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S U M M A R Y
Oscillations in Earth’s liquid core with periods of several decades are inferred from variations
in the magnetic field. The observed periods are consistent with a type of hydromagnetic
wave known as torsional oscillations. These oscillations represent a set of very-low-frequency
normal modes in which the internal magnetic field provides the primary restoring force. By
adapting the methods of normal-mode seismology, we construct estimates for the internal
structure of the magnetic field and several other key parameters, including the viscosity of
the inner core. The structure of the recovered field provides useful insights into the nature of
convection. We find evidence of columnar convection in the core, and estimate the strength
of the field generated by these flows (≈0.3 mT). We also use the normal modes to recover
the excitation source for the oscillations. Much of the excitation appears to originate near the
surface of a cylinder that is tangent to the equator of the inner core. Distinct events rise above
a background level of excitation, and may be related to instabilities in the geodynamo.
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1 I N T RO D U C T I O N

Seismic observations are routinely used to make inferences about
the internal structure of Earth. 3-D estimates of elastic proper-
ties and attenuation can be recovered from measurements of body
waves, surface waves and elastic-gravitational free oscillations
(Romanowicz 2003). Information about the source mechanisms can
also be obtained (Gilbert & Dziewonski 1975). Seismic methods
have also been applied to measurements of acoustic waves in the
Sun (Gough et al. 1996), where the excitation is thought to be a re-
sult of turbulent convection (Goldreich & Keeley 1977). Successful
application of inverse methods in both seismology and helioseismol-
ogy motivate the search for other applications using different types
of waves. In this study, we focus on long-period waves in Earth’s
core, where a combination of gravity, rotation and magnetic forces
provide the necessary restoring forces (Acheson & Hide 1973).

Wave motion at the top of the core can be detected through
variations in Earth’s magnetic field. Horizontal motion near the
boundary disturbs the radial component of the main field, which
diffuses through the mantle to the Earth’s surface on timescales of
a few years or less (Backus 1983; Courtillot et al. 1984). When
the period of the wave motion is longer than the diffusion time we
anticipate a contribution to the observed variation in the magnetic
field. By combining observations of field variations with a physical
description of the waves in the core, we attempt to recover physi-
cal properties that govern the propagation and excitation of these
waves.

Variations in the magnetic field are correlated with changes in
the length of day on timescales of several decades (Vestine &
Kahle 1968; Braginsky 1984; Roberts et al. 2007). Torsional oscil-
lations are expected to have the period and spatial structure needed
to explain both the magnetic field and length-of-day variations
(Braginsky 1970). The spatial form of the waves is controlled by
the influence of rotation, which causes fluid motion to be nearly
geostrophic. The spherical geometry of the core constrains the
geostrophic flow to follow lines of latitude with no spatial vari-
ations in the direction of the rotation axis. Conservation of mass
imposes an additional constraint by prohibiting spatial variations in
the direction of flow. Consequently, a geostrophic flow can be de-
scribed by the motion of nested cylinders that align with the rotation
axis (see Fig. 1). Each cylinder is labelled by its distance s from
the rotation axis, and the motion of adjacent cylinders is coupled by
the s-component of magnetic field, which threads across the surface
of these cylinders. Differential motion between cylinders shears the
magnetic field, creating a restoring force for the waves. Coupling
between the fluid and the surrounding mantle and inner core can
also affect the period and damping of the waves.

The geostrophic structure of the waves also means that torsional
oscillations carry angular momentum. Each cylinder moves with a
velocity that is specified by the zonal part of the flow at the core
surface. When the flow in the interior is geostrophic, the velocity
at the core surface suffices to determine the velocity over the entire
cylinder. Jault et al. (1988) and Jackson et al. (1993) use this ap-
proximation to calculate the axial angular momentum of the core
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Inversion of torsional oscillation 879

Figure 1. Schematic illustration of geostrophic flow in Earth’s fluid core.
The zonal flow vφ is constant on the surfaces of cylinders that align with
the rotation axis �. Each cylinder is identified by the distance s from the
rotation axis. The radii of the core–mantle and inner-core boundaries are
denoted by r f and r i , respectively.

from time-dependent estimates of zonal flow at the core surface.
Temporal changes in the core angular momentum require com-
mensurate changes in the rotation of the mantle to conserve total
angular momentum. The changes in mantle rotation can be detected
in observations of the length of day (Stephenson & Morrison 1995;
Gross 2001). Good agreement between the predictions and the ob-
servations supports the use of the geostrophic approximation, and
suggests that the motion of cylinders can be reliably determined
from the zonal flow at the core surface.

More recent studies have sought to make quantitative infer-
ences from the spatial and temporal patterns of fluid flow at the
core surface. Several authors (Jault et al. 1996; Hide et al. 2000;
Pais & Hulot 2000) have reported evidence for wave-like motion
in the core, which they attribute to torsional oscillations. Other
studies have shown that torsional oscillations can contribute to
short-period variations in the magnetic field, including the phe-
nomena of geomagnetic jerks (Bloxham et al. 2002; Wardinski
et al. 2008). These short-period field variations appear to be cor-
related with changes in length of day (Holme & de Viron 2005),
consistent with expectations for torsional oscillations. All of these
studies support the existence of torsional oscillations in the core
(Braginsky 1984) and provide important details about the form of
the waves.

A more direct connection to torsional oscillations was made in
the studies of Zatman & Bloxham (1997, 1999). These authors
represented the time-dependent core flow using two waves with
specified period and damping. Both the period and spatial structure
of these waves were used to invert for the s-component of the internal
magnetic field and a friction coefficient at the core–mantle boundary
(CMB). (The friction term served as both a sink and a source for the
waves, depending on the sign of the friction coefficient.) This work
established a new direction for research and highlighted a number
of important questions. For example, the period and spatial form
of the waves could reasonably be interpreted as free oscillations
(e.g. the normal modes of the system). All of these waves should
reflect a common set of physical parameters that govern the wave

motion. However, there is no guarantee that the procedure of fitting
waves to the observed core flow respects this dependence on a
single set of parameters. Discrepancies in the basic parameters that
determine the waves can be accommodated by allowing for different
sources of excitation. In fact, the study of Zatman & Bloxham (1999)
recovered very different friction coefficients for the two waves.
Different choices for the structure, period or even the number of
the waves would likely yield very different friction coefficients for
each wave (e.g. different excitations). A key challenge in both the
previous and this work lies in separating the structure of the waves
from the source of excitation.

Another challenge arises from the limited spatial resolution of the
observations (Hulot et al. 1992). Uncertainties in the crustal field
limit the resolution of magnetic field models at the CMB. When
flows are determined from temporal changes in the field models,
the limited resolution is propagated into the velocity field. The is-
sue of spatial resolution is important because the actual structure of
a wave may be different from the structure inferred from magnetic
observations, even for waves with the longest period. A direct com-
parison between the core flow and the predicted waves can yield
spurious results because the structure of the waves is not adequately
resolved by the observations. Filtering the model predictions to the
same resolution as the core flow before making comparisons makes
a substantial difference in the inversion results.

