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Theh-version of the discontinuous Galerkin finite element methe®GFEM) for nearly
incompressible linear elasticity problems in polygons is analysed. It is proved that the
scheme is robust (locking-free) with respect to volume locking, even in the abseHce of
regularity of the solution. Furthermore, it is shown that an appropriate choice of the finite
element meshes leads to robust and optimal algebraic convergence rates of the DGFEM
ewen if the exact solutions do not belong&b’-.

Keywords: DGFEM; locking; elasticity problems; singular solutions; graded meshes;
discontinuous Galerkin methods.

1. Introduction

In mechanical engineering, partial differential equations are often solved by low-order
finite element methods (FEMS). In many applications, the convergence of these schemes
may strongly depend on various problem parameters. Unfortunately, this can result in non-
robustness of the convergence: i.e. the asymptotic convergence regime of the method is
reached only at such high numbers of degrees of freedom that the scheme is practically not
feasible. In computational mechanics, this non-robustness of the FEM is téouigag.

An additional problem is caused by the fact that many practical examples are based on non-
smooth domains, and therefore boundary singularities may arise. In this paper, however, it
will be shown that locking effects may be circumvented by using a discontinuous Galerkin
finite element method (DGFEM) and that singular solution behaviour can be resolved by
applying an appropriate mesh refinement strategy.

There exist different kinds of lockingshear lockingtypically appears if the
corresponding domains are very thin and plate and shell theories, which include shear
deformation, are used. In addition, in shell theories and their finite element models,
there arisesnembrane lockingvhich is caused by the interaction between bending and
membrane energies. Finally, problems dealing with nearly incompressible materials are
often accompanied by the so-calledlume locking this type of locking is very typical for
elasticity problems in biology and will be explored in this paper.

In order to overcome volume locking, a variety of approaches have been suggested.
For example, low-order mixed FEMs, where an extra variable for the divergence term
is introduced, yield adequate numerical results (Brezzi & Fortin, 1991). These methods
are closely related to under-integration schemes. A further possibility is the use of non-
conforming methods, where the global continuity of the numerical solutions is not any
more enforced (see Kouhia & Stenberg, 1995, for example).
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In 1983, M. Vogelius proved the absence of volume locking for plheersion of the
FEM on smooth domains (VMogelius, 1983). Moreover, in 1992 Bkhw Suri showed
that, on polygonal domains, tieFEM is locking-free on regular triangular elements with
p > 4. In addition, they proved that, for conforming methods, locking cannot be avoided
on quadrilateral meshes for apy> 1. Recently, Hansbo & Larson (2002) suggested the
use of a discontinuous FEM (DGFEM). Assuming at led3tregularity, they showed that
theh-version of the DGFEM does not lock for gl > 1.

Following the classical approach of Wheeler (1978) and Riviere & Wheeler (2000), this
paper is devoted to the exploration of the non-symmetric interior penalty Galerkin (NIPG)
version of the DGFEM for linear elasticity problems (with mixed boundary conditions) in
convex and non-convex polygons. Based on a recent regularity result by Guo & Schwab
(2000) it will be proved here that, even if the exact solutions of the elasticity problems are
singular (i.e. notH?2 any more), theh-version of the NIPG is free of volume locking.
Additionally, the use of so-calledy~graded meshes’ leads this method to converge at
an optimal algebraic rate (independently of the compressibility of the material). On non-
graded (uniform) meshes, the DGFEM (NIPG with= 1) is still free of locking. However,
due to the occurrence of singularities, the algebraic convergence rates may be suboptimal.

The DGFEM above is closely related to non-conforming methods of Crouzeix—Raviart
type. Brenner & Sung (1992) showed that these schemes are locking-free eyes for
However, their results are based on the assumption that the displacemertsragular,
and therefore the case of non-convex polygons is in general not covered by that work.
Nevertheless, applying the regularity results and the mesh refinement strategies presented
in this paper (Theorems 3.4 and 5.10), it may be proved that the convergence statements in
Brenner & Sung (1992) are extensible to the case where the exact solutions of the elasticity
problems exhibit corner singularities.

The outline of the paper is as follows. In Sections 2 and 3, the linear elasticity
problem and its regularity on polygons are presented. In Section 4, the DGFEM (NIPG) is
introduced. Section 5 contains the error analysis of the DGFEM and the proof of the main
result (optimal, robust convergence of the NIPG). In Section 6, the theoretical results are
confirmed with some numerical examples.

2. Problem Formulation

Let £2 be a polygon irR2. Its boundaryl” := 312 is assumed to consist of a Dirichlet part
I'p with |[I'p| > 0and of a Neumann pafiy:

T = TD U TN.
The linear elasticity problem reads as follows:

u=g, onlp (2.1)
oW -np =g, Oonin.

Here,u = (uz, uy) is the displacemenandg = {O‘ij}izjzl is the stress tensofor
homogeneous isotropic material given by

oW =2ueW) +V-ul, . (2.2)
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wheree (u) = {ej] (g)}ﬁjzl with

€j(U) = 5(dx Uj + dx; Uj) (2.3)

the symmetric gradienof u. Furthermoreu and . are the so-calledamé coefficients
satisfying

0 < minfu, p + A},

andng, is the unit outward vector of? on I".

