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The increased use of models with limited-dependent variables has allowed researchers to test

important relationships in political science. Often, however, researchers employing such

models fail to acknowledge that the violation of some basic assumptions has in part difference

consequences in nonlinear models than in linear ones. In this paper, I demonstrate this for

binary probit models in which the dependent variable is systematically miscoded. Contrary to

the linear model, such misclassifications affect not only the estimate of the intercept but also

those of the other coefficients. In a Monte Carlo simulation, I demonstrate that a model

proposed by Hausman, Abrevaya, and Scott-Morton (1998, Misclassification of the

dependent variable in a discrete-response setting. Journal of Econometrics 87:239–69)

allows for correcting these biases in binary probit models. Empirical examples based on

reanalyses of models explaining the occurrence of rebellions and civil wars demonstrate the

problem that comes from neglecting these misclassifications.

1 Introduction

Research in political science has seen a considerable increase in the use of models with
limited-dependent variables. Probit and logit models, even of the multinomial variety, have
become the mainstay in many subfields, as have duration models, etc. When using such
nonlinear models, many scholars seem to neglect, however, that some problems, which are
inconsequential in classical linear regression, are much more serious in nonlinear models.
For instance, although the omission of variables in a linear regression fails to affect the
estimated effect for the included variables as long as the former are uncorrelated with the
latter, this does generally not hold in nonlinear models (see, for instance, Lee 1982;
Yatchew and Griliches 1985).1 Similarly, although in a linear model, measurement error
in the dependent variable only affects the precision with which the effect of our indepen-
dent variables can be determined and possibly the estimate of the intercept, the same prob-
lem may bias our estimated effects in a nonlinear model (see Hausman, Abrevaya, and
Scott-Morton 1998; Abrevaya and Hausman 1999; Hausman 2001).

Author’s note: This paper draws in part on work carried out with Thomas Christin, whom I wish to express my
gratitude for extremely helpful research assistance. Thanks are also due to James Fearon and Patrick Regan for
making available data used in this paper and to the anonymous reviewers and Dominic Senn for helpful comments
on an earlier version of this paper.
1See also the more general and very instructive discussion of omitted variable biases provided by Clarke (2005).
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Neglect of these issues in much of the research in political science is problematic. Quite
clearly, theories in political science are hardly sufficiently developed to guide us to com-
pletely specified empirical models to avoid the problem of misspecification.2 Similarly,
few are the situations in which we can be sure that our limited-dependent variable is mea-
sured without error. Although the former problem is largely linked to the theoretical level
and a series of specification tests exist for nonlinear models (see, for instance, Yatchew and
Griliches 1985), the latter problem relates much more to problems of measurement at the
empirical level. In many contexts throughout political science research, these measurement
problems are, however, quite explicit, and, in spite of this, scholars refrain from consid-
ering them in earnest. Hence, in the present paper, I discuss one particular type of mea-
surement problem, namely misclassification in limited-dependent models in general and
binary probit models, in particular.

In the next section, I state more formally the problem of misclassification and provide
a series of examples where such misclassification is to be expected. In Section 3, I discuss
an estimator proposed by Hausman, Abrevaya, and Scott-Morton (1998) to address the
problem of misclassification in a binary probit setting. Although these authors provide
initial Monte Carlo simulations for their model, I extend their work to cover a broader
range of situations to offer insights on when it is advisable to use their model to correct
for misclassifications. In Section 4, I provide an application of the empirical model dem-
onstrating that taking into account misclassification may help avoid biases in our infer-
ences in research on ‘‘minorities at risk’’ (MAR) (Gurr 1993) that engage in protest
(Regan and Norton 2005) and on civil wars. Section 5 concludes.

2 Misclassifications in Political Science

Considering the type of data that is often used in political science research in con-
junction with models with limited-dependent variables, it is obvious that misclassi-
fications and measurement error are endemic. For instance, Hausman, Abrevaya, and
Scott-Morton (1998) use as empirical example to illustrate their estimator for misclassi-
fication a model trying to explain job changes. As they show with panel survey data, recall
questions on job tenure often provide biased information. Hence, models attempting to
estimate the effect of various factors on job change will suffer from misclassification.
If we compare such a rather central question in people’s lives with responses to survey
questions often employed in political science research, we can be sure that the problem
of misclassification is widespread and the effects consequential. Consider only recall
questions on vote choices.

Also in research not relying on survey data, misclassifications are likely. For instance,
research on wars in general and civil wars in particular rely on the number of battle deaths
per year to decide whether a violent conflict is a war (or civil war) or not. An often em-
ployed rule is to consider as war (or civil war) a conflict with at least 1000 battle deaths per
year.3 Hence, starting from a continuous indicator (number of battle deaths), a dichotomous
indicator is formed, which shows whether, for instance, two countries are at war (or a coun-
try is embroiled in a civil war). Under the hardly outlandish assumption that the underlying

2Achen (2005) and Clarke (2005) discuss these problems in a more general context.
3In research on civil wars, more recent work relies on a threshold of 25 battle deaths (e.g., Gleditsch et al. 2002;
Gates and Strand 2004). Obviously, even at this lower level, measurement error is still possible, and misclassi-
fications are likely.
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continuous indicator is measured with error, there is a strictly positive probability that a war
is coded as a peaceful period or vice versa.4

Similarly and relatedly, if from a set of groups like the MAR information at the level of
states is generated (e.g., presence or not of minorities), misclassifications are possible.
More precisely, if the MAR data collection effort missed some groups (e.g., Hug 2003;
Fearon 2006) and this data are aggregated to the level of states, misclassifications will
be the result.

Hence, misclassifications are very likely in much political science research employing
models with limited-dependent variables. Whether using survey data or data generated
from continuous variables summarized in dichotomous indicators, misclassifications
are likely to occur.

3 A Model of Misclassification and Monte Carlo Simulations

To address the problem of misclassifications in a probit model, Hausman, Abrevaya, and
Scott-Morton (1998) proposed an estimator that allows the direct correction of possible
misclassifications. In both Monte Carlo simulations and empirical examples, they demon-
strate how even small amounts of misclassification affect the estimated coefficients, even if
the misclassification is unrelated to any of the independent variables.5 Their estimator ex-
plicitly models the probability of misclassification in a probit setup. In a simple probit
model, the log-likelihood function is simply

Lðbjy; xÞ5
Xn

i5 1

fyilnUðx#ibÞ1ð12yiÞlnð12Uðx#ibÞÞg; ð1Þ

where y is the observed dichotomous outcome, x is a vector of explanatory variables,
and b the vector of coefficients to be estimated. If a0 corresponds to the probability that the
unobserved yi 5 0 is classified as a 1 and a1 corresponds to the probability that the un-
observed yi 5 1 is classified as a 0, Hausman, Abrevaya, and Scott-Morton (1998) derive
the following log-likelihood function:

Lða0; a1;bjy; xÞ5
Xn

i5 1

fyilnða01ð12a02a1ÞUðx#ibÞÞ

1ð12yiÞlnð12a02ð12a02a1ÞUðx#ibÞÞg :
ð2Þ

For identification of this model a0, alpha1 2 [0, 1) and a0 1 alpha1 < 1 has to hold
(Hausman, Abrevaya, and Scott-Morton 1998).6 It is easy to see that equation (2) reduces
to equation (1) if a0 5 a1 5 0. Maximizing equation (2) yields not only estimates for the
coefficients b but also for the amount of misclassification in the data set through the values

