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Distribution of the chi-squared test in nonstandard situations
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SumMARY

The distribution of the y3 test under the null hypothesis is studied, when the parameters are
estimated by the method of moments. A general formula, applicable also to other situations, is
given. Three examples are studied in more detail and numerical results are given, indicating
how unsafe it can be to use a 2 distribution with a number of degrees of freedom smaller than
or equal to the number of cells.
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1. INTRODUGCTION
The standard theorem on the asymptotic distribution of the x® test,

2 k (ni—nﬁi)z
X {§1 nP;
is given, e.g. by Cramér (1946, p. 427) or Rao (1973, p. 391), and rests on several assumptions
about the true distribution of the observations and the estimators of any unknown parameters.
These assumptions are not satisfied in practice mainly for the following reasons:

(a) estimators are obtained from the ungrouped date rather than from the grouped
observations;

(b) the cells are often random, i.e. are determined by a first look at the observations;

{c) the method of estimation is not efficient.

Points (a) and (b) were discussed by Chernoff & Lehmann (1954) and by Watson (1958). In
both cases it is safe to consider X® as having a y? distribution with & — 1 degrees of freedom,
the level of significance being then underestimated.

A discussion of (c) for the method of moments is given. It seems that the formulae derived
could be easily applied to other estimates. It turns out that in some cases, not at all ‘patho-
logical’ ones, it would be very unsafe to use a x? distribution with & — 1 degrees of freedom.

The following notation will be used in this paper. Let f(x,6,, ...,0,) = f(x,0) be the probability
density of each observation under the null hypothesis. Let A, ..., A, be the x2 cells and

Dy = p0) = fmf(a:,ﬁ)dx E=1,...,k
their probabilities.
Denote by n,, ..., n, the observed frequencies and let ¥V = (v,, ..., v,)T = (v,) be the vector
with components

v = (ni—mi)/’\/(np() (" =1, °"’k)’ A= (‘/pl’ veny \/pk)T’

M = ((m,)) = ((3%%)) G=1,...kj=1,..,q).

Notice that J = MTM is the information matrix of the grouped data and that MTA = 0.
Finally, let X ~ F mean that F is the distribution function of the random variable X.
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2. MAIN THEOREM AND SOME EXAMPLES

TarorEM. Let X have a p-dimensional normal distribution with expectation 0 and covariance
matriz Z; let A be a p x p symmetric mairiz. The quadratic form XTAX is then distributed as
Ayi+ ...+ A5 with y,, ..., y, tndependent N(0,1) and A,, ..., A, the not necessarily different
esgenvalues of AX.

Remark. This theorem is well known and is quoted, e.g. in a slightly different form, by
Searle (1971, pp. 57, 69), who also gives several references. Therefore, I will not give the proof;
the theorem is, however, sometimes misquoted in the form that XTA4X has a y® distribution if
and only if AX is idempotent. This is correct if  is not singular, but not in general. Also, the
theorem is mostly given and proved under the assumption that X is not singular. The following
corollary is an immediate consequence of the theorem.

CoroLLARY. Constder the x® test
E
X2 = ‘Zl (ns— 0B, (nDy),
where the D;’s are either given or estimated. If, asymptotically, V ~ Ni(0,X), then X? = VTV 48
asymptotically distributed as ZA,y3 with A, ..., A, the eigenvalues of X and y,, ..., ¥y, tndependent
N(0,1).

The following three examples are taken from the classical theory of x® tests:

Ezample 1. If p,, ..., p; are given, ¥V is asymptotically normal with ¥ = I — AAT, ¥ being

idempotent with rank k— 1, X® is y? with £ — 1 degrees of freedom.

Example 2. For the estimation of p,, ..., p; by maximum likelihood from the grouped data
(Rao, 1973, p. 392), T = (I —MJ*M7T) (I - AAT)(I - MJLMT), and X is idempotent with
rank k- g— 1, where ¢ is the number of estimated parameters. Therefore, X2 has a ¥ distribu-
tion with £ —¢— 1 degrees of freedom.

