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Abstract
We study exact tests for (2 x 2) and (2 x 3) contingency tables, in particular exact chi-

squared tests and exact tests of Fisher type. In practice, these tests are typically carried out without
randomization, leading to reproducible results but not exhausting the significance level. We discuss
that this can lead to methodological and practical issues in a multiple testing framework when many
tables are simultaneously under consideration as in genetic association studies.

Realized randomized p-values are proposed as a solution which is especially useful for
data-adaptive (plug-in) procedures. These p-values allow to estimate the proportion of true null
hypotheses much more accurately than their non-randomized counterparts. Moreover, we address
the problem of positively correlated p-values for association by considering techniques to reduce
multiplicity by estimating the "effective number of tests" from the correlation structure.

An algorithm is provided that bundles all these aspects, efficient computer implementations
are made available, a small-scale simulation study is presented and two real data examples are
shown.

KEYWORDS: contingency tables, effective number of tests, genome-wide association study,
multiplicity correction, realized randomized p-values, validation stage
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1 Introduction

Statistical inference in contingency tables is ubiquitous in genetic association anal-
yses. In particular, depending on the hypothesized underlying genetic model, an
analysis of the association between a dichotomous endpoint (like the diagnosis of a
disease) and a bi-allelic set of potentially predictive genetic markers can be formal-
ized statistically by a family of tests for association in (2 x 2) or (2 x 3) contingency
tables. For a more detailed discussion of the appropriate choice of table layout ac-
cording to genetic modeling, see, for instance, Chapter 10 in the textbook by Ziegler
and König (2006).

Although the theory of exact tests for contingency table analyses can be
traced back to Fisher (1922), it continues to pose a challenge for researchers to-
day. Among other things, this is due to unexpected but very interesting phenomena
originating from the discreteness of the testing problem. For instance, Finner and
Straßburger (2001a,b) showed that the power of contingency table-based tests for
association is not monotonic in the sample size. Furthermore, discrete tests are
typically carried out without randomization in practice, ensuring reproducible test
results but not exhausting the significance level. While this is acceptable for a sin-
gle comparison, it becomes a serious issue if many contingency tables rather than a
single one must be considered simultaneously, as has frequently been done in recent
studies. In the latter case, multiplicity correction arises as a further difficulty.

In this article, we will first demonstrate that the performance (in terms of
multiple power that we define formally at the end of Section 2) of many modern
data-adaptive plug-in multiple tests deteriorates dramatically when discretely dis-
tributedp-values are used. Then, we will propose a convenient remedy, focusing on
a specific setting for an association study throughout our work: we assume that all
markers with alleles that have been successfully identified (i. e., genotyped) will be
evaluated simultaneously with respect to their association with a dichotomous phe-
notype in a confirmatory analysis (no further independent replication study, strong
control of the family-wise error rate). Moreover, we assume that the study may
consist of two stages: A screening stage and a validation stage, with independent
data. From the statistical perspective, this two-stage approach has already been de-
scribed in detail by Wasserman and Roeder (2009) and Meinshausen et al. (2009).
The present article proposes several improvements in statistical inference methods
for contingency table analyses under this setting.

In genetic association studies, binary single nucleotide polymorphisms
(SNPs) are typically used as genetic markers. Our proposed methodology can be
applied to SNP studies, but is also suitable for treating more complex markers such
as copy number variations (CNVs) of sections of the deoxyribonucleic acid, as long
as the CNVs have the same binary status as SNPs as considered by McCarroll et al.
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(2008), for example.
The paper is organized as follows. We will briefly describe classical meth-

ods for contingency table analyses under the assumptions mentioned above in Sec-
tion 2. Experienced readers may skip this section, because it has mainly repetitive
character. Section 3 will then present our main contributions: first, we propose
various ways to improve the classical strategies while still maintaining tight FWER
control; then, we discuss a new algorithm that bundles these approaches. The be-
havior of the new algorithm in the case of small systems of hypotheses will be
investigated by means of Monte Carlo-simulations in Section 4. Details on the
necessary computational steps, on numerical feasibility and on resource-efficient
implementations will be given in Section 5. Section 6 is devoted to applications of
the new method to real-life data sets for type II diabetes and Crohn’s disease. We
conclude with a discussion in Section 7.