4Obviously, given that the binary-dependent variable is underpinned by a continuous indicator, it might be advis-
able to consider this explicitly in the empirical model to be tested. Given that a large literature on wars and civil
wars refrains from this and estimates simply binary logit or probit models, I do not pursue this avenue here. I wish,
however, to thank an anonymous reviewer for alerting me to this alternative possibility.
5The reason for this is easily understood if we consider marginal effects of particular variables in nonlinear mod-
els. The marginal effect of a particular variable corresponds not to the estimated coefficient, as in a linear re-
gression, but is a function of all estimated coefficients. Hence, a wrongly estimated constant term, for instance,
affects all estimated effects. See Hausman (2001) for a more general discussion of mismeasured variables.
6Lewbel (2000) derives some more general conditions under which this model, also including explanatory
variables, is identified.
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of a0 and a1.
7 Although Hausman, Abrevaya, and Scott-Morton (1998) report estimates for

a model employing this setup, they also suggest that both a0 and a1 may depend on some
exogenous variables (i.e., z0, z1):

8

a0 5 f ðz0Þ
a1 5 f ðz1Þ:

ð3Þ

As for the estimates of a0 and a1 in the original formulation (equation [1]) of Hausman,
Abrevaya, and Scott-Morton (1998), constraints need to be set such that these values
remain in the interval [0, 1). As with regression models with dichotomous variables,
the most convenient specification is either the logit transformation or the cumulative den-
sity function of the normal curve.9

What is also readily transparent is that the identification of the parameters to be esti-
mated is only secured through the assumed functional form. More precisely, estimating the
two additional parameters in equation (2) is only possible because they enter additively to
then multiply the expression with the cumulative normal density. The same holds if as
specified in equation (3) the misclassification probabilities are a function of exogenous
variables z0, z1. These variables may easily be part of the vector of explanatory variables
of the probit model x, but again the parameters associated with equation (3) can only be
estimated because the functional form differs from the way in which these explanatory
variables affect the likelihood.

Despite this limitation, Hausman, Abrevaya, and Scott-Morton (1998) report encour-
aging results from Monte Carlo simulations demonstrating that the proposed estimator
performs much better than simple probit estimations in the presence of misclassification.
The equation they employ to generate the simulated data set for the Monte Carlo simu-
lations is the following:

y52110:2� x111:5� x220:6� x31e

yo 5 1 if y> 0

yo 5 0 else:
ð4Þ

x1 and e are drawn from a normal distribution with mean 0 and variance 1, whereas x2
and x3 are random draws from a uniform distribution over the unit interval. A certain per-
centage, namely 2%, 5%, or 20% of the observed yo (both 0s and 1s), were then randomly
recoded. The simulations performed by Hausman, Abrevaya, and Scott-Morton (1998)
with a sample of 5000 observations then clearly show that the estimated coefficients taking
into account the problem of misclassification come much closer to the true values.

These Monte Carlo simulations are limited in several ways, which make them only
partly relevant for typical political science research. More specifically, data sets with
5000 observations or more are not the modal category in political science research using
binary probit models. For this reason, I extend these simulations in various ways by using
exactly the same setup as shown in equation (4). First, I carried out the Monte Carlo

7Given the rather simple structure of the likelihood function, the estimator is easy to implement. Code for Gauss
and R are available from the author upon request.
8This possibility for introducing explanatory variables for the amount of misclassification might even be used to
bring to bear case-specific information, as suggested by Gordon and Smith (2005).
9Below I also use the absolute value of the estimated parameter to ensure positive values. This, however, only
works if no explanatory variables are used to explain the probability of misclassification. In that latter case, I use
the normal cumulative density function.
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simulations for smaller data sets, namely for samples of 1000, 2000, 3000, 4000, and 5000
observations. Second, although Hausman, Abrevaya, and Scott-Morton (1998) kept the
amount of misclassifications for both types at the same level in their simulations and only
estimated one coefficient, I allow both coefficients in equation (2) to take on the three
values reported above and in addition the value 0. For each possible permutation, I then
estimated the model both under the assumption that a0 5 a1 and under the assumption that
a0 6¼ a1. Finally, since the proposed estimator also allows the amount of misclassification to
depend on exogenous variables, I also carried out Monte Carlo simulations with a05 f (z0)
and a1 5 f (z1).

Figure 1 reports the first set of results for the simulations in which the two probabilities
of misclassification a0 and a1 are set equal to each other and only one probability of mis-
classification is estimated.10 For each estimated coefficient (see the four columns in Fig. 1),
I depict the root of the mean squared error (RMSE)11 both for a simple probit and the model
proposed by Hausman, Abrevaya, and Scott-Morton (1998). The rows in Fig. 1 correspond
to the four different levels of misclassification assumed, namely 0, 0.02, 0.05, and 0.2.
Not surprisingly, the RMSEs increase when we move from the upper to the lower rows
in Fig. 1. At the same time, the RMSEs of the model proposed by Hausman, Abrevaya,
and Scott-Morton (1998) become, comparatively speaking, better than the ones of the
probit model. The various panels show also, however, that more generally, the model
of Hausman, Abrevaya, and Scott-Morton (1998) becomes preferable to the simple probit
model if the probability of misclassification is at least 0.05 (third and fourth row of panels
in Fig. 1). Then, however, whether the RMSEs of the probit model are higher or not depend
on the sample size and the coefficient considered. Interestingly enough, although the
RMSEs of the intercept (b0) and b2 are systematically the largest, it is especially for
the estimates of b1 and b3 that the correction proposed by Hausman, Abrevaya, and
Scott-Morton (1998) is a clear improvement, even for smaller sample sizes of 2000
observations or more.

To assess the sensitivity of this estimator to other sets of probabilities of misclassifi-
cations, I carried out Monte Carlo simulations for all possible combinations of the four
values for a0 and a1. In almost all cases, when at least one of the two probabilities is
at least 0.05, the RMSEs, especially for larger sample sizes, are smaller for the constant
term as estimated by the Hausman, Abrevaya, and Scott-Morton (1998) estimator than the
one estimated by probit.12 The advantage of this estimator becomes even more obvious if
we look at cases where one of the misclassification probabilities, namely a1, is equal to 0.2
(see Fig. 2).

What is striking in the results depicted in Fig. 2 is that for two estimated coefficients,
namely b1 and b3, independent of the sample size, the RMSE of the estimator proposed by
Hausman, Abrevaya, and Scott-Morton (1998) is systematically smaller than the one for
the probit estimator. On the other hand, this is never the case for the RMSEs for the constant

10Estimating this model is not as straightforward as it seems, given that the parameters are only identified through
the functional form. Convergence in the maximum-likelihood estimations depends strongly on the starting val-
ues and is often difficult to achieve. Although for all settings of the parameters, 1000 data sets were drawn, the
results presented here rely only on the set of estimations that converged. In the Appendix, I provide more details
on the number of replications and the simulation results in general. The estimation employed the Broyden–
Fletcher–Goldfarb–Shanno algorithm in Gauss, which seemed to perform best. Below I discuss in more detail
these problems of convergence in the context of the empirical applications.

11The mean squared error is simply the variance of the estimated coefficient plus its bias squared.
12Given that this result is of lesser significance, I refrain from reporting it in more detail graphically here. All
results of the Monte Carlo simulations appear, however, in the Appendix.
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b0 and for the remaining slope coefficient (b2) this only occurs if the sample sizes are larger.
This suggests that if at least one type of misclassification is rather important, then even
estimating a model where it is assumed that both probabilities are equal can yield less
biased estimates, and this seems to hold also in smaller samples.

