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ABSTRACT

Motivation: Modern techniques can yield the ordering and
strandedness of genes on each chromosome of a genome; such
data already exists for hundreds of organisms. The evolutionary
mechanisms through which the set of the genes of an organism
is altered and reordered are of great interest to systematists,
evolutionary biologists, comparative genomicists and biomedical
researchers. Perhaps the most basic concept in this area is that of
evolutionary distance between two genomes: under a given model
of genomic evolution, how many events most likely took place to
account for the difference between the two genomes?
Results: We present a method to estimate the true evolutionary
distance between two genomes under the ‘double-cut-and-join’
(DCJ) model of genome rearrangement, a model under which a single
multichromosomal operation accounts for all genomic rearrangement
events: inversion, transposition, translocation, block interchange and
chromosomal fusion and fission. Our method relies on a simple
structural characterization of a genome pair and is both analytically
and computationally tractable. We provide analytical results to
describe the asymptotic behavior of genomes under the DCJ model,
as well as experimental results on a wide variety of genome structures
to exemplify the very high accuracy (and low variance) of our
estimator. Our results provide a tool for accurate phylogenetic
reconstruction from multichromosomal gene rearrangement data as
well as a theoretical basis for refinements of the DCJ model to
account for biological constraints.
Availability: All of our software is available in source form under GPL
at http://lcbb.epfl.ch
Contact: bernard.moret@epfl.ch

1 INTRODUCTION
The ordering and strandedness of genes on each chromosome of
many organisms have become available, with many more added
every year. Using this information, one can represent a genome as
a collection of chromosomes, each of which is a linear or circular
sequence of gene identifiers. Variations in the placement of the same
genes, as well as variations in gene content and multiplicity, among
organisms can then be analyzed. This data is of great interest to
evolutionary biologists, but also to comparative genomicists and to
any researcher interested in understanding evolutionary changes in
pathogens. In the past 10 years, there has been a large increase in
work done on analyzing such data (see, e.g. Moret et al., 2005).

Perhaps the most basic requirement in the analysis of such
data is the ability to estimate the amount of evolutionary change
between two genomes—that is, to compute a pairwise evolutionary
distance. Since the true distance, that is, the actual number of
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changes in the gene order and content that took place during the
course of evolution, is not something we can compute, researchers
have used a two-stage process, in which a well-defined measure
is first computed (such as an edit distance, that is, the smallest
number of evolutionary changes—from a defined set—needed to
transform one genome into the other), then a statistical model
of evolution is used to infer an estimate of the true distance by
deriving the effect of a given number of changes in the model on
the computed measure and (algebraically or numerically) inverting
the derivation to produce a maximum-likelihood estimate of the
true distance under the model. This second step is often called a
distance ‘correction’ and has long been used for sequence (DNA)
data (see, e.g. Swofford et al., 1996) as well as, more recently,
for gene-order data, (for which see Moret et al., 2001, 2002;
Sankoff and Blanchette, 1999; Wang, 2001; Wang and Warnow,
2001).

The measures commonly used in the first step (edit distances,
synteny measures, etc.) are bounded and typically reflect only the
endstate of an evolutionary process, whereas the true evolutionary
distance can be arbitrarily large. Thus these first-step measures
typically underestimate the true distance, by an amount that grows
quickly as the true distance grows large. This is an aspect of
the problem of saturation, in which the evolutionary process may
take a convoluted path to its endstate, possibly even undoing
earlier changes along the way. For very small distances, the
problem does not arise, while, for extremely large ones, the
problem is essentially insurmountable, as the variance of any
estimate will be huge. For most distance values, however, one
can view the goal of distance correction as postponing the
onset of saturation, that is, making it possible to deliver an
accurate estimate of the true distance up to as large a value as
possible.

Evolutionary events that affect the gene order of genomes
include a number of rearrangements, which affect only the order,
as well as gene duplication and loss, which affect both the gene
content and, indirectly, the order. Handling both together has
proved challenging—first steps were taken recently by Marron
et al. (2004), Swenson et al. (2005, 2008). Rearrangements
themselves include inversion, transposition and block exchange,
which act on a single chromosome, and translocation, fusion and
fission, which act on two chromosomes. Inversion, translocation,
fusion and fission were characterized in the seminal work of
Hannenhalli and Pevzner (1995a,b), while Bader et al. (2001)
showed how to compute edit distances for these operations in
linear time. In contrast, transpositions remain poorly understood.
Efforts at unifying some of these operations in a statistical
framework have had some success (Durrett et al., 2004). However,
Yancopoulos et al. (2005) recently defined and studied a unifying
operation that can produce each of these rearrangements in

© 2008 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/)
which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/85220745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://lcbb.ep%EF%AC%82.ch
http://creativecommons.org/licenses/by-nc/2.0/uk/


[16:06 25/6/03 Bioinformatics-btn148.tex] Page: i115 i114–i122

Evolutionary distances under DCJ model

one or two steps: the so-called ‘double-cut-and-join’, or DCJ,
operation. Bergeron et al. (2006) subsequently generalized the DCJ
operation and showed how to compute an edit distance for it
(assuming that every operation has unit cost) in linear time with
a simple formula.

