeling can lead to better understanding of the commonalities and
differences between multiple cancer types and potential therapies.
We have developed an automatic method to infer a graph model
for the markers of multiple cancers from a large population of CGH
data. Our method identifies highly related markers across different
cancer types. It then builds a directed acyclic graph that shows the
evolutionary history of these markers based on how common each
marker is in different cancer types. We demonstrated the use of this
model in determining the importance of markers in cancer evolution.
We have also developed a new method to measure the evolutionary
distance between different cancers based on their markers. This
method employs the graph model we developed for the individual
markers to measure the distance between pairs of cancers. We used
this measure to create an evolutionary tree for multiple cancers.
Our experiments on Progenetix database show that our markers
are largely consistent to the reported hot-spot imbalances and most
frequent imbalances. The results show that our distance measure can
accurately reconstruct the evolutionary relationship between multiple
cancer types.
Availability: All the code developed in this article are available at
http://bioinformatics.cise.ufl.edu/phylogeny.html.
Contact: nirmalya@cise.ufl.edu; tamer@cise.ufl.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
This article develops a systematic way of understanding the
progression of multiple types of cancers by analyzing aberrations
in gene copy numbers. Alterations in the tumor genome affects the
progression of tumors. It has been argued that the oncogenomic
evolution leaves characteristic signatures of inheritance, thereby
allowing to infer models of tumor progression by identification of
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Fig. 1. A plot illustrating the copy number status of the CGH data for 121
cases belonging to the retinoblastoma cancer type. The X- and Y -axis denote
the genomic intervals and samples, respectively. The gain and loss alterations
are plotted in light gray and dark gray, respectively. The vertical lines show
four cancer markers. The 25 irregularly spaced vertical lines at the bottom
of the plot shows the starting/ending positions of the chromosomes, 1, 2, ...,
22, x and y on the CGH data.

these signatures in genome-wide mutational data (Bilke et al., 2005).
One of the mutational processes that can be monitored genome-wide
is the occurrence of regional DNA copy number alterations (CNAs),
which may lead to deletion or over-expression of tumor suppressors
or oncogenes, respectively.

The distribution of CNAs in a given cancer type is not random,
and alterations occur at recurrent locations. For a broad range
of cancers or subtypes of the same clinico-pathological cancer
entity, characteristic patterns of recurrent alterations have been
observed (Forozan, 1997, Fig. 1). We call a CNA recurrent if it
is found at the same location in sufficiently large percentage of the
observed samples. Such recurrent alterations are also called markers.
For example, Figure 1 highlights four markers. More than one set
of alterations can trigger the same type of cancer. In other words,
a cancer type can have several signatures. We call the disorder
resulting from such alterations as subtypes of the same cancer.

An important method for genome-wide CNA screening is
comparative genomic hybridization (CGH) (Kallioniemi et al.,
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1992). CGH is a molecular-cytogenetic analysis technique for
detecting regions with genomic imbalances (gains or losses of DNA
segments). Applying microarray technology to CGH allows the
simultaneous, sequence-specific detection of the copy number state
of thousands of individual DNA fragments (Pinkel and Albertson,
2005). Raw data from CGH experiments is expressed as the
ratio of normalized fluorescence of tumor and reference DNA.
Normalized CGH ratio data surpassing predefined thresholds are
considered indicative for genomic gains or losses, respectively.
For chromosomal CGH, several ratio measurements are used for
the calculation of the regional copy number state (Jain et al.,
2001), while for array CGH various methods of averaging results
from spatially related measurements are used (Hsu et al., 2005).
Chromosomal and array CGH data have proven an important
resource for cancer cytogenetics (Desper et al., 1999; Gray et al.,
1994; Hoglund et al., 2005; Joos et al., 2002; Mattfeldt et al., 2001;
Vandesompele et al., 2005). For the communication of chromosomal
CGH results (on which this article is based), a reverse in situ
karyotype format (Mitelman, 1995) is used, describing imbalanced
genomic regions with reference to their chromosomal location.

Existing works infer tumor progression models based on
genetic events such as recurrent CNAs. Their models describe
the evolutionary relationship between events and consequently
expose the progression and development of tumors. One of the
existing works by Bilke et al. (2005), focus on the progression
of individual recurrent alterations. The time complexity of this
approach grows exponentially with the number of cancer types. The
Progenetix (Baudis and Cleary, 2001) database contains 20 different
cancer types. The total number of cancer subtypes is even much
larger than this. Liu et al. (2007) showed that on the average, each
cancer can be explained with around six different marker sets. Thus,
if we assume that each cancer is triggered by five different marker
sets on the average, the number of cancer subtypes in nature will
easily exceed 100. This makes the method by Bilke et al. impractical
as its time complexity will exceed 2100 for this kind of dataset. A
promising approach seems to consider the whole set of alterations
of a cancer and infer a model based on the alteration patterns of
different cancers. Its time complexity should also be polynomial of
the different working parameters.

