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A B S T R A C T

We have investigated the structural and dynamical properties of triaxial stellar systems whose

surface brightness profiles follow the r 1=n luminosity law – extending the analysis by Ciotti,

who explored the properties of spherical r 1=n systems. A new analytical expression that

accurately reproduces the spatial (i.e., deprojected) luminosity density profiles (error less than

0.1 per cent) is presented for detailed modelling of the Sérsic family of luminosity profiles.

We evaluate both the symmetric and the non-axisymmetric components of the gravitational

potential and force, and compute the torques as a function of position. For a given triaxiality,

stellar systems with smaller values of n have a greater non-axisymmetric gravitational field

component. We also explore the strength of the non-axisymmetric forces produced by bulges

with differing n and triaxiality on systems having a range of bulge-to-disc ratios. The

increasing disc-to-bulge ratio with increasing galaxy type (decreasing n) is found to greatly

reduce the amplitude of the non-axisymmetric terms, and therefore reduce the possibility that

triaxial bulges in late-type systems may be the mechanism or perturbation for non-symmetric

structures in the disc.

Using seeing-convolved r 1=n-bulge plus exponential-disc fits to the K-band data from a

sample of 80 nearby disc galaxies, we probe the relations between galaxy type, Sérsic index n

and the bulge-to-disc luminosity ratio. These relations are shown to be primarily a

consequence of the relation between n and the total bulge luminosity. In the K band, the trend

of decreasing bulge-to-disc luminosity ratio along the spiral Hubble sequence is

predominantly, though not entirely, a consequence of the change in the total bulge

luminosity; the trend between the total disc luminosity and Hubble type is much weaker.

Key words: stellar dynamics – galaxies: elliptical and lenticular, cD – galaxies: kinematics

and dynamics – galaxies: photometry – galaxies: spiral – galaxies: structure.

1 I N T R O D U C T I O N

As the quality of photometric data has improved over the years

(largely due to the use of CCDs), the applicability of a fitting-

function which can account for variations in the curvature of a light

profile has been demonstrated for elliptical galaxies (Capaccioli

1987, 1989; Davies et al. 1988; Caon, Capacciolli & D’Onofrio

1993; Young & Currie 1994; Graham et al. 1996), and for the

bulges of spiral galaxies (Andredakis, Peletier & Balcells 1995;

Moriondo, Giovanardi & Hunt 1998; Seigar & James 1998;

Khosroshahi, Wadadekar & Kembhavi 2000; Graham 2001;

Möllenhoff & Heidt 2001; Prieto et al. 2001). These systems are

not universally described with either an exponential profile or an

r 1=4 law (de Vaucouleurs 1948, 1959), but rather a continuous

range of light profile shapes exist which are well described by the

Sérsic (1968) r 1=n model.

In ellipticals, the shape parameter n from the Sérsic model is

strongly correlated with the other global properties derived

independently of the r 1=n model, such as total luminosity and

effective radius (Caon et al. 1993; Young & Currie 1994, 1995;PE-mail: itc@ll.iac.es
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Jerjen & Bingelli 1997; Trujillo, Graham & Caon 2001b), central

velocity dispersion (Graham, Trujillo & Caon 2001a), and also

central supermassive black hole mass (Graham et al. 2001b).

Additionally, the spiral Hubble type has been shown to correlate

with the bulge index n such that early-type spiral galaxy bulges

have larger values of n than late-type spiral galaxy bulges

(Andredakis et al. 1995; Graham 2001). This correlation arises

from the fact that the index n is well correlated with the bulge-to-

disc luminosity ratio (B/D; see, e.g., Simien & de Vaucouleurs

1986), and this is one of the parameters used to establish

morphological type (Sandage 1961).

Given the abundance of observational work and papers now

using the Sérsic model, it seems timely that a theoretical study is

performed on realistic, analytical models following the r 1=n law.

Structural and dynamical properties of isotropic, spherical galaxies

following r 1=n models have already been studied in detail in the

insightful paper of Ciotti (1991). However, most elliptical galaxies

and bulges of spiral galaxies are known to be non-spherical objects.

Typically, the mass models which have been used for the study of

triaxial galaxies have followed analytical expressions which were

selected to reproduce the properties of the de Vaucouleurs r 1=4

profile (e.g. Jaffe 1983; Hernquist 1990; Dehnen 1993), or more

recently the modified Hubble law (Chakraborty & Thakur 2000).