In this article, we address the problem of estimating a true
evolutionary distance under the DCJ model of evolution, assuming
no change in gene content and a uniform distribution of all
possible DCJ events—the same simplifying assumptions used
to date in all rearrangement analyses. Our estimate is in the
style of the IEBP estimate for the true inversion distance for
a single chromosome due to Wang (2001) (see also Wang
and Warnow, 2001), in that it does not require computing
an edit distance, but only a simple count of shared gene
adjacencies [or, equivalently, breakpoints, as in the seminal
work of Sankoff and Blanchette (1998, 1999)] and chromosome
endpoints. We characterize the asymptotic behavior of genome
structure under the uniform DCJ model and present experimental
results showing that our estimates are very precise, and exhibit
very little variance, under both realistic and extreme parameter
settings.

2 BACKGROUND

2.1 Genomes as gene-order data
A gene is a stranded sequence of DNA that starts with a tail and ends
with a head. The tail of a gene a is denoted by at and its head by
ah. We write +a (at →ah) if gene a is transcribed from 3′ to 5′ and
write −a (ah →at) otherwise. We are interested, not in the strand
of one single gene, but in the connection of two consecutive genes
in one chromosome. Due to different strandedness, two consecutive
genes b and c can be connected by one adjacency of the following
four types, {bt, ct}, {bh, ct}, {bt, ch} and {bh, ch}. If gene d lies at
one end of a linear chromosome, then we have a singleton set, {dt}
or {dh}, called telomere.

In the simplest case, we assume equal gene content and
no duplicate gene. A genome is then represented as a set of
adjacencies and telomeres such that the tail or the head of any
gene appears in exactly one adjacency or telomere. For example,
the genome G illustrated in Figure 1, composed of two linear
and one circular chromosomes, (a,−c,−f ), (e) and (b,d,b), can
be represented by the following set of adjacencies and telomeres:
{{at},{ah,ch},{ct,f h},{f t},{bh,dt},{dh,bt}, {et},{eh}}.

The number of adjacencies and telomeres in one genome
only captures the number of linear chromosomes: k adjacencies
from circular chromosomes could come from a single circular
chromosome of size k or from k circular chromosomes of one gene
each, or any other combination. In particular, every genome on n

a e−c −f

d

b

Fig. 1. A very small genome G.

genes made entirely of circular chromosomes has the same number
of adjacencies and telomeres.

2.2 Preliminaries on the DCJ model
The double-cut-and-join operation, in the formulation of Bergeron
et al. (2006), can model all classical rearrangements: inversion,
translocation, fusion, fission, transposition and block interchange.
In that formulation, a DCJ operation makes a pair of cuts in
the chromosomes and reglues the cut ends on two adjacencies or
telomeres (which can be in the same chromosome or in different
chromosomes), giving rise to four cases:

1 A pair of adjacencies {iu, jv} and {px, qy} can be replaced by
the pair {iu, px} and { jv, qy} or by the pair {iu, qy} and { jv, px}.

2 An adjacency {iu, jv} and a telomere {px} can be replaced by
the adjacency {iu, px} and telomere { jv} or by the adjacency
{ jv, px} and telomere {iu}.

3 A pair of telomeres {iu} and {jv} can be replaced by the
adjacency {iu,jv}.

4 An adjacency {iu,jv} can be replaced by the pair of telomeres
{iu} and { jv}.

Theorem 1. Let G be a genome with n genes, n1 adjacencies,
and n2 telomeres. If m is the number of the different possible DCJ
operations on G, we can write

n = n1 + n2

2

m = n2
1 +2n1n2 + 1

2
n2

2 − 1

2
n2

n2 ≤ m≤2n2 −n

Proof. G has n genes and thus 2n tails and heads of genes; as
the tail or the head of any gene appears in exactly one adjacency or
telomere, we have

2n = 2n1 +n2 (1)

Now consider the four cases of DCJ operations:

1. There are
(n1

2
)

ways to select two adjacencies and two possible
DCJ operations for each such choice, for a total of

(n1
2
)×2

operations.