Such models effectively utilize the molecular characters of
cancers and easily extend to large-scale analysis.
Contributions: in this article, our objective is to infer the progression
model for multiple cancers (or cancer subtypes) based on the patterns
of genetic alterations. (We will use term cancer subtype to denote
both cancer subtype or stage of cancer.) We assume that similar
evolutionary processes act on different cancers, so that closely
related cancers exhibit similar alteration patterns. We identify the
aberration patterns of a cancer based on the set of key recurrent
CNAs in this cancer.

This article has two major technical contributions:

(1) We propose a computational method to infer a graph model
for the markers of multiple cancers. We demonstrate the use
of this model in determining the importance of markers in
cancer evolution.

(2) We develop a new method to measure the evolutionary
distance between different cancers based on their markers.
We use existing distance matrix methods, such as Fitch–
Margoliash, to infer progression models for multiple cancers.

Our experiments on a Progenetix dataset with 5918 CGH cases
belonging to 23 clinico-pathological cancer categories (22 specific
entities and one ‘other’) show that our markers are largely consistent
to the reported hot-spot imbalances and most frequent imbalances.
We also generate phylogenetic trees for 20 cancer entities and
58 cancer subtypes. The results show that cancers with the same
histological compositions are well grouped together.

The rest of article is organized as follows. Section 2 briefly
introduces the preliminary knowledge. Section 3 extends the Bilke
et al.’s (2005) approach to infer a graph model for markers and
discusses its use. Section 4 proposes the novel distance measure for
multiple cancers based on a set of markers. Section 5 presents the
experimental results and some observations. Section 6 concludes
this article.

2 PRELIMINARIES
In this section, we briefly introduce some preliminary knowledge
related to our proposed approach. Section 2.1 presents a brief
discussion on the relationship between recurrent CNAs and cancer.
In Section 2.2, we discuss the concept of markers, which define
the key recurrent CNAs in a cancer. In Section 2.3, we discuss an
approach proposed by Bilke et al. (2005), which we extend for
inferring the progression of markers.

2.1 Markers and tumor development
Researchers have proposed a number of models to infer tumor
progression based on genetic alterations, including recurrent CNAs.
Vogelstein et al. (1988) inferred a chain model of four genetic events
for the progression of colorectal cancer. The presence of all four
events appears to be critical for colorectal cancer development.
Desper and colleagues proposed a branching tree model (Desper
et al., 1999) and a distance-based tree model (Desper et al., 2000)
by assuming the recurrent CNAs as a set of genetic events that take
place in some order. They inferred the models for renal carcinoma
to demonstrate the progression of genetic events in that cancer type.
Bilke et al. (2005) proposed a graph model based on the shared status
of recurrent CNAs among different stages of cancer. They found that
the pattern of recurrent CNAs in neuroblastoma (NB) is strongly
stage dependent. Pennington et al. (2006) developed a mutation
model for individual tumors and constructed an evolutionary tree
for each tumor. They identified a consensus tree model based
on the mutations shared by a substantial fraction of the tumor
population (Pennington et al., 2006). These and other studies were
successful in setting in context prior knowledge about the role of
individual cancer-related genes.

2.2 Marker detection
Due to the overlap between neighboring genomic intervals (Liu
et al., 2007), recurrent alteration intervals usually accumulate
together and form a region of recurrent alterations, which we
call recurrent region. Given a set of samples that belong to the
same cancer, a marker is an independent key recurrent alteration
representing a recurrent region. Previously, we proposed a dynamic
programming algorithm to identify the best R markers for a
set of CGH cases. We demonstrated that our markers capture
the aberration patterns well and improve the clustering of CGH
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cases (Liu et al., 2007). In Figure 1, we plot the four markers
identified in an example set of 121 CGH cases.

CGH data of an individual tumor can be considered as an
ordered list of status values, where each value corresponds to a
genomic interval (e.g. a single chromosomal band). The status can be
expressed as a real number (positive, negative or zero for gain, loss or
no aberration, respectively). We use this strategy and represent gain,
loss and no change with +1, −1 and 0, respectively. Figure 1 plots
CGH-derived copy number data from 121 cases of retinoblastoma.

The following notations are used for the rest of the article:

• Genomic interval: each chromosome in CGH data consists of
an ordered list of intervals called genomic interval. The value of
a genomic interval denotes the aberration type of that interval,
which can be 0, +1 and −1 for gain, loss or no aberration,
respectively.

• Segment: a segment is a contiguous array of intervals that
have same aberrant status values for all the contained genomic
intervals. Formally, sj[u,v] denotes a continuous run of

intervals {xj
u,xj

u+1,...,xj
v} in chromosome sj that starts at the

u-th interval and ends at the v-th where xj
u =xj

u+1 =···=xj
v �=0,

xj
u−1 �=xj

u, xj
v+1 �=xj

v.

• Recurrent region: a recurrent region is a segment that is present
in sufficient number of samples of a cancer type.

• Recurrent alteration: a recurrent alteration is a single genomic
interval present in an recurrent region.