In this study, we use a Green’s function to predict the wave mo-
tion excited by an impulsive source in the core or mantle (Buffett
& Mound 2005). The response to a distributed source (in both
space and time) is obtained by convolving the Green’s function with
an appropriate source function. This representation demonstrates a
fundamental non-uniqueness between the physical properties that
determine the Green’s function and the source function that excites
the waves. One strategy for separating these effects relies on a subdi-
vision of the input core flow into shorter time intervals. Incremental
changes in the flow over several decades can be approximated using
the free motion of the core, as described by a linear combination
of normal modes. This approximation is valid when the excitation
over the interval of interest is small. By iteratively adjusting the
parameters that define the normal modes (and hence the Green’s
function) we can successively improve the fit to the observations.
This fitting procedure yields one set of parameter estimates for the
Green’s function. Repeating the fitting procedure over each subdi-
vision of the flow model gives redundant estimates, which can be
compared to assess the consistency of the procedure. A consistent
set of parameters is used to construct the Green’s function. The en-
tire record of core flow is then used to recover the source function
with a known Green’s function.

In Section 2, we begin in with a brief discussion of the flow at the
surface of the core. Models of flow from Jackson (1997) are used as
the primary input in the inversion (effectively the ‘observations’).
The uncertainty in the flow model is most naturally expressed in
terms of a spherical harmonic decomposition, so we transform the
predicted wave motion into a set of time-dependent spherical har-
monic coefficients. This procedure provides a natural way to filter
the predicted wave motion to the same spatial resolution as the
core flow. In Section 3 we briefly introduce the Green’s function,
and identify the parameters that are included in the inversion. A
two-stage inversion strategy is developed in Section 4. We initially
recover the parameters that define the Green’s function. In the sec-
ond stage, we retrieve the source function in both space and time.
Information recovered from this inversion has a number of conse-
quences, which are explored in Section 5. Conclusions are drawn in
Section 6.
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880 B. A. Buffett, J. Mound and A. Jackson

2 F L OW AT T H E S U R FA C E
O F T H E C O R E

Estimates of fluid motion at the top of the core are based on time
variations in the magnetic field. Under the frozen flux hypothe-
sis (Roberts & Scott 1965), the induction equation for the radial
magnetic field B r reduces to

∂ Br

∂t
= −∇h · (vBr), (1)

where v is the fluid velocity and ∇ h is the horizontal gradient
operator. Both B r and ∂ B r/∂t are estimated at the CMB by down-
ward continuing the potential field at the Earth’s surface. Flows that
satisfy (1) are not unique and must be constrained by other condi-
tions to reduce the ambiguity (Bloxham & Jackson 1991; Voorhies
1995). A commonly used constraint is based on the assumption of
tangential geostrophy (Hills 1979; LeMouël 1984), which requires
a leading-order balance between the horizontal components of the
Coriolis force and the pressure gradient. Such a balance is valid
when the horizontal components of the Lorentz force, viscous force
and inertia (in the rotating frame) are all small near the CMB. The
resulting condition on the velocity requires

∇h · (v cos θ ) = 0, (2)

where θ is the colatitude (see LeMouël 1984). The flows obtained
by Jackson (1997) are fit to the secular variation in (1), subject
to the condition in (2). Values for B r and ∂ B r/∂t are taken from
model ufm1 of Bloxham & Jackson (1992). A regularization is also
imposed in the inversion to penalize high-frequency spatial and
temporal variations in the flow. Different levels of regularization
were used to determine three flow models (denoted by uvm-r, uvm-
i, uvm-s). The heaviest smoothing is imposed in model uvm-s,
whereas the roughest model is uvm-r. We adopt the smoothest model
over the entire interval of the record (e.g. 1840–1990). We have also
experimented with the roughest model over the interval 1950–1990,
but the results for the Green’s function are not substantially altered.

All of the flow models are represented by

v = ∇ × (T r) + ∇h(rP), (3)

where T and P are the usual toroidal and poloidal scalars. Both T
and P are expressed in spherical coordinates (r , θ , φ) and expanded
in Schmidt quasi-normalized spherical harmonics, Y m

l (θ , φ), in the
form

T =
∑
l,m

tlm(t)Y m
l (θ, φ) (4)

P =
∑
l,m

plm(t)Y m
l (θ, φ), (5)

where {t lm, plm} are the time-dependent coefficients that define
the flow. Flows associated with torsional oscillations involve only
a subset of these coefficients. Such flows have only an azimuthal
component, vφ ≡ v · φ̂ with no dependence on longitude φ. In this
case the toroidal–poloidal decomposition reduces to

vφ(θ, t) = −∂T
∂θ

= −
∑

l

tl0(t)
∂Y 0

l

∂θ
, (6)

where the summation over l is restricted to odd values because of
the symmetry of the velocity about the equator. Fig. 2 shows vφ(θ ,
t) as a function of sin θ for the period 1840–1990. This flow is
specified at 5-yr intervals and the spatial resolution is limited by the
truncation imposed on the series in (6). The flow model of Jackson

Figure 2. Linear velocity of fluid cylinders vφ (s, t) as a function of radius
s and time t from model uvm-s (Jackson 1997). We use the variations about
the time average v̄φ (s) as the input flow model for determining the Green’s
function and excitation source.

(1997) is truncated at l = 14. We remove the time average from
vφ(θ , t) prior to fitting the Green’s function.

Error estimates for the coefficients t0
l are obtained from the co-

variance matrix that results from the linear inverse problem for
determining the flow. Errors on the input secular variation, as well
as the damping, affect these a posteriori errors. We take the square
root of the variances (from the diagonal elements of the covariance
matrix) and ignore the covariances. The standard deviations (or for-
mal errors) for t0

l in 1980 are shown in Fig. 3. A general decrease
in the formal error with increasing l is due primarily to the regu-
larization. Small-scale flow is suppressed by the regularization, so
the recovery of flow at large l is required to fit the observed secular
variation. However, the need for flow at large l depends on both the
accuracy and spatial resolution of the magnetic secular variation.
Changes in the resolution of the secular variation are suggested by
changes in the behaviour of coefficients t l0 over time (see Fig. 4).
Coefficients t 10, t 30 and t50 exhibit large oscillations over most of the
record, whereas t70 and t90 are relatively small at early times. This

Figure 3. Formal error on the zonal coefficients t0
l for the flow model in

1980. The decrease in formal error with increasing l is due to the regular-
ization used in the inversion of field variations for the surface core flow.
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Figure 4. Temporal variations in the zonal coefficients t0
l for odd l = 1 to

9. Oscillations are not evident in coefficients t0
7 and t0

9 prior to 1940.

result suggests that the measurements do not require components
of flow with l = 7 and 9, at least at early times. Larger variations in
t70 are evident in the last 40 yr of the flow models, where the spatial
resolution of the magnetic field model is probably the best. Changes
in the resolution of the input flow model can adversely affect our
inversion if these uncertainties are not accurately represented. We
avoid the question of time-dependent uncertainties by confining our
attention to the first three spherical harmonic components of the
flow, where wave-like motion is observed over the entire record.

Redundant estimates of the Green’s function are obtained by sub-
dividing the flow model into three 60-yr intervals. We exclude the
first 10 yr, and subdivide the remainder into intervals 1850–1910,
1890–1950 and 1930–1990. A modest overlap permits slightly
longer intervals, which is useful for estimating the Green’s func-
tion. Because there is little evidence of torsional oscillations in t70

prior to 1930, we restrict the input flows to components t 10, t 30 and
t50 for all three time intervals. The Green’s function is filtered to
the same resolution as the flow model, prior to calculating a misfit
between the prediction and the flow model. The parameters of the
Green’s function (see Section 3) are iteratively adjusted to improve
the fit over each segment of the record.