2. There are n1 ×n2 ways to select one adjacency and
one telomere and two possible DCJ operations for each
combination, for a total of n1 ×n2 ×2 operations.

3. There are
(n2

2
)

ways to select two telomeres and one possible
DCJ operation for each such choice, for a total of

(n2
2
)

operations.

4. There are n1 different ways to select one adjacency and one
possible DCJ operation for each such choice, for a total of n1
operations.

Thus the total number of possible DCJ operations is

m = n2
1 +2n1n2 + 1

2
n2

2 − 1

2
n2

Combining this result with (1), we get

m = −1

4
n2

2 +(n− 1

2
)n2 +n2 (2)
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Now we also have 0≤n2 ≤2n, and so we can write

n2 ≤m≤2n2 −n �

3 METHODS

3.1 An overview of our technique for estimating the
true evolutionary distance

The problem of estimating the true evolutionary distance under DCJ model
is defined as follows:

Input: The original genome G and the final genome GF , two genomes on
the same n genes represented as adjacencies and telomeres.
Output: An estimate of the actual number of DCJ operations that took place
in the evolutionary history to transform G into GF .

Based on the original genome G, for any genome G∗ (of same gene content
as G), we can divide the adjacencies and telomeres of G∗ into four sets S∗

A, S∗
T ,

D∗
A and D∗

T , where S∗
A is the set of adjacencies of G∗ that also appear in G, S∗

T
is the set of telomeres of G∗ that also appear in G, D∗

A is the set of adjacencies
of G∗ that do not appear in G and D∗

T is the set of telomeres of G∗ that do
not appear in G. Then we can calculate a vector VG(G∗)= (s∗

A,s∗
T ,d∗

A,d∗
T )

to represent the genome G∗ based on G, where s∗
A, s∗

T , d∗
A and d∗

T are the
cardinalities of the sets S∗

A, S∗
T , D∗

A and D∗
T , respectively. (VG may be viewed

as producing a fingerprint of G∗.) Obviously, we have

2n = 2s∗
A +s∗

T +2d∗
A +d∗

T (3)

Let Gk be the genome obtained from G=G0 by applying k randomly
selected DCJ operations—under our model, the (i+1)th DCJ operation is
selected from a uniform distribution of all possible DCJ operations on the
current genome Gi. We can compute the vector VG(Gk) = (sk

A,sk
T ,dk

A,dk
T ) to

represent the genome Gk with respect to G. In the next section, we will show

that, given G, we can also produce the estimate Ẽ(VG(Gk)) = (s̃k
A,s̃k

T ,d̃k
A,d̃k

T )

for the expected vector E(VG(Gk)) = (sk
A,sk

T ,dk
A,dk

T ), for any integer k >0.

We use s̃k
A to approximate the expected number of adjacencies present in

both G and Gk . Our approach for estimating the true evolutionary distance

is then to return the integer k that minimizes the difference |sk
A − s̃k

A|.

3.2 Estimation of the expected vector after some
number of random DCJ operations

We show how to estimate the expected vector E(VG(Gk)) = (sk
A,sk

T ,dk
A,dk

T )
under our DCJ model for any integer k >0. Let G and Gk be as defined
above; the vector for G0 = G is clearly just VG(G0) = (n1,n2,0,0). We first
show how to compute E(VG(G1)).

Theorem 2. Let m be the number of possible DCJ operations applicable

to G. We have E(VG(G1)) = (s1
A,s1

T ,d1
A,d1

T ), where

s1
A = n1 − 2n2

1 +2n1n2 −n1

m

s1
T = n2 − 2n1n2 +n2

2 −n2

m

d1
A = 2n2

1 −2n1 +2n1n2 + 1
2 n2

2 − 1
2 n2

m

d1
T = 2n1n2 +2n1

m

Proof. Write VG(G0) = (s0
A,s0

T ,0,0) and consider the four cases for DCJ
operations.

1. When we select two adjacencies out of S0
A, the number of possible DCJ

operations is
(s0

A
2

)×2. Neither of the resulting adjacencies will be in G,

so that every such operation reduces s0
A by 2 and increase d0

A by 2.

2. When we select one adjacency out of S0
A and one telomere out of

S0
T , the number of possible DCJ operations is s0

A ×s0
T ×2. Neither of

the resulting adjacency nor telomere will be in G, so that every such
operation reduces both s0

A and s0
T by 1 and increases both d0

A and d0
T

by 1.

3. When we select two telomeres out of S0
T , the number of possible DCJ

operations is
(s0

T
2

)
. The resulting adjacency will not be in G, so that

every such operation will reduce s0
T by 2 and increase d0

A by 1.