3. Regularity

3.1 Weighted Sobolev spaces

The regularity of (2.1) will be measured in terms of certain weighted Sobolev spaces. In
order to do so, set

SP(2, o, IN) == (A : i =12 ..., M),

where Aj, i = 1,..., M, denote the ‘singular points’, e.g. corners and vertices of
changing boundary condition type d?. Moreover, introduce a weight vectgg =

(B1, ..., Bm)With0 < B < 1, and for any numbét € R setB+k := (B1+K, ..., Bm+

k). Then, let®g be aweight functioron {2 given by B

M
Pp(x) = [rroof. oo =1x— Al
i=1

Furthermore, for any integers > | > 0, denote byI—|,g“"((2)2 the so-calledweighted

Sobolev spacesn (2 (Babiska & Guo, 1988, 1989; Guo & Babka, 1993) which are
understood to be the completions®¥ (12)2 with respect to the norms

m
2 _ 2 k 2
181mi ) = 1100 +; IID* Ul Ppici T2 121,
m
2 k 2
14lifim gy = D 11D Ul PpikliEzgy 1 =0.
= k=0

CONVENTION 3.1 Since the weight functiondg controls the local behaviour of the
solution in the vicinity of a (singular) verte, it is obvious to work locally with the weight
function &5 = rf with

B = pi and  r(x):=I[x— Al

whereA; denotes the corresponding vertex of the polygon.
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REMARK 3.2 In this paper, the spacdﬂ§’2(9)2 will play a main role and it may be
proved easily that for ak > 0 and for each function € Hﬁz’z(Q)z, there hoIdsJQE €

H2(£2,)2, where -

M
0o =0\ JIxeR?: [x - Al <)
i—1
Moreover,HOZ'z(Q) = H2().

1,1
k—3.1-3 _
Finally, the spacesl, 2" #(y)% | = 1,2, are defined as the trace spaceeiéf ()
ony c I"and B B

I91 3,3 = _ i IGlq,
Hg ) =B -
- Gly=9

3.2 Regularity of generalized Stokes problems

In order to obtain a regularity result for the elasticity problem (2.1), the following
generalized Stokes probldmthe polygon(? is considered:

Vooup=f ingQ

—V.u=h in
u=g, onlp
o(u,p)-ng=g, only.

(3.1)

Here, u is the velocity field,p a Lagrange multiplier corresponding to the (hydrostatic)
pressure in the incompressible limit amcu, p) the hydrostatic stress tensorwtiefined

by
a(U, p) =—pl+2ve),

wheree(u) is given as in (2.3) and > 0 is the (kinematic) viscosity. Ify = @, the
following compatibility condition is supposed to be fulfilled:

f hdx + 9y "Npds=0. 3.2
0 302~

In Guo & Schwab (2000) the following regularity result was proved:

THEOREM 3.3 Letk > Oand|Ip| > 0. In addition, if 'y = @, let (3.2) be satisfied. Then

there exists a weight vect@r = (B1,...,8m) With0 < i < 1,i = 1,..., M, such
Ny k+3,3 k+3.2
that for f € Hf%(2)%, h e Hi™ 1), g, € Hy 2'2(Ib)? andg, € Hy 2°2(In)?

the generalized Stokes problem (3.1) admits a unique solgtiop) € H/‘;:LZ’Z(Q)2 X
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H k+d, 1(@)andthea priori estimate

||H|| H/|;+2,2(Q) + ” p“ H;-Fl,l(Q)

+ligy

< C(If lygocg) + INlygsaz g, + g |
= = Id) H

) (3.3)

33
t2:2

11
k +5.5
B

k+5,

holds true.

3.3 Regularity of linear elasticity problems

A regularity result for linear elasticity problems in polygons was proved in Guo & Bldu
(1993, Theorem 5.2). However, referring to the previous Theorem 3.3, a more specific
statement, which clarifies the regularity of the linear elasticity problem (2.1) in dependence
on the Lang coefficienti, may be developed.

THEOREM3.4 Letf2 be a polygon irR? and|Ip| > 0. Then there exists a weight vector

B = (Br....Bm)With 0 < B < 1,i = 1,.... M, such that forf ¢ H"O(Q)2
33 11
k = =
g, € Hg 22112 and gy € H "2:2(13)2 the linear elasticity problem (2.1) has a

unigue solutioru € HE*Z 2(Q)z. In addition, there exists a constadt> 0 independent
of A such that the ensuing estimate holds true:

||u||Hk+22(Q) + AV - u||Hk+11(Q)

< C(||f||Hko(Q) +llg, | ). (3.4)

33 + 119l
+3.3 =N

11
"2 (I'p) Hy 272

k k+5,

Proof. As already mentioned above, the unique solutigp; of the linear elasticity

problem (2.1) belongs tbl/?*z’z(()) (see Guo & Babska, 1993, Theorem 5.2). Therefore,
the choice B

hi= =V Ugage HEHH(0Q)
leads to the following solutiofu, p) of the generalized Stokes problem (3.1):

P = —AV - Ugjast

and
U = Uejast
Hence, using (3.3) implies that
IUllgs22) + MV - Ullyrina g < c(ifl woy TV Ullyerig, (39
HEUPEE N e )).
B D B N
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Thus, if|A] < 2C, it follows that
||H|| HE+2.2(Q) + |)\|||V : H” HE+1.1(Q)

< Cllul yks22

<C(If ko + 185l 33 +lgyl 11 )
— Hﬁ (Q) =D Hk+§.§([‘ ) =N Hk+i,i([' )
i3 b i3 N

for a constanC independent ofi| € (0, 2C). In the last step, Theorem 5.2 in Guo &
Babuska (1993) was applied.
Alternatively, if |»| > 2C, the termC||V ~g||Hk+1,1(Q) in the right-hand side of (3.5)
i

may obviously be absorbed into the left-hand side. O

4, The DGFEM
4.1 Finite e ement meshes

Consider aegulaf partition (FE meshY of £2 into open triangles :

T = {Ki}i, JK=2
KeT

The elementK € 7 are images of the reference triangle
T={R9:-1<§< % Re (-1 D} (4.1)

under affine map§ . i.e. for eachK € 7 there exists a constant matix < R?*2 and
aconstant vectob, € R? such that with

FrX) =A x+by (4.2)

there holds
K = Fx (D). (4.3)
Moreover, for eactK € 7, introduce
hk := diam(K)
and
ok = supldiam(B) : B is a ball contained irfK}.