• Marker: a marker is a recurrent alteration that is selected by a
marker selection algorithm. If there is more than one recurrent
alteration in proximity, only one of them is selected as a marker.
Each marker m in a cancer is represented by an ordered pairs
<p, q>, where p and q denote the position (genomic interval)
and the aberration type, respectively. The aberration type of a
marker is either gain or loss, denoted by 1 or −1, respectively.

• Support: Let S be a set of N CGH cases {s1, s2, ..., sN }. Let

xj
d denotes the alteration value (i.e. 1, −1 or 0) for case j at the

d-th genomic interval, ∀d,1≤d ≤D, where D is the number of
genomic intervals. Let m=<p,q> be a marker. We denote the
independent support of sj to m as δ(sj,m). Here, δ(sj,m)=1

if and only if xj
p =q. Otherwise, δ(sj,m)=0. We define the

total independent support value of marker mt as the sum of its
support from all the cases. Formally, Supt(m)=∑N

j=1δ(sj,m).
We will use term support to denote Supt(m) in this article.

2.3 Tumor progression model
Bilke et al. (2005) proposed an approach of inferring a tumor
progression model for NB with four different subtypes from CGH
data. They describe the relationship between different subtypes
based on the recurrent alterations shared by these subtypes. Their
idea first identifies a set of recurrent alterations. Each recurrent
alteration belongs to one of the following three categories: common
(shared by all the subtypes), shared (shared by two or more subtypes)
and unique (distinct to only one subtype). They propose a statistical
model to identify recurrent alterations and compute the shared status
of these alterations. Each shared status is a set of subtypes that
contain this recurrent alteration.

Fig. 2. Two examples of Venn diagram (left) of two sets and its
corresponding graph model (right). The three sections in the Venn diagram
are denoted as A, B and C, respectively. In (a) both the cancer types A and
B have some common markers and each contains additional non-common
markers. So they have inherited from an unobserved common subtype. In (b)
the markers of A is a proper subset of that of B. So B is a derivative of type A.

The shared status of recurrent alterations can be described using
a Venn diagram. For example, Figure 2 shows two Venn diagrams
(left) of two sets, represented by two overlapping circles. Let S1
and S2 denote the left and right circle, respectively. There are three
distinct areas (denoted as sections) marked by A, B and C in each
Venn diagram. Each section represent a possible logical relationship
between the two sets. For example, sections A and C represent S1 −
S2 and S1 ∩S2, respectively. A section is called non-empty, if it
contains some members. Each non-empty section is marked by a
distinct color in Figure 2. The component of a non-empty section is
defined to be the sets whose members are contained in this section.
For example, the components of sections A and C are {S1} and
{S1,S2}, respectively. In general, the number of distinct sections S
in a Venn diagram of K sets can be as large as S =2K −1, which is
also the number of different shared status of a recurrent alteration
between K cancer subtypes. Since each section can be empty or
non-empty, there are totally 2S distinct Venn diagrams for K sets.

The authors build a Venn diagram of four sets for the four different
subtypes of NB. In the Venn diagram, each set corresponds to one of
the four NB. The members of each set are the recurrent alterations
that belong to that subtype of NB. The intersection of two main sets
represents their shared recurrent alterations.

The authors proposed a graph model based on the structure of
Venn diagram to infer the progression of four different subtypes of
NB. The resulting graph is a directed acyclic graph with each vertex
corresponding to a non-empty section in the Venn diagram. An edge
connects from a vertex u to a vertex v if the recurrent alterations of
u is a subset of that of v and there is no vertex w whose markers are
a proper subset of that of v and a proper superset of that of u. The
number of vertices in the resulting graph is bounded by min{S,T},
where T is the number of recurrent alterations. For example, the
graph models corresponding to cancer subtypes in Figure 2 is shown
on the right of the figure. The authors demonstrate that, with the help
of such a model, it is possible to identify tumor progression in CGH
data. However, their approach has several limitations.

• First, their methods of calculating the shared status of each
recurrent alteration is very computationally expensive. The
time complexity is exponential to the number of cancers K .

• This method can model the progression of markers. It, however,
cannot model the evolutionary relationship among different
cancer types.
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In addition to these limitations, Bilke et al. do not provide a
systematic algorithm for mapping the Venn diagram to the graph
model automatically. These limitations make it impractical to use
their method for large-scale datasets composed of many cancers.

3 PROGRESSION MODEL FOR MARKERS
In this section, we extend Bilke’s approach (Bilke et al., 2005)
to infer progression models for markers of multiple cancer types.
Studies of the evolution of markers would be of obvious value
to define gene loci relevant for the early diagnosis or treatment
of cancer. It helps to answer questions about which markers tend
to occur in many cancers, which markers are likely to occur
together, etc. The main difference between our approach and the
previous work is that we focus on markers instead of every recurrent
alteration.

We compute the shared status of markers as follows. A marker
identified in one cancer type represents a recurrent alteration region
in this cancer type (Fig. 1). However, for any two or more cancers
containing the same recurrent region, they may not have markers
identified at the same position due to the noise in the aberration
patterns. Therefore, markers in different cancers representing the
same recurrent region should be considered shared by these cancers.