2 Classical approaches

2.1 Notational setup

In what follows,M denotes the number of considered markers. Note that mark-
ers can be both genotyped (observed) or imputed (i. e., estimated using popula-
tion genetics techniques and a priori information from a reference population, see
Marchini et al. (2007), Willer et al., 2008). Imputed marker genotypes usually
have a very high degree of certainty, so they are widely considered as regular ob-
served genotypes (cf. Howie et al. (2009), Li et al. (2010), The 1000 Genomes
Consortium, 2010). We assume that the two rows of the tables under considera-
tion correspond to the phenotype (typically, the disease status) and their (two or
three) columns contain the marker counts. Since we want to treat the cases of
(2× 2) and(2× 3) tables simultaneously all along the way, we will denote byn
the vector containing all the (given) marginals of the table. Therefore,n can have
different dimensionality depending on the context. In the(2× 2) table case, we
haven = (n1.,n2.,n.1,n.2) ∈N4 while we haven = (n1.,n2.,n.1,n.2,n.3) ∈N5 in the
(2×3) table case. In both cases, we define the number of observational units by
N = n1.+n2.. In the case of a(2×3) table,N is therefore equal to the number of
individuals in the study, while it equals the number of alleles (twice the number of
study participants) in the case of a(2× 2) table. Accordingly, an observed table

will be denoted byx taking the formx =

(

x11 x12

x21 x22

)

∈ N2×2 in case of a(2×2)

table andx =

(

x11 x12 x13

x21 x22 x23

)

∈ N2×3 in the (2×3) case. Although we aim at
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analyzingM > 1 of such tables simultaneously, we abstain from further indexing
whenever possible in order to increase readability. At a given genetic locus num-
bered byi ∈ {1, . . . ,M}, we want to test the null hypothesisH0 of no association
of phenotype and genetic markeri against its alternative hypothesisH1 that phe-
notype and markeri are associated. We will assume that the two-sided alternative
hypothesisH1 is considered, unless stated otherwise.

In any case, the conditional probability of observingx givenn underH0 will
be denoted byf (x|n) and is (in a compact, self-explaining notation) given by

f (x|n) =
∏n∈n n!

N! ∏x∈x x!
.

In the remainder of this section, we review two common testing strategies for eval-
uating a single contingency table. A detailed survey of exact methods for contin-
gency table analyses is provided by Agresti (1992). Moreover, we describe classical
methods to control errors if many of such tables are simultaneously under consid-
eration. The latter is important if many markers shall be tested with respect to their
association with a dichotomous phenotype under the scope of one study (including
meta analyses).

2.2 Marginal tests for a single contingency table

The chi-squared statisticQ for assessing association of the phenotype and the ge-
netic marker from the observed datax is given by

Q(x) =∑
r

∑
c

(xrc −erc)
2

erc
,

wherer runs over the rows andc over the columns ofx and the numberserc =
nr.n.c/N denote the expected cell counts givenN and the marginal counts contained
in n. Large values ofQ(x) are in favor of the alternative hypothesis that phenotype
and genetic marker are associated.

If N is small and a confirmatory analysis with strict type I error control is
required, it is not recommendable to employ the asymptoticχ2 distribution ofQ
for inferential purposes, cf. Weir (1996), Wigginton et al. (2005). An exact test
guaranteeing conservative type I error control is based on thep-value

pQ(x) = ∑̃
x

f (x̃|n),

where the summation is carried out over all tablesx̃ with marginalsn for which
Q(x̃) ≥ Q(x). For a fixed significance levelα, a testϕQ of level α is given by
ϕQ(x) = 1pQ(x)≤α .
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An exact test of Fisher-type for testingH0 againstH1 bases its decision
directly uponx and utilizes ap-value

pFisher(x) = ∑̃
x

f (x̃|n),

where the summation is now carried out over all tablesx̃ with marginalsn for
which f (x̃|n)≤ f (x|n). Again, a corresponding levelα test is given byϕFisher(x) =
1pFisher(x)≤α .

For our approach of realized randomizedp-values, presented in Section 3.2,
it turns out that the chi-squared and Fisher-type testing strategies are convenient to
handle.