The so-callednesh sizef T is given by

h7 := suphg. (4.4)
KeT

Ti.e. the intersection of any two elements is either empty, a vertex or an entire side.
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Finally, in order to account for the singular behaviour of solutions near the singular
points of the polygorn?2, the following set has to be defined:
Ko:={K eT: 3K NSPW, Ip, IN) # ¥}
Henceforth, the finite element meshes are assumed to satisfy the following property:

hk < Cpk, VK € T, (4.5)

for a constanC > O independent oK € 7.

4.2 FE spaces

Let 7 be a regular finite element mesh consisting of trian¢les 7. The discontinuous
finite element spaces that will be appropriate for the DGFEM are defined as follows:

S0, T) :={ue L2)?: ulx € PL(K)2 K e T}. (4.6)
Here,
P1(K):={u(x,y) =ax+by+c: a,b,ceR}

is the space of all linear functions d&h.

4.3 Trace operators for the DGFEM

First of all, assume that there exists an index%Bet N such that the elements in the
subdivisionZ are numbered in a certain way:

T = {Kj}iez.

Furthermore, denote by the set of all element edges associated with the niEsh
Additionally, let I'jy; be the union of all edgese £ not lying ona £2:

Lint := U €.

ect:
enaN=y

Moreover, define
Intp :=IntU{ee : ecC Ip}.

Obviously, for eaclte € Iy, there exist two indicesand j with i > j such thatk; and
K; share the interface:

e=0dK;j NaKj.
Thus, the following mapping is well-defined:
¢: TInt — N2

p1(8):=i
e = (¢2(9)2=J) :
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If ee £\ Int, i.€. if eis a boundary edge, there is a unique eleni@nt 7 such that
e=0dK;NI.
Hence, the above definition may be expanded as follows:

o: E\NIIlnw —> N
e — (e :=i.

One € iy, let v, be the normal vector which points froi, e to Ky,e); for
boundary edges C I', sety, = n,.
Since the DGFEM is based on functions in

HYY(2,7) = (v e L%(02) : v|xk € WEYK), K € T} ¢ c%(02),

the discontinuities over element boundaries have to be controlled in a certain way. Consider
thereforev € HY1(12, 7)2. Then, fore € Iy andx € e, introduce the followingaverage
atx e e

vt 40
<y)e = 2 ’
and the (numbering-dependejinpatx € e,
[vle:=v" —v".

Here,v™, v~ denote the traces af onto e taken from within the interior of the elements
Kyi(e) andK y,(e), respectively. Foe C I', let(v), := v and[v]e := v.

4.4 Variational formulation

There is a wide variety of DG methods for linear elliptic problems. Most of them are
examples of the so-calledux formulationintroduced by Cockburn & Shu (1998). In
this very general formulation, the normal derivatives are replaceduiyerical fluxes
which may also be interpreted as Lagrange multipliers. Since there are many possibilities
to choose the numerical fluxes, a considerable number of different DG methods may be
obtained (see Arnolet al., 2001 for details). In this paper, the so-called non-symmetric
interior penalty Galerkin method (NIPG) will be analysed. It was originally introduced in
Wheeler (1978) and extensively studied in Arnold (1982), &wet al. (1999), Arnoldet
al. (2001), Wihler (2003) (and the references therein).

In order to define the NIPG for the linear elasticity problem (2.1), the following product
operator on_2(K)2*2 x L2(K)2%2, K e T, isintroduced:

2

g:é:: Z aijBij,

ij=1

with the induced norm
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DEFINITION 4.1(NIPG) Fort = 1, define a bilinear fornBpg by

Bog(U.v) = Y [ o :e() dx

KeT /K
- eFZ / (W ve) - [vle = rlule- (2@ - ve) ) ds
1
+u Z — [ [Ule - [v]eds,
eelintp el Je

and a corresponding linear functiorighg by

LpG(v) := Z/i'ydx-kf g, -vds
Ke7 /K I'n

1
+/ (z(y)-ﬂg)-ngeruz—/QD-de-
Ip — = lel Je=

ect:
ecI'p

Then, the DGFEM for the linear elasticity problem (2.1) reads as follows:
Findupg € SY0(£2, 7) such that

Boc(Upg: v) = Lpg(v) Vv e S0, 7). 4.7)

REMARK 4.2 The choicer = —1 in Definition 4.1 leads to the symmetric interior penalty
Galerkin method (SIPG) for the elasticity problem (2.1). However, to prove absence of
volume locking for this scheme, an additional stabilization term of the form

1
Z |_e| /(;[H : Ee]e[y : Ee]e ds

eelintd
must be added to the bilinear forBpg (Hansbo & Larson, 2002).

ProPcsITION 4.3 (Consistency) If the exact solutiary, of the linear elasticity problem
(2.1) belongs toHﬂZ’Z(Q)2 for any weight vecto = (B1, ..., Bm) with gi € [0, 1),
i =1,...,M,thenthe DGFEM (4.7) is consistent:

Boc(Uex — Upg, 0) =0 Vo e SM0(2, 7). (4.8)
Proof. See Wihler (2003). O

REMARK 4.4 Proposition 4.3 shows that, in contrast to many other non-conforming finite
element methods, the consistency error of the DGFEM vanishes. This property results from
the fact that the discontinuities of the DG solutions over element boundaries are handled
with the aid of some extra inter-element terms in the bilinear f8gg. Nevertheless, the
analysis of the DGFEM is comparable to that of non-conforming, non-consistent methods,
since there, similar expressions occur in the corresponding residual terms.
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Finally, the following norm is associated to the DGFEM:

e = Y le@iZ + - 3 et / ulef? s, (4.9)

KeT elastec Mo

wheremgjast:= 2min{u, i + A}.

