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ABSTRACT
We study the covariance of the cross-power spectrum of different tracers for the large-scale
structure. We develop the counts-in-cells framework for the multitracer approach, and use this
to derive expressions for the full non-Gaussian covariance matrix. We show that for the usual
autopower statistic, besides the off-diagonal covariance generated through gravitational mode-
coupling, the discreteness of the tracers and their associated sampling distribution can generate
strong off-diagonal covariance, and that this becomes the dominant source of covariance as
spatial frequencies become larger than the fundamental mode of the survey volume. On
comparison with the derived expressions for the cross-power covariance, we show that the
off-diagonal terms can be suppressed, if one cross-correlates a high tracer-density sample with
a low one. Taking the effective estimator efficiency to be proportional to the signal-to-noise
ratio (S/N), we show that, to probe clustering as a function of physical properties of the sample,
i.e. cluster mass or galaxy luminosity, the cross-power approach can outperform the autopower
one by factors of a few. We confront the theory with measurements of the mass–mass, halo–
mass and halo–halo power spectra from a large ensemble of N-body simulations. We show
that there is a significant S/N advantage to be gained from using the cross-power approach
when studying the bias of rare haloes. The analysis is repeated in configuration space and
again S/N improvement is found. We estimate the covariance matrix for these samples, and
find strong off-diagonal contributions. The covariance depends on halo mass, with higher mass
samples having stronger covariance. In agreement with theory, we show that the covariance
is suppressed for the cross-power. This work points the way towards improved estimators for
studying the clustering of tracers as a function of their physical properties.

Key words: cosmology: theory – large-scale structure of Universe.

1 IN T RO D U C T I O N

The power spectrum of matter fluctuations is of prime concern in
cosmology, since it contains detailed information about the under-
lying world model and provides a method for probing the initial
conditions of the Universe. Moreover, if the statistical properties of
the initial fluctuations form a Gaussian random field, as is the case
for most inflationary models, then the power spectrum provides a
complete description for the spatial statistics of the density field.
Consequently, over the last few decades a large fraction of obser-
vational and theoretical effort has been invested in estimating the
power spectrum of galaxies from large redshift surveys and also
to devising methods for extracting cosmological information from
the signal (Feldman, Kaiser & Peacock 1994; Peacock & Dodds

�E-mail: res@physik.unizh.ch

1994; Percival et al. 2001; Tegmark et al. 2004b; Cole et al. 2005;
Tegmark et al. 2006; Percival et al. 2007).

In order to obtain robust cosmological constraints from such data
sets, one, however, requires additional knowledge about the signal
covariance matrix – or the correlation function of power fluctua-
tions. Unlike the power spectrum, which is the Fourier transform
of the two-point correlation function, the covariance has had rela-
tively little attention. This mainly stems from the fact that in order
to estimate this quantity from a galaxy survey, or to compute it
theoretically, one is required to investigate the four-point function
of Fourier modes, more commonly the trispectrum of galaxies, and
this is a substantially more complex quantity.

The first study of power spectrum covariance, in the modern con-
text, was performed by Feldman et al. (1994), who showed, under
the assumption of Gaussianity, that the matrix was diagonal and
that the variance per band power was proportional to the square
of the power in the band (see also Stirling & Peacock 1996). This
result gave impetus to those advocating the use of power spectra
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for large-scale structure work, over the simpler two-point correla-
tion function, ξ , since under these same assumptions ξ possesses
correlated errors (Bernstein 1994).

Later, both Scoccimarro, Zaldarriaga & Hui (1999) and Meiksin
& White (1999) independently showed that the real situation was
much more complicated than the Gaussian calculation would lead
one to believe. They recognized that non-linear gravitational insta-
bility would cause different Fourier modes to become coupled to-
gether, thus breaking the Gaussianity. In Scoccimarro et al. (1999),
this mode-coupling behaviour was demonstrated by using higher
order perturbation theory to calculate the trispectrum and by an
analysis of results from an ensemble of N-body simulations. One
direct consequence of this effect was that the fractional errors on
the dark matter power spectrum were shown to reach an almost
constant plateau on intermediate to small scales, regardless of the
additional number of Fourier modes (see also Scoccimarro & Sheth
2002; Hamilton, Rimes & Scoccimarro 2006; Rimes & Hamilton
2006; Takahashi et al. 2009). They also showed that off-diagonal
covariance on small scales was generated, but their results on large
scales appeared inconclusive, owing to small volumes and hence
increased sample variance.

Meiksin & White (1999) reached similar conclusions. They also
extended the theoretical analysis to include the covariance in the
power spectrum, arising from the finite sampling of the density
field, referred to as Poisson sampling variance. It is well known
that this is of importance for correctly determining the diago-
nal errors of the covariance matrix for rare tracers of the density
field, such as bright galaxies and clusters. Whilst the covariance
matrix of the dark matter power spectrum has been studied in
some detail, that of haloes and galaxies has not received nearly
the same level of attention – at least not beyond the assumption
of linear density evolution and linear biasing. Notable contribu-
tions are: Cooray & Hu (2001); Scoccimarro & Sheth (2002); Se-
fusatti et al. (2006); Angulo et al. (2008a). However, as we will
show for the first time in this work, the discreteness terms that
were neglected by Meiksin & White (1999, since they were mainly
studying the dark matter clustering), inevitably, become the dom-
inant source of off-diagonal error for discrete tracers of the mass
distribution.

Recently, cross-correlation techniques have become an ever more
important tool for extracting information from large-scale structure
data. For instance, in a recent theoretical study, Smith, Scoccimarro
& Sheth (2007) demonstrated, using N-body simulations, that the
cross-power spectrum between dark matter and haloes had several
advantages over the simpler autopower spectrum method. In par-
ticular, a reduced shot-noise correction and noise properties. This
cross-correlation approach has been further exploited to elucidate
the environmental dependence of halo bias (Jing, Suto & Mo 2007;
Angulo, Baugh & Lacey 2008b) and recently as a means for prob-
ing the large-scale scale dependence of bias in models of primor-
dial Non-Gaussianity (Dalal et al. 2008; Pillepich, Porciani & Hahn
2008; Desjacques, Seljak & Iliev 2009; Grossi et al. 2009). Also,
the cross-correlation approach has recently been applied to real sur-
vey data: Padmanabhan et al. (2008) study the intrinsic clustering
properties of quasars in the Sloan Digital Sky Survey photometric
redshift catalogue, through cross-correlating them with the more
abundant Luminous Red Galaxy (LRG) sample; Wake et al. (2008)
apply similar analysis to the clustering of radio galaxies at z ∼
0.5 from the 2dF-SDSS LRG QSO (2SLAQ) survey. It is there-
fore of great use to have an explicit calculation for the covariance
of cross-correlations for use in likelihood analysis. Moreover, the
covariance matrix is an important ingredient for any Fisher matrix

parameter forecast, and hence an essential tool for optimal survey
design (Tegmark 1997).

The paper is organized as follows. In Section 2, we develop the
standard counts-in-cells framework to calculate the cross-power
spectrum of two different tracers of the large-scale structure. In
the analysis, we pay close attention to the assumed sampling dis-
tribution: besides the usual Poisson model, we also consider the
toy-model scenario where one tracer is simply a subsample of the
other and results are presented for both the cases. This is instructive,
since it is likely that not all galaxies are equally good tracers of the
mass – in particular those hosted in the same halo. Then in Section 3,
we derive an expression for the covariance of the cross-power spec-
trum, including all non-Gaussian and finite sampling contributions
to the error. Limiting cases are considered and expressions are also
given for band-power averages. We evaluate the expected covari-
ance signal for several different tracers of the mass. In Section 4, we
compare the efficiency of the cross-power approach with that of the
simpler autopower approach. In Section 5, the analogous expres-
sions are derived for the cross-correlation function. In Section 6, we
make a direct comparison of the theoretical predictions with esti-
mates measured from the ZHORIZON simulations, a large ensemble of
dark matter N-body simulations with total volume ∼100 h−3 Gpc3.
Finally, in Section 7 we summarize our results and conclude.

When this paper was in the refereeing stage, two related works
appeared: Hütsi & Lahav (2008) used the Halo Model and a Fisher
matrix approach to investigate improvements in parameter con-
straints to be gained from cross-correlation analysis and White,
Song-S. & Percival (2008) also looked at information to be gained
from cross-correlating multiple populations in redshift space, de-
veloping further the study of Seljak (2009) and McDonald & Seljak
(2008).

2 C OUNTS-I N-CELLS FRAMEWORK FOR
MULTI PLE TRAC ERS

2.1 Statistics of a single tracer population

Consider a single population of N discrete objects in some large
volume V μ that trace the large-scale structure of the Universe in
some way. Following Peebles (1980), we will assume that these
tracers are Poisson sampled from some underlying smooth density
field, and that the statistics of this underlying field are well described
by a Gaussian Random Field. Hence, on partitioning space into a
set of infinitesimal volume elements δV , the probability of finding
Ni galaxies in an element at position vector r i is given by

P (Ni |λ = n(r i)δV ) = exp(−λ)λNi

Ni!