For that reason, previous studies based on these kinds of analytical

models, though certainly useful, are unable to probe the full range

of properties which are now observed in real galaxies.

Consequently, it is of importance to know how much room for

improvement exists in the study of triaxial objects following the

r 1=n family of profiles.

Due to the fact that the observed r 1=n luminosity profiles cannot

be deprojected to yield analytical expression for the spatial

density,1 the r 1=n law has been considered less useful for studies of

detailed modelling. An analytical representation (approximation)

for the mass density profiles which accurately reproduces the

observed r 1=n luminosity profiles would be of great interest for

simulations of real galaxies. We have therefore derived just such an

analytical expression for the mass density profiles of the Sérsic

family of models. Our approximation surpasses the accuracy of

both the Dehnen models for representing the specific r 1=4 profile

and also their extension to the double-power-law models of Zhao

(1997).

In this paper we present a detailed study of how the physical

properties of triaxial stellar systems change as a function of the

index n. An accurate analytical expression for modelling the spatial

density is presented in Section 2. In Section 3 we explore

the axisymmetric and the non-axisymmetric components of the

potential, forces and torques associated with a Sérsic light

distribution. Finally, by using literature available K-band

observations of a sample of 80 spiral galaxies, the physical basis

of the n–T (or n–B/DÞ relation is investigated in Section 4.

2 T H E r 1=n M O D E L

The projected, elliptically symmetric Sérsic r 1=n intensity

distribution I(r) can be written in terms of the projected, elliptical

radial coordinate j (see details in Trujillo et al. 2001a) such that

IðjÞ ¼ Ið0Þ e2bnðj/reÞ
ð1/nÞ

; ð1Þ

where I(0) is the central intensity, and re is the effective radius of

the projected major axis. Curves of constant j on the plane of the

sky are the isophotes. The quantity bn is a function of the shape

parameter n, and is chosen so that the effective radius encloses half

of the total luminosity. The exact value is derived from

Gð2nÞ ¼ 2gð2n; bnÞ, where G(a) and g(a, x) are the gamma function

and the incomplete gamma function respectively (Abramowitz &

Stegun 1964, p. 260). The index n increases monotonically with the

central luminosity concentration of the surface brightness

distribution (Trujillo et al. 2001b).

The total projected luminosity L associated with this model is

given by

L ¼ Ið0Þr2
eð1 2 eÞ

2pn

b2n
n

Gð2nÞ; ð2Þ

where e is the ellipticity of the isophotes. For a homologous triaxial

ellipsoid, the spatial (deprojected) luminosity density profile n(z)

can be obtained by an Abel integral equation (Stark 1977):

nðzÞ ¼ 2
f 1=2

p

ð1

z

d

dj
IðjÞ

� �
ðj 2 2 z 2Þ21=2 dj; ð3Þ

where f 1/2 is a constant that depends on the three-dimensional

spatial orientation of the object (Varela, Muñoz-Tuñoz &

Simonneau 1996; Simonneau, Varela & Muñoz-Tuñoz 1998),

and z parametrizes the ellipsoids of constant volume brightness.

f 1/2 equals 1 when the proper axis frame of the object has the same

orientation as the observer axis frame (i.e., when the Euler angles

between the two frames equal zero).

2.1 Mass density profiles

Assume a triaxial object whose mass is stratified over ellipsoids

with axis ratios a:b:c ða $ b . cÞ and the x- (z-) is the long (short)

axis (see Fig. 1). The symmetry of the problem motivates us to

work with ellipsoidal coordinates where

x ¼ z sinc cos u

y ¼ az sinc sin u

z ¼ bz cosc; ð4Þ

Figure 1. A surface of constant density for the triaxial ellipsoid described in

equations (5) and (6).

1 Recently, Mazure & Capelato (2002) have provided an exact solution for

this, and other related spatial properties, in terms of the Meijer G functions

when the Sérsic index n is an integer.
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and where a ¼ b/a and b ¼ c/a. The mass models considered in

this study are the triaxial generalizations of the spherical models

discussed in detail by Ciotti (1991). The mathematical singularities

present in equation (3) were considered and solved by Simonneau

& Prada (1999, equation 16). Substituting equation (1) into

equation (3), letting j ¼ z coshw, and multiplying by the mass-to-

light ratio Y ; M/L, we obtain a similar expression to the one

found by these authors:

rðzÞ ¼
f 1=2Ið0Þbn

pnr1/n
e

Y

ð1

0

e2bn
z coshw

re

ÿ �1/n

ðz coshwÞ1/n21 dw; ð5Þ

with

x 2 þ
y

a

� �2

þ
z

b

� �2

¼ z 2: ð6Þ

The dimensionless mass density profiles ~rðzÞ ; r3
e /MrðzÞ, where M

is the total mass, are shown for different values of n in Fig. 2(a). It

should be noted that the inner density profile decreases more

slowly with increasing radius for systems having lower values of n.