REMARK 4.5 The norm in (4.9) is equivalent to the element-wist' norm. A
corresponding result may be found in Brenner (2002), where a discrete Korn inequality
was poved.

PROPGSITION 4.6 (Coercivity) The bilinear formBpg is coercive onS-0(£2, 7). More
precisely,

Boc(u, W) > melasdm”zDG
forallu e SLO(2, 7).
Proof. Set
o 1
W =€ —3V-ul, .

Then, forK e T, there holds that
/g(g):g(u)dX=2uf g(g):g@dxﬂ/ v - ul?d
K™ - K™ - K

= 2u/ (€, +3V-ul, ):(e,W+3V-ul, )dx

& 1 € 1
+/\f |V - u|? dx

K

=2u/ (e, :go<g)+%|vg|2}dx+x/ IV ul? dx
K = - K

22“f € (U):e (g)dX+(u+/\)/ IV - u?dx.
K =0 =0 K

Moreover, since

fK €W : e dx = /K (€W +3V-ul, ):(e,W+3V-ul, )dx

= / {éo(u) IEO(U) + %IV . UIZ}dX,
K = =
it follows that
f o) :e(wdx > “'elast/ €) : e(u) dx.
K= = K= =

Thus,

Boc(l. W) > Mot Y [ €W ey 3 fei [ juiitas
e

Ke7 /K eelint,p

2
2 MelasflUllpg-
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Note that the coercivity constant in Proposition 4.6 is independeiatasfi — oo.
This remarkable property of the NIPG will be essential for the error analysis in this paper
and may not simply be generalized to other DG methods.

5. Error Analysis
5.1 The Crouzeix—Raviart interpolant

From the analysis of other non-conforming methods (see Brenner & Scott, 2002, for
example), it is well-known that the Crouzeix—Raviart element does not lock. This can be
shown by introducing the so-called Crouzeix—Raviart interpolant (Crouzeix & Raviart,
1973) which provides some essential properties for the circumvention of volume locking.
These properties are typically not available for continuous (low-order) elements.

Therefore, this interpolant will also be used for the error analysis of the DGFEM
considered in this paper. However here, the original definition must be extended to
weighted Sobolev spaces. This can be done straightforwardly.

ProOPCsITIONS.1 LetK e 7 be a triangle with vertice®\;, A2, As. Then, for each
B €10, 1) and for dg(x) = r# = |x — Aq|?, there exists an interpolant

i HE2(K)? — Pa(K)?
such that the following properties are satisfied:
(@) [(g—an)ds:Q, Vee &k :={ee & : ec oK},
e
(b) f(g— mKU) -Neds =0, Vee &k;
e
() /KV(g—an)dx =0.
Here, fore € £k, n, denotes the unit outward vector Kfone.

Proof. Foru e H/§’2(K)2 the interpolantri u € P1(K)? is uniquely defined by

1
mu(xMy = Hfgds, Ve e &,
e

Wherexé\’I denotes the midpoint o € £k . Then, (a) and (b) follow directly from this
definition. (c) results from (b) and from Green’s formula:

/V~(Q—7TKH)dX=f (U—mkW) - Nyg ds
K oK
=Y [ u—7kw-neds

eegK e

=0.



56 T. P. WIHLER
In order to study the approximation propertiesef on HE’Z(K), K € 7, some new
(optimal) interpolation error estimates have to be established.

PrRoOPGSITION 5.2 Foru € H§’2(K)2, K € 7, the interpolantrk u from Proposition 5.1
satisfies the following estimates:

2—
U —mkUll 2y + hk U — Tk U1k < Chi ﬁlngg‘z(K) (5.1)
U —mrllzz g, < MUlp2zg) (5.2)
and
1—
IV - (=7 Wll 2, < Chi |V -HlHﬂl.l(K) (5.3)
| (5.4)

|V : (H - nK!)lH;»l(K) < |V -u H/;L'l(K)'

C > 0Ois aconstant independent bf and ofu.
Proof. SetU := u — wku. Then, sincerk u € P1(K)?2, there holds

and |V-Q|H1.1(
]

|Q|H§‘2(K) = |H|H§2(K) K) = |v . ng;'l(K)'

Thus, applying Lemma A.2 td and Lemma A.3 tov - U, completes the proof. O

5.2 Apriori error estimates

In a polygons? consider a FE mesh satisfying the conditions from Section 4.1. Moreover,
let B = (B1,...,Bm) be a weight vector an@y the corresponding weight function

described in Section 3.1. Then, 64%(2, 7), define an interpolant

7 : Hp2()? — S0, 7) (5.5)

by
Ir|lku=rnku, VKeT, (5.6)

wherernk, K € 7, isthe interpolant from Proposition 5.1.

Then, the DG erroe := U, — Upg, Whereu,, is the exact solution of the linear
elasticity problem (2.1) andp is the solution of the DGFEM (4.7), may be represented
as follows:

€= Ugy — HTgex + I7u — Upg - (57)

=0 =&

REMARK 5.3 SinceHg’z(Q)2 C CO%(2)? (BabiBkaet al., 1979),u,, € Hg’z(()) implies
that B B

/ [7]leds =0 (5.8)
e

for all edge<e € [int.
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In the following part, it will be proved thaté ||pg is bounded in terms of, and thus,
due to the triangle inequality, the errpe|pc =_||gex — Upgllog of the DGFEM can be
controlled byn only.

For standard (conforming) FEMSs, such error estimates are usually obtained using
Galerkin orthogonality (consistency) as well as the coercivity and the continuity of the
corresponding bilinear forms. In the DG context however, the latter property is typically
not available on continuous spaces and alternative error estimation techniques have to be
applied. A possible approach is presented in the proof of the following proposition.