4. When we select one adjacency out of S0
A, the number of possible DCJ

operations is s0
A. Neither of the resulting telomeres will be in G, so that

every such operation reduces s0
A by 1 and increases d0

T by 2.

Adding up the four cases and normalizing by the total m, we get

s1
A = s0

A + 2
(s0

A
2

)
m

·(−2)+ 2s0
As0

T

m
·(−1)+ s0

A

m
·(−1)

= s0
A − 2s0

A
2 +2s0

As0
T −s0

A

m

s1
T = s0

T + s0
A ·s0

T ·2
m

·(−1)+
(s0

T
2

)
m

·(−2)

= s0
T − 2s0

As0
T +s0

T
2 −s0

T

m

d1
A = 0+

(s0
A
2

)·2
m

·2+ s0
A ·s0

T ·2
m

·1+
(s0

T
2

)
m

·1

= 2s0
A

2 −2s0
A +2s0

As0
T + 1

2 s0
T

2 − 1
2 s0

T

m

d1
T = 0+ s0

A ·s0
T ·2

m
·1+ s0

A

m
·2

= 2s0
As0

T +2s0
A

m
�

Let Gk be a genome obtained from G by applying k randomly selected
DCJ operations and let Ġk+1 be the genome obtained from the genome Gk

by applying one more randomly selected DCJ operation. We show how to
calculate the expected value of VG(Ġk+1) given Gk and G.

Theorem 3. Let VG(Gk) = (sk
A,sk

T ,dk
A,dk

T ) and let mk be the number of
possible DCJ operations on Gk. For conciseness, write Ak = sk

A +dk
A (the

number of adjacencies in Gk) and Tk = sk
T +dk

T (the number of telomeres in
Gk). Then we can write

mk = (Ak)2 +2(Ak)(Tk)+ 1

2
(Tk)2 − 1

2
(Tk)

E(VG(Ġk+1)) = (ṡk+1
A ,ṡk+1

T ,ḋk+1
A ,ḋk+1

T )

where we have

ṡk+1
A = sk

A + 1

mk
[n1 −2sk

A(Ak +Tk)] (4)

ṡk+1
T = sk

T + 1

mk
[n2(Tk +1)−2sk

T (Ak +Tk)] (5)

ḋk+1
A = dk

A + 1

mk
[2sk

A(Ak +Tk)+
(

Tk

2

)
−(Ak)−n1]

ḋk+1
T = dk

T + 1

mk
[2sk

T (Ak +Tk)−n2(Tk +1)

−2

(
Tk

2

)
+2(Ak)] (6)

Proof. From Theorem 1, we have

mk = (Ak)2 +2(Ak)(Tk)+ 1

2
(Tk)2 − 1

2
(Tk)

i116



[16:06 25/6/03 Bioinformatics-btn148.tex] Page: i117 i114–i122

Evolutionary distances under DCJ model

There are n1 −sk
A adjacencies in G that do not appear in Gk and they must

fall into one the following three cases:

1. nAA pairs with members in two different adjacencies in Dk
A.

2. nTT pairs with members in two telomeres of Dk
T .

3. nAT pairs with one member in Dk
A and the other in Dk

T .

There also are n2 −sk
T telomeres in G that do not appear in Gk and so must

be members of Dk
A.

Now we complete the proof by running through the possible cases.
From the proof for Theorem 2, we have already covered four cases where
adjacencies and telomeres were selected only from Sk

A and Sk
T . The remaining

eight cases cover selections from Dk
A and Dk

T as well. In the last five of these
eight cases, the outcome of a particular operation in terms of adjacency and
telomere counts is not fixed, but the total count over all possible operations
can still be computed; we use the expression ‘recover’ (an adjacency or a
telomere) to indicate a case in which the count increases.

1. When we select one adjacency out of Sk
A and another out of Dk

A, the
number of possible DCJ operations is sk

A ×dk
A ×2. Neither resulting

adjacency will be in G, so that every such operation reduces sk
A by 1

and increases dk
A by 1.

2. When we select one adjacency out of Sk
A and one telomere out of Dk

T , the
number of possible DCJ operations is sk

A ×dk
T ×2. Neither the resulting

adjacency nor telomere will be in G, so that every such operation
reduces sk

A by 1 and increases dk
A by 1.

3. When we select one telomere out of Sk
T and one telomere out of Dk

T ,
the number of possible DCJ operations is sk

T ×dk
T . Neither the resulting

adjacency nor telomere will be in G, so that every such operation
reduces sk

T and dk
T by 1 and increases dk

A by 1.