First, we define the overlap coefficient between a marker and its
neighboring intervals. Let C denote a set of cases belonging to the
same cancer. Let m=<p,q> and d,1≤d ≤D denote a marker in C
and a genomic interval, respectively. For each case sj ∈C, we define
Ej(d,m)=1 if there exists a segment sj[u,v] overlapping with both

intervals d and p, i.e. u≤d,p≤v and xj
u =q, otherwise, Ej(d,m)=0.

The function Ej(d,m) indicates that the alterations at d and p belong
to the same segment in sj and can be caused by the same point-like
genomic alteration. We compute the overlap coefficient between d
and m as

OC(d,m)=
∑|C|

j=1Ej(d,m)

Supt(m)

where |C| denotes the size of C and Supt(m) denotes the support
value of marker m in C. A large value of Cor(d,m) implies that
intervals p and d belong to the same recurrent region that is
represented by the marker m.

Next, we define that a marker m=<p,q> in cancer Ci is shared
by Cj if and only if the following condition is reached: there is a
marker m′ =<p′,q′ > in cancer Cj such that q′ =q and OC(p,m′)>
ε, where ε is a user-defined threshold. The larger the value of ε, the
harder that a marker is shared among multiple cancers due to noise
in the data. Intuitively, this definition indicates that a marker mi in
Ci is shared by another cancer Cj if there exists a marker mj in Cj
such that mj is highly overlapped with mi. To compute the shared
status of a marker in Ci, we visit every cancer other than Ci. This
makes the time complexity linear in the number of cancers K . We
denote the shared status S(m) of a marker m as the set of cancers
that share this marker, i.e. S(m)∈P({C1,...,CK }), where P denotes
the power set operation.

We propose an algorithm that generates a progression model for
K cancers based on markers. The progression model generated by
our algorithm is a directed acyclic graph. Each node of this graph
corresponds to a non-empty set of markers. The set of markers

corresponding to different nodes of this graph do not intersect. Our
algorithm consists of three steps:

• First step: we identify an optimal set of R markers for each
cancer using our marker identification program (Liu et al.,
2007). These markers represent significant recurrent alterations
specific to each cancer.

• Second step: for each marker in each cancer, we compute the
shared status of this marker using the method we described
above. If some markers in multiple disease entities are identical
(both position and type), we think them as a single marker and
compute its shared status once.

• Third step: the logical relationship between K cancers
corresponds to a Venn diagram of K sets. There are totally
S =2K −1 distinct sections in this Venn diagram. Given a
marker m with shared status S(m), the section corresponding
to S(m) is non-empty. We mark all the non-empty sections in
the Venn diagram based on the shared status of all markers. We
then convert the Venn diagram to a graph model as follows.
We create a vertex V for each non-empty section and associate
it with the markers whose shared status corresponds to this
section. We define the height of this vertex, denoted as H(V ),
as the number of components in the corresponding section. We
visit the vertices in the descending order of their heights. For
each pair of vertices Vi and Vj,H(Vi)<H(Vj) , we create an
edge from Vi to Vj if both of the following conditions hold:

(1) The component set of the section corresponding to Vi is a
true subset of that of Vj .

(2) There is no other vertex Vk such that the component set of
the section corresponding to Vk is a superset of that of Vi
and a subset of that of Vj .

We analyze the time complexity of this algorithm as follows.
The time complexity of the first step is O(DNR) as analyzed in
our previous work (Liu et al., 2007), where D and N denote the
number of genomic intervals and number of cases of all K cancers,
respectively. The time complexity of the second step is O(TNR),
where T is the cardinality of set consisting of the union of all
markers. In the third step, the number of vertices is bounded by
min{S,T}. Since T ≤K ×R, the time complexity of this step is
O(K2R2) in the worst case. Since we have D≥T , the overall time
complexity is O(DNR)+O(K2R2). In general, we have D	R,N 	
K2, the overall time complexity can be written as O(DNR).

The graph created by our algorithm can be used to describe
the hierarchical or evolutionary relationship between markers
representing multiple stages between a single cancer type or among
the markers of different cancer types. We term a node as a root
node if it does not have any incoming edges. The nodes that are
close to a root (there can be multiple roots) denote the aberrations
that started in earlier stages. From this perspective, markers are not
equally important. The markers that are parents of other markers
in the hierarchical representation are common to multiple cancers.
Thus, difference at parent marker positions should contribute more
to the distance between different cancers than the child markers.

4 PROGRESSION MODEL FOR CANCERS
The aberration pattern defines the molecular characteristics of a
cancer. We assume that cancers with similar aberration patterns
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are close to each other in the evolutionary history. The proper
identification of the similarities between cancers will expose the
underlying mechanism of cancer development and benefit the
diagnosis and treatment of cancers.