Resorting to the exact same setup, namely letting the two probabilities of misclassifi-
cation vary independently of each other across the four selected values, I estimated models
where both probabilities were coefficients. If the two probabilities are identical, the
RMSEs for all coefficients from the probit estimates are systematically lower for the sam-
ple sizes considered in the Monte Carlo simulations. If the two misclassification proba-
bilities differ from each other, the RMSEs of the estimator proposed by Hausman,
Abrevaya, and Scott-Morton (1998) (mostly of the constant) is less biased than the one
of the probit model for large sample sizes as long as at least one of the probabilities exceeds
the value of 0.02.13

To assess the estimator’s performance when the probability of misclassification depends
on an explanatory variable, I used the following setup for each of the two probabilities:14

a: 5 aa � ð0:51x1Þ1h; ð5Þ

where aa varied across the four values above and h was drawn from N(0, 1).15

The various panels in Fig. 3 report the results for the cases where a0 depends on x1 as
specified in equation (5), and aa takes on the three values used above, whereas aa for a1 is
equal to 0. The results depicted in Fig. 4 are generated in the same fashion, but with a0 and
a1 inversed. It is apparent in both figures that already with 5%misclassification, the RMSEs
of the estimator proposed by Hausman, Abrevaya, and Scott-Morton (1998) for some co-
efficients yield less biased estimates than those of the simple probit model. If the amount of
misclassification is rather large, the differences become quite large and appear even for
smaller sample sizes. Hence, for many situations where we expect the probability of mis-
classification to depend on exogenous variables, the estimator proposed by Hausman,
Abrevaya, and Scott-Morton (1998) provides improved estimates.

4 Empirical Examples

To illustrate the performance of proposed estimator by Hausman, Abrevaya, and Scott-
Morton (1998), I employ it on two studies dealing with protests of MAR (Gurr 1993)
and civil wars.16 The first study by Regan and Norton (2005) proposes an empirical model
to assess how various factors influence the outbreak of protest, rebellions, and civil wars.
To test this empirical model, they employ the MAR data (Gurr 1993), aggregated, however,
to the level of country-years. More precisely, they create a summary indicator for each
minority based on variables measuring protest and rebellious behavior in the MAR data17

13Given that these results are substantially less interesting, I refrain from reporting them in detail here.
14Hence, here, the z0 and z1 from equation (3) correspond to an included independent variable in themodel, namely

x1.
15Strictly speaking, this setup does not guarantee that a 2 [0, 1]. The few values that failed to fall into this interval
were recoded to the closest boundary value. Given that this equation is only used for the generation of the
simulated data, this fails to have any impact on the results reported below.

16In the empirical applications, the problem of convergence in the maximum-likelihood estimation also appeared.
Using several sets of starting values for the parameters to be estimated, however, always allowed obtaining
estimates.

17Regan and Norton (2005, 327) give detailed instructions on how they constructed this summary indicator as well
as their three dichotomous variables for protest, rebellions, and civil war.
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Fig. 3 MC results: a0 as a function of x1.
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and based on this code whether a minority is engaged in protests, rebellions, or a civil war.
Aggregating this to the country level allows the authors to have a dichotomous indicator for
each county-year showing whether a protest, rebellion, or civil war occurred or not. As
explanatory variables Regan and Norton (2005) use discrimination, political repression
(lagged), extractable resources, per capita gross domestic product (GDP), population size,
regime type, and ethnolinguistic fractionalization. To account for possible time dependen-
cies, the authors follow Beck, Katz, and Tucker (1998) and use cubic splines as well as
a counter for the number of years since the last event.

Although Regan and Norton (2005) estimate their model as a logit, I report the results of
a probit model in column 1 of Table 1 for the onset of protest.18 Substantively, the results
obviously fail to differ from the logit results. Discrimination, per capita GDP, the log of the
population size and ethnolinguistic fragmentation positively and statistically significantly
(though only moderately for the first variable) affect the outbreak of protest. Repression
decreases the probability of such an outbreak, though not statistically significantly, whereas
the effect of democracy, as measured by the Polity IV scale, is curvilinear and statistically
significant.

When allowing for the possibility of misclassification but assuming that the two prob-
abilities take the same value (column 5 in Table 1), I find a sizeable probability of mis-
classification of almost 1%.19 The other estimated coefficients of the model also undergo
some changes. These fail, however, to affect the substantive conclusions reached by Regan
and Norton (2005), with the exception of the effect of discrimination on protest onset,
which completely loses its statistical significance. This is due to a reduced size of the
coefficient and an increased value for the standard error.

As seen in the Monte Carlo simulations, estimating an identical probability of misclas-
sification, even if the probabilities differ, is often advisable. Here, however, I also wish
to check what happens if individual probabilities are estimated separately (columns 2 and
3 in Table 1) or jointly (column 4 in Table 1). In the case where only the probability that
a peaceful year is miscoded as a year with a protest onset, this estimated probability is again
quite large, namely 0.008. The differences in the other estimated coefficients are, however,
rather small. The probability that a year with a protest was miscoded as a peaceful year is
considerably smaller (column 3 in Table 1), approaching zero. Not surprisingly, here, the
estimated coefficients barely differ compared with those reported in column 2.

If both probabilities of misclassification are estimated separately in the same model
(column 4 in Table 1), I find stronger changes. First of all, the two probabilities of mis-
classification are quite sizeable with the first one again reaching 0.008. With regard to the
coefficients for the substantive variables, quite a few notable changes appear. Discrimina-
tion appears to have a much weakened effect when misclassification is taken into account,
as is the case for the effect of per capita GDP. Finally, I also report results of an estimation
where the twomisclassification probabilities are assumed to be equal (column 5 in Table 1).
These results, in substantive terms, barely differ from those obtained when allowing the
two probabilities to vary separately.

To substantially interpret these results, however, the nonlinear nature of the model
suggests using additional information, for instance, maximal effects for the variables in

18I estimated the same models also for the two other dependent variables used by Regan and Norton (2005) but
refrain from reporting these results here. The reason for this omission is that the results reported here are themost
illustrative for the effect of misclassification.

19For this estimation, I used as specification the squared value of the parameter to constrain the parameter to
strictly positive values. In this particular instance, this estimation strategy performed reasonably well.
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Table 1 Misclassification: protest (Regan and Norton 2005)

Variables
(1) (2) (3) (4) (5)

Probit, b (SE) Probit, b (SE) probit, b (SE) probit, b (SE) probit, b (SE)

Discrimination 0.067 (0.037) 0.064 (0.042) 0.067 (0.036) 0.004 (0.048) 0.028 (0.046)
Per capita GDP 20.068 (0.084) 20.050 (0.092) 20.050 (0.080) 20.051 (0.098) 20.061 (0.101)
Lagged political
repression

20.131 (0.065) 20.147 (0.073) 20.130 (0.064) 20.122 (0.075) 20.146 (0.078)

Extractable resources 0.005 (0.136) 0.086 (0.151) 0.059 (0.133) 0.007 (0.156) 20.004 (0.163)
Log population size 20.060 (0.043) 20.059 (0.049) 20.051 (0.042) 20.070 (0.051) 20.064 (0.052)
Polity IV democracy scale 20.040 (0.046) 20.022 (0.049) 20.016 (0.046) 20.026 (0.062) 20.024 (0.055)
Polity IV democracy
scale2