4. When we select one telomere out of Sk
T and one adjacency out of Dk

A,
the number of possible DCJ operations is sk

T ×dk
A ×2. The resulting

adjacency will not be in G, while the resulting telomere can be in G
or not. There are sk

T ×(n2 −sk
T ) ways to recover one telomere out of

n2 −sk
T telomeres in G that do not appear in Gk .

5. When we select two adjacencies out of DA, the number of possible DCJ
operations is

(dA
2

)×2. The two resulting adjacencies can be in G or not.
There are nAA ways to recover one adjacency out of n1 −sk

A adjacencies
in G that do not appear in Gk .

6. When we select one adjacency out of Dk
A and one telomere out of Dk

T ,
the number of possible DCJ operations is dk

A ×dk
T ×2. The resulting

adjacency and telomere can be in G or not. There are dk
T ×(n2 −sk

T )
ways to recover one telomere out of n2 −sk

T telomeres in G that do not
appear in Gk and nAT ways to recover one adjacency out of n1 −sk

A
adjacencies in G that do not appear in Gk .

7. When we select one adjacency out of Dk
A, the number of possible DCJ

operations is dk
A. The two resulting telomeres can be in G or not and

there are n2 −sk
T ways to recover one telomere out of n2 −sk

T telomeres
in G that do not appear in Gk .

8. When we select two telomeres out of Dk
T , the number of possible DCJ

operations is
(dT

2

)
. The resulting adjacency can be in G or not and there

are nTT ways to recover one adjacency out of n1 −sk
A adjacencies in G

that do not appear in Gk .

Adding up the 12 cases and normalizing by the total mk , we get

ṡk+1
A = sk

A + 1

mk
[n1 −2sk

A(Ak +Tk)]

ṡk+1
T = sk

T + 1

mk
[n2(Tk +1)−2sk

T (Ak +Tk)]

ḋk+1
A = dk

A + 1

mk
[2sk

A(Ak +Tk)+
(

Tk

2

)
−(Ak)−n1]

ḋk+1
T = dk

T + 1

mk
[2sk

T (Ak +Tk)−n2(Tk +1)

−2

(
Tk

2

)
+2(Ak)] �

Given G0, we estimate E(VG(Gk)) for k >0 by iterating k times the
matching formula in Theorem 3, and every time we identify E(VG(Gk−1))
with the actual vector VG(Gk−1).

Corollary 1. Let G be one genome on n genes, the estimated vector

Ẽ(VG(Gi)) = (s̃i
A,s̃i

T ,d̃i
A,d̃i

T ) for all integers i (0≤ i≤k) can be computed in
O(k) time.

3.3 Asymptotic behavior of our estimation
We can use our results to derive the ‘stable’ structure of a genome under the
random DCJ model—the structure reached after sufficiently many events.

Corollary 2. Let G have n (n≥2) genes; then the estimated vector

Ẽ(VG(Gk)) = (s̃k
A,s̃k

T ,d̃k
A,d̃k

T ) and the estimated number of possible DCJ
operation m̃k for genome Gk satisfy

lim
k→+∞(s̃k

T + d̃k
T ) = √

2n (7)

lim
k→+∞m̃k = n2 +n

√
2n− n

2
−

√
2n

2
(8)

The fairly technical proof is attached inAppendix; the approach is to define

s̃0
T + d̃0

T = √
2n+ε0, with −√

2n≤ε0 ≤2n−√
2n, and to consider separately

the cases where ε0 is positive and negative, showing in each case that εk

keeps the sign of ε0 and that the limit of εk as k grows is zero.

Corollary 3. If the estimated vector is Ẽ(VG(Gk)) = (s̃k
A,s̃k

T ,d̃k
A,d̃k

T ) and
if we have n≥2, then we can write

lim
k→+∞s̃k

A = n1

2n+√
2n

lim
k→+∞s̃k

T = n2(
√

2n+1)

2n+√
2n

lim
k→+∞d̃k

A = n−
√

2n

2
− n1

2n+√
2n

lim
k→+∞d̃k

T = √
2n− n2(

√
2n+1)

2n+√
2n

Proof. We first calculate limk→+∞ s̃k
A. From formula (4) in Theorem 3

and formula (3), we have

s̃i+1
A = s̃i

A + 1

mi
[n1 − s̃i

A(2n+(s̃i
T + d̃i

T ))] (9)

Combining formulae (7), (8) and (9), together with 0≤s0
A(= n1)≤2n, we get

lim
k→+∞s̃k

A = n1

2n+√
2n

Similarly, we can calculate the limits for s̃k
T , d̃k

A and d̃k
T . �

Corollary 4. If we have n1 ≥1, then our estimated value s̃k
A decreases

monotonically with k until s̃k
A ≤ 1

2 .