Ezxample 3. For the estimation of p,, ..., p; by maximum likelihood from the ungrouped data,
it was proved by Chernoff & Lehmann (1954) that

X2 Xt ALY+ ALY,
with y,, ..., 4, independent N(0,1) and 0 < A, ..., A, < 1 the eigenvalues of & certain matrix.
In order to reject the null bypothesis it is safe to take X2 distributed as y® with k — 1 degrees of
freedom.

3. A GenrErAL ForMULA

Assume now that the parameter 6 is estimated by some method giving an estimate § and
corresponding estimates of p, as

Bi= [ S0 =20

To find the asymptotic distribution of X2 the asymptotic distribution of
V = (8) = (0~ 2PN (P))
is required. Let us make the following assumption.
Assumption A. Assume that, asymptotically, -

{?(;;11;1’ ...’”j(-:wﬂsk, Jn(8,—6,), ""Jn(yq—ﬁq)}T - N);.,.q{O, (I_O{}AT g)}

for some C and 7. Notice that OTA = 0.
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The agsumption will usually be satisfied in practice, because many statistics like central and
raw moments and quantiles, and therefore functions of them, are asymptotically normal. If the
assumption is satisfied and all functions involved are regular enough, e.g. with continuous
derivatives, the following result can be easily obtained, in almost exactly the same way as by
Rao (1973, p. 394):

I-AAT CHMT

z=(1-1)[ e MTMT][_H=I—AAT—(MCT+CMT)+MTMT. ()

Because CTA = MTA = 0 and AAT = 1 thematrix ] — X = AAT+ (MCT+CM™)— MTMT™ has
always an eigenvalue one, while for its rank we have
r(l —X) < r(AAT) +2{(C— MT)MT} +r(MCT) < 2+ 1.

Therefore assuming k > 2¢, which will generally be true in practice, Z has always at least
k —2g —1 eigenvalues equal to 1 and one eigenvalue 0; that is, asymptotically,

—_ 2g k-1
=V~ A4+ X 9
i=1 {=2g¢+1

withy,, ...,y,_, independent N(0, 1) and A,, ..., A4, the eigenvalues of  possibly different from
0 and 1.

4. ONE-PARAMETER FAMILIES OF DENSITIES

In a family f(x, 8) of densities let § be estimated by the method of moments.

Withy = E(X) = fa:f(a:, 0)dx = ¢(0), 0% = var (X) = 0?(f), and assuming that x is a function
of 6, we define 6 = f,(x) and its estimate & = f,(m), where m = X = m, = n12X,.

Assumption 4 is certainly satisfied under weak assumptions on f and f;.

From, for example,

1
cov {(m—np)(p} = - (=)0, O)du = 4,0),
DiJa
and by setting GT = (4,, ..., 4,) and omitting for simplicity the argument 6, we obtain
I-% = AAT+ dfl e+ o) - (dfl ) MuT @)
with rank < 3 and an eigenvalue 1. With
a =d—flGTM, b =‘i-’f1@'rg, ¢ =d—f1MTM, v =é‘ﬁa'a
du au du du

the nontrivial eigenvalues of I — X can be found from the equation

A3—(2a—vc)A+at—bc = 0.
Notice that
w-to = (L)' (e - @0 (i) <

with equality holding, for df,/du + 0, if and only if G and M are linearly dependent. If this is
not the case the roots of the above equation are of different sign and one of the eigenvalues of
2is > 1.
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Example 4. For a normal distribution with o known,

— 2
7(@.0) = @notytexp{ -3(2=2)] w=o)
It is easy to verify that @ = 02M,v=0%and 1-A = 1 - MTMo? < 1.

Example 5. For a gamma distribution with p known,

Sz, 0) = T,%e-"zzv-l (p > 0,0 > 0).

Here u = p/0 and o*=p[6? Also G=—-M, v=—1 and 1-A=1-MTMp[u?< 1. In
both examples the moment estimate coincides with the maximum likelihood estimate based
on the ungrouped data. Therefore, the result 0 < 1 — A < 1 could have been predicted following
Chernoff & Lehmann (1954).

Ezample 8. For a gamma distribution with a known,

f(z,0) = F"(”;—)e—azzﬂ—l (@ >0,0>0).

Here M and @ are linearly independent, giving for  one eigenvalue > 1.