Phylogenetic tree is a simple and efficient model that infers
evolutionary relationship among three or more cancers. A key
challenge that needs to be addressed to employ existing distance
matrix methods for tree construction is to find a biologically
meaningful distance function between cancers. Next, we propose
a novel measure for computing the distance between cancers based
on their aberration patterns. Since markers are a set of recurrent
alterations that define the aberration patterns of a cancer, our distance
measure computes the distance between cancers based on their
markers. Formally, let Ci and Cj denote two cancers. Let Mi =
{mi,1,...,mi,R} and Mj ={mj,1,...,mj,R} denote the corresponding
R markers identified in Ci and Cj , respectively, where pi,1 <pi,2 <

···<pi,R and pj,1 <pj,2 < ···<pj,R. Please note that pi,k may not
equal to pj,k for any 1≤k ≤R. To compute the distance between Ci
and Cj , we first align the markers in Mi to those in Mj . The goal
of this alignment is to map Mi and Mj into two high-dimensional

vectors M̂i and M̂j ∈Rg, where g≤2R is the number of dimensions
of the new vectors, such that the new vectors contain consensus
information about pattern of alterations in Ci and Cj .

We say that a pair of markers mi,k and mj,r are overlapping if
they satisfy either one of the following two conditions:

(1) Both markers appear at the same interval and have the same
type, i.e. pi,k =pj,r and qi,k =qj,r

(2) Both markers represent the same region of recurrent
alterations, i.e. OC(pi,k,mj,r )>ε and OC(pj,r ,mi,k)>ε,
where ε is a user-defined threshold for overlap constraint.

In Section 3, we argue that markers are not equally important
in the progression of cancers. A marker that is common to many
cancers usually represents a fundamental characteristic of cancers.
Therefore, we assume that markers shared by many cancers are more
important than those shared by a few cancers. The intuition behind
this reasoning can be explained as follows. A marker that triggers
most of the cancers has survived the evolution of cancer progression
with high likelihood. The markers that are cancer specific have
most likely appeared later in the evolutionary history and created
the underlying cancer alteration pattern. As a result, the deviation
in genomic alterations corresponding to older markers corresponds
to larger distance between two cancer types as the age of the
genomic alteration increases. We incorporate this idea into the
mapping process. We assign weights to markers in each cancer.
The weight of a marker is the number of cancers that share this
marker. Let Wi ={wi,1,...,wi,R} and Wj ={wj,1,...,wj,R} be the
vectors of weights for markers in Mi and Mj . Here, wi,k and wj,k
denote the weights the k-th marker in Mi and Mj .

The mapping process works as follows. Each time we pick up a
pair of markers from Mi and Mj . We add a pair of new dimensions

to M̂i and M̂j , respectively. The values of the added dimensions
are determined by three attributes of markers: support, weight
and type. Let �(mi,k)=Supt(mi,k)×wi,k ×qi,k . If the two markers
are overlapping, the values added into M̂i and M̂j are �(mi,k)
and �(mj,r ), respectively. If two markers are not overlapping, we
focus on the marker at a smaller genomic interval. Without loss of
generality, we can assume pi,k <pj,r . There is no marker at interval

pi,k in Cj . However, we need to compute the information of this
interval across both cancers so that the difference of this interval can
be taken into account. So we assume that there is a ‘hypothetical’
marker at pi,k in Cj . This marker is of the same type and weight
as mi,k . However, the support of this marker is computed based on
the samples in Cj . Let m′ =<p′,q′ > in Cj denote this hypothetical
marker. We have p′ =pi,k,q′ =qi,k and w′ =wi,k . Please note that
Supt(m′) depends on the alteration pattern in Cj and may not equal to

Supt(mi,k). We add the two values, �(mi,k) and �(m′), into M̂i and
M̂j , respectively. Next, we choose another pair of markers and repeat
the above procedure until all the markers have been processed.

The algorithm of the mapping process of two sets of markers is
implemented as follows.
Inputs: Mi ={mi,1,...,mi,R} and Mj ={mj,1,...,mj,R} where pi,1 <

pi,2 < ···<pi,R and pj,1 <pj,2 < ···<pj,R. Wi ={wi,1,...,wi,R} and
Wj ={wj,1,...,wj,R} are the vectors of weights for markers in Mi
and Mj

1. Initialize: M̂i =M̂j =[]; k =r =1;

2. while k ≤R and r ≤R

(a) if mi,k and mj,r are overlapping

M̂i =[M̂i,�(mi,k)]; M̂j =[M̂j,�(mj,r )]; k =k+1; r =
r+1;

(b) else if pi,k <pj,r

Create a hypothetical marker m′ same as mi,k in Cj;

M̂i =[M̂i,�(mi,k)];M̂j =[M̂j,�(m′)];k =k+1

(c) else if pi,k >pj,r

Create a hypothetical marker m′ same as mj,r in Ci;

M̂i =[M̂i,�(m′)];M̂j =[M̂j,�(mj,r )];r =r+1

(d) else
M̂i =[M̂i,�(mi,k)];M̂j =[M̂j,�(mj,r )];k =k+1;r =
r+1

3. while k ≤R

Create a hypothetical marker m′ same as mi,k in Cj; M̂i =
[M̂i,�(mi,k)];M̂j =[M̂j,�(m′)];k =k+1