The mass density profiles of the r 1=n family (equation 5) can be

extremely well approximated by the analytical expression

rappðzÞ ¼
f 1=2Ið0Þbn2ðn21Þ=2n

renp
Y

h pð1/n21ÞKnðbnh 1/nÞ

1 2 CðhÞ
; ð7Þ

where h ¼ z/re, CðhÞ ¼ h1ðlog hÞ2 þ h2 log h þ h3, and Kn is the

nth-order modified Bessel function of the third kind (Abramowitz

& Stegun 1964, p. 374). In Appendix A we show the values of the

parameters (n, p, h1, h2, h3) as functions of the index n. This

approximation contains two exact cases, n ¼ 0:5 and n ¼ 1, and

provides relative errors less than 0.1 per cent for the rest of the

cases (Fig. 2b) in the radial range 1023 # z/re # 103. This

approximation surpasses (by a factor of 102 –104Þ the expression

presented in Lima Neto, Gerbal & Márquez (1999).

3 N O N - A X I S Y M M E T R I C P E RT U R BAT I O N S

D U E T O A T R I A X I A L r 1=n S T R U C T U R E

For three different triaxiality mass distributions: (a) spherical ða ¼

b ¼ 1Þ; (b) moderately triaxial ða ¼ 0:75, b ¼ 0:5Þ, and (c) highly

triaxial ða ¼ 0:5, b ¼ 0:25Þ, we have explored, in detail, the non-

axisymmetric gravitational field over the z ¼ 0 plane (i.e., the disc

plane when studying spiral galaxies).

3.1 Non-spherical component of the gravitational potential in

the plane z 5 0

We evaluate this quantity by calculating

GðrÞ ;
F2ðrÞ

F0ðrÞ
; ð8Þ

where F2(r) and F0(r) are the m ¼ 2 and m ¼ 0 components of the

gravitational potential, such that the nth-order term Fm(r) is

evaluated from the gravitational potential on the z ¼ 0 plane

F(r, u) by using the Fourier decomposition (see, e.g., Combes &

Sanders 1981). Gravitational potential and gravitational force

expressions are shown in Appendix B.

The profiles of G(r) for different triaxialities and values of n are

shown in Fig. 3. As expected, as the triaxiality increases the non-

spherical nature of the gravitational field increases. Also, we

highlight the fact that for a given triaxiality, smaller values of n

(i.e., less concentrated mass distribution) give greater non-

spherical gravitational fields. The maximum non-axisymmetric

behaviour of the potential is obtained at radial distances less than

2re. This radial distance is also a function of the index n, decreasing

as n increases, and remains quite independent of the triaxiality of

the object. For a moderately triaxial object with n ¼ 1, the non-

axisymmetric component of the potential can vary some 6 per cent

between r ¼ 0 and r ¼ 2re, and varies some 15 per cent for our

highly triaxial model.

For an n ¼ 1 model, and starting from our moderately triaxial

case ða ¼ 0:75, b ¼ 0:50Þ, we increased the value of b to 0.75. The

results are shown in Fig. 3(c) and reveal that G(r) varied only

Figure 2. (a) The dimensionless mass density profiles (see Section 2.1) for

the values of n ¼ 0:5, 1, 2, 4 and 10. (b) The relative errors between the

analytical approximation proposed in equation (7) and the exact solution

are shown for the previous values of n.

Figure 3. The parameters G(r ), N(r ) and P(u ) are shown for different

values of n and triaxiality: (a) First Row: G(r ), N(r ) and P(u ) for a

moderately triaxial object and different n; (b) Second Row: G(r ), N(r ) and

P(u ) for a highly triaxial structure; (c) Third Row: G(r ), N(r ) and P(u ) for

three moderately triaxial objects with n ¼ 1 and the same axis ratio along

the y- and x-axes.
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mildly. This figure shows that the non-axisymmetric effect (along

the radial distance) in the z ¼ 0 plane is mainly due to how the

mass of the bulge is distributed in this plane.

