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Distribution of the chi-squared test in nonstandard situations
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SUMMARY

The distribution of the x% t68^ under the null hypothesis is studied, when the parameters are
estimated by the method of moments. A general formula, applicable also to other situations, is
given. Three examples are studied in more detail and numerical results are given, indicating
how unsafe it can be to use a #2 distribution with a number of degrees of freedom smaller than
or equal to the number of cells.
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1. LNTBODTJOTION

The standard theorem on the asymptotic distribution of the

= Si np< '
is given, e.g. by Cramer (1946, p. 427) or Rao (1973, p. 391), and rests on several assumptions
about the true distribution of the observations and the estimators of any unknown parameters.
These assumptions are not satisfied in practice mainly for the following reasons:

(a) estimators are obtained from the ungrouped data rather than from the grouped
observations;

(b) the cells are often random, i.e. are determined by a first look at the observations;
(c) the method of estimation is not efficient.
Points (a) and (b) were discussed by Chernoff & Lehmann (1954) and by Watson (1958). In

both cases it is safe to consider X* as having a %2 distribution with k — 1 degrees of freedom,
the level of significance being then underestimated.

A discussion of (c) for the method of moments is given. I t seems that the formulae derived
could be easily applied to other estimates. It turns out that in some cases, not at all 'patho-
logical' ones, it would be very unsafe to use a xi distribution with k— 1 degrees of freedom.

The following notation will be used in this paper. Let/(x, 6V..., 0q) = f{x, 6) be the probability
density of each observation under the null hypothesis. Let A1;..., Afc be the xz c6^8 a n d

Pt = Pi(0)= ! f(*,0)dz (t = l,...,fc)
j At

their probabilities.
Denote by %, . . . ,n k the observed frequencies and let V = (vlt..., vk)

T = {vt)
T be the vector

with components
Vi = («*-«p4)/V(np«) (» = 1, . - , h), A = (<JPl, ...,Jpk)

T,

M=((ww))

Notice that J = MTM is the information matrix of the grouped data and that M^A = 0.
Finally, let X ~ F mean that F is the distribution function of the random variable X.
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2. MAIN THEOBEM AND SOME EXAMPLES

THEOREM. Let X have a p-dimensional normal distribution with expectation 0 and covariance
matrix 2 ; let A be a pxp symmetric matrix. The quadratic form X^AX is then distributed as
Axyf+ ... +\vy$) with yu ...,yp independent N(0,1) and Aa,..., Ap the not necessarily different
eigenvalues of AY,.

Remark. This theorem is well known and is quoted, e.g. in a slightly different form, by
Searle (1971, pp. 57, 69), who also gives several references. Therefore, I will not give the proof;
the theorem is, however, sometimes misquoted in the form that X7AX has a x2 distribution if
and only if .42 is idempotent. This is correct if 2 is not singular, but not in general. Also, the
theorem is mostly given and proved under the assumption that 2 is not singular. The following
corollary is an immediate consequence of the theorem.

COROLLARY. Consider the x2 test

X2 = S («*-«&)»/(»&).
i-i

where the pt's are either given or estimated. If, asymptotically, V ~ Nk(0,2), then X* = V^V is
asymptotically distributed as 2Ajy5 with A1(..., Ak the eigenvalues of 2 andyv ...,yk independent
N(0,1).

The following three examples are taken from the classical theory of ;̂ 2 tests:

Example 1. IIp1,...,pk are given, V is asymptotically normal with 2 = I — AAT, 2 being
idempotent with rank ifc — 1, X* is x2 with k — 1 degrees of freedom.

Example 2. For the estimation of pv ...,pk by maximum likelihood from the grouped data
(Rao, 1973, p. 392), 2 = (I-MJ-^M1) (I-AAT) (I-MJ^JiT1), and 2 is idempotent with
rank k—q—1, where q is the number of estimated parameters. Therefore, X* has a x2 distribu-
tion with k — q—1 degrees of freedom.

Example 3. For the estimation ofplt •••,pkhj maximum likelihood from the ungrouped data,
it was proved by Chernoff & Lehmann (1954) that

with ylt ...,ya independent N(0,1) and 0 < Ax,..., A^ < 1 the eigenvalues of a certain matrix.
In order to reject the null hypothesis it is safe to take X2 distributed as x* with k — 1 degrees of
freedom.

3. A GENEBAL FOBMTJXA

Assume now that the parameter 8 is estimated by some method giving an estimate d and
corresponding estimates of pt as

pt= f f(x,V)iz = pt(9).
JAf

To find the asymptotic distribution of X* the asymptotic distribution of

is required. Let us make the following assumption.

Assumption A. Assume that, asymptotically,

nk-npk . , . , \T I /7-AAT C
v ( ) 1 i ) ) N \ 0 (' v ( l ~ l)'-"1ia~

for some G and T. Notice that C^A = 0.
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The assumption will usually be satisfied in practice, because many statistics like central and
raw moments and quantiles, and therefore functions of them, are asymptotically normal. If the
assumption is satisfied and all functions involved are regular enough, e.g. with continuous
derivatives, the following result can be easily obtained, in almost exactly the same way as by
Rao (1973, p. 394):

7 ^ T £%][^ (1)
Because C^A = AFA = OandAAT = l thematrix/-2 = AA"1 + {MC1+ CM?)-MTMr has
always an eigenvalue one, while for its rank we have

r ( / -£ ) s£ r(AAT)+r{((7-ilf?7)Jlfr} + r(Jf0T) < 2q+l.