PROPGSITION 5.4 Let the exact solutiom,, of the linear elasticity problem (2.1) be in
HE’Z(Q)Z, where 2 is a polygon inR?. Then, withy and£ as in (5.7), there holds the
following stability inequality for the DGFEM (4.7):

(RIS C{“Z[ 2 Il + 1) + D hiInfe,

KeT KeT\Ko
2-2B8, 2 2 2
00 W e ] 7] 2 1Vl 5.9)
Keko £ KeT
2 2 2-28 2
T2 MKV, D |V.Q|H1’1(K):|]’
KeT\Ko £ KeKo £

whereC > 0 is aconstant independent of, A and of{hx : K € 7}.

The error bound in Proposition 5.4 is explicit with respect to the &apefficientsu
anda. This fact will be essential in Section 5.3, where robusindependent) convergence
rates for the DGFEM will be derived.

To make clear how this explicit form of the right hand-side of (5.9) is obtained, the
following auxiliary result, Lemma 5.5, is inserted prior to the proof of Proposition 5.4.

LEMMA 5.5 Lety = vy + vy, Wherep; € H§’2(0)2 andv, € S¥°(2, 7). Then, there
holds the bound B

WY ek + Y Y llo@ - vellfsg + 42 Y lelHwlelZzg,

KeT KeT ety eclintp
eelint D
-2
<Clu? Y Pl + 0B )+ D PRI
KeT Ke7T\Ko
2-28 2 2 2
+ Y hE '2|H§,2<K)]+k [ 219 wlZay,
Keko = KeT
2 2 2-28 2
+ 2RIV wlgg + D i |V'2|H,§L1(K)]}'
KeT\Ko Keko 2

Proof. Obviously,

2 2
Yo lelk <C Y g
Ke7T

KeT
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Furthermore, Lemma A.4 and the fact that € H2(K)?2 for all K ¢ Ko (see Remark 3.2)
imply that

> Y e velfsg

KeT esex
eslint,D

Sk (G DD D EURRIFRESED DD DR LN

KeT etk KeT ee€g
eclint b eelint, D

2-28, 2
CM[Z||VU||L2(K)+ PIRNAEEED DY

KeT\Ko Keko

2 2 h2-2p 2
+Ca [Z IV v, + D PRIV 0+ Y e PV u, (K)]
KeT\Ko Keko

Additionally, by the standard trace theorem (see Schwab, 1998, Theorem A.11), there holds

Yl lelfae <C Do D el ul

eclintp KeT e:ffk
int,D
<C ) (el s, + 1Vl
eclintp
-2 2 2
<C Y (Il 2, + 1VUlE2)-
eclintp

Proof of Proposition 5.4. Due to the consistency of the DGFEM (see Proposition 4.3), it
holds that

Bog(§.§) = Bpc(e—1,§) = —Bpa(n, §).
Therefore, by Proposition 4.6,

2me|ast||";: ”DG BDG(’? ‘5) (5.10)

Referring to the definition (2.2) of the stress tensgrand noting tha1<g(§) -ge> is
- — e
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constant on each edges £, leads to

Boc(n. &)= Y | a(n): @) dx

KeT /K
- FZ e((g(g) ve)_ - [£le = nle- (2®) - ve) ) ds
Y gt / [ile - [€]eds
eclintp €
=2n Z/g(g):g(g)dX+k Z Vg/ V- ndx
KeT /K™ - KeT K
—; ( /e (e - ve) - [£leds — (2®) - ve) - /e [1]eds)
Y et / [ile - [£leds.
eclin,p €

Using the properties of the interpolafit- (Proposition 5.1) as well as the weak continuity
(5.8) ofp results in

(2 - ve), - 1Eleds

Boon ) =20 Y [ e :e@dx— 3 /

KeT /K eclintp” €
Y Jet / [ile - [£]eds
eclintp e
=1 —1I11+11I1I.

In the remaining part of the proof, the surnsl | and| I I are estimated in terms gfand
of £. First of all, by Holder’s inequality, there holds that

H=|2n Y [ em:e@dx|

KeT /K
1 1
<[4 3 1 °[ X le@Iz |7,
KeT KeT

Secondly, a bound for| will be established. To do so, the sum over all edges [intp
(in I'l) istransformed into a sum over all elemeitse 7. Again, Holder’s inequality is
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used:

1< Y [ e - ve) litglel ds
e

eclintp

< Y lElelieell {2 - ve) e

eelintp

<30 > lElelix@lla - vell e

KeT eslint
ecaK

+ 3> lElellLoelle() - vell 1)

KeT estk
eel'p

<C E E E]elliLe@lla(m) - vell 1)
KeT es€g
eelint p

Now, applying the inverse inequality from Lemma A.1 to the linear polynofjial yields

1
HI<C DY > el 2[Elell L2 o) - vell 1)

Ke7 eeég
eclint, D
1 1
_ 2 2
<[ X X letiglelg |7 D0 D e velig |
KeT etk KeT etk
eclint b eclint D
1
Melast] M -1 2 2
=c /= E 3 e (gl |
Slell 2
K LMelast ec T
1
2
[ 2 et vel?ig |2
KeT etk
eelint D
Finally, I I | is estimated as follows:

Nl

1
— 1
|III|<,/%t[u2 D [0 e K el DR e [ N9

Melast
eclintp eclintp
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Summing up and using (5.10) results in

1
I€13g < 5——IBoa (. £)|

2m Melast

< (R E T

2Melast

<cmax|1, / e"’S‘}usupe (123" llea (5.11)

KeT

30 e vellPig +H Y leHilnlel P

Ke7Z e<€g eclintp

e<lint,p
m
max{l, /ﬁt} <2
n

and inserting the bound from Lemma 5.5 withk= 7 into (5.11) completes the proof. [J
A direct consequence of the above statement is the ensuing corollary.