≈

⎧⎪⎨
⎪⎩

n(r i)δV (Ni = 1)

1 − n(r i)δV (Ni = 0)

0 (Ni > 1)

, (1)

where n(r) is the continuous number density function for tracers
in the volume, which, in the local model for galaxy bias (Fry &
Gaztanaga 1993; Coles 1993), is directly related to the underlying
distribution of fluctuations in the cold dark matter (CDM) and for
the linearized relation this is simply: n(r) = n̄[1 + bδ(r)], where
δ(r) = [ρ(r) − ρ̄]/ρ̄ is the fractional overdensity in the dark matter
relative to the mean density ρ̄. The probabilities of finding Ni ≥
2 are higher powers of the infinitesimal quantity δV and so are
negligible.
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Owing to the fact that the occupation probability P (N |λ) is non-
zero only when N = 0 or 1, all of the one-point moments can be
easily derived and for (m ≥ 1)

〈
Nm

i

〉
p,s

=
〈 ∞∑

N=0

P (N |λi)N
m

〉
s

= 〈n(r i)δV 〉s = n̄δV = 〈Ni〉p,s ; (2)

and the central moments of the distribution are (m > 1)

〈(Ni − 〈Ni〉)m〉p,s = 〈n(r i)δV 〉s = n̄δV , (3)

where in the above we used the notation 〈. . .〉p,s to denote an aver-
aging over all possible samplings of the points p and all points in
space s (for brevity we will simply write 〈. . .〉).

The two-point moments may also be derived. Consider the joint
probability of finding objects in two disjoint volume elements δVi

and δVj separated by a vector r ij = r i − r j; in the Poisson sam-
pling model this is given simply by the product of the independent
probabilities (i 	=j ):

P (Ni, Nj ) = P (Ni)P (Nj ) (4)

= n(r i)n(rj )δViδVj . (5)

On averaging, the two-point moments may be written:〈
Nk

i Nm
j

〉 = n̄2δViδVj [1 + ξ (r i , rj )], (6)

where n̄ ≡ 〈n(r)〉 = ∑
i Ni/Vμ = N/Vμ is the mean number

density of tracers and ξ (r i, r j) is the two-point autocorrelation
function. Hence, correlations are introduced into the sample, if and
only if the points in the underlying continuous field are correlated.

2.2 The autopower spectrum

We define the Fourier relations for the density field as

δ(r) = Vμ

(2π)3

∫
d3k δ(k) exp(−ik · r), (7)

δ(k) = 1

Vμ

∫
d3r δ(r) exp(ik · r). (8)

The density field of the discrete counts in cells is written:

δd (r) = 1

n̄

∑
i

(Ni − 〈Ni〉) δD(r − r i), (9)

which on insertion into our definition of the Fourier transform leads
to the discrete sum

δd (k) = 1

N

∑
i

(Ni − 〈Ni〉) exp(ik · r i). (10)

We may now compute the power spectrum of the discrete set of
tracers,〈
δd (k1)δd (k2)

〉 = 1

N 2

∑
i,j

〈[Ni − 〈Ni〉][Nj − 〈Nj 〉]〉

× eik1·r i+ik2·r j

= 1

Vμ
2

∑
i 	=j

δViδVj ξ (r i , rj )eik1·r i+ik1·r j

(11)

+ 1

NVμ

∑
i=j

δVie
i(k1+k2)·r i . (12)

The sums over cells can be transformed into volume integrals,
and the double volume integral over the correlation function in
the first term can be simplified by recalling that through statistical
homogeneity ξ (r i, r j) = ξ (r i − r j, 0). We may then make use of
the orthogonality of the Fourier basis functions to evaluate sums of
the type∑

i

δVie
i(k1+k2)·r i = VμδK

k1,−k2
. (13)

Hence, after performing these steps and introducing our definition
of the power spectrum as

P (k1)δK
k1,−k2

≡ Vμ〈δ(k1)δ(k2)〉, (14)

we recover the standard result for the power spectrum of discrete
tracers (Peebles 1980):

P d (k) = P c(k) + 1

n̄
, (15)

where P c is the power spectrum of the underlying continuous field
of tracers. The constant term on the right-hand side of the equation is
more commonly referred to as the ‘shot-noise correction’ term, and
is the additional variance introduced through discreteness.

2.3 Statistics of two tracer populations

We will now extend the above formalism to the problem of two
different tracer populations, which we will denote as A and B. Let
the total number of objects in samples A and B be NA and NB,
and the numbers of each type of object in the ith cell be NA,i ≡
NA(r i) and NB,i ≡ NB(r i), respectively. Likewise, the mean number
densities are n̄A and n̄B . We now consider two cases for the sampling
distributions, these are as follows.

(i) Non-overlapping tracers. A and B are both independent Pois-
son samples of the underlying continuous density field. In this case,
the joint probability distribution for obtaining objects of types A
and B in a single cell is

P (NA,i, NB,i) = P (NA,i |λA)P (NB,i |λB ),

≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − [nA(r) + nB (r)] δV (NA = 0, NB = 0)

nA(r)δV (NA = 1, NB = 0)

nB (r)δV (NA = 0, NB = 1)

0 (NA ≥ 1, NB ≥ 1).

(16)

The one-point cross-moments are then calculable (m ≥ 1, k ≥ 1),〈
Nm

A,iN
k
B,i

〉 = 0; (17)

and so also the central moments:〈
(NA,i − 〈NA,i〉)m(NB,i − 〈NB,i〉)k

〉 = 0. (18)

As in equation (5), the two-point cross-moments may also be derived
and these are (i 	=j )〈
Nm

A,iN
k
B,j

〉 = n̄An̄BδViδVj [1 + ξAB (r i , rj )], (19)

where ξAB is the two-point cross-correlation function of the tracers
A and B.

(ii) Overlapping tracers. A is a Poisson sample of the underlying
continuous density field and B is a subsample of A. This time the
joint probability distribution for obtaining objects of types A and B
is written:

P (NA,i, NB,i) = P (NA,i |λA)P (NB,i |NA,i). (20)
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The conditional probability P (NB,i |NA,i) is the key object of
interest here, and as a simple illustrative example we will take
this as

P (NB,i |NA,i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 (NB = 0|NA = 0)

a (NB = 1|NA = 1)

1 − a (NB = 0|NA = 1)

0 (NB > 1|NA ≥ 1),

(21)

where we will fix a ≡ NB/NA. Again, the one-point cross-moments
are also calculable for this sampling model,〈
Nm

A,iN
k
B,i

〉 = a n̄AδV = n̄BδV ; (22)

and so also the central moments:〈
(NA,i − 〈NA,i〉)m(NB,i − 〈NB,i〉)k

〉 = n̄BδV . (23)

Similarly, the two-point cross-moments are also calculable,〈
Nm

A,iN
k
B,j

〉 = n̄An̄BδViδVj

[
1 + ξAB (r i , rj )

]
. (24)

2.4 The cross-power spectrum

We may also compute the cross-power spectrum of tracers A and B,
and for both the non-overlapping (case i) and overlapping (case ii)
sampling distributions. The Fourier modes for tracers A and B can
be written:

δd
T (k) = 1

NT

∑
i

[
NT(r i) − 〈

NT,i

〉]
exp(ik · r i), (25)

where T = {A, B} denotes the tracer type. As for the autospectrum,
we will define the cross-power spectrum as

PAB (k1)δK
k1,−k2

≡ Vμ 〈δA(k1)δB (k2)〉 . (26)

Following now the steps in Section 2.2, but this time using the
statistics for the counts in cells as given in the previous section,
we find that the cross-power of discrete tracers A and B obeys the
relation

P d
AB (k) = P c

AB (k) +
{

1

n̄A

}
, (27)

where P c
AB is the cross-power spectrum of the underlying continu-

ous fields. This expression is almost identical to the result for the
autospectrum (equation 15); however, we emphasize an important
difference – the constant term is enclosed by curly brackets. In this
paper {. . .} shall have the special meaning that this term only ap-
pears when there is an overlap between samples A and B, as in
sampling case (ii), otherwise this term is exactly zero (see Peebles
1980). We note that this notation shall be exploited throughout the
rest of the paper, to represent the results from both sampling distri-
butions with a single equation. More intuitively, the appearance of
the constant term in the cross-power spectrum warns us that, if the
two samples are not truly independent then we should expect some
finite sampling correction.

3 C OVARIANCE OF THE C RO SS-POWER
SPECTRUM

We now turn to the calculation of the full non-Gaussian covariance
of the cross-power spectrum for discrete tracers A and B. Note that
when considering sampling case (ii), and in the limit that NA = NB,
we will recover the standard covariance relations for the autopower
spectrum (Meiksin & White 1999; Scoccimarro et al. 1999).