Practical considerations guide the choice of weights used to fit
the input flow models. The formal errors on the input flow suggest
that the highest weight is given to coefficients with the largest value
of l. This means that most weight in our calculation is given to
t50, whereas least weight is given to t10. On the other hand, we
do not use t70 to estimate the Green’s function, even though it
has a relatively small formal error. Consequently, the formal errors
are not treated consistently for all parts of the flow. We deal with
the question of errors (or weights) by comparing the results of
several strategies. In one case, we adopt weights based on the formal
errors for coefficients t 10, t 30 and t50. In the other case, we assign
equal weight to each spherical harmonic component. To avoid any
unintended contribution from the normalization of Y m

l , we transform
the representation in (6) to fully normalized spherical harmonics
when equal weights are given to the coefficients. Comparison of
results obtained with these two weighting schemes show that the
differences are relatively small. Larger differences are found when
estimates from the three subsets of the input flow are compared.
Consequently, we report the parameter values obtained using the
formal errors with Schmidt quasi-normalized harmonics.

3 G R E E N ’ S F U N C T I O N F O R
T O R S I O NA L O S C I L L AT I O N S

A mathematical description of the waves is needed to relate the
flow at the core surface to physical properties in the interior of
the core. We use a Green’s function to describe the response of
the fluid core, inner core and mantle to an impulsive excitation
(Buffett & Mound 2005). Time-dependent motions of the inner
core and mantle are described by angular velocities ui (t) and um(t),
respectively, whereas u f (s, t) represents the angular velocity of fluid
cylinders as a function distance s from the rotation axis. The linear
velocity at the core surface is defined by vφ = su f (s, t), where s =
r f sin θ and r f is the radius of the core surface. When an impulsive
source is applied at s = s ′ and t = t ′, the motion at time t > t ′ can
be expressed as a linear combination of normal modes

uf (s, s ′, t − t ′) =
∞∑

k=1

ck(s ′)ũk
f (s)e−iωk (t−t ′) (7)

um(s ′, t − t ′) =
∞∑

k=1

ck(s ′)ũk
me−iωk (t−t ′) (8)

ui (s
′, t − t ′) =

∞∑
k=1

ck(s ′)ũk
i e−iωk (t−t ′), (9)

where ũk ≡ [ũk
f (s), ũk

m, ũk
i ] is the eigenfunction of the kth normal

mode, ωk is the complex frequency for this mode and the constant
ck depends on the location of the source. A source in the fluid core
at s = s ′ yields

ck = −ωk ũk
f (s ′) (10)

whereas a source in either the mantle or inner core gives

ck = −ωk ũk
m or − ωk ũk

i . (11)

The expressions for ck in (10) and (11) correct a sign error in Buffett
& Mound (2005).

Physical properties of the core enter the problem through the
structure and frequency of the normal modes. One of the primary
restoring forces for the waves is due to magnetic tension between the
fluid cylinders. This property depends on the mean-square value of
the B s field over the surface of the cylinders. We denote this mean-
square field by {B2

s}, and represent the s-dependence of the rms
field {B2

s}1/2 using an expansion in (fully normalized) Legendre
polynomials P̄n

{B2
s }1/2 =

N∑
n=0

bn P̄n(x), (12)

where bn are the constant coefficients and x = 2(s/r f ) − 1 varies
from −1 to 1 on the interval s = 0 to r f . We truncate the expansion
for {B2

s}1/2 at N = 4, which restricts the inversion to the first
five coefficients. An equivalent expansion for {B2

s} would require
N = 8. In either case the truncation limits the spatial complexity of
{B2

s}.
Another restoring force is due to gravitational coupling between

the inner core and the mantle. The gravitational torque on the inner
core can be described by (Buffett 1996)

�i = γ (ω)(ϕm − ϕi ), (13)

where ϕm and ϕ i are angular deviations of the inner core and mantle
from their position of static equilibrium and γ (ω) is a frequency-
dependent amplitude. The angular velocities of the mantle and inner
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882 B. A. Buffett, J. Mound and A. Jackson

core are defined by um(i) = dϕm/dt and ui (t) = dϕ i/dt . The fre-
quency dependence of γ (ω) arises when the shape of the inner core
is allowed to adjust by viscous flow over the period of an oscilla-
tion. When the adjustment occurs over a characteristic time τ , the
frequency-dependent amplitude is given by (Buffett 1998)

γ (ω) = γ (∞)

[
1 + i

ωτ

]−1

, (14)

where the unrelaxed amplitude γ (∞) depends on the distribution of
mass in the mantle and the shape of the inner core. For computational
reasons (see Appendix A) it is convenient to expand (14) as a power
series in ωτ . Rearranging (14) in the form

γ (ω) = −iγ (∞)ωτ

(1 − iωτ )
(15)

we approximate γ (ω) as

γ (ω) = −iωτγ (∞) + ω2τ 2γ (∞) (16)

which is valid when ωτ � 1. The influences of γ (∞) and τ on the
motion are difficult to separate at typical frequencies for torsional
oscillations because the quadratic term (ω τ )2 in (16) is usually
quite small. This means that the inversion recovers the product
τγ (∞) more easily than the individual components τ and γ (∞). A
independent estimate of γ (∞) and τ was given by Mound & Buffett
(2006), who attributed a 6-yr oscillation in the length of day to a
gravitational oscillation between the core and the mantle. Fitting
the period and damping of the oscillation to a simple model yields
γ (∞) = 3 × 1020 N m and τ > 5 yr. Given the limitations noted
above we set γ (∞) = 3 × 1020 and treat τ as a parameter in the
inversion.

Coupling at the fluid–solid boundaries also affects to the normal
modes. Separate contributions at the surfaces of the mantle and
inner core can be view as a friction of the form

fm(s) = Fm(s)[uf (s) − um] (17)

fi (s) = Fi (s)[uf (s) − ui ], (18)

where the amplitudes Fm and Fi depend on the coupling mecha-
nism. Magnetic coupling is important at the inner-core boundary
due to the high electrical conductivity on either side of the bound-
ary. Even a modest radial field of 0.5 mT is sufficient to bind the
fluid cylinders to the inner core over periods typical of torsional os-
cillations. Any cylinder in contact with the inner core tends to rotate
as a quasi-rigid body at the angular velocity of the inner core. As a
consequence, the normal modes have little sensitivity to magnetic
tension (and hence {B2

s}) for values of s inside the tangent cylinder
(i.e. the cylinder that is tangent to the equator of the inner core). We
return to this point when interpreting the estimate for {B2

s}.
We also include magnetic coupling at the CMB. This coupling

depends on both the conductance of the mantle and the strength
of the radial magnetic field [denoted B r(s)]. We adopt a constant
mantle conductance of C = 5 × 107 S and recover the amplitude
of B r(s) as a parameter in the inversion. The amplitude of B r(s)
is represented by a single parameter because the spatial structure
(e.g. the s-dependence) is prescribed. We consider separately the
cases of a dipole field, Br(s) = Br

√
1 − s2, and a spatially uniform

field, B r(s) = B r. The latter is intended to represent a radial field that
is dominated by small-scale components. In either case the value
recovered for B r depends on the choice of C because the strength of
magnetic coupling at the CMB is proportional to the product CB2

r .
Magnetic coupling at the CMB also affects the boundary condi-

tions for the normal modes. At s = r f we require (Buffett & Mound

Table 1. Parameters of earth model.