3.2 Non-spherical component of radial gravitational forces in

the z 5 0 plane

The non-spherical component of the radial gravitational forces in

the z ¼ 0 can be estimated by

NðrÞ ;
›F2ðrÞ=›r

›F0ðrÞ=›r
: ð9Þ

In Fig. 3 the N(r) profiles (equation 9) are evaluated for the same

cases as was the G(r) profiles. A remarkable point is that N(r)

reaches its maximum value in the radial range 2re , r , 4re. For a

spiral bulge structure, this means that the most important non-

axisymmetric effects take place in a zone which is dominated by

the disc. As with the G(r) parameter, stronger distortions occur as

the triaxiality increases and the index n decreases. The mechanism

which controls this distortion is basically determined by the mass

distribution in the z ¼ 0 plane (Fig. 3c).

It is noted that the relative (i.e., percentage change) non-

axisymmetric effects on the radial forces are larger than the relative

distortion on the potential. As an example, for a moderately triaxial

structure with n ¼ 1 the non-axisymmetric component of the radial

forces can reach 8 per cent.

3.3 Torques on z 5 0 plane

The torques provoked by the triaxial structures along the angular

coordinate are evaluated around the circle of radius rmax where the

maximum non-axisymmetric distortion of the radial forces is

produced [i.e., at the peak of the N(r) profile]. Given the gravi-

tational potential F(r, u) in the z ¼ 0 plane, we have at the radius

rmax

PðuÞ ;
FTðrmaxÞ

FRðrmaxÞ
; ð10Þ

where FTðrmaxÞ ¼ ½›Fðrmax; uÞ=›u�/rmax represents the amplitude

of the tangential force along the angular coordinate at radius rmax,

and FRðrmaxÞ ¼ ð›Fðrmax; uÞ=›rÞ is the radial force at this radius.

Due to the symmetry of the ellipsoid, the values of P(u) need to be

plotted for only one quadrant in the z ¼ 0 plane; we use 08 , u ,

908 (Fig. 3). Depending on the quadrant, P(u) is either negative or

positive, because the sign of the tangential force changes from

quadrant to quadrant. The maximum torque around a circle of

radius rmax depends on the triaxiality of the object. As the tri-

axiality increases the maximum torque tends to be closer to the

major axis – as one would expect. The position of this peak is quite

independent of the value of n.

The absolute value of the torque for any given triaxiality

increases as n decreases. For our highly triaxial bulge, P(u)

ranges from 0.17 ðn ¼ 10Þ to 0.24 ðn ¼ 1Þ, which would be

considered a ‘bar strength’ class of 2 in the classification scheme

of Buta & Block (2001). In the case of our moderately triaxial

object, the maximum absolute value of P(u) ranges between

0.06 and 0.09. These values correspond to a ‘bar strength’ class

of 1. A detailed study separating the torque contribution from

both bars and bulges would of course be of interest, and it is our

intention to add a range of bar potentials to our models in the

future.

As with the previous parameters, for the range of triaxialities

investigated and a given n, varying the mass distribution along the

z-axis (i.e., varying the triaxiality parameter b) results in only a

slight change to P(u) (see Fig. 3c). For a spherical distribution all

above parameters are 0.

4 L I N K I N G T H E O RY A N D O B S E RVAT I O N S :

T H E C O N N E C T I O N B E T W E E N n A N D T H E B/D

L U M I N O S I T Y R AT I O

In the previous section we have seen how the non-axisymmetric

effects (in the z ¼ 0 plane) from a triaxial bulge increase as n

decreases. Taken with the correlation between n and galaxy type

(Andredakis et al. 1995) shown in Fig. 4, this invokes the natural

question: How, if at all, are the structural properties of the bulges

(i.e., n) related (that is, cause and effect) with the non-

axisymmetric components (i.e., arms) observed in the disc? The

results obtained in the previous sections were evaluated without

any mention of the relative mass of the bulge and disc. It turns out

that the axisymmetric mass distribution of the disc causes a strong

softening of the non-axisymmetric perturbation caused by the non-

sphericity of the bulge. The degree of ‘smoothing’ is an increasing

function of the D/B ratio.