0.002 (0.002) 0.001 (0.002) 0.000 (0.002) 0.001 (0.003) 0.001 (0.003)

Ethnolinguistic
fragmentation

20.002 (0.002) 20.003 (0.002) 20.002 (0.002) 0.000 (0.002) 0.000 (0.003)

Peace-years 22.925 (0.125) 22.804 (0.089) 22.551 (0.051) 23.036 (0.089) 23.039 (0.084)
Spline 1 20.256 (0.005) 20.238 (0.003) 20.216 (0.002) 20.259 (0.003) 20.259 (0.003)
Spline 2 0.055 (0.001) 0.049 (0.000) 0.046 (0.000) 0.054 (0.000) 0.053 (0.000)
Spline 3 20.013 (0.002) 20.010 (0.001) 20.011 (0.001) 20.010 (0.001) 20.010 (0.001)
Constant 3.250 (0.965) 3.050 (1.059) 2.820 (0.918) 3.252 (1.197) 3.252 (1.170)ffiffiffiffiffi
a0

p
0.092 (0.020) 0.096 (0.019)ffiffiffiffiffi

a1
p

0.005 (0.208) 0.030 (0.210)ffiffiffiffiffi
a0

p
5

ffiffiffiffiffi
a1

p
0.094 (0.018)

Log likelihood 2326.515 2315.315 2322.000 2312.522 2312.810
n 2019 2019 2019 2019 2019
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the models.20 I report these for models 1 (simple probit) and 4 in Table 2. Over the board
one notes that these maximal effects are in absolute values much smaller for the estimates
of the Hausman, Abrevaya, and Scott-Morton (1998) model than those of the probit model.
When also considering the confidence bands for these marginal effects, the differences for
the discrimination variable are especially notable. Hence, I also depict the densities of these
simulated marginal effects in Fig. 5. Although the density for the marginal effects from the

Table 2 Maximal effects (model 4): protest (Regan and Norton 2005)

Variables

Probit Probit with misclassification

Mean

Quantiles

Mean

Quantiles

2.5% 97.5% 2.5% 97.5%

Discrimination 0.043 20.004 0.093 0.003 20.062 0.064
Per capita GDP 20.049 20.169 0.087 20.031 20.170 0.098
Lagged political repression 20.280 20.629 20.002 20.260 20.652 0.019
Extractable resources 20.000 20.051 0.043 0.001 20.054 0.052
Log population size 20.110 20.272 0.055 20.120 20.313 0.067
Polity IV democracy scale 20.034 20.090 0.021 20.023 20.093 0.046
Ethnolinguistic fragmentation 20.035 20.111 0.027 0.001 20.075 0.069

Note. For the calculation of the maximal effects, 1000 simulations were carried out by holding all other variables at

their means, except the dichotomous variable extractable resources and the peace-years related variables, which

were all set to zero.
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Fig. 5 Simulated maximal effect for discrimination.

20To simulate these effects, 1000 draws from the distribution of parameters were drawn, and setting all continuous
variables to their mean and all remaining variables to 0, I calculated the maximal effect for the variable of
interest. The same procedure was followed for calculating all maximal effects.
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probit model barely includes the value 0, the density from the Hausman, Abrevaya, and
Scott-Morton (1998) estimates is centered on zero. Hence substantively, once taking into
account misclassification we would presume that discrimination has no effect on protest
onset, whereas a simple binary probit would lead us to believe that the probability of protest
can be increased by more than 4% through maximum discrimination.

To illustrate the way in which explanatory variables for misclassification may affect
results of empirical analyses, I turn to the second example. Fearon and Laitin (2003) assess
in a simple empirical model, how various explanatory factors contribute to explaining the
onset of civil wars. For this, they create a data set where each observation corresponds to
a country-year and the dependent variable takes the value of 1 if a civil war starts in a par-
ticular year.21 As civil war is coded a violent conflict inside a state in which at least 1000
battle deaths are deplored in 1 year. In Table 3 (column 1), I first report a replication of the
base model of Fearon and Laitin (2003), which they estimate as a logit model, estimated as
a probit model. Estimating the various misclassification probabilities as in the previous
example yielded predicted probabilities indistinguishable from zero.22 Despite these small
probabilities, it might be the case that some systematic features explain the probability of
misclassification. To assess this, I allow the probability of misclassification to depend on
the GDP per capita. The argument for this is that reports on battle deaths, which are used to
determine whether a civil war occurs or not, are likely to be much more imprecise in poor

Table 3 Misclassification: Fearon and Laitin (2003)

Variables
(1) (2) (3)

Probit, b (SE) Probit, b (SE) Probit, b (SE)

Prior war 20.391 (0.130) 20.586 (0.241) 20.389 (0.130)
Per capita incomet 2 1 20.135 (0.028) 20.150 (0.064) 20.135 (0.028)
Log(population)t 2 1 0.108 (0.031) 0.169 (0.058) 0.107 (0.031)
Log(mountainous
terrain)

0.091 (0.034) 0.144 (0.071) 0.091 (0.034)

Noncontiguous state 0.179 (0.122) 0.271 (0.171) 0.178 (0.122)
Oil exporter 0.352 (0.123) 0.539 (0.204) 0.352 (0.123)
New state 0.757 (0.163) 1.027 (0.261) 0.757 (0.163)
Instability 0.259 (0.101) 0.389 (0.164) 0.257 (0.101)
Democracyt 2 1(polity) 0.008 (0.007) 0.015 (0.013) 0.008 (0.007)
Ethnic
fractionalization

0.087 (0.157) 0.092 (0.252) 0.085 (0.157)

Religious
fractionalization

0.128 (0.209) 0.310 (0.371) 0.135 (0.209)

U21(a0) 22.261 (0.187)
Per capita income 20.093 (0.052)
U21(a1) 23.759 (16.646)
Per capita income 0.142 (1.013)
Constant 23.223 (0.303) 24.302 (0.807) 23.221 (0.303)
Log likelihood 2481.419 2479.972 2481.416
n 6327 6327 6327

21Country-years in which a civil war is coded as ongoing are dropped from the analysis.
22For this reason, I refrain from reporting these results here.
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countries than in rich ones. Ideally, a better measure for the quality of the sources employed
for particular countries and years should be used, here, but the simple GDP per capita
indicator seems to be a sufficiently good proxy for the quality of reporting.

In column 2 of Table 3, the results appear for a model where the probability of a peaceful
year to be miscoded as a year of civil war onset is allowed to vary. The estimates suggest
that the probability of misclassification decreases with higher GDPs per capita, and this
effect reaches statistical significance. Substantively, these estimated coefficients suggest
that the amount of misclassification in the poorest countries in the sample is approximately
1%. The coefficients for the misclassification model and especially a likelihood ratio test
comparing this model with the one estimated by Fearon and Laitin (2003) suggest that the
second type of misclassification is not affected by GDP per capita. Given that only the first
type of misclassification seems to be affected by GDP per capita, I report in Table 4 again
the maximal effects for all the independent variables.

The results reported in Table 4 suggest again that when considering misclassification,
the substantive effects of the various variables are considerably smaller. The most inter-
esting concerns the mountainous terrain, whose maximal effect is cut in half when con-
sidering possible misclassification (Table 4). This reduction of the effect also appears in
Fig. 6. The density of this effect from the simple probit model would lead us to believe that
whether or not a country has a large amount of mountainous terrain significantly affects the
likelihood of civil war. Considering the results from the model with misclassification
would question, however, this inference. The density for this effect is heavily concentrated
on zero, suggesting that mountainous terrain has no effect.