Parameter Value

Density of core ρ f 104 kg m−3

Electrical conductivity σ f 5 × 105 S m−1

Radius of fluid core r f 3480 km
Radius of inner core r i 1221 km
Moment of mantle C m 7.12 × 1037 kg m2

Moment of inner core C i 5.87 × 1034 kg m2

2005)

∂ ũk
f

∂s
= iωk(ũk

f − ũk
m)μ0C B2

r /{B2
s }, (19)

where μ0 is the permeability of free space. Adopting a dipole field
for B r requires ∂ ũk

f /∂s = 0 at the equator, whereas a constant
radial field means that ∂ ũk

f /∂s 
= 0 when C is not zero. A discrete
approximation to (19) is imposed in all calculations by requiring
τ (s) to vanish at s = r f in a finite volume representation of the
governing equations. Independent estimates for B2

r and {B2
s} are

recovered by fitting the input flow. Thus we allow the inversion
to determine the appropriate boundary conditions. However, we
can always enforce the equality of B2

r and {B2
s} at the equator by

adjusting the value assumed for C. Identical boundary conditions
and normal modes are obtained using different values for B2

r and C
as long as the product CB2

r is unchanged.
A number of other parameters also contribute to the frequency

and spatial structure of the normal models. The list includes the
density and electrical conductivity of the fluid core, the moments of
the inner core and mantle, and the radii of the inner-core boundary
and CMB. All of these parameters are relatively well known and can
be treated as constants (see Table 1). More poorly known parameters
include {B2

s}, γ (∞), τ and B r at the CMB. Another poorly known
parameter is the value of B r at the inner-core boundary. However,
forward modeling shows that the normal modes are relatively in-
sensitive to B r at the inner-core boundary once this field exceeds
0.5 mT. Since the field at the inner-core boundary likely exceeds
0.5 mT, we exclude this parameter from the fitting procedure. Con-
sequently, the parameter estimation is restricted to {B2

s}, τ and B r,
recalling that we cannot easily separate the contributions of τ and
γ (∞). When five coefficients bn are used to represent {B2

s}1/2 in
(12), we have a total of seven parameters. We seek to determine
these seven parameters for each 60-yr interval of core flow. The
flow in each interval (from model uvm-s) is represented by coef-
ficients t 10, t 30 and t50 at 13 epochs, corresponding to a total of
39 ‘observations’.

4 I N V E R S I O N M E T H O D

A two-step procedure is used to recover the Green’s function and the
excitation source from the input flow models. A Green’s function
is determined in the first step by fitting a linear combination of
normal modes to the input core flow over three 60-yr intervals. The
resulting Green’s function is used in the second step to estimate the
source function S(s ′, t ′) as a function of space s ′ and time t ′ over
the entire time interval of the input flow.

4.1 Estimating the Green’s function

The Green’s function in (7)–(9) describes the response of the Earth
to an impulsive excitation at s = s ′ and t = t ′. The subsequent
motion for t > t ′ is represented by a linear combination of normal
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models, where the coefficients ck are specified by the location of
the excitation. The definitions in (10) and (11) are based on the
assumption that the system is initially at rest. This representation
needs to be generalized to the case of a non-stationary initial condi-
tion. In general, it is always possible to represent the motion using a
linear combination of modes, although the amplitude and phase of
the coefficients ck may change when an excitation occurs. Over a
short interval where the accumulated excitation is small, we might
treat coefficients ck as constants. This approximation would be ap-
propriate for a low level of excitation that produces small relative
changes in ck over the interval in question. On the other hand, a large
impulsive event can produce substantially changes in ck , requiring
distinct coefficients before and after the event. Unfortunately, we do
not know in advance when (or if) these events occur. The wave-like
structure of the flow model suggests that the excitation over one pe-
riod is not too large, so we proceed with the assumption that the input
flow model over a 60-yr interval can be fit by a set of normal modes
with constant coefficients ck . Once the coefficients are determined
by least squares we can assess the misfit between the predicted flow
and the input flow model for each 60-yr interval. A poor misfit is
taken to mean that the parameters used to compute the modes re-
quire improvement. Iterative adjustments to the model parameters
are made to minimize the misfit using a downhill simplex method
(e.g. Press et al. 2007). Once the Green’s function is determined
from each of the three 60-yr intervals, we can look for evidence
of a large excitation by examining the consistency of the recovered
parameters. A large event might be expressed by an anomalous es-
timate for some of the recovered parameters. Parameters from this
interval could be excluded in constructing a time-averaged Green’s
function. Ultimately, we can use the recovered source function S(s,
t) to assess the consistency of our interpretation.

Several measures of misfit are possible. For example, we could
compute the rms discrepancy between the predicted and ‘observed’
fluid velocity vφ(s, t) = s u f (s, t) on a grid in both s and t. Alter-
natively, we could convert the predicted values of vφ(s, t) into a
set of spherical harmonic coefficients t l0(t) using the orthogonal-
ity of spherical harmonics. In this case the misfit is given by the
rms discrepancy between the predicted and ‘observed’ coefficients
t l0(t). The latter approach has the advantage of effectively filtering
the prediction to the same spatial resolution as the input core flow.
In addition, the weights used to fit the linear combination of modes
to the input core flow are most naturally expressed in terms of t l0(t)
rather than vφ(s, t). We proceed by converting the predicted an-
gular velocity uk

f (s, t) of each normal mode into a linear velocity
vk

φ . Next, we compute the spherical harmonic coefficients t k
l0(t) for

each mode using

t k
l0(t) = − (2l + 1)

2(l + 1)l

∫ π

0
vk

φ Pl1(cos θ ) sin θ dθ, (20)

where θ = sin−1(s/r f ) and ∂Y 0
l /∂θ is rewritten in terms of asso-

ciated Legendre functions P l1(cos θ ). Finally, we express the ‘ob-
served’ harmonic coefficients as a linear combination of the modal
coefficients t k

l0,

tl0(ti ) =
n∑

k=1

cktk
l0(ti ) , (21)

for each epoch t i in the time interval and each l in the input flow
model. The (complex) constants ck are obtained by least squares,
and the predicted motion is reconstructed using (7)–(9). An illustra-
tive comparison of the observed and predicted motion is shown in
Fig. 5 for the time interval 1850–1910 using three normal modes in

Figure 5. Comparison of input (a) and predicted (b) fluid motion for the
interval 1850–1910. The parameters of the Green’s function have been iter-
atively adjust to minimize the misfit.

Table 2. Parameter estimates for Green’s function.

Parameter Units 1850–1910 1890–1950 1930–1990

b0 mT 0.393 0.323 0.248
b1 mT −0.157 −0.282 −0.046
b2 mT −0.016 0.287 0.127
b3 mT −0.079 −0.237 −0.132
b4 mT 0.168 0.177 0.092

Bdip
r mT 0.25 0.29 0.21

Bcon
r mT 0.15 0.18 0.20

τ yr 5.9 1.7 0.7

(21). For this particular example the parameter values for {B2
s}1/2,

τ and B r have been iteratively adjusted to minimize the misfit (see
Table 2). The definition of the misfit used in the inversion is sim-
ply the weighted sum of square errors in the coefficients t l0(t). The
weights for each t l0 are the inverse of the variances for model uvm-s.
A comparison of the observed and predicted coefficients t0

l is shown
in Fig. 6 for each subdivision of the input flow model.

Redundant estimates of the parameter values are recovered from
each 60-yr interval. Fig. 7 shows the estimates for {B2

s}1/2. For each
time interval we constrain {B2

s}1/2 at s = r f to equal the (observed)
rms value of B r(s) at s = r f . The latter is computed numerically
by integrating B2

r from the gufm1 model (Jackson et al. 2000) over
a band of latitudes centred at the equator. As the band of latitudes
narrows around the equator, the rms radial field in 1980 approaches
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Figure 6. Comparison of predicted and input flow coefficients t0
l (t) for

three subdivisions of the flow model (in units of km yr−1). Weights for the
fitting the input flow model are based on the formal errors for uvm-s.