COROLLARY 5.6 Letthe assumptions of Proposition 5.4 be satisfied. Then, the following
apriori error estimate holds true:

lUex — UpalBe < CCur {H? X illnZag, + )+ D I,

Nl

Noting that

KeT KeT\Ko
2-2
+ 3 he Pz | +47 Z IV - 0125,
KGK:O ﬁ
2-2
+ Z h|2<|v'ﬂ||2_|11 + Z h ﬁ|v 77| 11(K):“
KeT\Kop

Here,u,, is the exact solution of (2.1)y is the squtlon of the DGFEM (4.7) and

Cur = max{u %, wtmgig, 1).
REMARK 5.7 A few calculations show that the consta@f, , from Corollary 5.6 is
independent of if » > 0.

Proof of Corollary 5.6. From the error splitting (5.7) it follows that
lelfe < Clinlizg + I€IBe)

<C[ X el + —

> tert [ i ds + fiei3e)
e

KeT aStEEFint,D
<Cmaxu 2 ptmgag [k Y @R +u? Y lel / n)? ds]
KeT eclintp e
+ClElIg-

Thus, using Lemma 5.5 and inserting the bound from Proposition 5.4 completes the proof.
O
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5.3 Convergence rates

It is well-known that, ifus, € H?(£2)2, whereu,, denotes the exact solution of (2.1), the

standard (conforming) FEM (and also the DGFEM) converges at an optimal algebraic rate,
ie.

1
”gex_gFE” < CN 2,

where N is the number of degrees of freedom afidis a uniform mesh onf2.
Unfortunately, this result is typically not anymore true if the assumpaiigre H2(2)%is

weakened, i.eu,, € Hﬂz’z(())2 with 8 >~ 0. Moreover, for conforming FEMC depends

oni,C ~ /A asi — oo.
Although the convergence rate remains algebraic in this case, the optimal order

O(N_%) is usually reduced t(ﬂ(N_%) with « « 1. This effect is even more pronounced
at higher orders of approximation.

The aim of this section is to prove that the optimal convergence rate may be preserved
(independently of. for the DGFEM) even if the exact solution is singular, i, ¢
H2(£2). The main idea is to replace the uniform meshes by so-cajlegraded meshes'’
which are able to approximate singularities at an optimal algebraic rate.

5.3.1 y-Graded Meshes. They-graded meshes are constructed in such a way that, for
all singularitiesA; € SP(£2, I'p, I'n), the ratio

element diameter
(distance to singularipy

is kept bounded, wheng > 0 is anappropriate real number (grading factor) corresponding
to the singular poing;.
A more precise definition may be found in Bdkaet al. (1979).

DEFINITION 5.8 Let y be a weight vector as defined in Section 3.1 afgd the
corresponding weight function of?. Then, a mesl¥, on (2 is called ay-graded mesh
with grading vectory if there exists a constant > 0 such that the following properties
are satisfied: N

() if K eT,\Kothen
L™y, &,(0) < hk < Lhg, &,(0  ¥xeK;
(i) if K € Kothen

L~ hy, sup @, (x) < hx < Lhz, sup &, (x).
—xeK —xeK

Here,hz, is the mesh size (4.4) &, .

Asymptotically, y-graded meshes have the same number of degrees of freedom as
uniform meshes.
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LEMMA 5.9 Let7, be ay-graded mesh as in Definition 5.8. Then,
N := dim(S*°(£2, 7,)) < Ch2,
= v

whereC > 0 is aconstant independent @ik : K € 7,}.

Proof. See Babgkaet al. (1979, Lemma 4.1). O

5.3.2 Main Result. Now, the main result of this paper is established. It is shown that
the DGFEM (NIPG) converges independently of the Eamefficienti, and, moreover,
that the algebraic convergence rates are optimal-gnaded meshes.

THEOREM5.10(Robust Optimal Convergence) Let the assumptions of Theorem 3.4 be
satisfied. Moreover, €T, with (1,1,...,1) > y=B8 be aZ-graded mesh as introduced
in Definition 5.8. Then, for thb-DGFEM (4.7) the following optimal error estimate holds:

1
”Hex - HDG”DG < CC;L,A N2,

Here,u,, € H§*2(0)2 is the exact solution of the linear elasticity problem (2ub)s is the

solution of the DGFEM (4.7)N = dim(S*°(7,,, ©2)), C,..; is the constant from Corollary
5.6 (independent of asi — oo) andC > 0 is aconstant independent &f and the Larg
coefficientsu andA.

Proof. Let /I, be the global interpolant from Section 5.2, i.e.
I, |k =7k, KeT,

wherernk is the interpolant from Proposition 5.1. Referring to Corollary 5.6, the following
error bound for the DGFEM may be obtained:

2
lUex — Upgllpe

2 -2 2 2
< CC/L,)\.{/«L [ Z (hK “Hex - T[KEGX”LZ(K) + |Hex - anex|Hl(K))
KeT,

2 2 2-28 2
+ Z hK|HeX_7TngX|H2(K)+ Z hK |Hex_7Tngx|H2.2 :|
KETL\KO Keko BK)

+)"2|: Z ”V : (Hex - nKHex)”iZ(K) + Z th |V : (gex - nKHex)'il(K)

KETZ KE’TZ\ICO
2-2 2
+ E hK ﬁlv . (gex_anexNHl.l ]}
K)
KeKo A

Moreover, inserting the interpolation error estimates from Proposition 5.2 into the above
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bound yields