5 Conclusions

Too often researchers in political science employing models for limited-dependent vari-
ables fail to acknowledge that violations of assumptions that are rather innocuous in the
classical linear regression model may have much more dramatic effects. It is well known

Table 4 Maximal effects (model 2): Fearon and Laitin (2003)

Variables

Probit Probit with misclassification

Mean

Quantiles

Mean

Quantiles

2.5% 97.5% 2.5% 97.5%

Prior war 0.000 0.000 0.001 0.000 0.000 0.001
Per capita incomet 2 1 0.000 0.000 0.000 0.003 0.000 0.000
Log(population)t 2 1 0.007 0.002 0.019 0.004 0.000 0.021
Log(mountainous terrain) 0.005 0.002 0.010 0.002 0.000 0.011
Noncontiguous state 0.001 0.000 0.002 0.000 0.000 0.002
Oil exporter 0.001 0.000 0.004 0.000 0.000 0.003
New state 0.005 0.001 0.017 0.002 0.000 0.012
Instability 0.001 0.000 0.003 0.000 0.000 0.004
Democracyt 2 1(polity) 0.002 0.000 0.005 0.001 0.000 0.004
Ethnic fractionalization 0.000 0.000 0.001 0.000 0.000 0.002
Religious fractionalization 0.000 0.000 0.002 0.000 0.000 0.002

Note. For the calculation of themaximal effects, 1000 simulations were carried out by holding all other variables at

their means, except the dichotomous variable set at values to generate the lowest predicted probabilities, that is,

zero for all variables except prior war (set at one).
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that the effect of omitted variables is quite different in nonlinear models than in linear
ones. Similarly, measurement error, or misclassification in limited-dependent variables,
affects in most cases all estimated coefficients, even in the most innocuous looking cases
(Hausman 2001).

In this paper, I discussed various cases in which we would expect misclassifications
and presented a model proposed by Hausman, Abrevaya, and Scott-Morton (1998), which
allows redress of this problem in binary probit models. In Monte Carlo simulations, I dem-
onstrated that, provided a researcher works with a sizeable sample, the corrections pro-
posed by Hausman, Abrevaya, and Scott-Morton (1998) clearly yield estimates with
smaller bias than a simple probit estimation. This even holds if the amount of misclassi-
fication is rather limited. Similarly, the Monte Carlo simulations suggest that even if
the two possible probabilities of misclassification differ, a joint estimation under the
assumption that they are equal is often an improvement over probit estimates. The same
also holds for situations where we expect exogenous variables to affect the probability of
misclassification.

I illustrated the estimator discussed in two empirical examples related to protests and
civil wars. In both cases, addressing the issue of possible misclassification suggested that
systematic measurement error seems present in both cases. In addition, the corrections
led to changes in some of the substantive results of the original analyses. Combined with the
insights from theMonte Carlo study, this implies that researchers should pay more attention
to this potential problem. As I noted in the paper, in many areas where political scientists
employ models for limited-dependent variables, misclassifications are very likely.
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Fig. 6 Simulated maximal effects for mountainous terrain.
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Appendix

In Table A1, I report the descriptive statistics for the example based on Regan and Norton
(2005), whereas Table A2 does the same for the analysis based on Fearon and Laitin
(2003). Tables A3–A7 report the results of the Monte Carlo simulations (RMSEs) on which
the figures in the main text are based.

Table A1 Descriptive statistics for reanalyses of Regan and Norton (2005)

Variables Minimum Mean Maximum SD n

Protest onset 0 0.293 1.000 0.455 2019
Discrimination 0 1.970 4.000 1.702 2019
Per capita income 5.737 8.107 9.771 0.861 2019
Lagged political
repression

1 2.383 9 1.147 2019

Extractable resources 0 0.288 1 0.453 2019
Log population 12.319 16.169 20.918 1.464 2019
Polity IV democracy
scale

0 10.753 20 7.712 2019

Polity IV democracy
scale2

0 175.076 400 169.639 2019

Ethnolinguistic
fractionalization

1 42.631 93 29.039 2019

Table A2 Descriptive statistics of Fearon and Laitin (2003)

Variables Minimum Mean Maximum SD n

Civil war onset 0 0.017 1 0.128 6327
Prior war 0 0.134 1 0.341 6327
Per capita incomet 2 1 0.048 3.636 53.901 4.352 6327
Log(population) 5.403 9.065 14.029 1.460 6327
Log(% mountainous terrain) 0 2.175 4.557 1.411 6327
Noncontiguous state 0 0.178 1 0.383 6327
Oil exporter 0 0.128 1 0.334 6327
New state 0 0.026 1 0.158 6327
Instability 0 0.146 1 0.353 6327
Democracy(polity) 210 20.396 10 7.554 6327
Ethnic fractionalization 0.001 0.389 0.925 0.286 6327
Religious fractionalization 0 0.366 0.783 0.219 6327
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Table A3 RMSE for estimates under the assumption a0 5 a1

1000 2000 3000 4000 5000

Hausman Probit Hausman Probit Hausman Probit Hausman Probit Hausman Probit

a1 5 a0 5 0
n 463 467 493 463 483
b0 0.660 0.123 0.249 0.083 0.177 0.069 0.135 0.059 0.120 0.055
b1 0.066 0.045 0.046 0.031 0.038 0.027 0.031 0.022 0.028 0.020
b2 0.722 0.114 0.305 0.073 0.224 0.062 0.172 0.055 0.151 0.050
b3 0.216 0.158 0.155 0.111 0.127 0.091 0.109 0.083 0.093 0.072
a1 5 a0 0.164 0.171 0.178 0.181 0.183

a0 5 0.0, a1 5 0.02
n 426 446 441 427 435
b0 0.729 0.119 0.244 0.087 0.172 0.072 0.160 0.060 0.142 0.057
b1 0.061 0.044 0.044 0.032 0.033 0.026 0.030 0.023 0.024 0.020
b2 0.769 0.104 0.268 0.080 0.178 0.066 0.167 0.054 0.146 0.050
b3 0.220 0.156 0.138 0.107 0.114 0.093 0.091 0.078 0.089 0.074
a1 5 a0 0.165 0.173 0.178 0.181 0.182

a0 5 0.0, a1 5 0.05
n 413 401 404 389 408
b0 0.716 0.119 0.332 0.094 0.215 0.082 0.181 0.080 0.160 0.068
b1 0.060 0.044 0.039 0.031 0.032 0.028 0.025 0.024 0.024 0.022
b2 0.718 0.117 0.319 0.087 0.182 0.075 0.143 0.069 0.119 0.069
b3 0.200 0.156 0.136 0.116 0.101 0.091 0.090 0.085 0.077 0.076
a1 5 a0 0.163 0.172 0.178 0.182 0.183

a0 5 0.0, a1 5 0.2
n 328 305 258 235 207
b0 0.944 0.220 0.384 0.197 0.318 0.186 0.286 0.186 0.279 0.182
b1 0.054 0.059 0.042 0.049 0.040 0.048 0.038 0.045 0.034 0.041
b2 0.790 0.210 0.175 0.202 0.147 0.191 0.132 0.184 0.120 0.183
b3 0.197 0.198 0.137 0.157 0.119 0.135 0.116 0.132 0.112 0.131
a1 5 a0 0.168 0.177 0.182 0.186 0.185