2.3 Multiplicity correction

Let us assume a statistical model(Ω,A ,(Pϑ )ϑ∈Θ) parametrized byϑ ∈ Θ. In
an association study under the setup described in Section 2.1, we consider a pa-
rameter vectorϑ = (ϑi , i = 1, . . . ,M). Given the marginalsni for every of theM
tables under consideration, the meaning and the dimensionality of the marginal pa-
rameterϑi is dependent on if a(2× 2)- or a (2× 3)-table is considered. In the
(2×2)-table case, both the genotypeGi (say) at genetic positioni and the pheno-
typeY are binary andϑi may be formalized by the probability that bothGi andY
equal zero or, equivalently, by the odds ratio (see Chapter 10 in Ziegler and König,
2006). In the(2×3)-table case,ϑi is two-dimensional and can be formalized by
any pair of expected cell counts in the(2×3)-table corresponding to locusi, where
the cells are not located in the same column. Multiple hypotheses testing is con-
cerned with testing a familyH = (Hi , i ∈ I) of hypotheses regarding the param-
eterϑ with corresponding alternativesKi = Θ \Hi , whereI denotes an arbitrary
index set. In the association study case, every genetic locusi reflects one hypothe-
sis, namely, thatGi is stochastically independent ofY. Therefore, we simply have
I = {1, . . . ,M}. For example, in the case of allelic tests in(2×2)-tables, this hy-
pothesis translates to the parameterϑi in that we test the point hypothesis that the
odds ratio equals 1. LetI0≡ I0(ϑ)⊆ I denote the index set of true hypotheses inH ,
ϕ = (ϕi , i ∈ I) a multiple test procedure forH , andV(ϕ) the number of false rejec-
tions ofϕ, i. e.,V(ϕ) = ∑i∈I0 ϕi . The classical multiple type I error measure is the
family-wise error rate, FWER for short, and can (for a givenϑ ∈ Θ) be expressed
as FWERϑ (ϕ) = Pϑ (V(ϕ) > 0). There exist various principles for constructing
multiple tests controlling the FWER, meaning that supϑ∈Θ FWERϑ (ϕ) ≤ α for a
pre-defined significance levelα, like the intersection-union principle, the closed
test principle or the partitioning principle. However, they all rely on a pre-defined
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structure ofH . A universal, but often conservative method is based on the union
bound and is referred to as ”Bonferroni correction” in the multiple testing litera-
ture. Assuming that|I | = M, the Bonferroni correction carries out each individual
testϕi , i ∈ I , at (local) levelα/M. In case that joint independence of allM marginal
test statistics can be assumed, the Bonferroni-corrected levelα/M can be enlarged
to the “Šidák-corrected” level 1−(1−α)1/M > α/M leading to slightly more pow-
erful marginal tests. If (marginal)p-valuesp1, . . . , pM for each pair of hypotheses
Hi versusKi, i ∈ I , are available, a Bonferroni orŠidák test, respectively, controlling
the FWER at levelα is given byϕi = 1pi≤αloc. for all i ∈ I . The local significance
level αloc. equalsα/M for a Bonferroni test and 1− (1−α)1/M for a Šidák test.

Finally, we defineI1 ≡ I1(ϑ) = I \ I0, M1 = |I1|, S(ϕ) = ∑i∈I1 ϕi and refer
to the expected proportion of correctly detected alternatives, i. e., powerϑ (ϕ) =
Eϑ [S(ϕ)/max(M1,1)], as the multiple power ofϕ underϑ . If the structure ofϕ is
such thatϕi = 1pi≤t∗ for a common, possibly data-dependent thresholdt∗, then the
multiple power ofϕ is isotone int∗.

3 Improving the classical approaches

In Sarkar (2008a) and the subsequent discussion papers by Romano et al. (2008),
Sen (2008), and Sarkar (2008b), three main challenges of modern multiple test-
ing theory and practice are mentioned: Departure from uniform distribution ofp-
values under null hypotheses, appropriately taking into account dependency struc-
tures among marginal tests, and the “largeM, smallN” problem. We agree with
this diagnosis and present some solutions under the scope of our general setup in
this section.

3.1 Estimation of the proportion of informative markers

Since the index set of true hypothesesI0 ≡ I0(ϑ)⊆ I depends on the unknown pa-
rameterϑ , it is in practice not possible to control the FWER at level exactlyα.
The Bonferroni as well as thěSidák method bound the FWER trivially by consid-
ering I instead ofI0. In other words, these methods work under the ”worst case”
assumption that allM hypotheses are true. Modern (data-) adaptive multiple testing
methods try to improve upon that by pre-estimating the numberM0 = |I0| or the
proportionπ0 = M0/M, respectively, of true hypotheses inH and replaceM in αloc.

by the resulting estimation̂M0. It goes beyond the scope of this paper to survey all
the concurring estimation techniques that are proposed in the multiple testing liter-
ature. We therefore defer the reader to the introduction in Finner and Gontscharuk
(2009).
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Maybe, the still most popular though, as well, the most ancient estimation
technique goes back to Schweder and Spjøtvoll (1982). It relies on a tuning parame-
terλ ∈ [0,1). Denoting the empirical cumulative distribution function (ecdf.) of the
M marginalp-values byF̂M, the proposed estimator from Schweder and Spjøtvoll
(1982) can be written as

π̂0 ≡ π̂0(λ ) =
1− F̂M(λ )

1−λ
. (1)

There exist several possible heuristic motivations for the usage ofπ̂0. The simplest
one considers a histogram of the marginalp-values with exactly two bins, namely
[0,λ ] and(λ ,1]. Then, the height of the bin associated with(λ ,1] equalsπ̂0(λ ).
Storey et al. (2004) and Finner and Gontscharuk (2009) investigated theoretical
properties ofπ̂0 and slightly modified versions of this estimator. The following
lemma, the proof of which is given in Appendix I, shows thatπ̂0(λ ) is a conserva-
tive estimate ofπ0 with respect to its expectation. To the best of our knowledge, the
bias of the Schweder-Spjøtvoll estimator has not been calculated in such generality
before. Under more restrictive model assumptions (for instance, that allp-values
under alternatives are stochastically independent and share the same distribution),
a less general formula is given in equation (2) of Langaas et al. (2005).

Lemma 1 The value ofπ̂0 is a conservative estimate ofπ0, meaning that̂π0 has a
non-negative bias. More specifically, it holds

Eϑ [π̂0(λ )]−π0 ≥
1

M(1−λ ) ∑
i∈I1

Pϑ (pi > λ )≥ 0.