3.1 Definition of the covariance

To begin with, we define the covariance, per mode, of the cross-
power spectrum for discrete tracers A and B as

Cd
AB ≡ Cov

[
P d

AB (k1), P d
AB (k2)

]
= 〈

P d
AB (k1)P d

AB (k2)
〉 − 〈

P d
AB (k1)

〉 〈
P d

AB (k2)
〉

(28)

On inserting the definition for the cross-power spectrum, PAB ≡
V μ〈δA(k1)δB(−k1)〉, and making use of equation (27) in the second
term on the right-hand side, we obtain

Cd
AB = Vμ

2
〈
δd
A(k1)δd

B (−k1)δd
A(k2)δd

B (−k2)
〉

(29)

−
[
P c

AB (k1) +
{

1

n̄A

}] [
P c

AB (k2) +
{

1

n̄A

}]
. (30)

Thus, we see that in order to compute the covariance of the cross-
power spectrum it is also necessary to evaluate the four-point func-
tion of Fourier modes, or more commonly the trispectrum.

3.2 Evaluating the discrete cross-trispectrum

Using the counts-in-cells approach, the four-point cross-correlation
function of Fourier modes can be written explicitly as

〈
δd
A(k1)δd

A(k2)δd
B (k3)δd

B (k4)
〉 = 1

N 2
A

1

N 2
B

∑
i,j ,k,l

eik1·r i+···+ik4·r l

×〈(NA,i − 〈NA,i〉)(NA,j − 〈NA,j 〉)
×(NB,k − 〈NB,k〉)(NB,l − 〈NB,l〉)〉. (31)

Thus, we find that in order to evaluate the trispectrum we are in
turn required to evaluate the four-point cross-correlation function
of counts in cells. Again, following Peebles (1980), we break this
quadruple sum into five types of terms, each of which arises from a
particular partitioning of the indices (i, j , k, l). Full details are pre-
sented in the following sections, those not wishing to be embattled
at this stage should skip ahead to Section 3.3.

3.2.1 Terms (i 	= j 	= k 	= l)

Terms in the sum with these indices correspond to contributions
to the product from the connected four-point correlation function
of the field. These terms can be rewritten as

〈(NA,i − 〈NA,i〉) · · · (NB,l − 〈NB,l〉)〉 = n̄2
An̄2

BδVi · · · δVl

× (
ηAABB

ijkl + ξAA
ij ξBB

kl + ξAB
ik ξAB

jl + ξAB
il ξAB

jk

)
, (32)

where for convenience we have introduced the abbreviated notation
for the two-, three- and four-point correlation functions:

ξij ≡ ξ (r i , rj ); ζijk ≡ ζ (r i , rj , rk); ηijkl ≡ η(r i , rj , rk, r l).

On inserting the above expression into equation (31), transforming
the sums over cells to volume integrals and using the statistical
homogeneity of the correlation functions, we obtain the following
expression:

Vμ
2
〈
δd
A(k1) . . . δd

B (k4)
〉 = 1

Vμ

TAABB (k1, k2, k3, k4)δK
k1+···+k4,0

+PAA(k1)PBB(k3)δK
k1,−k2

δK
k3,−k4

+PAB(k1)PAB(k2)δK
k1,−k3

δK
k2,−k4

+PAB(k1)PAB(k2)δK
k1,−k4

δK
k2,−k3

, (33)
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where we have used the short-hand notation δK
k1+···+k4,0 =

δK
k1+k2+k3+k4,0, and the irreducible or connected trispectrum of

the underlying continuous density field has been defined as
T (k1, . . . , k4) ≡ Vμ

3〈δ(k1) . . . δ(k4)〉cδ
K
k1+···+k4,0. This obeys a

Fourier relation with the irreducible four-point correlation function
ηijkl.

3.2.2 Terms (i 	= j 	= k = l) + perms

There are six types of term that arise from the equivalence of two
of the indices, and in order to evaluate these we are required to deal
with products of the form〈
(NA,i − 〈NA,i〉)(NA,j − 〈NA,j 〉)(NB,k − 〈NB,k〉)2

〉
= 〈(NA,i − 〈NA,i〉)(NA,j − 〈NA,j 〉)NB,k〉, (34)

= n̄2
An̄BδViδVj δVj

(
ξAA
ij + ζAAB

ijk

)
, (35)

where the second equivalence follows from the rules for the cross-
moments in Section 2.3. Hence, on repeating this procedure for
all possible ways of equivalencing two indices we arrive at six
expressions. Then, on following a procedure similar to the evalua-
tion of the cross-power spectrum, and introducing the bispectrum
B as

B(k1, k2)δK
k1+k2+k3,0 ≡ V 2

μ 〈δ(k1)δ(k2)δ(k3)〉 , (36)

and noting that B and ζ are Fourier duals, we find that these terms
can be written:

Vμ
2
〈
δd
A(k1) . . . δd

B (k4)
〉

=
[

1

n̄B

PAA(k1) + 1

n̄A

PBB(k3)

]
δK

k1,−k2
δK

k3,−k4

+
{

1

n̄A

[PAB(k1) + PAB(k2)]
[
δK

k1,−k4
δK

k2,−k3
+ δK

k1,−k3
δK

k2,−k4

]}

+
[

1

NB

BAAB(k1, k2) + 1

NA

BABB(k3, k4)

]
δK

k1+···+k4,0

+
{

1

NA

[BABB(k1, k3) + BABB(k1, k4) + BABB(k2, k3)

+ BABB(k2, k4)] δK
k1+···+k4,0

}
, (37)

where BABB and BAAB are the cross-bispectra of the fields A and B.

3.2.3 Terms (i = j 	= k = l) + perms

There are three terms of this form that arise in the quadruple sum,
and theses involve evaluation of quantities of the form〈
(NA,i − 〈NA,i〉)2(NB,k − 〈NB,k〉)2

〉 = 〈NA,iNB,k〉
= n̄An̄BδViδVk

(
1 + ξAB

ik

)
, (38)

where again we have used the relations for the cross-moments from
Section 2.3. On repeating this procedure for the other two terms,
and repeating the analysis as before, we find that these types of
terms can be written together as

Vμ
2
〈
δd
A(k1) . . . δd

B (k4)
〉 = δK

k1,−k2
δK

k3,−k4

n̄An̄B

+
[

1

n̄2
A

(
δK

k1,−k3
δK

k2,−k4
+ δK

k1,−k4
δK

k2,−k3

)]

+ 1

n̄An̄BVμ

PAB(k1 + k2)δK
k1+···+k4,0

+
{

1

n̄2
AVμ

[PBB(k1 + k3) + PBB(k1 + k4)] δK
k1+···+k4,0

}
. (39)

3.2.4 Terms (i = j = k 	= l) + perms

There are four possible types of term that arise from this combina-
tion of indices and each of these requires us to evaluate a product
like〈
(NA,i − 〈NA,i〉)2(NB,i − 〈NB,i〉)(NB,l − 〈NB,l〉)

〉
= 〈NB,i(NB,l − 〈NB,l〉)〉

= n̄2
BξBB

il δViδVl. (40)

Hence, on repeating this for the four possible arrangements of the
indices, and using the methods described for the previous terms, we
find that all of these terms reduce to the following expression:

Vμ
2
〈
δd
A(k1) . . . δd

B (k4)
〉 =

{
1

n̄An̄BVμ

[PAB(k1) + PAB(k2)]

+ 1

n̄2
AVμ

[PBB(k3) + PBB(k4)]

}
δK

k1+···+k4,0. (41)

3.2.5 Terms (i = j = k = l)

There is only one form for this type of term in the quadruple sum,
and to evaluate it we are required to compute the quantity,〈
(NA,i − 〈NA,i〉)2(NB,i − 〈NB,i〉)2

〉 = 〈NB,i〉 = n̄BδVi .

Hence, this has the form

Vμ
2
〈
δd
A(k1) . . . δd

B (k4)
〉 =

{
1

n̄2
An̄BVμ

}
δK

k1+···+k4,0. (42)

3.3 Expressions for the cross-power covariance

The summation of equations (33, 37, 39, 41, 42) gives the complete
description of all the terms entering the cross-trispectrum of Fourier
modes for samples A and B. We may now use this to obtain the
full non-Gaussian covariance of the cross-power spectrum in two
different modes k1 and k2. To do this, we simply take equations
(33, 37, 39, 41, 42), and set the arguments of the wave modes to be

(k1, k2, k3, k4) → (k1, k2, −k1, −k2).

This gives us the quantity 〈δd
A(k1)δd

B(−k1)δd
A(k2)δd

B(−k2)〉. Hence,
the covariance is given by

Cd
AB = 1

Vμ

TAABB (k1, k2, −k1, −k2)

+
[
PAA(k1) + 1

n̄A

] [
PBB(k2) + 1

n̄B

]
δK

k1,−k2
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+
[
PAB(k1) +

{
1

n̄A

}] [
PAB(k2) +

{
1

n̄A

}]
δK

k1,k2

+ BAAB(k1, k2)

NB

+ 1

NA

[BABB(−k1, −k2) + {BABB(k1,−k2)

+BABB(k2, −k2) + BABB(k2, −k1) + BABB(k1,−k1)}]

+ PAB(k1 + k2)

n̄An̄BVμ

+
{

1

n̄2
AVμ

[PBB(0) + PBB(k1 − k2)]

}

+
{

1

n̄2
AVμ

[PBB(−k1) + PBB(−k2)]

}

+
{

1

n̄An̄BVμ

[PAB(k1) + PAB(k2)]

}
+
{

1

n̄2
An̄BVμ

}
. (43)

Again, we remind the reader that the terms in curly brackets van-
ish for the case where samples A and B have no overlapping.
It should also be noted that when samples A and B are equiv-
alent, we recover the expressions for the covariance of the au-
topower spectrum (Meiksin & White 1999; Scoccimarro et al.
1999).