Figure 7. Estimates of {B2
s}1/2 recovered from three subdivisions of the

input flow model. The shaded region denotes the interior of the tangent
cylinder where fluid cylinders terminate on the surface of the inner core.
Little significance is attached to the estimates of {B2

s}1/2 inside s/r f = 0.35
because the fluid is strongly coupled to the inner core by magnetic stresses.
Outside the tangent cylinder we find two local maxima in each estimate of
{B2

s}1/2. One maximum occurs at s/r f = 1 and the other occurs in the
interval s/r f = 0.5–0.6.

a constant value of Brms
r = 0.268 mT. Values at other times can

vary by as much as 15 per cent, although we do not attempt to
adjust the constraint over time in the inversion. The rms value of
B r at the equator is geometrically equivalent to {B2

s}1/2 at s = r f .
Imposing this condition on {B2

s}1/2 (at the value in 1980) improves
the stability of the inversion and yields much less variability when
the number of modes is increased. (We typically use 3 modes for
reasons described below.) In addition, we find better agreement
between the estimates of {B2

s}1/2 for each time intervals. A caveat
is that the value of Brms

r inferred from surface observations may
underestimate the true field because short-wavelength components
are not detected at the surface. Allowing for short-wavelength field

could potentially increase {B2
s}1/2 at s = r f relative to that shown

in Fig. 7.
Individual estimates of {B2

s}1/2 from each of the three subsets of
input flow have common features, although they differ somewhat
in amplitude. For example, all three estimates decrease into the
core from the fixed value at s/r f = 1, creating a local minimum
within a narrow range of radius (s/r f ≈ 0.85–0.88). A second local
minimum is found in all three estimates just inside the tangent
cylinder (e.g. the shaded region inside s/r f = 0.35), where the fluid
cylinders terminate on the surface of the inner core. The estimates
of {B2

s}1/2 also have a local maximum, roughly in the range s/r f ≈
0.5–0.6, although the maximum value differs in the three cases. We
attach little significance to the estimates inside the tangent cylinder
where the modes have little sensitivity to {B2

s}1/2. The fluid tends to
corotate with the solid inner core due to strong magnetic coupling
at the inner-core boundary, which limits the role of {B2

s}1/2 as a
restoring force for the motion. Outside the tangent cylinder the
average magnitude of {B2

s}1/2 is surprisingly weak, typically less
than the observed value at s/r f = 1.

In assessing the differences between the three estimates of
{B2

s}1/2, we see no evidence for an anomalous interval. Estimates
from intervals 1850 to 1910 and 1930 to 1990 are quite similar near
s/r f ≈ 1, whereas the estimates from 1890 to 1950 and 1930 to
1990 are similar just outside the tangent cylinder. We consider two
approaches for combining these individual estimates into a single
Green’s function. In one case, we simply average the parameter esti-
mates from each interval. This approach defines an average Green’s
function. We also recover a single set of parameters by fitting the en-
tire record of input flow with a linear combination of modes (e.g. no
subdivision of the input flow model). We subsequently refer to this
Green’s function as the single estimate. Both the average and single
estimate for {B2

s}1/2 are shown in Fig. 8. We also show the esti-
mate from the study of Zatman & Bloxham (1997) and a prediction
from the geodynamo model of Matsui & Okuda (2004). The aver-
age and single estimate for {B2

s}1/2 are surprisingly similar to each
other, suggesting that constant modal coefficients (and hence weak

Figure 8. A composite estimate of {B2
s}1/2 obtained by fitting the entire

input flow model to a single estimate of the Green’s function or by averaging
individual estimates from the subdivision of the input flow model. Both
approaches yield similar results. We also show the estimate of Zatman &
Bloxham (1997), which was restricted to the region outside the tangent
cylinder and a prediction from the geodynamo model of Matsui & Okuda
(2004).
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excitation) is a reasonable approximation. We return to the estimate
from the geodynamo model in Section 5.

The estimate of Zatman & Bloxham (1997) differs most from
our result in the region near the tangent cylinder and again near
s/r f = 0.9. Our estimate of the field is somewhat lower on av-
erage (nominally 0.2 mT versus 0.3 mT for Zatman & Bloxham
1997), although there is surprising agreement in the region between
s/r f = 0.5 and 0.85. However, the structure of {B2

s}1/2 is quite
different. When we use the estimate of {B2

s}1/2 from Zatman &
Bloxham (1997) to calculate normal modes, we find that the waves
bear little resemblance to the input flow model. Steep gradients in
the estimate of {B2

s}1/2 (particularly near s/r f ≈ 0.9) cause large
spatial variations in the amplitude of the waves, which are not evi-
dent in the input flow. In those regions the friction coefficient (and
hence the source term) must modify the motion in order to fit the
input flow. It follows that the source term plays an important role
in the dynamics. We have argued in favour of a small source on
the basis of the good agreement between average and single esti-
mate of {B2

s}1/2. Thus it is possible that the differences between the
estimates of {B2

s}1/2 in this study and that of Zatman & Bloxham
(1997) are due to the handling of the source term.

Values for the field coefficients bn and model parameters B r and
τ are listed in Table 2. Estimates for B r are given for two different
structures of radial field at the CMB (i.e. a dipole and a constant
field). Differences in the structure of the CMB field have little
affect on the values of {B2

s}1/2 and τ . However, the amplitude of
the radial field is altered by the spatial structure; a smaller radial
field is preferred when a constant field is adopted. The amplitude of
B r in either case is lower than the value that would be inferred from
recent IGRF models (Maus et al. 2005), where the rms radial field
at the CMB in spherical harmonic degrees l ≤ 13 is 0.31 mT. Recall
that magnetic coupling depends on both B2

r and the conductance
C of the lower mantle, so better agreement with the observed field
seems to require a reduced mantle conductance. Our estimates for
τ are somewhat lower than the bound inferred by Mound & Buffett
(2005), particularly for the interval 1930–1990. On the other hand,
the three estimates for τ exhibit large variability, which we take to
represent the uncertainty.

Another useful measure of uncertainty is given by the sensitiv-
ity of the predicted flow to the model parameters. We assess the
sensitivity by computing the change in the misfit to the input flow
as the model parameters are altered from their optimal values. As
an example, we consider the increase in misfit for the first interval
1850–1910 (see Fig. 9). The changes in {B2

s}1/2, Bdip
r and τ are

reported as a fractional change (in percent). In assessing the sensi-
tivity to {B2

s}1/2 we simply scale the amplitude of the field without
altering the s-dependence. A large change in the misfit for a partic-
ular choice of parameter indicates a large sensitivity. It is clear from
Fig. 9 that the normal modes are most sensitive to {B2

s}1/2 and much
less sensitive to τ and Bdip

r . Less sensitivity permits larger changes in
the parameter values without substantially altering the misfit. Thus
it is possible to find acceptable fits with larger or smaller values for
B r and τ . Recently, Dumberry & Mound (2008) have shown that
the radial field and conductance proposed to explain observations
of the Earth’s nutations (Buffett et al. 2002) cause damping times
for the torsional oscillations to be shorter than the predicted period.
Such overdamped waves are not found in this study (see Table 3),
which suggests that the radial field and conductance inferred from
nutations are too high to be compatible with the interpretation of
the core flow in terms of free torsional oscillations.