We will refer to this property in the discussion of Theorem 1 in Section 4.

3.2 Realized randomizedp-values

The p-values defined in Section 2.2 are under null hypotheses stochastically larger
than a uniformly distributed random variable on the interval[0,1]. This can have
a massively negative impact on the multiple power of multiple testing procedures
when operating with thesep-values. Especially, many estimation techniques forπ0,
including the Schweder-Spjøtvoll method described in the previous section, typi-
cally fail to work properly if the assumption of uniformly distributedp-values under
null hypotheses is violated. This has been demonstrated in Finner et al. (2010) in
the context of a discrete model with one-dimensional marginal parameters. A way
out of this dilemma consists in usage of so-called “realized randomizedp-values”
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as defined and explained by Finner and Straßburger (2007) and Finner et al. (2010).
Although they were originally derived in terms of randomized tests, we define them
here in a more general way as follows.

Definition 1 Let a statistical model(Ω,A ,(Pϑ )ϑ∈Θ) be given. Consider the two-
sided test problem H: {ϑ = ϑ0} versus K: {ϑ 6= ϑ0} and assume the decision
is based on the realizationx of a discrete random variateX ∼ Pϑ with values
in Ω. Moreover, let U denote a uniformly distributed random variable on [0, 1],
stochastically independent ofX. A realized randomized p-value for testing H versus
K is a measurable mapping prand. : Ω× [0,1]→ [0,1] fulfilling thatPϑ0(p

rand.(X,U)≤
t) = t for all t ∈ [0,1].

Remark 1 It has to be mentioned at this point that randomized tests are known
for a long time in the statistical literature and, for instance, build the basis for the
Neyman-Pearson theory of uniformly most powerful (unbiased) tests, cf., for exam-
ple, Chapter 3 in the textbook by Lehmann and Romano (2005). How to calculate
p-values that are compatible with such tests is, however, a topic that is still vividly
discussed in the scientific community, as the discussion of Finner and Straßburger
(2007) and the recent works by Rüschendorf (2009) and Habiger and Peña (2011)
show.

The following lemma, which is a direct consequence of our more general
theorem in Appendix II, provides a convenient method to compute realized ran-
domizedp-values based on the exact tests introduced in Section 2.2.

Lemma 2 Based upon the two testing strategies described in Section 2.2, corre-
sponding realized randomized p-values can be calculated as

prand.
Q (x,u) = pQ(x)−u ∑

x̃:Q(x̃)=Q(x)

f (x̃|n),

prand.
Fisher(x,u) = pFisher(x)−uκ f (x|n),

where u denotes the realization of a UNI[0,1]-distributed variate which is stochas-
tically independent ofx andκ ≡ κ(x) = |{x̃ : f (x̃|n) = f (x|n)}|.

In order to illustrate the necessity to work with realized randomizedp-
values in the estimation procedure described in Section 3.1, we derived Figure
1. The dashed curve in Figure 1 depicts the ecdf. of approximately 1,800 non-
randomizedp-values computed from(2× 3)-contingency tables with the Fisher-
type testing strategy, making use of data from approximately 2,500 randomly cho-
sen participants in the Wellcome Trust Case Control Consortium study for the
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Crohn’s disease endpoint. We will provide more detail on the underlying study
in Section 6.2 below. It can clearly be seen that the dashed curve partly lies below
the diagonal in the unit square (which is displayed as the dotted line in Figure 1),
meaning that the empirical distribution of the observed non-randomizedp-values
is stochastically larger than uniform for a non-negligible proportion of markers.
For comparison, we plotted the ecdf. of the corresponding realized randomizedp-
values as the solid curve in Figure 1. After a steep increase in a neighborhood of the
origin, it behaves linearly because of the defining property of realized randomized
p-values, cf. Definition 1. Consequently, applying the estimator given in equation
(1) to thep-values corresponding to the solid curve, we obtain a reasonable upper
bound ofπ̂0(0.5) = 0.82 for the proportion of true null hypotheses, while the es-
timation procedure based on the dashed curve is almost completely uninformative
and leads tôπ0(0.5) = 0.9685. Let us emphasize here that this discrepancy is not
due to artifacts like, for instance, low sample size or low minor allele frequencies,
but due to the inherent discreteness problem of the statistical model.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 1: Empirical cumulative distribution functions of realized randomized and
non-randomizedp-values for Crohn’s disease endpoint as part of The Wellcome
Trust Case Control Consortium (2007) study.