3.4 Band-power average covariance

The above formula gives us the full expression for the covariance in
the cross-power spectrum per Fourier mode. In practice, the power
is estimated by averaging over all wave modes in thin spherical
shells in k-space – band powers. The band-power average power
spectrum can be written:

P AB(ki) = Vμ

Vs,i

∫
Vs,i

d3k 〈δA(k)δB (−k)〉 , (44)

where the average is over the k-space shell Vs, of volume

Vs,i =
∫ ki+	k/2

ki−	k/2
d3k = 4πk2

i 	k

[
1 + 1

12

(
	k

ki

)2
]

. (45)

The discretized form for the band power is

P AB(k) = Vμ

Nk

Nk∑
j=1

〈
δA(kj )δB (−kj )

〉
, (46)

where Nk = Vs(k)/Vk is the total number of modes in the shell.
Vk = k3

f is the fundamental k-space cell volume and kf = 2π/L is
the fundamental wave mode.

Likewise, the band-power averaged covariance can be written:

C
d

AB[ki, kj ] ≡ 1

Vs,iVs,j

∫
Vs,i ,Vs,j

d3k1d3k2 Cd
AB[k1, k2]. (47)

To obtain the full non-Gaussian band-power covariance, one
then inserts equation (43) into the above expression, and this

leads to

C
d

AB[ki, kj ] = 1

Vμ

T AABB[ki, kj ]

+ 1

Nk

[(
P AA(ki) + 1

n̄A

)(
P BB(kj ) + 1

n̄B

)

+
(

P AB(ki) +
{

1

n̄A

})(
P AB(kj ) +

{
1

n̄A

})]
δK
ki ,kj

+ BAAB(ki, kj )

NB

+ BABB(ki, kj )

NA

+
{

2

NA

BABB(ki, kj )

}

+ P AB[ki, kj ]

n̄An̄BVμ

+
{

1

n̄2
AVμ

[
P BB[ki, kj ]

]}

+
{

1

n̄An̄BVμ

[
P AB(ki) + P AB(kj )

]}

+
{

1

n̄2
AVμ

[
P BB(ki) + P BB(kj )

]} +
{

1

n̄2
An̄BVμ

}
, (48)

where the bin-averaged trispectrum and bispectrum are

T [ki, kj ] ≡
∫

Vs,i ,Vs,j

d3k1

Vs,i

d3k2

Vs,j

T (k1, k2, −k1,−k2), (49)

B[ki, kj ] ≡
∫

Vs,i ,Vs,j

d3k1

Vs,i

d3k2

Vs,j

B(k1, k2, −k1 − k2), (50)

and where we introduced the function

P [ki, kj ] ≡
∫

Vs,i ,Vs,j

d3k1

Vs,i

d3k2

Vs,j

P (|k1 − k2|), (51)

=
∫

Vs,i ,Vs,j

d3k1

Vs,i

d3k2

Vs,j

P (|k1 + k2|). (52)

We may now consider a number of interesting limiting cases of
the above expressions. First, in the very large-scale limit (ki, kj) →
0, and for CDM models that evolve from Gaussian random initial
fluctuations, we have P ∝ k → 0, and from gravitational instability

(Bernardeau et al. 2002) we have B ∝ P
2 → 0 and T ∝ P

3 → 0,
and the covariance becomes

C
d

A[ki, kj ] ≈ 1

Nki

1

n̄An̄B

δK
ki ,kj

+
{

1

n̄2
An̄BVμ

}
. (53)

Secondly, in the small-scale limit (ki, kj)  kf = 2π/L, we have
Nk  1 and P ∝ k−3 → 0, and again from gravitational instability

we have B ∝ P
2 → 0 and T ∝ P

3 → 0, hence

C
d

AB[ki, kj ] ≈
{

1

n̄2
An̄BVμ

}
. (54)

The correlation matrix C is defined as the covariance matrix nor-
malized by its diagonal components, i.e.

Cd
AB[ki, kj ] = C

d

AB[ki, kj ]√
C

d

AB[ki, ki]C
d

AB[kj , kj ]
, (55)

and C[ki, ki] = 1 and −1 ≤ C [ki, kj] ≤ 1. Thus, for (i 	=j ) and in
the large-scale limit we find

Cd
AB[ki, kj ] ≈

[
(n̄AVμ)2

Nki
Nkj

+ n̄AVμ

(
Nki

+ Nkj

Nki
Nkj

)
+ 1

]−1/2

.

≈
√

Nki
Nkj

n̄AVμ

� 1,
(56)
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Figure 1. Theoretical predictions for the halo–halo autopower spectrum correlation matrix as a function of wavenumbers ki and kj. Here, all of the covariance
is generated by the discreteness terms and all non-Gaussian terms generated through gravitational instability have been set to zero, i.e. Tc = Bc = 0. Left-hand
panel: dark matter haloes with masses M ∈ [1.0 × 1013, 2.0 × 1013] h−1 M�. Right-hand panel: dark matter haloes with masses M ∈ [1.0 × 1015, 2.0 ×
1015] h−1 M�.

where the second equality obtains from assuming n̄AVμ → ∞.
Conversely, in the small-scale limit we find

Cd
AB[ki, kj ] ≈ 1. (57)

These last two expressions are important results. The first informs us
that if one computes the autopower spectrum of a discrete sampling
of the density field then for a standard CDM power spectrum the
covariance matrix is diagonal on large scales provided n̄Vμ  1.
However, on small scales all of the Fourier modes inevitably become
perfectly correlated, and this is completely independent of any non-
Gaussian terms generated through gravitational instability. On the
other hand, if there is no overlapping between samples A and B
then there will be no off-diagonal covariance, since equation (54)
vanishes.

We may demonstrate these statements more clearly by taking the
Gaussian limit of equation (48),

C
d

AB[ki, kj ] = 1

Nk

[(
P AA(ki) + 1

n̄A

)(
P BB(kj ) + 1

n̄B

)

+
(

P AB(ki) +
{

1

n̄A

})(
P AB(kj ) +

{
1

n̄A

})]
δK
ki ,kj

+ P AB[ki, kj ]

n̄An̄BVμ

+
{

1

n̄2
AVμ

[
P BB[ki, kj ]

]}

+
{

1

n̄2
AVμ

[
P BB(ki) + P BB(kj )

]}

+
{

1

n̄An̄BVμ

[
P AB(ki) + P AB(kj )

]} +
{

1

n̄2
An̄BVμ

}
. (58)

For the case where samples A and B are identical, the above expres-
sions reduce to

C
d
[ki, kj ] = 2

Nki

[
P (ki) + 1

n̄

]2

δK
ki ,kj

+ 2

n̄2Vμ

[
P [ki, kj ] + P (ki) + P (kj )

]+ 1

n̄3Vμ

. (59)

Finally, since it will be of use later, we may also take the limit
n̄AVμ → ∞, giving

C
d

AB[ki, kj ] = 1

Nk

[(
P AA(ki) + 1

n̄A

)(
P BB(kj ) + 1

n̄B

)

+
(

P AB(ki) +
{

1

n̄A

})(
P AB(kj ) +

{
1

n̄A

})]
δK
ki ,kj

. (60)

and for A equivalent to B

C
d
[ki, kj ] = 2

Nki

(
P (ki) + 1

n̄

)2

δK
ki ,kj

. (61)

Fig. 1 presents the correlation matrix for the halo–halo autopower
spectrum generated using equation (59). In the left- and right-hand
panels, we show the results for haloes with masses in the range
M ∈ [1.0, 2.0] × 1013 h−1 M� and M ∈ [1.0, 2.0] × 1015 h−1 M�,
respectively. We evaluate the average bias and halo number den-
sity within each mass bin using the Sheth & Tormen (1999) mod-
els, and we find n̄ = [1.87 × 10−4, 1.12 × 10−7] h3 Mpc−3 and
b = [1.30, 5.85] for the two bins, respectively, and take V μ =
(1500)3 h−3 Mpc3. In both cases, the matrix becomes fully corre-
lated and the rare sample shows a much stronger correlation on
larger scales than the higher abundance lower mass halo sample.
On the other hand, if we were to compute the correlation matrix for
the cross-power spectrum of the two halo samples then we would
predict that the correlation matrix would be equivalent to the identity
matrix.