We conclude this section by presenting the spatial form of the
normal modes for the single-estimate parameter values (specifically

Figure 9. Changes in the misfit between the observed and predicted flow as
the model parameters are varied from the optimal values. The misfit is most
sensitive to {B2

s}1/2 and least sensitive to B r in the vicinity of the optimal
estimates for the Green’s function parameters.

Table 3. Period P i and damping time Di of
the first four normal modes using the single
estimate and average Green’s functions.

Time (yr) Single Average

P1 86.3 109.6
P2 42.9 49.2
P3 30.6 34.4
P4 23.6 26.8
D1 505 1128
D2 441 809
D3 362 523
D4 314 415

using a dipole field at the CMB). In Fig. 10, we show the linear ve-
locity vφ(s) and a filtered version of the flow that includes only
coefficients t0

1, t0
3 and t0

5 in the spherical harmonic expansion, con-
sistent with the resolution of the input flow model. Much of the
short-wavelength structure of the modes is lost when the flow is
filtered. Higher order modes begin to look like lower order modes,
so the system of equations for fitting the modes to the input flow
becomes ill-conditioned if too many modes are included. Using
three modes to fit the input flow gives a good compromise between
accuracy and instability. Adding a fourth mode makes very little
difference for the recovered parameters, while a fifth mode often
makes the linear system of equations ill-conditioned. We have re-
stricted our calculations to three modes to reduce instabilities in the
inversion for the source function.

4.2 Source function

Several sources of dissipation are included in the description of the
normal modes. Magnetic coupling at both the CMB and inner-core
boundary acts like a friction, which damps the modes. Dissipa-
tion also results from viscous adjustment of the inner core. Each
source of dissipation contributes to the imaginary part of the eigen-
frequency ωk , thereby causing a gradual decay in the free motion
with time. Some form of excitation is required to sustain the waves.
The goal of this section is to recover the source function from the
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Figure 10. Spatial structure of the first four normal models calculated using the single estimate of the Green’s function. The left panel shows the linear velocity
vk

φ (s), whereas the right panel shows the structure of the same modes filtered to the resolution of the input flow model. We give the predicted period T for all
four modes, although we include only the first three when inverting for the Green’s function.

input flow model using the Green’s functions from the previous
section.

A general solution for the flow due to torsional oscillations is
obtained by convolving the Green’s function with a suitable source
function. In principle, the source can reside anywhere in the core
or mantle. Different possibilities yield different expressions for the
change in the constants ck (see eqs 10 and 11). We express the
solution for flow in the outer core as

uf (s, t) = u0
f (s, t) +

∫ t

t0

∫ rf

0
uf (s, s ′, t − t ′)S(s ′, t ′) ds ′dt ′, (22)

where u f (s, s ′, t − t ′) is the Green’s function for the fluid part of
the response and S(s ′, t ′) is the source function. The function u0

f (s,
t) represents the initial set of waves that would be present if S(s ′,
t ′) vanished in (22). Analogous expressions for the response of the
mantle and inner core are based on um(s ′, t − t ′) and ui (s ′, t − t ′)
in (8) and (9).

The source function S(s ′, t ′) in (22) can be recovered from the
input flow model u f (s, t) when the Green’s function is prescribed.
It is clear from (22) that a different Green’s function would yield
a different source function. This is the motivation for a two-step
inversion. The initial state in (22) is obtained by fitting the normal
modes to the input flow model at t0 (specifically 1850). The fitting
procedure determines a set of coefficient for the normal modes.
(Three modes are used to fit the input flow, consistent with the
number of modes used to represent the Green’s function.) Once
the coefficients are determined the unforced motion u0

f (s, t) can
be predicted at later times. The input flow model u f (s, t) gradually
evolves away from u0

f (s, t), and the difference can be used to estimate
S(s ′, t ′). We discretize the source function using a series of delta
functions in time

S(s ′, t ′) = S1(s ′)δ(t ′ − t1) + S2(s ′)δ(t ′ − t2) + ..., (23)

where t p (for p = 1 to N) are chosen to coincide with the times of
the input flow model and S p(s ′) is the amplitude of the excitation at
t p . Each amplitude S p(s ′) describes the spatial distribution of the
excitation at that particular time. We seek to determine the set of
functions S p(s ′) that reproduce the input flow model u f (s, t) using
a prescribed Green’s function u f (s, s ′, t − t ′).

To illustrate we consider the calculation of S1 at t = t 1. On
substituting (23) in (22), the solution for u f (s, t) at t1 can be written
as

uf (s, t+
1 ) = u0

f (s, t1) +
∫ rf

0
uf (s, s ′, 0)S1(s ′) ds ′, (24)

where t+
1 denotes the time immediately after the excitation. (We

drop the superscript + below for the sake of simplicity.) A discrete
approximation of the integral in (24) is given by

∫ rf

0
uf (s, s ′, 0)S1(s ′) ds ′ ≈

n∑
j=1

uf (si , s ′
j , 0)S1(s ′

j )�s ′
j , (25)

where s j ( j = 1, n) define the gridpoints. We subsequently use
S j

1 ≡ S1(s ′
j ) �s j to denote the torque on the jth cylinder at

time t1. Consequently, the solution at t = t 1 can be approximated
by

uf (si , t1) = u0
f (si , t1) +

n∑
j=1

uf (si , s ′
j , 0)S j

1 . (26)

When the excitation resides in the fluid outer core the discrete form
of the Green’s function is a n × n matrix, where each element (i , j)
is given by

uf (si , s ′
j , 0) =

m∑
k=1

ωk ũk
f (si )ũ

k
f (s ′

j ). (27)
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This expression is simply a discrete representation of (7) using the
coefficients defined in (10). Linear superposition of the forced and
free motion defines the total flow in (26). In general, the solutions
for u f (s i , t 1) and u0

f (s i , t 1) can be represented at t = t 1 using a
linear combination of normal modes. We restrict this representation
to the first m modes

uf (si , t1) =
m∑

k=1

c1
k ũk

f (si )e
−iωk (t1−t0) (28)

u0
f (si , t1) =

m∑
k=1

c0
k ũk

f (si )e
−iωk (t1−t0) (29)

and note that the coefficients c1
k and c0

k may be different. Substituting
(27)–(29) into (26) yields a single algebraic condition for each mode
by virtue of the orthogonality of the normal modes. We obtained
for the kth mode

c1
k − c0

k =
n∑

j=1

ωk ũk
f (s ′

j )S j
1 eiωk (t1−t0) (30)

with similar conditions for all m modes in the Green’s function.
When this set of conditions is written in matrix form, we obtain the
linear system

�c = M S1, (31)

where M is an m × n matrix and S1 is an n × 1 source vector at
t = t 1. Each row of M corresponds to an eigenfunction of a normal
mode [e.g. ũk

f (s ′
j )] multiplied by a complex constant ωkeiωk (t1−t0).

The elements of the column vector �c specify the differences in
the coefficients ck for each mode before and after the excitation at
t = t 1. The coefficients at each time can be obtained by fitting the
input flow model to m normal modes. Thus the elements of �c and
M are ultimately set by the definition of the Green’s function.