4. while r ≤R

Create a hypothetical marker m′ same as mj,r in Ci; M̂i =
[M̂i,�(m′)];M̂j =[M̂j,�(mj,r )];r =r+1

Outputs: M̂i,M̂j

Once we have the aligned vectors M̂i and M̂j , we use Extended
Jaccard coefficient (Tan et al., 2005) to compute the similarity
between the two vectors. Extended Jaccard coefficient is widely
used as a similarity measure in vector spaces. It retains the sparsity
property of the cosine similarity while allowing discrimination of
collinear vectors. For example, given two vectors M̂i =[0.1,0.3]
and M̂j =[0.2,0.6], the cosine similarity does not discriminate the
difference between them and the similarity value is computed as 1.
However, in our case, M̂i and M̂j are different because they denote
recurrent alterations in Ci and Cj with different frequencies. The
Extended Jaccard coefficient is computed as follows.

EJ(M̂i,M̂j)=
M̂i ·M̂j

‖M̂i‖2 +‖M̂j‖2 −M̂i ·M̂j
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The Extended Jaccard coefficient of any two vectors takes value
within the range of [0, 1]. It is easy to convert Extended Jaccard
coefficient to distance by subtracting it from one, i.e. D(Ci,Cj)=1−
EJ(M̂i,M̂j). We compute the distance D(Ci,Cj) for any 1≤ i,j≤R.
As a result, we construct the distance matrix for K cancers. We
apply existing distance matrix method, such as unweighted pair
group method with arithmetic mean (UPGMA), to construct the
phylogenetic tree.

5 EXPERIMENTAL RESULTS
Dataset: with 15 127 cases from 571 publications as of December
2007, Progenetix is the largest resource for published chromosomal
CGH data (Baudis and Cleary, 2001) (http://www.progenetix.net/).
For the purpose of this article, we use a dataset with 5918
clearly malignant epithelial neoplasias (ICD-O-3 xxxx/2 and
xxxx/3), a descriptive overview of which had been published
previously (Baudis, 2007). From the biomedical perspective, this
dataset could be divided into 22 clinico-pathological disease
categories. Additional entities consisting of <40 cases each were
summarily moved to an ‘other’ category.

As result of the Progenetix database format transformation,
for each case the genomic imbalance status for 862 ordered
intervals had been extracted from the karyotype annotation. This
information represents the whole genome copy number status
information, in the maximum resolution feasible for cytogenetic
methods. The value of each interval is 1, −1 or 0, indicating the
gain, loss and no change status, respectively. We have used the
cases corresponding to 20 different carincomas in this dataset.
The number of cases for these carincomas vary from 42 to 640.
The details of the dataset is shown in Table 1 of the Supplementary
Material. For simplicity, we use the following abbreviations for
some of these carincomas. CRC: colorectal adenocarcinoma; HCC:
hepatocellular adenocarcinoma; HNSCC: head-neck squamous cell
carcinoma; NSCLC: non-small cell lung carcinoma; ES: esophagus
carcinoma; RCC: renal carcinoma; NPC: nasopharynx carcinoma;
NE: neuroendocrine carincoma and carcinoid; MEL: melanocytic;
PAC: pancreas adenocarcinoma; and SCLC: small cell lung
carcinoma.
System specifications: we developed our code using MATLAB and
ran our experiment on a system with dual 2.59 GHz AMD Opteron
Processors, 8 GB of RAM and a Linux operating system.

5.1 Results for marker models
In this experiment, we infer a progression model for markers. We
perform each step one by one and discuss the results of each step as
follows. In the first step, we identify an optimal set of 20 markers for
each cancer. We use the marker selection algorithm from Liu et al.
(2007). The number of markers is decided based on observation by
Baudis (2007) that most of the cancer subtypes can be effectively
represented by around 20 markers. Please note that we exclude
100 (peri) centromeric intervals because (i) they mostly consist of
repetitive sequence (ALU repeats, etc.) without encoding genes; and
(ii) they have technical or interpretation difficulties. The markers are
identified from the remaining 762 intervals.

An existing work by Baudis (2007) has identified the imbalance
hot spots in clinico-pathological entities in the same dataset, using
an ‘average profile’-based approach. We compared our markers with

the reported imbalance hot spots for validation test. Due to the
limitation of space, here we only present the comparison results
for HNSCC disease category.

• Imbalance hot spots identified by Baudis (2007):
gains: 3q26 (59.2%), 8q24 (40.8%), 11q13 (31.9%, many
specific high-level), 5p (26.5%), Xq, 1q, 7q(21), 12p, 17.
losses: 3p (30.1%), 18q(22) (22.4%), 9p (22.4%), 11q24
(19.2%), 4, 5q, 8p, 13.