Before we leave this section, it is interesting to note that, in
the pure Gaussian limit, i.e. n̄T PT  1, the fractional vari-
ance in the cross-power is not simply dependent upon the num-
ber of available modes, but also the cross-correlation coefficient:
rAB(k) ≡ PAB(ki)/

√
PAA(ki)PBB(ki). This can be seen directly from

equation (58),(
σP AB

P AB

)2

= 1

Nk

(
1

r2
AB

+ 1

)
. (62)

The corresponding expression for the autopower spectrum is
σP /P = √

2/Nk ∝ k−1V −1/2
μ . However, when rAB = 1 there is

no difference and the fractional error scales with the survey volume
in the usual way. In Section 6.2, we will show that for haloes and
dark matter on the largest scales the cross-power approach offers
only a modest improvement over the autopower method, implying
that rAB ≈ 1.

4 EFFI CI ENCY OF ESTI MATORS

4.1 Comparing estimators

One might ask the following question: when should one apply the
cross-power spectrum approach, instead of the usual autopower
spectrum approach? In this section, we will attempt to answer this
question. The main advantages of the cross-power approach are
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most apparent when one probes the dependence of a given sample of
tracers as a function of some physical parameter, i.e. the luminosity
dependence of clustering or the mass dependence of the clustering
of clusters. This statement can be more directly quantified if we
consider the concept of estimator efficiency.

If we have two unbiased estimators E1 and E2 then the most
efficient estimator of the two is said to be the one with the small-
est variance: i.e. if Var[E1] < Var[E2] then E1 will be considered
to be a more efficient estimator than E2 (Barlow 1989). We need
to modify this concept slightly since in comparing the cross- and
autopower spectra we are not estimating the same thing, owing
to the clustering bias. Instead, we will define the effective effi-
ciency of the estimator through the signal-to-noise ratio (S/N): i.e.
E1 will be considered to be a more efficient estimator than E2 if
E1/

√
Var[E1] > E2/

√
Var[E2] >. Or in other words the estimator

with the largest S/N will be the most efficient estimator.
On taking the limit n̄AVμ → ∞ for equations (58) and (59), the

covariance matrices are diagonal and so we may write the S/N for
the auto and cross-power spectra as

(S/N)2
jj

Nk

= 1

2

γ 2
j(

1 + γ 2
j

) , (63)

(S/N)2
ij

Nk

=
[

γiγj r
2
ij

(γi + 1)
(
γj + 1

) + (
√

γiγj rij + {δ})2

]
, (64)

where we have introduced the following quantities:

γi ≡ n̄iPii , (65)

r2
ij = P 2

ij /PiiPjj , (66)

α2 ≡ n̄j /n̄i , (67)

where we have taken the index i to denote the high-density sample
A and j to denote the low-density sample B. Taking the ratio of the
above expressions gives us a simple test for the relative efficiency
of the estimators,

(S/N)2
ij

(S/N)2
jj

= 2r2
ij

γi

γj

×
[

(1 + γj )2

(1 + γi)(1 + γj ) + (
√

γiγj rij + {α})2

]
, (68)

and we see that the relative efficiency does not depend explicitly on
the number of available modes, nor the survey volume.

To proceed further we must specify samples i and j in more detail.
Let us consider the case where sample i is obtained from a set of
unbiased high-density objects and where sample j is obtained from
a set of highly biased but rare objects. For this situation, we have
n̄i  n̄j . Hence, α → 0. Further, we will assume that γ i  γ j.
Hence, equation (68) simplifies to

(S/N)2
ij

(S/N)2
jj

≈ 2r2
ij

[
γ 2

j + 2γj + 1

γ 2
j

(
1 + r2

AB

) + γj

]
. (69)

On assuming that rAB ≈ 1, we finally find that

(S/N)2
ij

(S/N)2
jj

≈
[

2γ 2
j + 4γj + 2

2γ 2
j + γj

]
> 1. (70)

This means that for examining the clustering properties of rare
samples of objects it is more efficient to cross-correlate them with a
high-density sample, rather than to compute their autopower spec-
trum.

Figure 2. Relative signal-to-noise ratio matrix (S/N)ij/(S/N)jj of the cross-
power spectra of cluster samples in mass bin i (y-axis) and mass bin j (x-axis).

4.2 Example: improving estimates of cluster bias

Let us now provide a more concrete example. Consider a sample of
dark matter clusters and suppose that we have both the redshift and
an unbiased estimate of the cluster mass, i.e. through weak lensing,
the Sunyaev–Zel’Dovich effect, etc., and that the clusters span the
mass range M ∈ [1011, 5 × 1015] h−1 M�. We are interested in
exploring the bias as a function of cluster mass, perhaps for use in
constraining primordial non-Gaussianity as in Slosar et al. (2008).
The sample may be subdivided into mass bins, and one may measure
the autopower spectrum of each mass bin and also the cross-power
spectra of the different mass bins.

Fig. 2 shows how the relative S/N as given by equation (68)
varies as a function of the mass bins i and j. Note that in the figure
i and j represent the rows and columns of the matrix, respectively.
When i < j , we find that there are significant advantages to be
gained from computing the cross-power spectrum as opposed to the
autopower spectrum especially for the case of high-mass haloes.
For the case where i > j , naturally, the cross-power spectra are
not optimal measures compared to the autospectrum. In generating
this example, we used the dark matter halo mass function and bias
formulation presented by Sheth & Tormen (1999), and we evaluate
these for the same cosmological model as described in Table 1.

5 C OVA R I A N C E O F T H E
C RO S S - C O R R E L AT I O N FU N C T I O N

As a corollary to our study of the cross-power spectrum, we extend
our analysis to encompass the covariance of the cross-correlation
function. We note that the autocorrelation covariance of dark mat-
ter and haloes on scales relevant for the Baryonic Acoustic Os-
cillations (r ∼ 100 h−1 Mpc) was recently investigated in detail by
Smith, Scoccimarro & Sheth (2008a) and Sánchez, Baugh & Angulo
(2008). Here, we perform a similar study for the cross-correlation
function.

In direct analogy with the analysis of power spectrum band pow-
ers, we may define the band-averaged cross-correlation function
as

ξ
AB

(r i) = 1

Vs(ri)

∫
Vs (ri )

d3r ξAB (r) =
∫

d3k

(2π)3
P AB (k)j0(kri),

(71)
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Table 1. Parameters for the ZHORIZON simulations.

Simulation m w b w0 σ 8 n h N L( h−1 Mpc) mp( h−1 M�) Nsim V tot ( h−3 Gpc3)

ZHORIZON 0.25 0.75 0.04 −1 0.8 1.0 0.7 7503 1500.0 5.55 × 1011 30 101.25

Note. Columns are: density parameters for matter, dark energy and baryons; the equation of state parameter for the dark energy P w =
wρw; normalization and primordial spectral index of the power spectrum; dimensionless Hubble parameter H 0 = h100 (km s−1 Mpc−1);
number of particles, box size, particle mass, number of realizations and total simulation volume, respectively.

where Vs is the radial shell of thickness 	r , over which the average
is performed and this has volume

Vs,i = 4πr2
i 	r

[
1 + 1

12

(
	r

ri

)2
]

. (72)

For the second equality in equation (71), we have made use of
the fact that ξ ⇔P are Fourier dual, and defined the zeroth-order
bin-averaged spherical Bessel function as

j0(kri) ≡
r2j1(kr)

∣∣r2

r1

r2
i k	r

[
1 + 1

12

(
	r

ri

)2
] ,

{
r2 = ri + 	r/2

r1 = ri − 	r/2
, (73)

with j 1(x) ≡ sin x/x2 − cos x/x being the first-order spherical
Bessel function. Similar to the bin-averaged covariance for the
power (cf. equation 47), we may also define the bin-averaged cross-
correlation covariance between bins i and j:

C
d

ξAB ≡ Cov
[
ξ

AB

i , ξ
AB

j

]
= 1

Vs,iVs,j

∫
Vs,i ,Vs,j

d3r1d3r2 Cd
ξAB , (74)

where Cd
ξAB = Cov[ξAB (r1), ξAB (r2)]. On inserting our expression

for the bin-averaged correlation function, we may rewrite the above
expression as

C
d

ξAB =
∫

d3k1

(2π)3

d3k2

(2π)3
j0(k1ri)j0(k2rj )Cd

PAB
. (75)

Thus, the cross-power covariance also gives us the cross-correlation
covariance. It should also be noted that even if Cd

PAB
is diagonal

C
d

ξAB is not, since the spherical Bessel functions in the integrand
effectively smooth the information across different scales.