Fig. 5 shows the N(r) profile for a moderately triaxial bulge with

n ¼ 1 and B/D ¼ 0:1 and 0.01, and for a bulge with n ¼ 4 and

Figure 4. The best-fitting bulge index n is plotted against the B/D

luminosity ratio (left) and versus the galaxy morphological type (right). The

galaxies come from the samples of de Jong (1996) (filled circles) and

Andredakis et al. (1995) (open diamonds). See text for details.

Figure 5. The N(r ) profiles for a moderately triaxial bulge with n ¼ 1 and

4, and B/D ¼ 1, 0.1 and 0.01 are shown.
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B/D ¼ 1:0 and 0.1 (Fig. 4). N(r) was evaluated here assuming the

disc follows an exponential surface brightness distribution. The

ratio between the length-scale of the disc and the effective radius of

the bulge is assumed to be constant and with a value of h/re ¼ 5.2

The expressions for the potential and the radial force of these

structures can be found in Binney & Tremaine (1987, pp. 77 and

78).

Fig. 5 illustrates that for B/D luminosity ratios typical of real

galaxies, the non-axisymmetric effects on the disc largely

disappear (,3 per cent). For B/D ¼ 1, the values of the N(r)

profile remain basically unchanged from that seen in Fig. 3, but for

B/D ¼ 0:1 these values decrease approximately by a factor of 2,

and for B/D ¼ 0:01 this factor is greater than 10. Thus, although

the non-radial effects on the z ¼ 0 plane increase as n decreases,

the smoothing effects of the increasingly dominant disc are

stronger. Bulges with small values of n are unable to produce

significant non-axisymmetric effects on a massive disc.

4.1 Why does the n-Type (or n-B/DÞ relation exist?

To explore the connection between bulges and discs in spiral

galaxies (see, e.g., Fuchs 2000), we have used the data from two

independent samples of galaxies observed in the K band. The K

band provides a good tracer of the mass due to the near absence of

dust extinction and the reduced biasing effect of a few per cent (in

mass) of young stars. We used the data from Andredakis et al.

(1995) and the structural analysis of the de Jong (1996) data

performed by Graham (2001). Both studies were done by fitting a

seeing-convolved Sérsic law to the spiral galaxy bulges. In both

samples we have removed those objects which contained a clear

bar structure, leaving a total of 28 objects from Andredakis et al.

(1995) and 52 objects from Graham (2001). The relations present

in Fig. 4 between n and the B/D luminosity ratio, and n versus the

morphological type T have Spearman rank-order correlation

coefficients of rs ¼ 0:77 and 20.73, respectively, for the combined

sample.

Andredakis et al. (1995) suggest ‘although other possibilities

cannot be excluded, the most straightforward explanation for this

trend is that the presence of the disc affects the density distribution

of the bulge in such a way as to make the bulge profile steeper in

the outer parts. One mechanism to produce such an effect might be

that a stronger disc truncates the bulge, forcing its profile to

become exponential’. Following this line of thought, via

collisionless N-body simulations, Andredakis (1998) studied the

adiabatic growth of the disc on to an existing r 1=4 spheroid. He

found that the disc potential modifies the bulge surface brightness

profile, lowering the index n. This decrease was larger with more

massive and more compact discs. This mechanism, however,

saturated at around n ¼ 2, and exponential bulges could not be

produced.

We believe that this line of reasoning is not the most appropriate

explanation for the relation between n and B/D. First, we find that

the index n is not only well correlated with the luminous B/D ratio,

but is equally well correlated ðrs ¼ 20:75Þ with bulge luminosity

MKT
(bulge) (Fig. 6a). Additionally, the correlation between n and

disc luminosity MKT
(disc) is relatively poor ðrs ¼ 20:53Þ.

Secondly, MKT
(bulge) is more strongly correlated ðrs ¼ 20:86Þ

with the B/D ratio than MKT
(disc) and the B/D ratio ðrs ¼ 20:50Þ

(Fig. 6b). Hence it is variations in the bulge which are

predominantly responsible for variations in the B/D ratio.

These above two correlations seem to indicate that n may be

related directly with the properties of the bulge rather than with the

combined B/D ratio. Consequently, as n is correlated with the total

bulge luminosity, the correlation between n and B/D is a result of

the more fundamental correlation between MKT
(bulge) and B/D.

That is, it is not the relative increase in disc-to-bulge luminosity

which produces bulges with smaller values of n, but simply that

bulges with larger values of n are more luminous (or vice versa),

and this produces the correlation between n and the B/D luminosity

ratio.