• Markers identified by our method:
gains: 3q26.2 (57.2%), 8q24.3 (41%), 11q13.4 (31.9%), 5p14.3
(26.5%), Xq28 (23%), 7q21.3 (20.9%), 12p13.1 (17.7%),
17q25.3 (17.7%), 20q12 (17.7%), 19p13.11 (16.8%), 1q31.3
(16.2%), 18p11.23 (15.9%).
losses: 3p26.3 (30.7%), 18q23 (22.7%), 9p23 (22.4%), 11q25
(19.2%), 4p14 (18%), 5q21.3 (15.3%), 8p23.3 (16.2%),
13q21.33 (16.5%) .

In the above results, markers or hot spots are listed with detailed
locus and frequency information. Gains and losses are evaluated
separately. The hot spots or markers are sorted in descending
frequency of occurrence. We identify markers as individual intervals,
while Baudis identified the regional hot spots from summary data.
Our results are highly compatible to reported results if we consider
a marker as a representative of a region. We successfully identify all
the hot spots identified by Baudis. We also identify additional hot
spots (e.g. 18q23) that has significant support.

In the second step, for each disease entities, we compute the shared
status of each marker identified in this cancer using the method we
described in Section 3. We set the threshold ε to 0.8. We tried with
different values for ε and used 0.8 as it was giving best results.
However, we believe that our method is not too sensitive in terms
of those parameters, if we select those parameters from the near
neighborhoods of the given values. To compare with the reported
most frequent imbalances over all cancers, we analyze the markers
that are in the same regions. The comparisons of imbalance with top
frequencies are shown as follows.

• Most frequent imbalances reported by Baudis (2007):
+8q: ubiquitously high (exception NE and thyroid)

• Markers identified by our method and their shared status:
+8q23.1, +8q23.2, +8q23.3: 19 cancers (exception thyroid)
+8q24.13, +8q24.23, +8q24.3: 18 cancers (exception NE and
thyroid)

• Most frequent imbalances reported by Baudis (2007):
−13q: occurring in most carcinoma types (exception cholangio
and SQS)

• Markers identified by our method and their shared status:
−13q21.1, −13q21.2, −13q21.33: 18 cancers (exception CRC,
gastric, cholangio and SQS)
−13q22.3: 15 cancers (exception SCLC, CRC, prostate,
thyroid, gastric, cholangio and SQS)

The results show that our approach discovers the most frequent
markers in a consistent way to Baudis’ work. Please note that
markers are individual intervals instead of chromosomal regions.
Additionally to the markers reported by Baudis et al. as top-scorers in
the different entities, our method detected other regions, for example
+17q and +7p which both are shared by more than 12 cancers types.
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Table 1. Quality of the phylogenetic trees according to three different
criteria: NMI, entropy and parsimony. Large NMI value and small entropy
and parsimony values are desirable. The numbers given in bold show the
best result obtained among all trees in each category.

Tree construction Markers Quality of the trees

method NMI Entropy Parsimony

Fitch–Margoliash
Weighted 0.68 0.69 8
Unweighted 0.62 0.82 9

Neighbor joining
Weighted 0.67 0.81 9
Unweighted 0.69 0.74 9

UPGMA
Weighted 0.67 0.80 10
Unweighted 0.60 0.89 10

In the third step, we build a graph model based on the shared
status of markers. The model contains 119 vertices and 385 edges,
which makes it hard to display in this article format. However,
we have uploaded the graph in a tabular format in a separate file
as a Supplementary Material. In that file, each entry corresponds
to a vertex. Each vertex is a set of markers that are shared by
some cancer subtypes. The model conveys useful information about
the importance of markers. We use this information in our next
experiments in Section 5.2.

5.2 Results for phylogenetic models
In this experiment, we infer progression models for cancer subtypes
using the distance-based approach described in Section 4. We
compute the distance matrix of 20 cancers listed in Table 1 of
the Supplementary Materials based on the markers reported in
Section 5.1. We test three different tree construction method, namely
Fitch–Margoliash, neighbor joining and UPGMA in PHYLIP
package (Felsenstein, 1989).

5.2.1 Quantitative evaluation Our first experiment measures the
effect of computing the distance between cancers based on the
importance of markers on phylogenetic tree construction. To do this,
we construct phylogenetic tree with and without assigning weights
to the markers. We then label each cancer type with the histology
group it belongs to. We quantitatively evaluate the goodness of each
tree using three different measures:

• NMI: this metric measures how well a given set of clusters
separate labeled data. It takes values in [0, 1] interval, where 1
shows perfect separation. We measure the NMI at each internal
node by considering the nodes in its left and right subtree as
two clusters. We report the average NMI of all internal nodes.

• Entropy: Shannon’s entropy of an internal node of a tree
measures the uniformity of the labels of all the nodes of the
subtree rooted at it. It takes values in [0, 1] interval, where 0
shows that all the nodes have the same label.

• Parsimony: this value shows the minimum number of unit
mutations needed explain a given phylogenetic tree. The unit
mutation in this tree changes one histology label to another.