a0 5 0.02, a1 5 0.0
n 568 646 705 739 743
b0 0.848 0.147 0.371 0.119 0.179 0.108 0.144 0.103 0.129 0.103
b1 0.077 0.048 0.051 0.031 0.041 0.027 0.035 0.024 0.033 0.021
b2 0.919 0.134 0.434 0.108 0.250 0.098 0.206 0.090 0.190 0.092
b3 0.240 0.156 0.159 0.109 0.130 0.087 0.116 0.081 0.109 0.077
a1 5 a0 0.149 0.157 0.163 0.167 0.167

a1 5 a0 5 0.02
n 574 621 669 691 725
b0 0.810 0.137 0.284 0.111 0.187 0.097 0.157 0.091 0.134 0.088
b1 0.074 0.048 0.048 0.033 0.037 0.028 0.033 0.026 0.028 0.023
b2 0.874 0.144 0.336 0.125 0.232 0.113 0.192 0.112 0.166 0.110
b3 0.245 0.157 0.160 0.111 0.128 0.092 0.104 0.087 0.093 0.078
a1 5 a0 0.149 0.159 0.165 0.167 0.170

a0 5 0.02, a1 5 0.05
n 589 603 613 657 682
b0 0.952 0.118 0.309 0.092 0.195 0.079 0.154 0.077 0.131 0.073
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Table A3 (continued)

1000 2000 3000 4000 5000

Hausman Probit Hausman Probit Hausman Probit Hausman Probit Hausman Probit

b1 0.065 0.048 0.042 0.039 0.034 0.033 0.028 0.028 0.025 0.027
b2 0.988 0.165 0.322 0.150 0.195 0.142 0.158 0.140 0.130 0.140
b3 0.209 0.160 0.141 0.120 0.115 0.111 0.097 0.091 0.081 0.085
a1 5 a0 0.149 0.162 0.166 0.170 0.171

a0 5 0.02, a1 5 0.2
n 483 460 460 488 481
b0 1.070 0.148 0.646 0.109 0.356 0.101 0.242 0.092 0.221 0.086
b1 0.057 0.065 0.043 0.055 0.041 0.053 0.040 0.051 0.040 0.051
b2 0.928 0.294 0.554 0.285 0.257 0.282 0.185 0.281 0.183 0.283
b3 0.200 0.214 0.148 0.175 0.137 0.171 0.134 0.164 0.127 0.158
a1 5 a0 0.156 0.166 0.170 0.175 0.177

Table A4 RMSE for estimates under the assumption a0 5 a1

1000 2000 3000 4000 5000

Hausman Probit Hausman Probit Hausman Probit Hausman Probit Hausman Probit

a0 5 0.05, a1 5 0.0
n 717 795 847 893 918
b0 0.922 0.229 0.420 0.213 0.193 0.210 0.166 0.213 0.143 0.209
b1 0.093 0.048 0.064 0.037 0.049 0.033 0.045 0.030 0.039 0.028
b2 1.056 0.201 0.523 0.190 0.305 0.187 0.267 0.185 0.238 0.183
b3 0.284 0.157 0.191 0.124 0.162 0.108 0.147 0.097 0.132 0.089
a1 5 a0 0.129 0.135 0.141 0.142 0.144

a0 5 0.05, a1 5 0.02
n 714 772 844 874 907
b0 0.974 0.218 0.327 0.206 0.189 0.197 0.157 0.197 0.151 0.193
b1 0.078 0.051 0.056 0.039 0.046 0.035 0.038 0.034 0.036 0.031
b2 1.074 0.228 0.416 0.209 0.271 0.206 0.238 0.204 0.218 0.207
b3 0.261 0.168 0.181 0.124 0.143 0.114 0.132 0.100 0.109 0.100
a1 5 a0 0.129 0.138 0.143 0.143 0.146

a1 5 a0 5 0.05
n 677 774 816 850 871
b0 0.990 0.198 0.364 0.178 0.205 0.174 0.187 0.172 0.147 0.174
b1 0.076 0.055 0.050 0.043 0.039 0.040 0.036 0.038 0.031 0.037
b2 1.049 0.253 0.407 0.244 0.254 0.235 0.230 0.237 0.182 0.240
b3 0.241 0.179 0.160 0.148 0.135 0.128 0.115 0.123 0.099 0.116
a1 5 a0 0.131 0.140 0.144 0.146 0.150

a0 5 0.05, a1 5 0.2
n 580 601 659 713 725
b0 1.130 0.129 0.605 0.094 0.320 0.088 0.225 0.082 0.207 0.077
b1 0.064 0.075 0.047 0.066 0.046 0.065 0.043 0.062 0.044 0.063
b2 1.025 0.402 0.531 0.395 0.293 0.397 0.240 0.395 0.230 0.395
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Table A4 (continued)

1000 2000 3000 4000 5000

Hausman Probit Hausman Probit Hausman Probit Hausman Probit Hausman Probit

b3 0.215 0.225 0.165 0.213 0.147 0.198 0.136 0.188 0.132 0.188
a1 5 a0 0.137 0.144 0.153 0.156 0.157

a0 5 0.2, a1 5 0.0
n 723 827 898 919 951
b0 1.410 0.635 0.744 0.632 0.619 0.630 0.470 0.629 0.375 0.631
b1 0.345 0.073 0.189 0.065 0.165 0.063 0.146 0.062 0.138 0.062
b2 2.341 0.498 1.240 0.500 1.022 0.495 0.806 0.494 0.681 0.496
b3 1.347 0.222 0.627 0.207 0.526 0.194 0.457 0.190 0.431 0.188
a1 5 a0 0.065 0.060 0.057 0.054 0.052

a0 5 0.2, a1 5 0.02
n 777 861 908 946 964
b0 1.542 0.619 0.689 0.619 0.527 0.621 0.438 0.622 0.379 0.620
b1 0.303 0.076 0.185 0.071 0.166 0.067 0.144 0.068 0.137 0.065
b2 2.280 0.525 1.198 0.520 0.966 0.523 0.814 0.525 0.710 0.523
b3 0.955 0.243 0.622 0.213 0.513 0.207 0.466 0.204 0.432 0.201
a1 5 a0 0.064 0.063 0.055 0.054 0.049

a0 5 0.2, a1 5 0.05
n 800 879 928 964 973
b0 1.484 0.604 0.919 0.604 0.598 0.602 0.394 0.602 0.396 0.601
b1 0.331 0.082 0.191 0.075 0.146 0.074 0.136 0.073 0.126 0.072
b2 2.295 0.564 1.419 0.563 0.981 0.563 0.767 0.564 0.727 0.563
b3 1.009 0.250 0.603 0.231 0.466 0.227 0.421 0.223 0.389 0.221
a1 5 a0 0.064 0.059 0.054 0.049 0.047

a1 5 a0 5 0.2
n 729 841 892 936 957
b0 1.791 0.524 1.108 0.516 0.829 0.514 0.541 0.515 0.465 0.511
b1 0.128 0.107 0.085 0.104 0.067 0.103 0.060 0.102 0.055 0.101
b2 1.884 0.751 1.183 0.746 0.901 0.744 0.606 0.744 0.532 0.745
b3 0.376 0.324 0.261 0.312 0.212 0.309 0.185 0.305 0.172 0.307
a1 5 a0 0.065 0.059 0.060 0.052 0.051