Conservation of angular momentum places another constraint on
S1 because an internal source cannot exert a net torque on the Earth
as a whole. When the source is confined to the fluid outer core, we
require

n∑
j=1

S j
1 = 0 (32)

which can be appended as an extra linear condition in (31). In effect,
the (m + 1)th row of an expanded M matrix has elements equal to
ζ , and the (m + 1)th element of the augmented �c vector is set to
zero. We use ζ = 106 to ensure that (32) is fit almost exactly. We
solve this augmented system of equations for S1 by minimizing the
misfit ε1 = MS1 − �c, subject to a regularization condition on the
amplitude of S1. Specifically, we minimize

� = (M S1 − �c)T (M S1 − �c) + λST
1 S1, (33)

where λ is a scalar constant that can be adjusted to obtain a suite of
solutions with different penalties on the amplitude of S1. The value
of λ is chosen to be large enough to stabilize the inversion, but small
enough that the solution is relatively insensitive to changes in λ. In
practice, we increase the value of λ until a consistent spatial pattern
emerges for S1. The solution for S1 is given by

S1 = (MT M + λI )−1 MT �c. (34)

Source functions S p at other times t = t p are inferred from �c =
cp

k − cp−1
k using the same value for λ.

Figure 11. Estimates of the source function S j
p = S(s′

j , t ′p)�s j obtained
using the (a) average and (b) single estimate of the Green’s function. The
amplitude of the source is expressed in units of 1018 N m.

Tests on synthetic data motivate our procedure for recovering the
source function from (34). First, we determine the modal coeffi-
cients cp

k at each epoch t p by fitting the normal modes to an interval
of time around the point of interest. We typically use 30 yr of flow to
recover a reliable estimate for cp

k . The point of interest, t p , coincides
with the centre of the 30-yr interval, except when the intervals occur
near the ends of the data record. Second, we reduce the resolution of
the source function by interpolating the eigenfunctions ũk

f (s j ) onto
a coarser grid. We use a grid with n = 150 to calculate the normal
modes, but interpolate these functions onto a coarser grid prior to
constructing the matrix M . A coarse grid with n = 20 is sufficient
to resolve the features of the first three modes.

Fig. 11 shows the discrete source function Sj
p ≡ S(s ′

j , t ′
p)�s j

obtained using the average and the single estimate of the Green’s
function. Differences in the two Green’s functions cause distinct
features in the recovered source function, but the general structure
is broadly similar. A large excitation event in both estimates occurs
in 1940–1945. A peak in the excitation occurs just outside the
tangent cylinder and a second peak with variable amplitude occurs
near the equator. The time dependence of the excitation inside the
tangent cylinder is similar in the two estimates, and there is also
general agreement on the low level of excitation prior to 1900. The
amplitude of the excitation is also consistent, although this is largely
a function of the regularization imposed in the inversion.

It is important to emphasize that the source function depends on
the choice of Green’s function. We cannot rule out the possibility
that part or all of the excitation in Fig. 11 is a consequence of errors
in either the Green’s function or the input flow model. Errors in the
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Green’s function are expected to cause wave-like sources, which
would compensate for errors in the eigenfrequencies or eigenfunc-
tions of the modes. We find some evidence for periodic variations in
the source inside the tangent cylinder, which would be compatible
with errors in the Green’s function. However, we also find rela-
tively abrupt excitations outside the tangent cylinder, particularly
in Fig. 11(a), where there is little evidence for periodic variations
before and after the event. This behaviour argues against an error in
the Green’s function. A similar claim is less compelling for the large
excitation in Fig. 11(b), although there is no comparable amplitude
in the excitation outside the tangent cylinder at earlier or later times,
as expected if the source was due primarily to errors in the Green’s
function. Random errors in the input flow model are an alternative
explanation for the recovered source function. Such errors might
cause erratic excitations in both space and time. Instead, we find
relatively little excitation during the early part of the record. Thus
if random errors in the flow model cause the excitations shown in
Fig. 11, it is somewhat surprising that these errors are conspicuously
absent prior to 1900.

5 D I S C U S S I O N

Estimates for the Green’s function and excitation source provide
unique insights into the structure and dynamics of the core. The
most sensitive parameter in the Green’s function is {B2

s}1/2. Possible
mechanisms for generating {B2

s}1/2 are interpreted using the results
of a numerical geodynamo model. The peak in {B2

s}1/2 from the
geodynamo model of Matsui & Okuda (2004) (see Fig. 7) coincides
with the location of strong helical flow in columns outside the
tangent cylinder. This flow lifts and twists a field oriented in φ

direction to produce a distorted field with both s and z components.
We find a similar peak in the recovered {B2

s}1/2 at s/r f ≈ 0.5,
which could be explained by centring columns of helical flow at
this distance. Vertical columns at this location would reach the CMB
at a latitude of 60◦. Convergent flow into convective downwelling
is expected to produce local patches of radial flux at the CMB
(Christensen et al. 1998), which are consistent with high-latitude
features observed in the radial field (Bloxham & Gubbins 1987).
Thus the location of the high-latitude flux patches is compatible
with the position of the helical flow we infer from the structure of
{B2

s}1/2. There is also evidence for strong patches of radial flux
near the equator (Jackson 2003). The intensity of these patches is
comparable to the high-latitude patches, although the origin of these
features is not well understood. We have used the radial field near
s/r f ≈ 1 to constrain {B2

s}1/2 at the equator, so the intensity of
the field is no surprise. However, it is surprising that the strength of
{B2

s}1/2 near the CMB is comparable to the value in the interior. This
result contrasts with the predictions of the geodynamo model, where
the largest value of {B2

s}1/2 occurs near s/r f ≈ 0.7. Our estimate
for {B2

s}1/2 suggests that the locus of helical flow in the core is
closer to the tangent cylinder than that predicted by the geodynamo
model, and that the field induced by this flow is somewhat weaker. It
also appears that the mechanism responsible for the equatorial flux
patches is not operative in the geodynamo model. In our estimate
the rapid decrease in {B2

s}1/2 from the equator into the core suggests
that the equatorial flux patches do not penetrate deeply into the core.

The source function also provides important insight, although
the specific conclusions are less certain. The excitation is probably
related to instabilities in the geodynamo, and these effects appear
to be localized in time. The largest event in Fig. 11(a) is confined to
a 10-yr interval. Given the temporal averaging required to estimate

the change in modal coefficients, it is possible that this event is even
shorter in duration. Several mechanisms could potentially cause
this excitation. Field reconnection across thin shear layers (like
the Stewartson layer at the tangent cylinder) might be viable if the
Lorentz force can change on timescales to explain the abrupt events.
It is also possible that the instabilities are primarily hydrodynamic.
Shear or baroclinic instabilities across the tangent cylinder might
arise from small differences in flow or density across this surface.
There also appears to be an excitation source that operates near the
equator. One path forward is to identify specific mechanisms that
can produce these excitation events. Numerical dynamo models
may offer insights in the mechanisms that produce the excitation
events (Dumberry & Bloxham 2003). Physical constraints on the
spatial and temporal structure of the excitation could be built into the
inversion strategy to reduce the degrees of freedom. In the present
study we have imposed no constraints on the spatial structure of
the source. We merely reduce the spatial resolution of the source
and introduce a regularization condition to penalizes the amplitude.
Many other inversion strategies are possible. The relative merits of
each is likely to depend on the physical processes responsible for
the instability.

The amplitude of the source function recovered in this study is
nominally 1018 N m. Comparable torques are required to explain
long-period fluctuations in length of day, although there is no direct
connection between the source and the torque on the mantle. Our
inversion assumes that S(s, t) produces no net torque on the core.
With no change in the angular momentum of the core there can be no
change in the angular momentum of the mantle. Instead, the source
function generates waves in the fluid that couple to the motion of the
inner core and mantle through a combination of magnetic friction,
gravitational torques and possibly other coupling mechanisms. The
most important coupling mechanism in our calculations is due to
gravitational coupling (also see, Mound & Buffett 2005). Without
this mechanism the angular momentum of the core is nearly con-
served and the angular velocity of the mantle in all of the normal
modes is very small. Thus the mantle torque is an intrinsic part of
the normal modes and the Green’s function.