Proof. From the assumption n1 ≥1, we have s̃0
A = s0

A = n1 ≥1. Now it

is enough to show that, for any integer k, if we have s̃k
A > 1

2 , then we get

s̃k+1
A < s̃k

A. If we have s̃k
A > 1

2 , then, from formula (4) in Theorem 3, we have,

s̃k+1
A − s̃k

A = 1

mk
[n1 −2s̃k

A(s̃k
A + s̃k

T + d̃k
A + d̃k

T )]

<
1

mk
[n1 −(s̃k

A + s̃k
T + d̃k

A + d̃k
T )]

≤− 1

2mk
(n2 + s̃k

T + d̃k
T )≤0 �
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These three corollaries paint a picture of the long-term consequences on
genomic structure of random DCJ events; in particular, they predict that the
number of linear chromosomes (half of the number of telomeres) converges
to

√
2n/2 and also, intuitively enough, that the number of shared adjacencies,

s̃k
A, goes down to (effectively) zero. The prediction of the asymptotic number

of linear chromosomes illustrates the limitations of the method: for humans,
for instance, using a figure of 25000 genes, we get an asymptotic number
of 112 chromosomes—and it is to be doubted whether, even with a billion
more years of evolution, the human genome would ever feature these many
chromosomes. Another example is that of bacteria, which usually have a
single circular chromosome, not the 22–50 linear chromosomes that would
go with 1000–5000 genes. Clearly, the uniform model is too simple and
constraints exist in organismal genomes that strongly dampen chromosomal
fission. At present, however, there are too many ways in which to impose
such constraints within the DCJ model and not enough data to decide which
way is best.

4 EXPERIMENTS
We now present experimental results on the accuracy of our
estimation of the expected vector after a given number of random
DCJ operations and on the quality of our estimator for the true
evolutionary distance (in terms of the actual number of DCJ
operations). Our experiments all start with an original genome, G,
with some chosen number of linear and circular chromosomes of
various sizes; this genome is subjected to a prescribed number
k of DCJ operations chosen uniformly at random to obtain a
final genome Gk . We vary k from one to six times the number
of genes—very large values in evolutionary terms. For each
choice of parameters, we generate 10 000 runs to obtain a tight
estimate of variance. We compute the vector representations for
all intermediate genomes and then use our method to estimate the
evolutionary distance. We ran tests on a large variety of initial
genomes, some designed to resemble actual organismal genomes,
some entirely unrealistic to test extreme cases. Due to space
limitations, we present results on just three initial genomes, all
meant to resemble real organismal genomes: (a) 25 000 genes and
25 linear chromosomes; (b) 10 000 genes and 5 linear chromosomes
and (c) 1000 genes and 1 circular chromosome—the first two
examples match metazoan genomes, the last matches a small
bacterial genome.

4.1 Accuracy of the expected vector after k-random
DCJ operations

We study the behavior of our estimation Ẽ(VG(Gk)) by comparing
its prediction to the sample mean for E(VG(Gk)), as computed
from our 10 000 trials. We include an additional, extreme, genome
with 5000 genes and 2500 linear chromosomes to show that our
technique works across a very broad range of parameters. In all
of our experiments, we find that Ẽ(VG(Gk)) is extremely close to
the sample mean for E(VG(Gk)): the maximum absolute error of
corresponding values between our estimation and the sample mean
is always <0.8. Figure 2 shows the four values in the vector as a
function of the actual number of DCJ operations for genome (a)
(the curves for genomes (a), (b) and (c) are similar) and for the
‘extreme’ genome (where the curves are better differentiated). The
figure does not distinguish our estimation Ẽ(VG(Gk)) and the sample
mean for E(VG(Gk)), because the difference is too small with respect
to the actual value. We also compute the mean absolute difference
for sA, sT , dA, and dT between our estimation Ẽ(VG(Gk)) and each
experimental vector VG(Gk) in every single run for genomes (a),
(b) and (c) and show the results in Figure 3. The sum of absolute
difference of entries in the vector on the larger genomes never
exceeds 0.5% (as a percentage of the sum of entries in the vector)
and is typically well below 0.25%; even on the smaller genome, the
difference does not exceed 2% and is typically below 1%.