Table 1 shows the average quality of all the trees we tested. Several
observations follow from these results. First, Fitch–Margoliash

ovarian {D}

NPC {C}

prostate {D}

MEL {G}

uterus {D}

HCC {D}

breast {D}

PAC {D}

CRC {D}

gastric {D}

bladder {F}

thyroid {A}

NE {A}

RCC {A}

ES {E}

SCLC {B}

NSCLC {E}

cervical {E}

vulva {C}

HNSCC {C}

Fig. 3. Phylogenetic tree of 20 cancer entities. The labels/colors indicate the
following histologies. A: endocrine and clear, B: small cell neuroendo, C:
squamous, D: adenocarcinomas, E: mixed squamous/adeno, F: transitional,
and G: melanoma.

produces the best tree in terms of entropy and parsimony. It is the
second to the neighbor joining in terms of NMI, but the difference
is little between the two. Particularly, we observe significant
improvement in terms of the parsimony measure. The definition
of parsimony measure implies that the probability of having a tree
is exponential in the number of mutations needed for that tree.
Assume that, on the average, the probability of mutating the genes
to transform the cancer in one histology to another is p. Then
the likelihood of the UPGMA tree is p2 times that of the Fitch–
Margoliash tree as UPGMA requires two more mutations. Our final
important observation from this table is that weighing the markers
often improves the quality of the trees. The exception was the
neighbor joining algorithm, where the quality drop was not big.

5.2.2 Qualitative evaluation From Table 1, we conclude that the
Fitch–Margoliash method with weighted markers produces the best
tree. We thus use this method in the rest of this section.

Figure 3 shows the phylogenetic tree constructed on all cases of
all cancer types. The leaf nodes of the trees correspond to cancers
(e.g. clinico-pathological cancer entities). We mark these cancers
using different colors as well as capitalized letters based on the
histological composition of majority of cases in this cancer. Each
color corresponds to a capitalized letter. Different colors (letters)
encode different histological compositions of cancers. The internal
nodes represent hypothetical cancers. Since these intermediate
cancers may contain daughter branches from completely different
histological cancer, they have to be viewed as common biological
feature sets rather than truly occurring clinico-pathological cancer
entities.

The phylogenetic tree in Figure 3 organizes cancer types with
same histological composition closely in the same subtree for many
of the cancer types. This correlation is in concordance with the
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view that cancer clones may arise from tissue-specific cancer stem
cells (Reya et al., 2001), with a similar regulatory program targeted
by genomic aberrations in related tissues.

To strengthen the claim that cancers that are in proximity in the
phylogenetic tree are closely related we refer to available literature.
First, we focus on cancers with same histologies. According
to Lee et al. (2005), PIK3CA gene, which is an oncogene,
is frequently mutated in breast carcinomas and hepatocellular
carcinomas. Katoh et al. (1996) suggest a similarity of gastric and
colorectal adenocarcinoma in terms of GSTM1 and GSTT1 genetic
polymorphism. An obvious question is whether similar evidences
exist for the cancer types that belong to different histologies, but
are located closely in the phylogenetic tree. Indeed, Kurzrock
et al. (1995) show that abnormalities in the PRAD1 (CYCLIN
D1/BCL-1) oncogene are frequent in cervical and vulvar squamous
cell carcinoma cell lines.

5.2.3 Running time results We executed our code on a Linux
machine with Intel Xeon 2.7 GHz processor and 5 GB RAM. The
first step that uses Rsim for clustering ran for almost 6 h. The second
step that generates the progression model of markers completed in
15 min. The next step that saves the distance matrix for all cancer
entities required 30 min. The final step that generates the phylogeny
model for the cancer types required a few seconds. The entire
program completed in 7 h.

Due to the space limitations, we report further experimental
results that analyze a subtree of the phylogenetic tree in Figure 3 in
Supplementary Material.

6 CONCLUSIONS
We have developed an automatic method to infer a graph model
for the markers of multiple cancers. We demonstrated the use of this
model in determining the importance of markers in cancer evolution.
We also developed a new method to measure the evolutionary
distance between different cancers based on their markers. We used
this measure to create an evolutionary tree for multiple cancers.

With the application of our modeling approach to a set of
more than 4600 epithelial neoplasias (carcinomas) with genomic
imbalances, we can draw some preliminary conclusions:

(1) Marker determination and marker-dependent subset
generation are powerful tools for structuring large CGH
datasets.

(2) Phylogenetic modeling of 58 cancer subtypes with unique
genomic marker sets shows a high concordance between
branch association and histological subtype

(3) Cancer subtypes with a high level of genomic instability have
overall similar imbalance patterns, which may reflect their
origin from earlier, less-determined progenitor cells and/or
tissue-independent mechanisms responsible for high-order
genomic instability.

The important oncogenomic result of our work is the description
of a closer relation between some tumor subsets/entities, which is
related to rough histopathological grouping (e.g. adenocarcinomas
versus squamous cell). This goes beyond the single gene aberrations
described before, and supports statements made by us based on
frequency-based clustering (Baudis, 2007).

While our approach as described here used rough histological
group classification as a reference, a refined dataset combined with
different reference qualities (e.g. clinical parameters) should provide
a significant contribution to the overall perception of genomic
instability in cancer development.
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