Favouring this argument, we note that among elliptical galaxies

(without the need to invoke any disc) there exists a strong

correlation (Pearson’s r ¼ 20:82; Graham et al. 2001a) between n

and the total luminosity of these objects. The index n of pressure-

supported stellar systems are related to the total luminosity of these

structures. In agreement with this, Aguerri, Balcells & Peletier

(2001) have found (using collisionless N-body simulations) that the

bulges of late-type galaxies can increase their n values via dense

satellite accretions, where the new value of n is found to be

proportional to the devoured satellite mass.

4.2 MKT
(bulge) versus B/D for classifying morphological types

Due to the strong correlation between the B/D luminosity ratio and

MKT
(bulge), it might be of interest to ask which one of these

quantities is preferred to establish the morphological type T of a

galaxy.3 Working from B-band images (which are good for

observing the young star population, and consequently the spiral

arm structure, which is one of the basic criteria to the Hubble

galaxy classification), Simien & de Vaucouleurs (1986) fitted r 1=4

profiles and exponential discs to a sample of 64 spiral galaxies and

34 S0-type galaxies. They presented a good correlation between

the bulge-to-disc luminosity and T, but not between MBT
(bulge) and

T. Consequently, their B-band observations suggested that the B/D

Figure 6. (a) The absolute K-band magnitude of the bulge (top panel) and

the disc (bottom panel) are plotted versus the index n. The galaxies come

from the samples of de Jong (1996) (filled circles) and Andredakis et al.

(1995) (open diamonds). See text for details. (b) The absolute K-band

magnitude of both bulge and disc are shown as a function of the B/D ratio.

The galaxies come from the samples of de Jong (1996) (filled circles) and

Andredakis et al. (1995) (open diamonds). See text for details.

2 Although there is a range of bulge-to-disc size ratios, a median value for

h/re in the K-band is 5 (Graham & Prieto 1999).

3 We refer here to the morphological type established on the basis of B-band

observations. Infrared images have shown that the appearence of galaxies

can be substantially different (Block et al. 1999).
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luminosity ratio was preferred to MBT
(bulge) for establishing the

morphological type T. In Fig. 7 we show the relation between the

B/D luminosity ratio and T ðrs ¼ 20:65Þ and between MKT
(bulge)

and Tðrs ¼ 0:67Þ. Thus, from K-band observations, and fitting r 1=n

bulge profile models, the change in the luminous mass of the bulge

along the Hubble sequence appears equally as important as the

combined change in the bulge and disc luminosity.4 It would then

follow that the luminous mass of the bulge [i.e., MKT
(bulge)] is

related with the spiral arm structure.

5 C O N C L U S I O N S

The main results of this work are the following.

(1) We have generalized the analysis of the physical properties

of spherical stellar systems following the r 1=n luminosity law to a

homologous triaxial distribution. The density distribution,

potential, forces and torques are evaluated and compared with

the spherical case when applicable (Ciotti 1991). An extremely

accurate analytical approximation (relative error less than 0.1 per

cent) for the mass density profile is provided.

(2) We derive an exact expression showing how the central

potential decreases as triaxiality increases. We also show that for a

fixed triaxiality, as the index n decreases the non-axisymmetric

effects in the z ¼ 0 plane increase. Even for a moderately triaxial

object, the non-axisymmetric component of the potential and the

radial forces are not negligible for small values of n. These

components can range from 6 to 8 per cent, respectively, compared

to the value of the spherical component. For our highly triaxial

model, they can range over some 20 per cent.

(3) The non-axisymmetric effects in the disc plane due to the

bulge structure are strongly reduced when an axisymmetric disc

mass is added. For this reason, bulges with smaller values of n

appear unlikely to produce any significant non-axisymmetric effect

on their disc, which is typically 10 to 100 times more massive than

the bulge. In this regard, the B/D mass ratio and the triaxiality of

the bulge are more important, i.e., can dominate over the effects of

small n.

(4) The correlation found between n and the B/D luminosity

ratio found in spiral galaxies is explained here not as a consequence

of the interplay between the bulge and the disc, but due to the

strong correlation between n and MT(bulge), and between

MT(bulge) and B/D. Also, K-band data do not support the idea

that the B/D luminosity ratio can be preferred over MT(bulge) as an

indicator to establish galaxy morphological type (T). Both

parameters present equally good correlations with galaxy type T.
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A P P E N D I X A : M A S S D E N S I T Y

A P P R OX I M AT I O N PA R A M E T E R S

Table A1 shows the values of the parameters that appear in the

mass density approximation (equation 7).