2
”Hex - HDG”DG

2 } : 2 : 2 2B
< CC#,A{M [ hK|uex|H2(K) + |uele22(K):|
KGTZ\/CO KeKo

2 2
+)\.2|: Z h2K|V U X|H1(K)+ Z ﬁlv uex| 11(K)]}
KE'Z—V\K:O KekKo

= CCM,A{ Z hK(M |uex|H2(K) + )‘2|V uex|Hl(K))
KeT, \/Co

2 2 2
+ 2 0o 1V U hro) (5.12)
0

Furthermore, from the definition of the-graded meshes (Definition 5.8) it follows that

IUex — UpcliBe
<cCufnd Y /K 12 (42| D?Ueyl® + 22| DYV - Ugy ) dX

KETAKo (5.13)
2 2
+ 3 MU P i ez Y Uadfg )
KE’CO L xeK ﬁ

Clearly, for allK € Ko, there holds < hk. Hence,

hk < Chz, supr” < ChTLh}é,

—xeK
and therefore
1
hk <Chg”
This implies that
v B
supr’ < Chl <Chy’” < Ch;”.
xeK r r
Thus, (5.13) transforms to
IUex — Unglipe
<0CLhg | 0 [ rPDR 4 22DV - ug P i

KeT, \Ko

2
+ 3 Wi zage, + 419 el |
Keko
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and from the definition of the weight functiaﬁlﬁ (Section 3.1), it follows that

2
lUex — Upclipe

< CCM,;\h%’{ Z / @g(M2|D2!eX|2 Y 'Qex)|2) dx
TUKeT\K UK T

2
+ 3 lalion e, + AV ol )
KekKg

<ccuhg| [ qﬁngngexﬁﬂzmlw~gex)|2> dx

2
+ 3 lalion e, + AV el )
KE}CQ

< CCLANT, (WPl 22 g, + 21V - Ul )

Finally, by Lemma 5.9, i.e.

1
hr <CN72,

and with the aid of the regularity result, Theorem 3.4, the proof is complete. O

REMARK 5.11 On uniorm meshedy, it holds that
1

Therefore, (5.12) directly implies that, even jf = 0, the DGFEM still converges

independently ofA. Howewer, due to the appearance of the teh‘fg_z’3 , the rate of
convergence is no longer optimal fér- 0.

6. Numerical results

The aim of this section is to confirm the previous theoretical results with some practical
examples. More precisely, it will be shown that, even if the exact solutions of the
corresponding problems are singular, the convergence rate of the DGFEM remains of order

1
O(N™2) ony-graded meshes, as expected. Moreover, the robustness of the method against
volume locking will be illustrated.

6.1 L-shaped domain
6.1.1 Model problem. Let {2 be the polygonal domain with vertices

A1=(0,0), A2=(-1-D, As=(1,-D, As=(11, As=(-1D.
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y

FiG. 1. Polygonal domair?.

Note that the origirO = (0, 0) is a re-entrant corner d? (see Fig. 1). Then, consider the
following model problem:

Viow =0 in 0
~u = g, on Ip=3d%. (6.1)

Here,g, := Ug,lrp, whereu,, is the exact solution of (6.1) given by its polar coordinates
1
ur(r,0) = Zr“(—(a + 1) cos((a + 1)O) + (C2 — (a + 1))Ca co(« — 1))

1
ug(r,0) = ﬂr"‘((a + 1) sin((a + 1)) + (C2 + o — 1)Cy sin((a — 1)6)),

wherea ~ 0-544 484 is the solution of the equation
o Sin(2w) + sin(2wa) =0
with w = 3T, and

_ _Coi(a + Dw) _2(0+2p)
= T cod(a — Do)’ 2T T

6.1.2 Robust optimal convergence rateson y-graded meshes. A few calculations show
that the exact solution,, of the model problem (6.1) belongs tebg’z((z)z with g =

(81,0,0,0,0) forall1 > 1 > 1 — o ~ 0-455516. Thus, in order to obtain the optimal
convergence rate,jagraded mesh with refinement towards the origin must be used for the
numerical simulations.

Figure 4 shows the errors of the DGFEM fok {1, 100 500 100Q 5000 (1« = 1) in
the energy norm

1 .
lulde = Y leWlk + e~ > el 1fe|[g]e|2ds

KeT elast eclintp
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

FiG. 2. y-graded mesh with refinement towards the origin= (%, 0,0,0,0)).

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

FiG. 3. Uniform mesh (i.ey-graded mesh witly = (0, 0, 0, 0, 0)).

on ay-graded mesh with grading vectpr = (%, 0,0,0,0) (see Fig. 2). Obviously, the
convergence rate of the DGFEM is already almost optimal for approximately 5000 degrees
of freedom (800 elements). Moreover, the expected robustness of the DGFEM with
respect to the Lamncoefficienta is clearly visible.

In Fig. 5 the energy error of the DGFEM on a uniform mesh §.e= (0, 0, 0, 0, 0))
is presented. Although the DGFEM still converges robustly, the optimal convergence rate
is no longer achieved (see Remark 5.11) and the ugegrfaded meshes is found to be
justified. N

In addition, theL? errors for the computations above are shown in Figs 6 and 7.
Again, the performance of the DGFEM on a uniform mesh is notably worse. However,
the convergence rate of the error seems to be twice as high as of the energy error.



68 T. P. WIHLER

DGFEM on graded mesh
10

—— =1

-6~ \=100
“| == A=500
—— A=1000
—B- A=5000

rel. energy error

0.4518

10 -

10" 10° 10 10
number of degrees of freedom

FiG. 4. Performance of the DGFEM on the L-shaped domain \ﬂitb (%, 0,0,0,0) (Z-graded mesh).

DGFEM on uniform mesh
10

— A=1

rel. energy error

1 1
10" 10° 10° 10*
number of degrees of freedom

FiG. 5. Performance of the DGFEM on the L-shaped domain witk 0 (uniform mesh).