5. TWO-PARAMETER FAMILIES OF DENSITIES
Let f(x, 6,, 6,) be a family of densities. Similarly to § 4, define
b= E(X)=p(0,,0,), 0f=var(X)=p40,,05), 0)=Ffilies,ta), 63 = Sfaltts, 1ta)

with moment estimates as

91 = fi(my, my), 92 = fa(my, my),
where

m=m=2X, mg= }Ligl(X‘—X)” = g2

Again, Assumption A appears to be satisfied in many practical situations. The asymptotic
joint distribution of m, and my is given by Rao (1973, p. 437). Following the method of § 4, it
can be shown that equation (1) becomes

3 = I—-AAT— (MFGT +GFTMT) + MFQFTMT, (3)

(). o-

1
B, = J_P;fm (u—p® = pa) f (1, 01, 65) du = By(0,,0,), Q= [ﬁ: l‘tlf‘s/‘g].

where
4, B,-2ud,

4; By—2p4,

In equation (3), without loss of generality we can set 8, = y, and 03 = u,, 80 that ¥ = I. Then
we have following cases.
(a) If the columns of @ are linearly dependent on those of A, that is @ = IR, then the rank
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of I -3 is < 3and T has two nontrivial eigenvalues A, A; whichare < 1if and onlyif RT + R— Q
I8 positive-semidefinite.

(b) Ifonly one of the columns of Gis a linear combination of those of M, say G, = a, M, + ay M,,
then I—3X has rank < 4 and its nontrivial eigenvalues are the roots of a cubic polynomial
whose last coefficient is (2a, — Q,;) A, with A > 0. If this is positive either all roots are negative
or two are positive and one is negative. See §8 for an example.

(¢) If the columns of @ and M are independent, then I —X has rank 5 and its four nontrivial
eigenvalues are the roots of a polynomial of degree 4 whose last coefficient is

det {(MG)T (MQ)} > 0.

Therefore, all the roots are positive, or all are negative, or two are positive and two are
negative. See § 6 for an example.

6. THREE NUMERICAL EXAMPLES
For a normal distribution, with

01=' M, 08 = 0%, f(IE, 01’ 03) = ~7(—2];T—0’39Xp{—%($—01)2/02},

we obtain Q;, = 2, Q3 = 0 and Qg = 20, It is easy to verify that G = MQ and
Z=T-AAT—-MMT.

Therefore, X has & — 3 eigenvalues 1, one eigenvalue 0, and two eigenvalues 0 < A; € A3 < 1.

Table 1. Eigenvalues A, and A, for the normal distribution as functions
of the mean, M, and the stqndard deviation, S
M S =058 S =10 8§ =20 S =30 S = 40
1-0 0-269 0-764 0:100 0-693 0-040 0-673 0-:030 0-672 0:041 0-886
300 02456 0-458 0078 0-165 0-:024 0-267 0-026 0-405 0-052 0-515
5-0 0-245 0-458 0077 0-145 0-026 0-103 0-037 0-272 0-087 0434

7-0 0-245 0-458 0-078 0-165 0-024 0-267 0-026 0-405 0-052 0-515
90 0269 0-764 0-100 0-693 0040 0-673 . 0-030 0-672 0-041 0-686

Table 1 gives A, and A, as a function of y and o? for x = 1,3,5,7,9, o = 0-5, 1,2, 3,4, for a
¥ test based on cells (— o0, 1}, (1, 2], ..., (8, 9], (9, c0).
For a gamma distribution with

O=a, O3=7, [f(z,0,,0)f(z,a,7)=

a?

eyl
I'(y)

we have
E(X)=p =p=yla, var(X)=py=0%=1ylad, uy=2y[ad p—pi=(2y+06y)at
Define
Pi=DPy = fmf (z,a,7)dz.
It is easy to show that dp,fdax = —\/p;, A, and case (b), § 5 applies.