Table A5 RMSE for estimates under the assumption a0 6¼ a1

1000 2000 3000 4000 5000

Hausman Probit Hausman Probit Hausman Probit Hausman Probit Hausman Probit

a0 5 a1 5 0.0
n 368 401 381 388 386
b0 0.947 0.113 0.382 0.086 0.165 0.066 0.133 0.059 0.119 0.056
b1 0.229 0.044 0.134 0.032 0.113 0.027 0.090 0.022 0.081 0.019
b2 1.495 0.104 0.735 0.082 0.534 0.062 0.450 0.055 0.406 0.048
b3 0.793 0.144 0.427 0.114 0.340 0.086 0.276 0.076 0.239 0.069
a0 0.054 0.042 0.036 0.031 0.029
a1 0.228 0.187 0.172 0.153 0.146
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Table A5 (continued)

1000 2000 3000 4000 5000

Hausman Probit Hausman Probit Hausman Probit Hausman Probit Hausman Probit

a0 5 0.0, a1 5 0.02
n 378 361 391 396 406
b0 0.956 0.111 0.291 0.083 0.175 0.066 0.150 0.062 0.124 0.060
b1 0.254 0.045 0.141 0.031 0.109 0.026 0.091 0.022 0.086 0.019
b2 1.754 0.103 0.738 0.074 0.531 0.062 0.455 0.060 0.423 0.048
b3 1.078 0.156 0.481 0.105 0.332 0.088 0.274 0.078 0.253 0.070
a0 0.054 0.040 0.036 0.033 0.029
a1 0.221 0.189 0.171 0.151 0.147

a0 5 0, a1 5 0.05
n 381 425 397 412 434
b0 0.924 0.130 0.326 0.093 0.181 0.086 0.144 0.075 0.139 0.066
b1 0.270 0.044 0.144 0.035 0.111 0.027 0.094 0.025 0.082 0.024
b2 1.695 0.121 0.754 0.088 0.536 0.080 0.464 0.073 0.422 0.070
b3 0.984 0.155 0.471 0.117 0.330 0.097 0.296 0.084 0.255 0.074
a0 0.054 0.040 0.035 0.032 0.031
a1 0.227 0.185 0.160 0.151 0.140

a0 5 0.0, a1 5 0.2
n 383 467 462 488 454
b0 1.160 0.219 0.307 0.196 0.294 0.192 0.182 0.187 0.158 0.184
b1 0.382 0.058 0.170 0.049 0.134 0.046 0.105 0.044 0.094 0.045
b2 2.082 0.208 0.812 0.203 0.677 0.190 0.520 0.186 0.477 0.188
b3 1.306 0.190 0.532 0.161 0.422 0.142 0.326 0.140 0.297 0.133
a0 0.046 0.035 0.031 0.028 0.026
a1 0.197 0.167 0.154 0.137 0.130

a0 5 0.02, a1 5 0.0
n 410 418 441 442 490
b0 0.706 0.136 0.265 0.113 0.182 0.108 0.155 0.106 0.129 0.101
b1 0.288 0.045 0.141 0.033 0.106 0.028 0.087 0.023 0.077 0.021
b2 1.558 0.125 0.711 0.101 0.546 0.097 0.430 0.095 0.386 0.090
b3 0.979 0.146 0.428 0.117 0.348 0.088 0.267 0.081 0.234 0.071
a0 0.054 0.043 0.036 0.032 0.028
a1 0.228 0.187 0.162 0.143 0.136

a0 5 a1 5 0.02
n 431 473 459 462 497
b0 0.981 0.129 0.432 0.110 0.195 0.098 0.158 0.089 0.144 0.088
b1 0.260 0.047 0.140 0.032 0.097 0.028 0.088 0.026 0.079 0.024
b2 1.763 0.138 0.791 0.126 0.504 0.114 0.449 0.111 0.393 0.112
b3 0.976 0.156 0.426 0.118 0.312 0.094 0.266 0.090 0.240 0.079
a0 0.054 0.042 0.036 0.031 0.029
a1 0.220 0.177 0.153 0.146 0.133

a0 5 0.02, a1 5 0.05
n 445 499 485 552 527
b0 0.846 0.123 0.371 0.094 0.189 0.082 0.172 0.074 0.147 0.069
b1 0.225 0.049 0.136 0.036 0.114 0.032 0.094 0.029 0.081 0.029
b2 1.468 0.163 0.755 0.149 0.562 0.144 0.483 0.138 0.415 0.136
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Table A5 (continued)

1000 2000 3000 4000 5000

Hausman Probit Hausman Probit Hausman Probit Hausman Probit Hausman Probit

b3 0.906 0.168 0.441 0.118 0.372 0.106 0.292 0.097 0.248 0.090
a0 0.054 0.039 0.036 0.032 0.029
a1 0.210 0.174 0.160 0.142 0.131

a0 5 0.02, a1 5 0.2
n 446 523 542 559 577
b0 1.293 0.144 0.566 0.108 0.342 0.096 0.209 0.095 0.172 0.092
b1 0.344 0.064 0.174 0.058 0.126 0.053 0.109 0.052 0.087 0.052
b2 2.335 0.296 1.023 0.286 0.688 0.284 0.550 0.280 0.443 0.281
b3 1.575 0.211 0.598 0.170 0.406 0.162 0.344 0.160 0.283 0.159
a0 0.048 0.037 0.032 0.029 0.026
a1 0.192 0.165 0.142 0.135 0.122

Table A6 RMSE for estimates under the assumption a0 6¼ a1

1000 2000 3000 4000 5000

Hausman Probit Hausman Probit Hausman Probit Hausman Probit Hausman Probit

a0 5 0.05, a1 5 0.0
n 427 491 480 485 510
b0 1.128 0.224 0.476 0.218 0.302 0.215 0.186 0.211 0.163 0.209
b1 0.306 0.047 0.146 0.038 0.108 0.033 0.088 0.032 0.084 0.029
b2 2.050 0.197 0.827 0.193 0.607 0.186 0.464 0.185 0.431 0.182
b3 1.245 0.170 0.432 0.120 0.364 0.106 0.298 0.092 0.255 0.089
a0 0.057 0.045 0.038 0.034 0.032
a1 0.222 0.180 0.159 0.144 0.136

a0 5 0.05, a1 5 0.02
n 457 501 532 521 543
b0 1.129 0.208 0.554 0.201 0.295 0.194 0.182 0.195 0.174 0.193
b1 0.241 0.051 0.157 0.039 0.114 0.036 0.095 0.033 0.087 0.031
b2 1.820 0.228 0.968 0.209 0.623 0.204 0.473 0.206 0.446 0.203
b3 0.925 0.170 0.504 0.128 0.351 0.116 0.297 0.106 0.258 0.100
a0 0.056 0.045 0.039 0.034 0.032
a1 0.210 0.176 0.160 0.140 0.133

a0 5 a1 5 0.05
n 473 518 518 541 577
b0 1.328 0.196 0.501 0.187 0.214 0.171 0.186 0.173 0.178 0.167
b1 0.366 0.052 0.154 0.046 0.110 0.040 0.095 0.036 0.080 0.037
b2 2.263 0.248 0.880 0.249 0.559 0.236 0.484 0.237 0.413 0.236
b3 1.224 0.174 0.481 0.137 0.358 0.125 0.283 0.120 0.243 0.119
a0 0.052 0.044 0.036 0.034 0.030
a1 0.210 0.171 0.151 0.136 0.126

a0 5 0.05, a1 5 0.2
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Table A6 (continued)