The full non-Gaussian contributions to the correlation covari-
ance can be calculated by substituting equation (43) into the above
expression. On taking the continuum limit for the Kronecker delta
symbols, i.e. δK

k1,k2
→ δD(k1 −k2)(2π)3/Vμ, rewriting the spherical

Bessel functions as

j0(kr) = 1

4π

∫
dr exp(−ik · r) (76)

and using the Fourier relations between the N-point correlation
functions and polyspectra, we then find that

C
d

ξAB =
∫

Vs,iVs,j

d3r1

Vs,i

d3r2

Vs,j

∫
d3y

Vμ

ηAABB(r1 + y, r2, y)

+
∫

Vs,iVs,j

d3r1

Vs,i

d3rj

Vs,j

∫
d3y

Vμ

[ξAA( y)ξBB(r1 + r2 + y)

+ ξAB( y)ξAB(r1 + r2 + y)]

+ 1

Vμ

∫
Vs,iVs,j

d3r1

Vs,i

d3rj

Vs,j

[
1

n̄B

ξAA(r1 + r2)

+ 1

n̄A

ξBB(r1 + r2) +
{

2

n̄A

ξAB(r1 + r2)

}]

+
[

1

n̄An̄B

+
{

1

n̄2
A

}]
δK
i,j

VμVs(i)
+ ζ AAB(ri , rj )

NB

+ 1

NA

[
ζ ABB(ri , rj ) + {

2ζ ABB(ri , rj )
}]

+ ξAB(rj )

n̄An̄BVμVs,i

δK
i,j +

{
ξBB(ri)

n̄2
AVμVs,i

δK
i,j

}

+
{

1

n̄An̄BVμ

[
ξAB(ri)

Vs,j

δK
j,1 + ξAB(rj )

Vs,i

δK
i,1

]}

+
{

1

n̄2
An̄BVμ

δK
i,1

Vs,i

δK
j,1

Vs,j

}
. (77)

Again, we may take the Gaussian (η = ζ = 0) limit of the full
expression and find

C
d

ξAB = 1

Vμ

∫
d3k

(2π)3
j0(kri)j0(krj )

×
[(

PAA(k1) + 1

n̄A

)(
PBB(k1) + 1

n̄B

)

+
(

PAB(k1) +
{

1

n̄A

})2
]

+ ξAB(rj )

n̄An̄BVμVs,i

δK
i,j +

{
ξBB(ri)

n̄2
AVμVs,i

δK
i,j

}

+
{

1

n̄An̄BVμ

[
ξAB(ri)

Vs,j

δK
j,1 + ξAB(rj )

Vs,i

δK
i,1

]}

+
{

1

n̄2
An̄BVμ

δK
i,1

Vs,i

δK
j,1

Vs,j

}
. (78)

The first term is the usual Gaussian plus Poisson expression and
this leads to off-diagonal covariance through the spherical Bessel
functions. The second and third terms contribute only to the diagonal
variance; however, the fourth and fifth terms contribute to the off-
diagonal variance along lines of zero lag and the last contributes
only to the zero-lag term. Therefore in the Gaussian limit, whilst the
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covariance matrix for the correlation functions is in general non-
diagonal, the terms associated with the Poisson noise that lead to
off-diagonal terms in the power spectrum covariance do not generate
off-diagonal covariance in the correlation function. However, in
the more general case we see that additional off-diagonal terms
can be generated when we have non-zero η and ζ . Furthermore,
for the case of the cross-correlation function of a non-overlapping
samples, all of the terms in curly brackets vanish, and the covariance
is significantly reduced.

Finally, on taking the limit n̄AVμ → ∞ the covariance between
band averages of the cross-correlation function reduces to

C
d

ξAB ≈ 1

Vμ

∫
d3k

(2π)3
j0(kri)j0(krj )�(k)

+ δK
i,j

VμVs(ri)

[
1

n̄An̄B

+
{

1

n̄2
A

}]
, (79)

and where we introduced the useful function:

�(k) = PAA(k1)PBB(k1) +
[

PAA(k1)

n̄B

+ PBB(k1)

n̄A

]

+ P 2
AB(k1) +

{
2PAB(k1)

n̄A

}
. (80)

Lastly, in the limit where n̄A ≡ n̄B , we recover the usual expression
in the Gaussian limit (Smith et al. 2008a; Sánchez et al. 2008).

6 C OMPARISON W ITH N- B O DY SI M U L AT I O N S

In this section, we compare the counts-in-cells predictions for the
covariance matrices of the mass–mass, halo–mass and halo–halo
power spectra and correlation functions with results from a large
ensemble of numerical simulations.

6.1 The ZHORIZON simulations

The Zürich Horizon, ‘ZHORIZON’, simulations are a large ensemble
of pure CDM N-body simulations (N sim = 30, N part = 7503), per-
formed at the University of Zürich on the ZBOX2 and ZBOX3 super-
computers. The specific aim for these simulations is to provide
high-precision measurements of cosmic structures on the scales of
the order of ∼100 h−1 Mpc and to also provide insight into the rarest
fluctuations within the � cold dark matter (�CDM) model that we
should expect to find within the observable universe – the Horizon
Volume.

Each numerical simulation was performed using the publicly
available GADGET-2 code (Springel 2005), and followed the non-
linear evolution under gravity of N equal-mass particles in a co-
moving cube of length L. All of the simulations were run within the
same cosmological model, and the particular choice for the param-
eters was inspired by results from the WMAP experiment (Spergel
et al. 2003, 2007; Komatsu et al. 2009) – the parameters for the
simulations are listed in Table 1. The transfer function for the sim-
ulations was generated using the publicly available CMBFAST code
(Seljak & Zaldarriaga 1996; Seljak et al. 2003), with high sampling
of the spatial frequencies on large scales. Initial conditions were
lain down at redshift z = 50 using the serial version of the pub-
licly available 2LPT code (Scoccimarro 1998; Crocce, Pueblas &
Scoccimarro 2006).

Dark matter halo catalogues were generated for all snapshots of
each simulation using the friends-of-friends (FoF) algorithm (Davis
et al. 1985), with the linking length parameter set to the standard b =
0.2; b is the fraction of the interparticle spacing. For this, we used

the fast parallel B-FOF code, kindly provided by V. Springel. The
minimum number of particles for which an object was considered
to be a bound halo was set to 30 particles. This gave a minimum
host halo mass of ∼1013 M� h−1.

6.2 Results: band-power variances

Fig. 3 shows the results for the mean fractional error in the mass–
mass (bottom panel), halo–mass (middle panel) and halo–halo (top
panel) power spectra, as measured from the ZHORIZON simulations.
The spectra were estimated for each simulation using the standard
methods (Smith et al. 2003; Jing 2005; Smith, Sheth & Scoccimarro
2008b): particles and halo centres were interpolated on to a 10243

cubical mesh, using the CIC algorithm (Hockney & Eastwood 1988);

Figure 3. Comparison of the fractional variance in the halo and mass power
spectra measured from the ZHORIZON simulations with theoretical predictions.
The three panels show the square root of the bin-averaged diagonal elements
of the covariance matrix, ratioed to the mean power in the bin as a function
of the spatial frequency. From top to bottom, the panels show results for
the halo–halo, halo–mass and mass–mass power spectra. In all panels, solid
points denote results obtained after a standard shot-noise subtraction, and
corresponding open points denote results prior to shot-noise subtraction.
Dashed lines represent the pure Gaussian predictions. Solid lines denote
theoretical predictions from the Gaussian plus standard Poisson noise theory.
Dot–dashed lines denote the results from equations (58) and (59). In the top
two panels, the (red) point symbols and (blue) star symbols denote haloes
with masses in the range (M > 1.0 × 1014 h−1 M�) and (1.0 × 1013 <

M < 2 × 1013 h−1 M�), respectively.
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the Fast Fourier Transform of the discrete mesh was computed
using the FFTW libraries (Johnson & Frigo 2008); the power in each
Fourier mode was estimated and then corrected for the CIC charge
assignment and these estimates were then bin averaged in spherical
shells of thickness the fundamental frequency.

The halo–halo and halo–mass spectra were estimated for six bins
in halo mass. The thickness of the mass bins was determined by
estimating the S/N in each bin, and demanding that it should be in
excess of 20. In the figure, we show the errors for an experiment of
volume ∼3.4 h−3 Gpc3. For clarity, we only present results for the
highest mass bin (M > 1014 h−1 M�, red point symbols) and for
the lowest mass bin (1013 h−1 M� < M < 1.38 × 1013 h−1 M�,
blue star symbols) in our sample. The mean number densities in
these bins are n̄h = {2.42, 8.01} × 10−5 h−3 Mpc3, respectively.
The mass–mass and halo–halo power spectra were both corrected
for shot noise by subtraction of 1/n̄ = Vμ/N and 1/n̄h = Vμ/Nhalo,
respectively.

In the figure, the results for the shot-noise corrected and uncor-
rected spectra are represented as filled and empty symbols, respec-
tively. The halo bias parameters were estimated from the cross-
power and the shot-noise corrected autopower spectrum b = (bhδ

NL,
bhh

NL) following the method in Smith et al. (2007). The measured
values were found to be b = (2.803 ± 0.015, 3.110 ± 0.015) and
b = (1.208 ± 0.010, 1.479 ± 0.011) for the highest and lowest mass
bins, respectively. These estimates of the bias were used along with
the ensemble average number densities in the mass bin to generate
the theoretical predictions for the signal and its variance.

Considering Fig. 3 in more detail, we note that on the largest
scales, k ≈ 0.01 h Mpc−1, the amplitudes of the fractional vari-
ances for all spectra are roughly equivalent. For the autospectra,
this agreement is simply a consequence of the fact that when the
signal is dominated by the sample variance the fractional errors in
the spectra scale as σ P/P = (2/Nk)1/2 ∝ V −1/2

μ (dashed lines in the
figure). However, as we noted earlier, for the cross-spectrum, this
near agreement also implies rAB ≈ 1.