Therefore assuming k > 2q, which will generally be true in practice, 2 has always at least
k — 2q — 1 eigenvalues equal to 1 and one eigenvalue 0; that is, asymptotically,

i-l <-2fl+l

with ylt..., yk_x independent N(Q, 1) and A1(..., A^ the eigenvalues of 2 possibly different from
0 and 1.

4. ONE-PAKAMBTBB FAMILIES OF DENSITIES

In a family/(*, 6) of densities let 6 be estimated by the method of moments.
j

y / y
With/i = E(X) = jxf(x,6)dx = gid),^2 = var(Z) = o-2(0), and assuming that fi is a function

of 6, we define 6 = /x(/f) and its estimate d = /x(wi), where m = X = m1 = n^liX^
Assumption A is certainly satisfied under weak assumptions on/ and fv

From, for example,

cav{(nt-npt)IJ(npi)} = -j- | {u-fi)f{u,d)du = At(0),

and by setting CF1 = (Alt..., Ak) and omitting for simplicity the argument 6, we obtain

I-Y, = AAT+^(M(^ + QMI)-^(XYMMI (2)

with rank ^ 3 and an eigenvalue 1. With

a/i a/i a/i d/i

the nontrivial eigenvalues of / — S can be found from the equation

Notice that

;0,

with equality holding, for dfjdfi #= 0, if and only if 0 and M are linearly dependent. If this is
not the case the roots of the above equation are of different sign and one of the eigenvalues of
Sis > 1.
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Example 4. For a normal distribution with <r known,

= d).

It is easy to verify that O = cr2M, v = c2 and 1 — A = 1 — M^Mcr* < 1.

Example 5. For a gamma distribution with p known,

^ (p>o,o>o).

Here /* = pjd and cr2 = /̂tf*. Also 0 =• - i f , v = - 1 and 1 - A = l-AFMp/fi2 < 1. In
both examples the moment estimate coincides with the maximum likelihood estimate based
on the ungrouped data. Therefore, the result 0 < 1 — A < 1 could have been predicted following
Chernoff & Lehmann (1954).

Example 6. For a gamma distribution with a known,

/(*, 6) = ̂  e - V - i (a > 0, 6 > 0).

Here M and O are linearly independent, giving for 2 one eigenvalue > 1.

5. TWO-PARAMETER FAMILIES OF DENSITIES

Let f(x, $v 6Z) be a family of densities. Similarly to § 4, define

with moment estimates as

where

Again, Assumption A appears to be satisfied in many practical situations. The asymptotic
joint distribution of m^ and m^ is given by Rao (1973, p. 437). Following the method of § 4, it
can be shown that equation (1) becomes

S = / - AAT - (MFG* + QF1^) + MFQF^M1, (3)
where

= hr^ . 0 =
Ak Bk~2fiAk

In equation (3), without loss of generality we can set 6X = /i± and 62 = fa, so that F = I. Then
we have following cases.

(a) If the columns of O are linearly dependent on those of M, that is 0 = MR, then the rank
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of / — 2 is < 3 and 2 has two nontrivial eigenvalues AX) A2 which are < 1 if and only if E? + R — ii
is positive-semidefinite.

(6) If only oneof the columns of C is a linear combination of those of Jf, say Ĝ  = a1M1+a3Mt,
then I — 2 has rank < 4 and its nontrivial eigenvalues are the roots of a cubic polynomial
whose last coefficient is (2a^ — Qu) A, with A > 0. If this is positive either all roots are negative
or two are positive and one is negative. See § 6 for an example.

(c) If the columns of 0 and M are independent, then / — 2 has rank 5 and its four nontrivial
eigenvalues are the roots of a polynomial of degree 4 whose last coefficient is

det {(MO)T {MO)} > 0.

Therefore, all the roots are positive, or all are negative, or two are positive and two are
negative. See § 6 for an example.

6. THREE NTTMEBIOAL EXAMPLES

For a normal distribution, with

we obtain Q n = cr2, Q^2 = 0 and Q^ = 2<r*. It is easy to verify that 0 = MQ. and

Z = I~AAT-MMT.

Therefore, S has k — 3 eigenvalues 1, one eigenvalue 0, and two eigenvalues 0 < Ax < A2 < 1.

Table 1. Eigenvalues Ax and A2/or the normal distribution as functions
of the mean, M, and the standard deviation, S

M
1-0
30.
5 0
7-0
9-0

S =
0-269
0-245
0-245
0-245
0-269

0-5
0-764
0-458
0-458
0-458
0-764

S =
0100
0-078
0-077
0078
0100

10
0-693
0-165
0-145
0-165
0-693

S =
0-040
0024
0-025
0024
0040

2 0
0-673
0-267
0103
0-267
0-673 .