A joint inversion of length-of-day observations and core flow
models could potentially improve the determination of the Green’s
function. An alternative strategy would be to invert core flow mod-
els that are already constrained to satisfy the observed variations
in length of day (Holme 1998). One of the likely consequences of
such a procedure is to change the spherical harmonic coefficients
of the predicted flow. Much of the expected change would occur in
coefficients t0

1(t) and t0
3(t), which determine the angular momentum

of the core. Jault et al. (1988) and Jackson et al. (1993) have shown
that changes in core angular momentum are sufficient to explain
long-period variations in the length of day, particularly in the last
few decades. Adding length-of-day observations to the inversion
for the Green’s function would potentially reduce the misfit to coef-
ficients t0

1(t) and t0
3(t) by requiring better agreement with the core

angular momentum. By contrast, our use of formal errors for the
input flow gives most weight to t0

5(t) and allows larger misfits to
t0

1(t). Small changes in weighting have only a small effect on the re-
covery of {B2

s}1/2, but other parameters may be more sensitive. For
example, the inner-core relaxation time τ is poorly constrained in
the inversion even though it contributes to the gravitational torque
on the mantle and accounts for most of the angular momentum
changes in the core. The average value for τ in Table 2 is lower
than the preferred estimates of Mound & Buffett (2006). This result
may explain why the predicted variation in length-of-day, based on
the Green’s function and excitation source from this study, accounts
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for only half of the observed fluctuations. By jointly fitting the core
flow and length-of-day variations, we can expect to improve the
sensitivity to parameters that contribute to core–mantle coupling.

6 C O N C LU S I O N S

We combine a time-dependent model of flow at the top of the
core (Jackson 1997) and a simple theory for torsional oscillations
(Buffett & Mound 2005) to estimate the internal structure of the
magnetic field and several other relevant parameters, including the
viscosity of the inner core. We find a local maximum in the cylindri-
cally averaged root-mean-square B s field (denoted {B2

s}1/2) outside
the tangent cylinder. We interpret this feature in terms of helical
flow in columns at a distance s/r f ≈ 0.5 from the rotation axis.
(The tangent cylinder is located at s/r f = 0.35.) Vertical columns
at this location reach the CMB at a latitude of 60◦, which coincides
with the location of high-latitude flux patches (Bloxham & Gub-
bins 1987). These flux patches are thought to represent the ends
of convection columns in the core, so the internal structure of the
{B2

s}1/2 field appears to be consistent with the morphology of the
radial field at the CMB. The average strength of the internal field
induced by the columnar convection is about 0.3 mT, assuming that
the s-component of this induced field is representative. Local val-
ues of B2

s could be larger, but the cylindrical average is surprisingly
weak.

A second local maximum in {B2
s}1/2 is found near the equator

at the CMB. This feature coincides with another region of strong
flux patches in the radial field (Jackson 2003). Our estimate for
{B2

s}1/2 decreases sharply away from the CMB, suggesting that
the equatorial flux patches do not penetrate deeply into the core.
Elsewhere in the core the value of {B2

s}1/2 is weak.
Estimates for the viscous relaxation time τ of the inner core ex-

hibit large variability (0.7–5.9 yr), but the average value is lower than
the preferred values of Mound & Buffett (2006). The dependence
of the waves on τ arises primarily through the gravitational torque,
which permits changes in the angular momentum of the input core
flow. Coefficients t0

1(t) and t0
3(t) in the input flow model determine

the angular momentum of the core. Time variations in these coef-
ficients require some mechanism to transfer angular momentum to
the inner core and mantle. Gravitational torques are the principal
coupling mechanism in our calculations. Normal modes computed
without this mechanism yield little time variations in the rotation
of the mantle (Mound & Buffett 2005). However a prediction for
the length-of-day variation underestimates the observed variation
by a factor of two, possibly because of the low value for τ and the
reduced gravitational torque. We attribute this shortcoming to the
use of formal errors, which give most weight on coefficient t0

5 and
allow larger misfit in t0

1 and t0
3. A joint inversion of the core flow and

length-of-day variations could potentially improve the predictions
for the Green’s function.

We also recover estimates for the source function that excites the
waves. Specific details depend on the choice of Green’s function,
but many common features are evident in the two estimates reported
in this study. A large excitation event in both estimates occurs in
1940–1945. One of the peaks in the excitation occurs near the
tangent cylinder and a second occurs near the equator. We also find
general agreement on the low level of excitation prior to 1900 and
again after the large excitation in 1940–1945. We speculate that
the excitation is a result of instabilities in the geodynamo. A better
understanding of viable instability mechanisms would constrain the

spatial structure of the source and potentially improve the reliability
of the inversion results.
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A P P E N D I X A

The equation governing torsional oscillations describes an angular
momentum balance for the fluid cylinders. It is customary to express
the governing equation in terms of the Fourier transform of u f (s, t),
which we define by

ũf (s, ω) =
∫ ∞

−∞
uf (s, t)eiωt dt. (A1)

The governing equation becomes (Braginsky 1970)

ω2m(s)ũf + ∂

∂s

[
τ (s)

∂ ũf

∂s

]
+ iω f (s) = 0, (A2)

where the friction f (s) depends on relative motion at the fluid–solid
boundaries,

m(s) = 4πρs3(zf − zi ) (A3)

is the moment density of the cylinders, and

τ (s) = 4πs3(zf − zi ){B2
s }/μ0 (A4)

is the magnetic tension due to the B s component of the field. The
brackets denote the average over the surface of cylinders and μ0

is the permeability of free space. The half height of the cylinders,
z f − z i is expressed in terms of the cylindrical radius by z f =
(r 2

f − s2)1/2 and z i = (r 2
i − s2)1/2.

Additional equations are required to describe the angular velocity
of the mantle ũm and inner core ũi . The torques on the mantle and
inner core include the friction at the fluid–solid boundaries and
gravitational coupling between the inner core and mantle. Separate
angular momentum equations for the mantle and inner core are
given by

ω2Cmũm − γ (ω)(ũm − ũi ) − iω
∫ rf

0
fm(s) ds = 0 (A5)

ω2Ci ũi + γ (ω)(ũm − ũi ) − iω
∫ ri

0
fi (s) ds = 0, (A6)

where C m and C i are the moments of inertia of the mantle and inner
core, respectively. The friction terms f m and f i are also specific to
the mantle or inner-core boundaries.

Eqs (A2), (A5) and (A5) are discretized using a finite volume
method. A brief outline of the approach is given in Buffett & Mound
(2005). When the frequency dependence of the gravitational torque
γ (ω) is approximated by (16), the discretized equations can be
written in the form

(ω2 A2 + ωA1 + A0)ũ = 0, (A7)

where ũ = [ũf (s1), ũf (s2), . . . , ũf (sn), ũm, ũi ]. The normal modes
are defined by solving the eigenvalue problem in (A7) for ωk and
ũk . (Boundary conditions are built into the definition of the matrices
A0, A1 and A2.) The orthogonality condition for the normal modes
can also be expressed in discrete form (Buffett & Mound 2005)

(ωk + ω j )ũ
T
j A2ũk + ũT

j A1ũk = δk j (A8)

which we use to normalize the modes.
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