4.2 Accuracy of the estimation of the actual number
of DCJ operations

We want to study the threshold of saturation of our estimator in
addition to its accuracy; in order to do that, we create simulations
with controlled numbers of DCJ operations and set up a threshold
for correction in the estimation procedure. Specifically, we choose
a number between 1 and some upper bound B as the actual number
of DCJ operations; B is chosen to be the smallest integer k that

makes the expected value s̃k
A <2, a point at which there are almost no

shared adjacencies left (from Corollary 4). For genomes (a), (b) and
(c), the corresponding upper bounds are 121 621, 44 047 and 3253,
respectively. From Corollaries 3 and 4, and the fact n1 ≤n, we have

0≤ limk→+∞ s̃k
A < 1

2 . Thus we use the smallest integer r that causes
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Fig. 2. The four vector values as a function of the actual number of DCJ operations.
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Fig. 3. The mean absolute difference for sA, sT , dA and dT between our estimation Ẽ(VG(Gk)) and each experimental vector VG(Gk) as a function of the
actual number of DCJ operations.

the expected value s̃r
A to become smaller than 1/2 as an upper limit on

the maximum number of DCJ operations in the evolutionary history.
Finally, if we have sF

A = 0, we set k (the value normally chosen to

minimize |sF
A − s̃k

A|) to this upper limit r. For genomes (a), (b) and
(c), r has values 211 442, 81 329 and 6398, respectively.

Figure 4 shows the mean and SD for the actual number of
DCJ operations estimated by the edit DCJ distance and by our
approach. These figures indicate that, as expected, the edit DCJ
distance underestimates, often severely, the actual number of events.
In contrast, our approach provides highly accurate estimates, with
very small variance.

We also study the mean absolute difference between the actual
number of DCJ operations and our estimator for genomes (a), (b)
and (c). The results are shown in Table 1. The estimates are highly
accurate (even for small genomes) up to surprisingly large numbers
of events. Rearrangements events fall under the category of ‘rare
genomic events’ [in the terminology of Rokas and Holland (2000)],
yet our estimator works well even for what would be considered
common events.

5 DISCUSSION AND CONCLUSIONS
From Sections 4.1 and 4.2, our estimation achieves very high
accuracy, especially for larger (metazoan) genomes. From Figure 4,

our approach postpones the threshold of saturation (viewed as
a number of DCJ operations) from well under the number of
genes to at least three times the number of genes for all three
example genomes. This large gain in accuracy should translate into
much better phylogenetic reconstructions as well as more accurate
genomic alignments.

Moreover, Corollaries 2 and 3 make specific predictions about
the structure of evolved genomes on n genes after many steps:
namely, that all should have approximately

√
2n telomeres, that

is
√

2n/2 linear chromosomes, and that shared adjacencies with
other highly evolved genomes should be nearly absent. While
the second prediction is intuitively reasonable, it is in fact rarely
satisfied in actual organisms, especially for small genomes (such as
prokaryotic genomes), where conservation pressures are very high
and specific structures such as operons survive across broad ranges
of evolutionary divergence. The first prediction is, as noted earlier,
nearly always overstated: clearly, biological constraints prevent
chromosomal fission to be as commonplace as the uniform DCJ
mechanism would appear to suggest.

These predictions rely on the two main assumptions made in this
work: no gene duplication or loss; and uniform distribution of DCJ
operations. Both are clearly unrealistic, so our ability to gauge their
effect on model predictions is crucial to future model refinements.

For instance, in their original paper, Yancopoulos et al. (2005)
required that a chromosomal fission that creates a new small
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Fig. 4. Mean and SD plots for the actual number of DCJ operations (y-axis) versus the edit DCJ distance and our estimator (x-axis). The datasets are divided
into 60 bins according to their x-coordinate values.

Table 1. The mean absolute difference between actual number of DCJ
operations and our estimation

No. of genes Actual number of DCJ operations

No. of genes ×1 No. of genes ×2 No. of genes ×3

25 000 131.0 (0.5%) 447.5 (0.9%) 1280.2 (1.7%)
10 000 83.9 (0.8%) 282.0 (1.4%) 819.4 (2.7%)

1000 27.2 (2.7%) 93.6 (4.7%) 441.8 (14.7%)

circular chromosome be immediately followed by a chromosomal
fusion that re-absorbs this small circular chromosome, thereby
causing a block exchange within the original chromosome and
treating the extra circular chromosome as a transient artifact. Since
circular chromosomes do not arise in organisms with a number of
linear chromosomes, a similar constraint would strongly reduce
the incidence of fission. A similar type of constraint could be
used for prokaryotic genomes, which normally consist of a single
circular chromosome. Using just such a constraint, Kothari and
Moret (2007) found that the DCJ edit distance closely reflected both
inversion and transposition operations. Evidence that paracentric
rearrangements are more common than pericentric ones, at least in
two Drosophila species (York et al., 2007), and that short inversions

are more common than long ones, in some prokaryotes and in the
aforementioned Drosophila (Lefebvre et al., 2003; York et al., 2007),
can also be reflected into additional constraints on the DCJ model.
Any additional constraint naturally creates complications, but we
expect that at least a few natural constraints can be handled within
the framework described here.