8

Statistical Applications in Genetics and Molecular Biology, Vol. 11 [2012], Iss. 4, Art. 12



3.3 Effective number of tests

Dependencies among the marginal (per marker) tests can be utilized to relax the
multiplicity correction for the overall analysis. In order to motivate this heuristi-
cally, let us assume that the set of markers indexed byI = {1, . . . ,M} can be decom-
posed into disjoint groups with indices in the subsetsIg,g∈ {1, . . . ,G} of I . For the
moment, we now make the (unrealistic) assumption that markers within each of the
subsets corresponding to theIg’s are perfectly correlated in the sense that for each
g∈ {1, . . . ,G} and for any pair(i, j) ⊆ Ig the identity{ϕi = 1}= {ϕ j = 1} holds,
whereϕ = (ϕ1, . . . ,ϕM) is an arbitrary multiple test for the association test problem
at hand. This assumption has the interpretation that in theg-th marker subgroup all
tests assess the same information and therefore, “effectively” only one single test
is performed in the subgroup. Denotingi(g) = minIg for g= 1, . . . ,G, it is easy to
check that the family-wise error rate ofϕ underϑ can under the aforementioned
assumptions be bounded by

Pϑ

(

⋃

i∈I0

{ϕi = 1}

)

≤ Pϑ

(

G
⋃

g=1

{ϕi(g) = 1}

)

,

with equality if every subgroup contains at least one non-associated marker. Con-
sequently, multiplicity correction in this extreme scenario only has to be done with
respect to the numberG of subgroups which is typically much smaller than the
numberM of markers and a relaxed Bonferroni-type significance threshold for con-
trolling the FWER is given byα/G≥ α/M.

An intuitive generalization of these simple considerations to cases in which
correlation among markers is not perfect, but of arbitrary strength, is given by the
Cheverud-Nyholt method for quantification of the “effective number of tests”, i. e.,
for calculating the denominatorMeff. in a Bonferroni-type adjustment or the expo-
nent in aŠidák-type adjustment of the local significance levels, respectively. The
formula for Meff. as proposed in Cheverud (2001) and Nyholt (2004) can be ex-
pressed as (see Moskvina and Schmidt, 2008)

Meff. = 1+
1
M

M

∑
i=1

M

∑
j=1

(1− r2
i j). (2)

The numbersr i j in (2) are measures of correlation among markersi and j and can
typically be obtained from linkage disequilibrium (LD) matrices. Linkage dise-
quilibrium is the technical way to refer to correlations between the allelic states
of different genetic markers in the same chromosome, see Lewontin and Kojima
(1960). In human populations some combinations of alleles along the same chro-
mosome (haplotypes) occur at frequencies that are different from what would be
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expected out of random combinations of the markers’ allelic frequencies. These
correlations between markers ”effectively” reduce the number of tests performed
with different markers.
Despite its simplicity and intuitive character, the Cheverud-Nyholt method can not
be recommended in practice, because any LD-matrix contains many valuesr i j = 0
by definition of the linkage disequilibrium (marker pairs from different chromo-
somes have LD-coefficient equal to zero) and due to the fact that LD can only be
calculated in a limited window size. These structural zeros result in very conserva-
tive (large) values ofMeff. in practice.

A refined measureKeff. of the effective number of tests has been derived by
Moskvina and Schmidt (2008). The authors prove that for a given LD-matrix there
exists a tuple(Keff.,αloc.) such that

FWER(ϕ)≤ 1− (1−αloc.)
Keff., wherebyϕ j(x j) = 1pQ(x j )≤αloc.

. (3)

For computation of(Keff.,αloc.), they definerm := maxj=1,...,m−1 |r jm|. The valuerm

quantifies the largest correlation of markerm≥ 2 with any of the preceding markers
(according to some pre-defined ordering). Now, the formula for(Keff.,αloc.) is given
by

Keff. ≡ Keff.(αloc.,(rm)m≥2) = 1+
M

∑
m=2

κm,

whereκm depends onrm andαloc.. An easy-to-implement numerical approximation

is given byκm =

√

1− r−1.31×log10(αloc.)
m . By means of iterative modification ofαloc.

and calculation of (3), it is possible to determine(Keff.,αloc.) such that the FWER is
controlled at the pre-defined overall significance levelα.

Although not stated explicitly, the proof by Moskvina and Schmidt (2008)
only considers(2×2)-tables in connection with the chi-squared test. However, it
is possible to extend their proof to the(2× 3)-table case in connection with the
chi-squared test. Since only the sequentially maximum LD valuesrm are involved
in computingKeff., this estimate is more appropriate in practical situations with only
partially available LD information. In case that exact tests of Fisher-type are to
be performed, the method of proof in Moskvina and Schmidt (2008) and, conse-
quently, usage ofKeff., seems not applicable. Permutation tests are a convenient
alternative from the theoretical point of view, but in a genome-wide association
(GWA) study with 500,000 or one million SNPs under consideration it is often too
time consuming as reported for instance in Gao et al. (2010). Therefore, we recom-
mend permutation based estimation of the effective number of tests only for studies
with a small or moderate number of candidate SNPs to be tested according to the
Fisher-type testing strategy. Since the exact size of a dataset that can still be an-
alyzed by a permutation test strategy depends on the hardware resources available
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and the projected time frame for the analysis, we have to abstain from defining exact
numbers for the regimes ”small” and ”moderate”. For largeM in connection with
exact tests of Fisher-type, the simpleMmethod derived by Gao et al. (2008) mak-
ing use of a principle component analysis of the composite linkage disequilibrium
(CLD) correlation matrix of the markers under consideration is recommendable. In
any case, for our proposed method described in Algorithm 1 below, the correlation
information (quantified as an LD or CLD matrix) has to be obtained avoiding inter-
relation with the association structure to be examined. We will discuss possibilities
to ensure this requirement in Remark 3.