For the matter power spectrum (bottom panel in Fig. 3), we see
that this simple scaling appears to be preserved all the way to k ≈
0.2 h Mpc−1, and here the errors are of the order of 1 per cent for this
volume. The scaling at this point is broken and there is an excess
of variance. This excess is not explained by the simple addition of
the usual Poisson sampling error term (cf. equation 61), nor by the
addition of the extra shot-noise terms from the full counts-in-cells
covariance (cf. equation 59). However, in making these predictions,
we have ignored all sources of variance generated through the non-
linear gravitational mode coupling and it is likely that the excess
error can be attributed to these (Meiksin & White 1999; Scoccimarro
et al. 1999; Scoccimarro & Sheth 2002; Hamilton et al. 2006; Rimes
& Hamilton 2006; Angulo et al. 2008a; Takahashi et al. 2009).

Considering the halo–mass cross-power spectra (middle panel
in Fig. 3), we find that the scaling with the number of modes is
broken on slightly larger scales than for matter (k ∼ 0.1 h Mpc−1).
At this point, the fractional error is of the order of ∼2 per cent.
However, this time the increase in the error appears to be qualita-
tively described by equation (60) (solid line), although the error in
the high-mass sample (red empty and filled circles) is slightly over-
predicted. The additional source of variance in equation (58) does
not change the predictions in any notable way. On smaller scales,
(k > 0.1 h Mpc−1), the fractional error drops to ∼1 per cent, and is
only slightly larger than the error in the mass–mass spectrum. The
excess theoretical error suggests that haloes and dark matter are not
independent samples (as in sampling case i from Section 2.3), more,
that haloes are some ‘special’ subsampling of the mass (similar to

case ii), since we expect the Gaussian error to be an underestimate.
This leads us to speculate that the halo–mass spectra also require a
shot-noise correction.

Considering the halo–halo spectra (top panel of Fig. 3), we show
results obtained with (solid symbols) and without (open symbols)
the standard shot-noise subtraction. This clearly demonstrates the
importance of this correction for this sample. In the case of the
uncorrected spectra, it appears that the errors follow the scaling
with the number of modes to high wavenumbers (k ∼ 0.1 h Mpc−1),
where the error is of the order of ∼2 per cent. In addition, we see that
the standard theoretical predictions from equation (61) significantly
overpredict the error, especially for the low-mass halo sample. How-
ever, after shot-noise subtraction, the sample variance scaling is
actually broken on larger scales than for the cross-spectra, and the
fractional error is of the order of ∼4–5 per cent. Somewhat sur-
prisingly, these simple theoretical predictions provide a reasonable
description of the variance and, as for the case of the matter–matter
power spectrum, are an underestimate. If we now include the addi-
tional sources of variance from the full counts-in-cells covariance,
as given by equation (59), then we now see that there is a signif-
icant increase in the errors for scales k > 0.1 h Mpc−1. We have
again neglected the gravitational model coupling variances, but it
appears that most of the shape of this distribution is well captured
by the non-Gaussianity of the sampling procedure. On comparison
with Angulo et al. (2008a), we find a slight disagreement in that
the Gaussian plus Poisson sampling model appears in reasonable
agreement with the measurements.

Finally, we emphasize the fact that the fractional errors associated
with the cross-power spectra are more than a factor of ∼2 times
smaller than the corresponding errors for the halo autospectra on
scales k ∼ 0.1 h Mpc−1. Thus, for experiments that wish to measure,
for instance, galaxy bias as a function of luminosity, halo mass or
galaxy type, one may gain a significant increase in S/N through
use of the cross-correlation approach. The caveat being that the
off-diagonal errors of the covariance matrix of the cross-power
spectrum should be small. We will now explore this issue.

6.3 Results: mass–mass band-power correlation matrices

In Fig. 4, we present the correlation matrices for the mass–mass
power spectrum as measured from the ZHORIZON simulations, where
the correlation matrices are obtained from

C[ki, kj ] = C[ki, kj ]√
C[ki, ki]C[kj , kj ]

. (81)

For the correlation matrices, it was necessary to rebin the power
spectra. This owed to the fact that when the power is averaged
in shells of thickness the fundamental mode there are insufficient
numbers of modes on large scales to produce a good S/N (Takahashi
et al. 2009). We therefore chose to rebin the power by a factor of
4, and with the contribution from each k-shell being weighted by
the number of modes in that shell. Lastly, we box car smoothed the
matrices with a filter scale of width of 2 pixels.

In the left-hand panel of Fig. 4, we show the correlation matrices
obtained from the power spectra without any shot-noise correction.
It can clearly be seen that, going from large to small scales, there
is a buildup of power correlations between neighbouring modes
and for the smallest scales considered, the matrix appears per-
fectly correlated (C = 1). In the right-hand panel, we show the
same, but this time the matrix was generated from the shot-noise
corrected power spectra. There are only small differences. It is
likely that this result owes to the combination of two facts: first, the
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Figure 4. Mass–mass power correlation matrices measured from the ZHORIZON simulations. Left-hand panel: result before shot-noise correction. Right-hand
panel: result after shot-noise correction.

number density of dark matter particles is sufficiently high to render
the shot-noise contributions to the covariance of negligible impor-
tance (cf. Fig. 1); secondly, there is no variation in the number
density of dark matter particles between realizations that might in-
troduce additional variance (the importance of this will become
clear in the next sections). Therefore, it is likely that the correla-
tions are purely derived from the gravitational model coupling (for
a recent and detailed study of the matter power spectrum covari-
ance arising due to gravitational instability, see Takahashi et al.
2009).

6.4 Results: halo–halo band-power correlation matrices

Fig. 5 presents the results for the halo–halo autopower spectrum cor-
relation matrices. The top two panels show the results obtained from
the power spectra without shot-noise corrections. The left-hand
panel shows results for cluster mass haloes (M > 1014 h−1 M�)
and the right for group mass haloes (1013 > M[ h−1 M�] > 1.38 ×
1013). We see that the degree of correlation appears strongly de-
pendent on both the halo mass range considered and also the scale
considered, with the high-mass halo sample having significantly

Figure 5. Halo–halo power spectrum correlation matrices measured from the ZHORIZON simulations. Top panels: results for power spectra without any correction
for shot noise. Bottom panels: results after shot-noise correction. Left-hand column: results for the cluster mass halo sample (M > 1014 h−1 M�). Right-hand
column: results for group mass haloes [1013 >M( h−1 M�) > 1.38 × 1013].
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stronger off-diagonal correlations than for the lower mass sample
for a given scale. Both matrices show significantly more correlation
than was found for the dark matter.

In the bottom two panels of Fig. 5, we show the same matrices, but
this time constructed from the shot-noise corrected power spectra.
The difference is remarkable – the strong off-diagonal correlations
that are present in the upper panels has been almost completely
suppressed. The shot-noise corrected covariance matrix may be
written in terms of the shot-noise uncorrected covariance as

C
c

hh[ki, kj ] =
〈(

P
d

hh(ki) − 1

n̄h

)(
P

d

hh(kj ) − 1

n̄h

)〉

−
〈

P
d

hh(ki) − 1

n̄h

〉〈
P

d

hh(kj ) − 1

n̄h

〉
, (82)

= Cd
hh[ki, kj ] − Covar

[
1

n̄h
, P

d

hh(ki)

]

− Covar

[
1

n̄h
, P

d

hh(kj )

]
+ Var

[
1

n̄h

]
. (83)

If the number density of the tracer sample does not vary between
realizations then the shot corrected and uncorrected covariance ma-
trices are identical. However, if it does then we see that there are
additional sources of covariance that are introduced due to the cou-
pling between the amplitude of the halo–halo power spectrum and
the mass function of haloes, and from the variance of the num-
ber density. In order for the subtraction of shot-noise to result in
a diagonal correlation matrix, it requires that the cross-correlation
between the halo number counts and the halo power spectrum can-
cels with the off-diagonal contributions to Cd

hh [ki, kj]. It is beyond
the scope of this current work to illuminate this issue further and
it shall remain as a topic for future investigation. One caveat to the
above results is that it is well known that the standard shot-noise
correction is too strong for haloes, since it results in negative power
on small scales (Smith et al. 2007). It is therefore likely that this
will have some impact on the covariance matrix.

Lastly, we now see that for the matter power spectra, since the
number density of dark matter particles does not vary between

realizations, we must have C
c

δδ[ki, kj ] = C
d

δδ[ki, kj ].

6.5 Results: halo–mass band-power correlation matrices

In Fig. 6, we show the correlation matrices for the halo–mass cross-
power spectra. The left-hand panel shows results for cluster mass

haloes (M > 1014 h−1 M�) and the right for group mass haloes
(1013 >M[ h−1 M�] > 1.38 × 1013). Similar to the halo autopower
correlation matrix, we see that the degree of correlation appears
strongly dependent on both halo mass and scale. Interestingly, we
note that whilst the spectra from the high-mass sample show more
band-power correlation than for the dark matter the lower mass halo
sample appears to show less. This further recommends the cross-
spectra approach for further investigation as an improved estimator
for large-scale structure.