Some significant advances have been made by our group for
handling duplications and losses in an inversion context (see, e.g.
Marron et al., 2004; Swenson et al., 2005; Tang et al., 2004); since
duplications and losses are handled in that work mostly through the
greedy approach of using rearrangements to place together genes
that can then be gained or lost in a single operation, moving this
work to a DCJ context appears uncomplicated. This combination
could then yield the first reliable estimate of genomic pairwise
distances for complex metazoan genomes based on rearrangements
and duplication/loss mechanisms.

Finally, since the DCJ operation regroups all rearrangements
studied to date, and since our results point to one way in which
the behavior of this model can be studied for various constraints
(such as where the cuts can be made), our results may shed
light on the vexing issue of what constitutes a significant syntenic
block in comparative genomics—an issue that has seen a lot
of discussion over the last few years. [Sinha and Meller (2008)
give a review of these discussions and some proposals, while
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Chaisson et al. (2006) give evidence that rearrangements occur at
multiple scales.]
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APPENDIX

Proof of Corollary 2:

Proof. We have 0≤s0
T +d0

T (= n2)≤2n, s̃0
T = s0

T , and d̃0
T = d0

T ,
and so can write

s̃0
T + d̃0

T = √
2n+ε0

with

−√
2n≤ε0 ≤2n−√

2n

We now consider two cases: (i) −√
2n≤ε0 ≤0 and (ii) 0≤ε0 ≤

2n−√
2n. In each case, we prove by induction on k the following

result for εk(= (s̃ k
T + d̃ k

T )−√
2n):

lim
k→+∞εk = 0 (A1)

Case (i) We have −√
2n≤ε0 ≤0 and, by inductive

hypothesis, −√
2n≤εi(= s̃i

T + d̃i
T −√

2n)≤0. We now bound the

range for εi+1 (= s̃i+1
T + d̃i+1

T −√
2n).

From formulae (5) and (6) in Theorem 3 as well as formula (3),
we have

(s̃i+1
T + d̃i+1

T ) = (s̃i
T + d̃i

T )+ 1

mi
[2n−(s̃i

T + d̃i
T )2]

Replacing (s̃i+1
T + d̃i+1

T ) and (s̃i
T + d̃i

T ) by (εi+1 +√
2n) and

(εi + √
2n), we get

εi+1 = εi(1− 1

mi
(εi +2

√
2n)) (A2)

From formula (2), we have

mi = −1

4
(
√

2n+εi)
2 +(n− 1

2
)(

√
2n+εi)+n2 (A3)

From Formula (A3) and our inductive hypothesis, and using n≥2,
we get

0≤1− 1

mi
(εi +2

√
2n)≤1−

√
2n

2n2 −n
(A4)

Then from formulae (A2) and (A4), we can write

εi

(
1−

√
2n

2n2 −n

)
≤εi+1 ≤0

and from the inductive assumption and by using n≥2, we can verify
that εi+1 satisfies

−√
2n≤εi+1 ≤0

Since we have −√
2n≤ε0 ≤0, then, by induction, we have, for any

integer k,

ε0

(
1−

√
2n

2n2 −n

)k

≤εk ≤0

and thus, with n≥2,

lim
k→+∞εk = 0
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Case (ii) We have 0≤ε0 ≤2n−√
2n and, by inductive

hypothesis, 0≤εi ≤2n−√
2n. We now bound the range for εi+1

(= s̃i+1
T + d̃i+1

T −√
2n).

From formula (A3) and the inductive hypothesis, and using n≥2,
we can write

0≤1− 1

mi
(εi +2

√
2n)≤1− 2

√
2n

2n2 −n
(A5)

Now using formulae (A2) and (A5), we get

0≤εi+1 ≤εi

(
1− 2

√
2n

2n2 −n

)
and from the inductive hypothesis and using n≥2, we can verify
that εi+1 satisfies

0≤εi+1 ≤2n−√
2n

Since we have 0≤ε0 ≤2n−√
2n, then, by induction, we have, for

any integer k,

0≤εk ≤ε0

(
1− 2

√
2n

2n2 −n

)k

and thus, with n≥2,

lim
k→+∞εk = 0

Putting it all together, we have

lim
k→+∞(s̃i

T + d̃i
T ) = √

2n

Moreover, from formulae (A1) and (A3), we can write

lim
k→+∞m̃k = n2 +n

√
2n− n

2
−

√
2n

2
�
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