S =
0030
0026
0037
0026
0030

3 0
0-672
0-405
0-272
0-405
0-672

S =
0041
0052
0-067
0052
0041

4 0
0686
0-515
0-434
0-515
0-686

Table 1 gives Ax and A2 as a function of/t and cr2 for /i = 1,3,5, 7,9, cr = 0-5,1,2,3,4, for a
X2 test based on cells (-oo, 1], (1,2], ..., (8, 9], (9, oo).

For a gamma distribution with

we have
E(X)=ft=fi = yla, var(X)=/ia = or2 = r/a

J , /«, = 2y/a8, /it-/4 =

Define

= Pir= f(x,a,y)dx.
J Ai

I t is easy to show that dpjda = —^JpiyAi and case (6), § 5 applies.
Therefore, 2 has A—4 eigenvalues 1, one eigenvalue 0, and eigenvalues Ax, A2 and A8. With

the notation of (b), § 5, we obtain

= y/ai, D u = yjct\ 2 ^ - ftu = y/a2 > 0,
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and all nontrivial eigenvalues of I—2 are negative, or one is negative and two are positive. For
reasons of continuity the same alternative must hold for all a and A. I t turns out that the second
alternative is true. Therefore, the nontrivial eigenvalues of 2 are 0 < Xx ̂  Aa < 1 < A8. Table 2
gives Alf A2 and A8 for ji = 1,2,3,4,6,8, <rz and ;̂ a cells as for Table 1.

Table 2. Eigenvalues A1( A2 and Xzfor the gamma distribution as functions of M and S

M S = 0-5 5 = 1 - 0 5 = 2-0 5 = 3-0 5 = 40

1 0

2 0

3 0

4 0

6 0

8 0

0184 0-482
102

0-224 0-485
1-05

0-235 0-472
1-02

0-239 0-467
1-01

0-242 0-462
1-01

0-244 0-467
1-00

0-034 0-282
1-14

0055 0145
1-19

0-065 0-151
1-11

0069 0149
1-06

0-075 0-155
1-03

0089 0-397
1-01

0-053 0-568
1-43

0-034 0-278
1-36

0026 0-204
1-35

0025 0-205
1-24

0027 0-337
109

0038 0-649
1-03

0044 0
203

0030 0
1-58

0021 0
1-49

0018 0
1-41

0021 0
1-20

0037 0
1-07

•916

•721

•600

•563

•636

•805

f •

0-089 0-977
2-66

0041 0-912
1-99

0029 0-845
1-75

0-024 0-806
1-62

0-027- 0818
1-38

0-047 0-894
1-18

Table 3. Eigenvalues Alt A2, A3 and X^for the log normal
distribution as functions of M and 8

M 5 = 0-5 5 = 1 - 0 5=2 -0 5 = 3-0 5 = 40

1-0 0-133 0-393 0154 0-495 0193 0-999 0-453 1-000 0.712 1000
1-00 1-10 1-00 1-93 103 22-4 108 201 1-15 1190

2-0 0-201 0-471 0050 0154 0043 0-831 0131 0-996 0-300 1000
1-00 108 1-00 1-64 100 4-23 101 16-7 104 644

3-0 0-223 0-471 0055 0146 0031 0-593 0058 0-936 0154 0-997
1-00 105 1-00 1-24 1-00 2-35 1-00 5-79 101 14-3

4-0 0-232 0-467 0062 0-148 0-029 0-475 0039 0-876 0098 0-974
1-00 1-03 1-00 1-14 100 1-60 100 315 100 6-55

6-0 0-239 0-464 0074 0166 0031 0-514 0036 0-855 0073 0-952
1-00 101 1-00 106 1-00 1-20 100 1-61 100 2-55

8 0 0-243 0-472 0093 0-445 0046 0-767 0069 0-926 0-095 0-968
100 101 1-00 102 100 1-06 1-00 1-25 1-00 1-63

For a log normal distribution, we define

By some tedious computations it can be shown that case (c) in § 5 applies. The columns of G
and M are independent and can be computed by the exponential and cumulative normal
functions only. Of the four nontrivial eigenvalues of/ — £ two are positive and two are negative.
Therefore, 2 has k — 5 eigenvalues 1, one eigenvalue 0, and four eigenvalues

0 < Aj < A2 < 1 < A8 < A4.

Table 3 gives Ax, A2, A3 and A4, respectively.
In conclusion, we note that the x* test is still a standard technique during a preliminary

analysis, whose users might sometimes be unaware of the underlying assumptions or unable to
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get efficient estimates. The results should be seen as a warning against lining x2 tables with
k—lork — q—l degrees of freedom to reject the null hypothesis. For instance the 6 % rejection
point based on 9 degrees of freedom is 16-9, while the approximate correct level corresponding
to 16-9 in the log normal situation with M = 4 and S = 3 is about 11 %, and the correct
rejection point for 5 % is 21.

This work was prepared with the support of the Swiss National Science Foundation and the
U.S. Office of Naval Research.
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