Therefore, T has k — 4 eigenvalues 1, one eigenvalue 0, and eigenvalues A, A; and A;. With
the notation of (b), § 5, we obtain

4, = —opfox = y[at, Q =vy[a?, 2a;—Qy =y[a* >0,
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and all nontrivial eigenvalues of I — X are negative, or one is negative and two are positive. For
reasons of continuity the same alternative must hold for all « and A. It turns out that the second
alternative is true. Therefore, the nontrivial eigenvaluesof Zare 0 < A; < A3 < 1 < A4. Table 2
gives A, Ay and Az for u = 1, 2,3, 4,6, 8, 0% and ¥? cells as for Table 1.

Table 2. Eigenvalues A,, Ay and Ag4 for the gamma distribution as funciions of M and S

M S =05 S =10 8=20 8 =30 8§ =40
f_—A_—ﬁ f——&—-\ r A Rl r A Bl r A
1-0 0-184 0-482 0-034 0-282 0-0563 0-568 0-044 0-916 0-089 0-977
1-02 1-14 1-43 2-03 2-66
2:0 0224 0-485 0-066 0145 0-034 0-278 0-030 0-721 0-041  0-912
1-05 1-19 1-36 1-568 1-99
3-0 0235 0-472 0-085 0-151 0-026 0-204 0-021  0-600 0-029 0-845
1-02 1-11 ’ 1-35 1-49 1-76
4.0 0-239 0-467 0-069 0-149 0-025  0-205 0-018 0-563 0-024 0-806
1-01 1-06 1-24 1-41 1-62
6-0 0-242 0-462 0-075 0158 0-027  0-337 0-021  0-636 0-027- 0-818
1-01 1-03 1-09 1-20 1-38
80 0-244 (0-467 0-088  0-397 0-038 0-649 0-037 0-805 0-047 (-804
1-00 1-01 1-03 1-07 1-18
Table 3. Higenvalues A,, Ay, Ag and A, for the log normal
distribution as functions of M and S
M S =035 8 =10 §=20 8 = 3-0 S =40
L4 A A} Lo A N Lo A A} r A ) A BRI
1-:0 0-133 0-393 0-1564 0-495 0-193  0-999 0-453 1-000 0.712 1-000
1-00 1-10 100 1-93 1-03 224 1-08 201 1-15 1190
2:0 0201 0471 0-060 0-154 0-043  0-831 0-131  0-998 0-300  1-000
1-00 1-08 1-00 1-64 1-60 4-23 1.01 157 1-04 544
30 0223 0-471 0-055 0-146 0-03t  0-593 0-058 0-936 0-1564  0-997
1-00 1-05 1-00 1-24 1-00 2-35 1-00 5-79 1-01  14-3
40 0232 0-467 0-062 0-148 0-020 0475 0-039 0-876 0-098 0-974
1-00 1-03 1-00 1-14 1-00 1-60 1-00 3-185 1-00 6-55
60 0239 0-464 0-074 0-166 0-031 0-514 0-036  0-855 0-073 0-852
1-00 1-01 1-00 1-06 1-00 1-20 1-00 1-81 1-00 2-56
80 0-243 0472 0-093 0-445 0-046 0-767 0-069 0-926 0-095 0-968
1-00 1-01 1-00 1-02 1-060 1-06 1-00 1-25 1-00 1-63

For a log normal distribution, we define
1
b=a, 6y=p flz,ap5%)= Wexp{— $(log x —2)?¥/f%).

By some tedious computations it can be shown that case (¢) in § 5 applies. The columns of G
and M are independent and can be computed by the exponential and cumulative normal
functions only. Of the four nontrivial eigenvalues of I — X two are positive and two are negative.
Therefore, % has k — b5 eigenvalues 1, one eigenvalue 0, and four eigenvalues

0<A €A <1 <A< A,
Table 3 gives A,, A;, A5 and A, respectively.

In conclusion, we note that the x* test is still & standard technique during & preliminary
analysis, whose users might sometimes be unaware of the underlying assumptions or unable to
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get efficient estimates. The results should be seen as a warning against using y® tables with
k—1or k—q— 1 degrees of freedom to reject the null hypothesis. For instance the 5 %, rejection
point based on 9 degrees of freedom is 16-9, while the approximate correct level corresponding
to 16-9 in the log normsl situation with M = 4 and § = 3 is about 119, and the correct
rejection point for 5 9, is 21.

This work was prepared with the support of the Swiss National Science Foundation and the
U.S. Office of Naval Research.
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