Remark 2 It is important to notice that many artificial sources for dependencies
among genetic markers exist that can not be attributed to linkage disequilibrium.
In particular, absence of the Hardy-Weinberg equilibrium (HWE) in controls can
induce correlations that interfere with the association analysis rather than being
informative. Therefore, we assume for our analyses that a quality control procedure
has been performed prior to the application of our methods and that only markers
passing quality control criteria, including a test for HWE in controls, are present in
the dataset at hand.

3.4 An algorithm for improved association analyses

According to the considerations in the preceding sections, we propose the following
workflow for assessing association of a binary phenotype with any of theM markers
from a list ofM candidates.

Algorithm 1

1. For j = 1, . . . ,M, build the contingency tablex j carrying the information
gathered for association of marker j and the phenotype under investigation.

2. For j = 1, . . . ,M, compute the realized randomized p-value prand.(x j ,u j) and
the non-randomized version p(xj) by making use of one of the testing strate-
gies described in Section 2.2 and the realization uj of an UNI[0,1]-distributed
random variable which is stochastically independent ofX j .

3. Computeπ̂0(λ ) by calculating the ecdf. of(prand.(x j ,u j), j = 1, . . . ,M). In
practice, it is convenient to use the valueλ = 0.5 for the tuning parameter.

4. Determine the effective number of tests by utilizing correlation values ob-
tained from an appropriate (C)LD matrix of the M markers. Any of the meth-
ods described before may be employed. Denote the resulting (estimated) ef-
fective number of tests by Eff.
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5. For a pre-defined FWER levelα, determine the list of associated markers by
performing the multiple testϕ = (ϕ j , j = 1, . . . ,M), whereϕ j(x j) = 1p(x j )≤t∗

with t∗ = α/(Eff · π̂0(λ )).

Remark 3

(a) Notice that we propose to use the computed realized randomized p-values
in the third step of Algorithm 1 while for final decision making in step 5
the non-randomized p-values are to be used. This policy ensures accurate
estimation ofπ0 on the one hand and reproducibility of the test result on the
other hand. It may be argued that the estimated value ofπ0 also depends on
the realization of the uniform variates used for randomization. But, first of
all, as demonstrated by Finner et al. (2010), the variance ofπ̂0 with respect
to the distribution of these uniform variates is typically very small. Secondly,
it is possible to replace the value ofπ̂0 by its conditional expectation with
respect to randomization, computed in Appendix III.

(b) The underlying assumption of Algorithm 1 is that the pairwise marker cor-
relations are on average of not smaller magnitude in the group of markers
which are not associated with the phenotype under investigation than in the
group of informative markers. This assumption can be formalized as the re-
lationship

π0 =
M0

M
≥

Eff(I0)
Eff

or, equivalently,π0Eff≥ Eff(I0), (4)

where Eff(I0) denotes the effective number of tests within the subset of mark-
ers for which the null hypothesis of no association with the phenotype holds.
Of course, assumption (4) cannot be verified in practice, because I0 is unob-
servable. However, it seems very natural to us, because informative markers
are assumed to be sparsely distributed among the genome and consequently
most of their pairwise LD values should be of low magnitude. Non-associated
markers (with the phenotype), however, lie dense and should have on average
a higher pairwise correlation.
Moreover, two natural possibilities exist to ensure that experimental condi-
tions cannot lead to a confounding influence of the disease status on the LD
values utilized to calculate Eff (Such a confounding influence might lead to
violations of (4).):

1. Assessing (C)LD information from an external reference database in-
stead of estimating it from the actual data sample under investigation

2. Performing computation of Eff only in the subgroup of control individu-
als
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In practice, the second method seems more convenient and is a quasi-
standard technique in the genetics community. Even if reference samples
like the HapMap database are available, it is not guaranteed that they are
perfectly representative for the data sample in a particular study.

The following theorem shows that in large-scale investigations (like in a
genome-wide scan) the FWER is controlled at levelα by Algorithm 1 if we use the
Moskvina and Schmidt (2008) method, which is favored by us.

Theorem 1 Let assumption (4) be fulfilled and let the effective number of tests
be estimated by Keff. according to Moskvina and Schmidt (2008) for the chi-square
testing strategies. If the cumulative distribution function (cdf.) of(prand.(x j ,u j), j ∈
I0) converges to the cdf. of UNI[0,1] for M0 → ∞, Algorithm 1 asymptotically
(M0 → ∞) controls the FWER at levelα.