1000 2000 3000 4000 5000

Hausman Probit Hausman Probit Hausman Probit Hausman Probit Hausman Probit

n 492 556 613 634 674
b0 1.611 0.131 0.484 0.097 0.338 0.088 0.289 0.078 0.209 0.077
b1 0.479 0.072 0.189 0.068 0.134 0.065 0.110 0.063 0.095 0.063
b2 2.844 0.400 0.987 0.393 0.752 0.395 0.611 0.391 0.485 0.397
b3 1.594 0.220 0.610 0.205 0.522 0.191 0.350 0.192 0.298 0.190
a0 0.047 0.039 0.034 0.030 0.029
a1 0.188 0.155 0.140 0.132 0.123

a0 5 0.2, a1 5 0.0
n 476 502 514 533 523
b0 1.577 0.648 0.887 0.640 0.603 0.632 0.325 0.634 0.402 0.636
b1 0.363 0.071 0.175 0.065 0.133 0.063 0.112 0.062 0.102 0.062
b2 2.420 0.504 1.265 0.502 0.927 0.495 0.624 0.498 0.650 0.498
b3 1.178 0.215 0.551 0.201 0.399 0.196 0.347 0.190 0.323 0.184
a0 0.064 0.053 0.047 0.041 0.039
a1 0.192 0.163 0.142 0.131 0.126

a0 5 0.2, a1 5 0.02
n 458 505 542 523 526
b0 1.646 0.626 0.980 0.625 0.638 0.621 0.492 0.621 0.305 0.619
b1 0.524 0.072 0.188 0.070 0.133 0.070 0.115 0.068 0.099 0.065
b2 4.448 0.527 1.430 0.524 0.929 0.526 0.765 0.523 0.564 0.518
b3 3.605 0.238 0.625 0.213 0.416 0.210 0.373 0.203 0.303 0.199
a0 0.063 0.052 0.046 0.042 0.039
a1 0.186 0.157 0.141 0.130 0.115

a0 5 0.2, a1 5 0.05
n 479 526 567 591 557
b0 1.968 0.610 1.183 0.606 0.676 0.607 0.426 0.598 0.310 0.603
b1 0.611 0.081 0.190 0.076 0.152 0.074 0.121 0.073 0.102 0.072
b2 4.030 0.565 1.646 0.563 1.050 0.563 0.739 0.562 0.578 0.562
b3 2.793 0.243 0.639 0.234 0.474 0.219 0.376 0.229 0.327 0.216
a0 0.062 0.053 0.048 0.041 0.037
a1 0.177 0.148 0.139 0.125 0.115

a0 5 a1 5 0.2
n 451 571 607 628 704
b0 9.257 0.521 1.251 0.520 0.805 0.511 0.714 0.514 0.622 0.511
b1 9.970 0.103 0.278 0.100 0.201 0.103 0.242 0.101 0.139 0.101
b2 54.519 0.743 1.832 0.747 1.288 0.743 1.435 0.743 0.927 0.743
b3 31.885 0.320 0.941 0.302 0.661 0.311 0.846 0.303 0.418 0.306
a0 0.058 0.055 0.045 0.047 0.041
a1 0.157 0.136 0.131 0.124 0.117
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Table A7 RMSE for estimates with a0 or a1 as a function of x1

1000 2000 3000 4000 5000

Hausman Probit Hausman Probit Hausman Probit Hausman Probit Hausman Probit

aa0 � (0.5 1 x1[j])0.02000, a1 5 0.0
n 162 165 145 143 170
b0 1.154 0.106 0.649 0.101 0.302 0.076 0.244 0.071 0.199 0.075
b1 0.060 0.049 0.045 0.039 0.034 0.031 0.029 0.031 0.027 0.030
b2 1.141 0.107 0.626 0.085 0.283 0.067 0.227 0.065 0.188 0.062
b3 0.194 0.138 0.153 0.121 0.107 0.086 0.095 0.078 0.091 0.071
aa0 0.059 0.050 0.038 0.036 0.031
aa1 0.031 0.020 0.016 0.014 0.012

aa0 � (0.5 1 x1[j])0.050000, a1 5 0.0
n 191 184 206 213 229
b0 1.209 0.162 0.512 0.135 0.352 0.143 0.234 0.131 0.195 0.127
b1 0.065 0.064 0.045 0.061 0.041 0.055 0.039 0.057 0.034 0.052
b2 1.188 0.145 0.493 0.123 0.331 0.124 0.221 0.114 0.181 0.111
b3 0.183 0.155 0.128 0.112 0.110 0.091 0.098 0.084 0.087 0.080
aa0 0.040 0.047 0.042 0.037 0.033
aa1 0.027 0.021 0.020 0.020 0.019

aa0 � (0.5 1 x1[j])0.200000, a1 5 0.0
n 178 310 362 345 343
b0 1.404 0.420 0.753 0.412 0.555 0.414 0.436 0.414 0.392 0.415
b1 0.113 0.198 0.104 0.201 0.104 0.199 0.102 0.199 0.094 0.201
b2 1.348 0.329 0.716 0.324 0.513 0.325 0.399 0.325 0.356 0.322
b3 0.212 0.188 0.149 0.157 0.117 0.140 0.102 0.140 0.093 0.131
aa0 0.076 0.065 0.061 0.058 0.060
aa1 0.076 0.072 0.078 0.078 0.074

a0 5 0, aa1 � (0.5 1 x1[j])0.020000
n 46 61 47 54 71
b0 0.277 0.114 0.162 0.081 0.157 0.074 0.121 0.065 0.123 0.062
b1 0.140 0.042 0.086 0.036 0.059 0.036 0.049 0.031 0.038 0.030
b2 0.430 0.090 0.270 0.080 0.185 0.065 0.153 0.052 0.123 0.058
b3 0.417 0.170 0.207 0.108 0.149 0.070 0.137 0.077 0.128 0.072
aa0 0.174 0.139 0.115 0.092 0.088
aa1 0.029 0.029 0.023 0.017 0.017

a0 5 0, aa1 � (0.5 1 x1[j])0.050000
n 64 66 78 79 76
b0 0.241 0.121 0.194 0.075 0.181 0.077 0.141 0.065 0.131 0.063
b1 0.107 0.088 0.072 0.066 0.063 0.060 0.043 0.058 0.046 0.059
b2 0.413 0.128 0.258 0.075 0.238 0.080 0.173 0.068 0.182 0.064
b3 0.377 0.163 0.234 0.105 0.195 0.096 0.161 0.091 0.148 0.063
aa0 0.159 0.140 0.142 0.105 0.106
aa1 0.043 0.030 0.029 0.028 0.025

a0 5 0, aa1 � (0.5 1 x1[j])0.200000
n 13 34 16 92 55
b0 0.283 0.214 0.107 0.157 0.112 0.131 0.106 0.148 0.078 0.141
b1 0.218 0.223 0.131 0.226 0.118 0.211 0.124 0.226 0.101 0.226
b2 0.396 0.215 0.116 0.166 0.094 0.176 0.111 0.153 0.085 0.156
b3 0.229 0.178 0.128 0.131 0.098 0.110 0.113 0.112 0.085 0.108
aa0 0.196 0.070 0.071 0.072 0.060
aa1 0.163 0.049 0.045 0.051 0.036
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