6.1.3 \olumelocking. Figures 8 and 9 show that the standard (i.e. conforming) FEM
does not converge independently Jof Although the asymptotic rate of convergence is
optimal ony-graded meshes, the onset of the errors’ decay is remarkably retarded for
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DGFEM on graded mesh

10

—+ A=1

—©- A=100
—*— A=500
—<— A=1000
—&- A=5000

rel. L2 error
=
o
W
T

-3 1 1

10" 10° 10° 10*

number of degrees of freedom

10

FiG. 6. Performance of the DGFEM on the L-shaped domain itk (%, 0,0,0,0) (y-graded mesh).

DGFEM on uniform mesh

10

—+ A=1
—©- A=100
—— A=500
—— A=1000
—&- A=5000

rel. L2 error

-3 1 1

10
3 4

10" 10 10 10
number of degrees of freedom

FiG. 7. Performance of the DGFEM on the L-shaped domain witk 0 (uniform mesh).

A — oo. This non-robustness of the convergence rate with respedstwidely known as
‘volume locking’ which, in contrast to the DGFEM, seems to be unavoidable for low-order
standarch-FEMs in the primal variables. The initial ascent of the energy norm for large
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Standard FEM on graded mesh

10
—— A=1
-~ A=100
—— A=500
—<— A=1000
—=- A=5000
107
s
@
>
=)
[
=4
(7]
=
107
10’3 L L L
10" 10° 10° 10 10°

number of degrees of freedom

Fic. 8. Performance of the conforming FEM on the L-shaped domain with Q (uniform mesh).

o Standard FEM on graded mesh

10
—+ A=1
—©- A=100
—*— A=500
—— A=1000
—5- A=5000
-2
10 "k
8
S
~, 10°F
T
107k
1
1075 1 : 2 : 3 : 4 5
10 10 10 10 10

number of degrees of freedom

FiG. 9. Performance of the conforming FEM on the L-shaped domain with (%, 0,0, 0, 0) (y-graded mesh).

results from the fact that the finite element spaces are not nested due to the structure of the
y-graded meshes.
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FiG.10. Computational mesh.

1 P R — —= —> — 1 . — —_— = —= —> >
-~ —> —> — Y - — > —> — . .
! b e L ~ ' [ AP g ~ < >
coN ’ L N ! cot ’ " o N
0.8 VY o, / 0.8 v o
\ -~ / Vo -~
N N <y ' N R e [
~ - - - . ~ - - -
0.6 P 06 'Y~ o -
> Lo ST LT
0.4 . T~ 04t 7 - T~
//// — - - t O \ : /v // _ - : N
/ Vs = \ ! / s ~ [N
1 / .
0.2}, /H’\ AR 0.2“IHI.‘_,,,’
o ~ oL B . ' ‘\ \ N _ o ~ ,
~ \‘ﬁ\)%_)—»’_) g N - — . s
0 ~ - —— - 0 =~ i _— -
0 02 04 06 08 1 0 02 04 06 08 1
X X
Fic. 11. Standard FEM/DGFEM fox = 100.
6.2 An example on the unit square
Consider the following problem of? = (0, 1)2:
-V.gw = 0 in
- @ (6.2)
u = (%) on Ip=0an

with

N [ 1-4x—=12 if(x,y) € (0,1 x {1}
9 (X.¥) = { 0 ? else.
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1 P — — = = — 1 = 5 > = —= —
, P e N Y T s s T LT
P S VN ! I L. N
" | \ ! -~ v 1‘ ot - vt ¢‘
. \ \
0.8 \ N \ .oy / / 0.8 ' \ N . / ! '
VN ~ . Voo -~ [
NN \\ N v /oy ! N \\ ~ =_ - [
0.6 Y A . . 0.6 e = i
. . N - / . . oo~ - - 4
~ ~ < v . : - -— - - -
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X
Fic.12. Standard FEM/DGFEM for = 500.
1— e I
. P s NG P E , - - — —_
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. \ v '
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i 1 AN , . LN - .
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' .~ >— . N \“)‘) - T .
ol — S > - ol—= — = _ > -
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

FiG. 13. Standard FEM/DGFEM fox = 1000.

Due to Theorem 3.4, the exact solution of this problem belond$4d?)2. Therefore,
referring to the analysis above, no mesh refinement is required for the DGFEM to converge
optimally. The computational (uniform) mesh is shown in Fig. 10. Additionally, the results

for different choices ofs are presented (Figs 11-14). In contrast to the DGFEM, the
standard FEM shows clear evidence of locking.
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FiG. 14. Standard FEM/DGFEM fox = 5000.
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Appendix A

LEMMA A.1 Letl = [a,b],a < bbe an interval irR andh; = b — a. Then, for every
u € P1(1) it holds that

1
IullLoeqy < 4v2hy 2[ull 2.

Proof. See Quarteroni (1984). O
The proofs of the following lemmas may be found in Wihler (2003).

LEMMA A.2 LetK c R2 be a triangle with verticeg\;, Ay, Az. Then, for eachu e
HE’Z(K)Z, whereg € [0, 1) and @5(x) =r# = |x — A|#, there holds

Lgds]z).

Here,C > 0 is aconstant (independent a) andék = {e1, e, e3} is the set of all edges
of K.

2 2
<
”H”HE'Z(K) < C<|Q|H§*2(K) + E
ee£K

LEMMA A.3 Let the assumptions of Lemma A.2 be satisfied. In addition, let

/ udx = 0.
K
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Then, there holds

Iz < Clul g,

whereC > 0 is aconstant independent af

LEMMA A.4 Let the assumptions of Lemma A.2 be satisfied. Then, the following
inequalities hold true:

1-8 .
(@) Ul k) < CAlUllL2ky + hy |E|H/31.1(K)),

1-8
(B) IVUl 15k) < CUlp1k) + hk |H|H§’2(K))'