Proof: The estimateKeff. is deduced by probabilistic upper bounds guaran-
teeing that it is an upper bound itself in the sense that the FWER is strictly controlled
at levelα if the threshold 1− (1−α)1/Keff. for the p-values is used, even if allM
null hypotheses are true. Furthermore, Lemma 2 in Finner and Gontscharuk (2009)
shows that convergence of the cdf. ofp-values corresponding to non-informative
markers to the cdf. of UNI[0,1] implies thatπ̂0 estimatesπ0 asymptotically almost
surely conservatively in the sense that liminfM0→∞{π̂0/π0}≥ 1 [Pϑ ] for all possible
parameter valuesϑ of the statistical model. The assertion now follows by noticing
thatα/` < 1− (1−α)1/` for all `≥ 1. �

In case of the Fisher-type testing methods and usage of simpleM, an anal-
ogous result can be obtained if the tuning parameterC of simpleM is chosen con-
servatively, cf. Gao et al. (2008).

4 Small-scale simulation study

The assertion of Theorem 1 is an asymptotic one for the numberM of markers under
investigation tending to infinity. As far as exact finite FWER control is concerned,
we return to the assertion of Lemma 1. We have shown that the Schweder-Spjøtvoll
estimatorπ̂0 estimatesπ0 conservatively with respect to its first moment. In other
words, on average we expect an overestimation ofπ0 by π̂0. Now, the investigations
in Section 2 of Finner and Gontscharuk (2009) show that slightly modified versions
of π̂0 provide exact finite FWER control if thep-values under null hypotheses are
stochastically independent. The authors propose to add a constant in its nominator
making the estimator more conservative than just with respect to its first moment.
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For arbitrarily dependentp-values, the situation is more complicated. However, in
the association analysis case with two-sided alternatives as considered here, only
positive dependency can occur. As recently studied extensively in the context of
false discovery rate (FDR) theory (cf., e. g., Benjamini and Yekutieli (2001), Sarkar
(2002), Finner et al., 2007), multiple tests typically behave more conservatively
under positive dependency than under joint independence.

Anyhow, in order to assess the behavior of Algorithm 1 for small numbers
of markers under investigation (as, for instance, in replication studies), we per-
formed a small-scale simulation study for different (small and moderate) values of
M, and withM1 = 10 in all cases. This parameter setup has been chosen to roughly
reflect the situation in Section 6.1 below. To this end, since simulation of real syn-
thetic genetic data is a very complicated task, we made use ofsemi-syntheticdata,
meaning that we used true observed genotypes (taken from the WTCCC Crohn’s
disease sub-study which we will describe in Section 6.2 below), and only brought
the disease indicators under experimental control. More specifically, we employed
a logistic regression model with additive risk allele contributions of the form

Pβ (Yi = 1|Gi) = [1+exp(−zi)]
−1, where zi = γ

M1

∑
j=1

β j ·Gi, j . (5)

In equation (5), the index 1≤ i ≤ N = 4,688 corresponds to individuals and the
index 1≤ j ≤M1 runs over theM1 positions on the genome which have been chosen
to carry information about the phenotype.

In order to ensure that theM0 positions chosen to be uninformative in these
computer simulations can really fulfill this requirement, they must be uncorrelated
with theM1 positions chosen to contain the ”signals”. Therefore, for practical im-
plementation, we implanted a subsequent block (in terms of the ordering of the
genetic positions present in the raw data) ofM1 markers from chromosome 2 into a
subsequent block ofM0 markers from chromosome 1. This ensures a realistic LD
structure within both blocks. The blocks were chosen randomly, but we ensured a
minor allele frequency of at least 10% at every locus included in the simulation data
sets.

For ease of exposition and since these simulations shall mainly serve as a
proof of principle, the regression coefficientsβ = (β1, . . .βM1)

t have been drawn
independently and uniformly from the interval[−1,1] and normalized such that
they summed up to 0. Neither the LD structure nor the proportionπ0 is affected by
the choice ofβ , as long as all coefficientsβ j are different from zero. The genotype
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informationGi, j for individual i at locusj was coded as follows.

Gi, j = 0, if the genotype of individuali at locusj equalsA1A1,

Gi, j = 1, if the genotype of individuali at locusj equalsA1A2,

Gi, j = 2, if the genotype of individuali at locusj equalsA2A2,

with A1 denoting the wild type andA2 denoting the risk allele (variant) at locusj.
The ”attenuation factor”γ in equation (5) should reflect the fact that other covariates
apart from the genotype have an influence on the phenotype, too. We choseγ = 1/4
in our simulations, leading to realistic effect sizes in terms of the empirical distribu-
tion of thep-values corresponding to theM1 informative positions (compared with
the reportedp-values entailing strong and moderate evidence for association in the
WTCCC Crohn’s disease sub-study).

For every setup (every considered value ofM), we performedB = 1000
Monte Carlo repetitions of the following simulation algorithm.