All of the above matrices serve to warn us that, whilst the Gaus-
sian plus Poisson model describes the diagonal errors reasonably
well, it fails to capture the buildup of correlations between Fourier
modes. To describe the above results, one must model both the
full non-Gaussian trispectrum generated by gravitational mode-
coupling (Scoccimarro et al. 1999; Takahashi et al. 2009) and, as
we have shown in this paper, the covariance introduced by the point
sampling for the mass tracers.

6.6 Results: band-correlation function variances

As a final study, we now consider the correlation function errors.
The main advantage of the configuration space is that the constant
shot-noise correction, which is necessary for the power spectra,
is not required here. This follows from the fact that the Fourier
transform of a constant gives a delta function at zero lag. However,
as was described in Section 5, the shot-noise corrections do affect
the correlation function errors.

In Fig. 7, we present measurements from the ensemble of ZHORI-
ZON simulations for the fractional errors on the mass–mass (bottom
panel), the halo–mass (middle panel) and the halo–halo (top panel)
correlation functions. Again, we only show results for the high-
est and lowest bins in halo mass. The correlation functions were
generated using the DUALTREETWOPOINT code, which is a parallel,
tree-based algorithm and is described more fully in Smith et al. (in
preparation). For the dark matter sample, we used roughly ∼4 ×
106 particles, subsampled from the available ∼4 × 108 for each
estimate.

The main result to note from this analysis is that, whilst for the
power spectrum on large scales the fractional error is the same ir-
respective of tracer, this is not the case for the correlation function.
We note that for r > 20 h−1 Mpc the halo–mass cross-correlation
appears to be a more efficient estimator than the simple autocorre-
lation function, by almost a factor of ∼2. To make this statement
more concrete, we should include the off-diagonal errors in the

Figure 6. Halo–mass cross-power spectrum correlation matrices measured from the ZHORIZON simulations. Left-hand panel: results for a cluster mass halo
sample (M > 1014 h−1 M�). Right-hand panel: results for a group mass halo sample [1013 >M( h−1 M�) > 1.38 × 1013].
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Figure 7. Comparison of the fractional variance of mass and halo correla-
tion functions as measured from the ZHORIZON simulations with theoretical
predictions. Similar to Fig. 3, the three panels show the standard deviation
in the bin-averaged correlation functions, ratioed to the mean correlation
function, as a function of the spatial scale. From top to bottom, the pan-
els show results for the halo–halo, halo–mass and mass–mass correlations.
Symbols show estimates measured from the N-body simulations. In the top
two panels, the (red) point symbols and the (blue) star symbols denote haloes
with masses in the range (M > 1.0 × 1014 h−1 M�) and [1.0 × 1013 <

M( h−1 M�) < 2 × 1013], respectively. Again, the solid lines represent
the theoretical predictions from the Gaussian plus Poisson sampling theory.
Dashed lines represent the pure Gaussian predictions.

calculation of S/N. However, from our discussion in Section 5, we
expect that the off-diagonal errors are also reduced. We will reserve
this for a future work.

Another important point to note is that in nearly all cases the
theoretical predictions for the Gaussian plus Poisson sampling error
estimates are an underestimate of the measured errors, especially
on scales (r < 20 h−1 Mpc). The predictions being worst for the
autocorrelation function for the high-mass halo sample, and this is
in agreement with the power spectrum results from the previous
section.

The errors in the autocorrelation functions were previously in-
vestigated in numerical simulations by Smith et al. (2008a) and
Sánchez et al. (2008), who showed that the Gaussian plus Poisson
model provided a good description at the scale of the Baryonic
Acoustic Oscillations (r ∼ 100 h−1 Mpc). Our results extend this
analysis to the cross-correlation functions. Also, the range of inves-

tigated scales is extended to smaller scales by more than one order
of magnitude.

7 C O N C L U S I O N S

In this paper, we have performed a detailed investigation of the
errors associated with auto and cross-power spectra and also the
cross-correlation function of different tracers of the density field.

In Section 2, we developed the counts-in-cells approach for a
multitracer approach to the clustering statistics. We showed that
not all cross-power spectra are free from a shot-noise correction,
and that the precise correction one should apply depends on the
sampling distribution function.

In Section 3, we gave a derivation of the full non-Gaussian covari-
ance matrix for the cross-power spectrum, including all the sources
of variance that arise from the Poisson sampling of the mass tracers
and this extends the standard results (Meiksin & White 1999; Scoc-
cimarro et al. 1999; Cohn 2006; Hamilton et al. 2006). We showed
that, for the case of Poisson sampling of Gaussian fluctuations there
were terms that contributed to the off-diagonal terms of the co-
variance matrix. We showed that in the small-scale limit k → ∞
these terms dominate over all other sources of variance (including
Non-Gaussian terms generated from gravitational mode-coupling)
and the covariance matrix becomes perfectly correlated.

In Section 4, we investigated the efficiency of the cross-power
spectrum. We used the relative S/N of two different estimators as a
diagnostic for efficiency. For the case where a high-density sample
of tracers was cross-correlated with a low-density sample, it was
shown that the former approach was a more efficient estimator than
the case where one simply autocorrelates the low-density sample.
As an example, we showed that for the determination of cluster
bias, the cross-power spectrum approach would yield significant
gains in S/N. Other uses are improving estimates of the luminosity
dependence of galaxy bias.

In Section 5, we explored the covariance of auto and cross-
correlation functions. It was shown that whilst the correlation func-
tion covariance matrix in general is not diagonal, the discreteness
terms that led to off-diagonal covariance in the power spectrum do
not generate off-diagonal elements in the correlation function co-
variance. Thus, the correlation function covariance matrix appears
easier to understand and model than the power spectrum covariance.

In Section 6, we used a large ensemble of N-body simulations,
to obtain estimates of the power spectrum and correlation func-
tion errors. We showed for the fractional errors on the mass–mass
halo-mass and halo–halo spectra that the numerical results were in
reasonably good agreement with the Gaussian plus Poisson sam-
pling model, but the measurements showed larger variance than the
theory. It was also shown that in the limit of large scales and in the
case that Poisson error is not dominant the fractional errors for all
spectra are equivalent, since they are simply ∝ k−1V −1/2

μ .
We investigated the correlation matrix for the mass–mass power

spectrum, and confirmed that there were strong correlations between
different band-powers (Meiksin & White 1999; Scoccimarro et al.
1999; Takahashi et al. 2009). We showed that correcting the spectra
for shot-noise does not change the correlation matrix significantly.
We investigated the halo–halo autopower covariance matrix without
applying a correction for shot-noise. We showed that the degree of
correlation increased with the mass of the halo sample considered
and that the matrices showed more band-power correlation than
for the dark matter. We then estimated the covariance from the
shot-noise corrected spectra and found that the off-diagonal errors
were dramatically reduced, almost decorrelating individual band
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powers. We conjectured that this arises from the subtraction of the
covariance between halo number density and the halo–halo power
spectrum and also the variance in the halo number density. We
investigated the cross-power correlation matrix for haloes and dark
matter and showed that the correlations were reduced compared to
the shot-noise uncorrected halo–halo matrices and for the lowest
mass halo sample were less correlated than the dark matter. We
investigated the errors in configuration space, and showed that there
was a significant gain in S/N on all scales from using the cross-
correlation function of haloes and dark matter as opposed to simply
examining the autocorrelation function of haloes.

We conclude that, for certain cases, the cross-spectra and cross-
correlation functions are more efficient probes for the large-scale
structure, than the standard autospectra and autocorrelation function
approaches that are widely in use. These cases concern studies
aiming to measure: the luminosity dependence of the galaxy bias
(Norberg et al. 2002; Tegmark et al. 2004a); the cluster bias as a
function of mass and hence constrain the degree of primordial non-
Gaussianity in the early Universe (Dalal et al. 2008; Slosar 2009;
Pillepich et al. 2008; Desjacques et al. 2009).
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Dalal N., Doré O., Huterer D., Shirokov A., 2008, Phys. Rev. D, 77, 123514
Davis M., Efstathiou G., Frenk C. S., White S. D. M., 1985, ApJ, 292, 371
Desjacques V., Seljak U., Iliev I. T., 2009, MNRAS, 396, 85
Feldman H. A., Kaiser N., Peacock J. A., 1994, ApJ, 426, 23

Fry J. N., Gaztanaga E., 1993, ApJ, 413, 447
Grossi M., Verde L., Carbone C., Dolag K., Branchini E., Iannuzzi F.,

Matarrese S., Moscardini L., 2009, MNRAS, 398, 321
Hamilton A. J. S., Rimes C. D., Scoccimarro R., 2006, MNRAS, 371, 1188
Hockney R. W., Eastwood J. W., 1988, Computer Simulation Using Particles.

Hilger, Bristol
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