A P P E N D I X B : G R AV I TAT I O N A L P OT E N T I A L

A N D F O R C E S O F A T R I A X I A L H O M O L O G O U S

S T R U C T U R E

B1 Gravitational potential

The gravitational potential at position x ¼ ðx; y; zÞ may be written

as

FðxÞ ¼ pGabc

ð1

0

½cðaÞ 2 cðzÞ� dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtþ a 2Þðtþ b 2Þðtþ c 2Þ

p ðB1Þ

(Chandrasekhar 1969, p. 52, theorem 12), with

cðzÞ ¼
2

a 2

ðz
a

z0rðz0Þ dz0: ðB2Þ

It follows from equation (B1) that the potential at an internal point

is a result of two contributions: that due to the ellipsoid interior to

the point x considered, and that due to the homoeoidal shell

exterior to x:

FðxÞ ¼ 4pGab
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 2 b 2
p

£

"
F arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 b 2

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 a 2

1 2 b 2

s !ð1

z

z0rðz0Þ dz0

þ

ðz
0

z0rðz0ÞF arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 2 b 2Þz

02

z
02 þ l

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 a 2

1 2 b 2

s !
dz0

#
;

ðB3Þ

with F( p, q) the elliptic integral of the first kind (Abramowitz &

Stegun 1964, p. 589), and with the restriction

x 2

z
02 þ l

þ
y 2

ðz0aÞ2 þ l
þ

z 2

ðz0bÞ2 þ l
¼ 1: ðB4Þ

The strength of the central potential decreases as the triaxiality

of the object increases:

Fð0Þ

Fsphð0Þ
¼

f 1=2abffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 b 2

p F arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 b 2

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 a 2

1 2 b 2

s !
: ðB5Þ

As reported in Ciotti (1991), the models with low n have an inner

ðr , reÞ potential which is much flatter than models with high n.

As the triaxiality increases there is no important change to the

gradient of the gravitational potential along the semimajor axis; the

main effect is to shift the gravitational potential profile inwards

from the spherical case, resulting in a lower potential at

intermediate radii.

B2 Gravitational forces

The gravitational forces for a triaxial structure are given by the

expression

2
›FðxÞ

›xi

¼ 4pGabxi

ðz
0

1

ðz0ai/aÞ
2 þ l

£
z

02rðz0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz

02 þ lÞ½ðaz0Þ2 þ l�½ðbz0Þ2 þ l�
p dz0

f ðz0; aiÞ
;

i ¼ 1; 2; 3

with a1 ; a, a2 ; b, a3 ; c, and

f ðz0; aiÞ ¼
i¼1;2;3

X x2
i

½ðz0ai/aÞ
2 þ l�2

: ðB7Þ

The restrictions given in equations (6) and (B4) also apply here.

This paper has been typeset from a TEX/LATEX file prepared by the author.

Table A1. Parameter values of the mass density approximation.

n n p h1 h2 h3 Max. Rel. Error (%)

0.5 20.50000 1.00000 0.00000 0.00000 0.00000 0.000
1.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.000
1.5 0.43675 0.61007 20.07257 20.20048 0.01647 0.100
2.0 0.47773 0.77491 20.04963 20.15556 0.08284 0.070
2.5 0.49231 0.84071 20.03313 20.12070 0.14390 0.070
3.0 0.49316 0.87689 20.02282 20.09611 0.19680 0.060
3.5 0.49280 0.89914 20.01648 20.07919 0.24168 0.050
4.0 0.50325 0.91365 20.01248 20.06747 0.27969 0.020
4.5 0.51140 0.92449 20.00970 20.05829 0.31280 0.020
5.0 0.52169 0.93279 20.00773 20.05106 0.34181 0.015
6.0 0.55823 0.94451 20.00522 20.04060 0.39002 0.005
7.0 0.58086 0.95289 20.00369 20.03311 0.42942 0.005
8.0 0.60463 0.95904 20.00272 20.02768 0.46208 0.004
9.0 0.61483 0.96385 20.00206 20.02353 0.48997 0.004
10.0 0.66995 0.96731 20.00164 20.02053 0.51325 0.005
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