Algorithm 2

1. Draw disease labels according to the model in equation(5).
2. Apply (a) the Bonferroni correction, (b) the Bonferroni plug-in method from

Finner and Gontscharuk (2009), (c) the method from Moskvina and Schmidt
(2008), (d) Algorithm 1, to the simulated data.

3. Record for all four methods (a) if a type I error occurred, (b) the number of
truly associated positions (with the phenotype) that could be detected.

After completion of allB= 1000 Monte Carlo iterations, we estimated the
family-wise error rate and the multiple power of the four concurring multiple tests
by relative frequencies and means, respectively. The results are summarized in
Table 1.

For M = 50, all three data-adaptive methods behaved liberally, with Al-
gorithm 1 showing the largest empirical exceedance of the nominal FWER level.
Similarly as in Section 2 of Finner and Gontscharuk (2009), one can calibrate ei-
ther the nominator of the estimatorπ̂0 or the nominalα to be utilized in Algorithm
1 for very small numbers ofM such that exact control of the FWER is ensured, if a
concrete genetic model can be assumed. If the latter is not the case, a simple ad-hoc
adjustment ofα can be based on computer simulations of the type described in the
present section and by noticing thatt∗ is a linear function ofα. However, it has
to be warned that this type of adjustment does not imply a strict (mathematically
proven) guarantee for FWER control. This is a drawback of all data-adaptive proce-
dures that implicitly rely on asymptotic theory like the Glivenko-Cantelli theorem.
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M = 50,M0 = 40, M = 60,M0 = 50,
π̂0 = 0.859,Keff. = 38.21 π̂0 = 0.8764,Keff. = 45.65

F̂WER(Bonf.) 0.040 0.040
F̂WER(BPI) 0.053 0.050
F̂WER(MS) 0.053 0.050
F̂WER(Alg. 1) 0.063 0.063

p̂ower(Bonf.) 0.2932 0.1791
p̂ower(BPI) 0.3068 0.1894
p̂ower(MS) 0.3184 0.1983
p̂ower(Alg. 1) 0.3343 0.2100

M = 65,M0 = 55, M = 70,M0 = 60,
π̂0 = 0.9052,Keff. = 49.67 π̂0 = 0.9105,Keff. = 52.35

F̂WER(Bonf.) 0.034 0.026
F̂WER(BPI) 0.041 0.031
F̂WER(MS) 0.043 0.036
F̂WER(Alg. 1) 0.054 0.045

p̂ower(Bonf.) 0.2486 0.1699
p̂ower(BPI) 0.2560 0.1763
p̂ower(MS) 0.2652 0.1877
p̂ower(Alg. 1) 0.2725 0.1974

M = 75,M0 = 65, M = 100,M0 = 90,
π̂0 = 0.9161,Keff. = 56.45 π̂0 = 0.9405,Keff. = 75.58

F̂WER(Bonf.) 0.035 0.033
F̂WER(BPI) 0.039 0.036
F̂WER(MS) 0.040 0.042
F̂WER(Alg. 1) 0.048 0.047

p̂ower(Bonf.) 0.7085 0.7054
p̂ower(BPI) 0.7092 0.7055
p̂ower(MS) 0.7132 0.7081
p̂ower(Alg. 1) 0.7141 0.7089

Table 1: Simulation results on semi-synthetic data. Abbreviation ”Bonf.” refers to
the Bonferroni correction, ”BPI” to Bonferroni plug-in, ”MS” to the Moskvina and
Schmidt (2008) method, and ”Alg. 1” to Algorithm 1. The target FWER level was
set toα = 5% in all simulations.
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For M = 60 andM = 65, the liberal behavior of Algorithm 1 was still observed
(with decreasing severity), but already forM = 70, it did not occur anymore and
Algorithm 1 exhausted the nominal FWER level best among all four methods for
M = 70,M = 75, andM = 100. If one would change the distribution of the vector
β of regression coefficients such that mostp-values corresponding to alternatives
are close to the decision boundaryt∗, one could construct situations in which ex-
haustion of the FWER level also translates in a more pronounced way into gain in
multiple power.

Remark 4 All simulations in this section have been run on a standard quad-core
desktop personal computer. For one simulation setup (one value of M), they took
between8 and 8.5 hours (drawing of1000×N ≈ 4,700 labels, computation of
1000×M non-randomized and realized randomized p-values, estimation ofπ0 1000
times, computation of Keff., final evaluation with respect to FWER control and mul-
tiple power). For carrying out the computations for a genome-wide analysis as de-
scribed in Section 6.2, we recommend to make use of cluster-computing techniques
such that computations can be parallelized, for instance with respect to chromo-
somes. Computing time in this case will depend on many factors such as general
workload of the cluster, availability of physical and virtual memory, etc. As far as
software and programming is concerned, we provide hints for efficient implementa-
tion in the next section.

5 Computational details

The main computational complexity of the algorithm described in Section 3.4 orig-
inates from the necessity to traverse all tablesx̃ with given marginalsn in order to
compute realized randomizedp-values in the second step of Algorithm 1, because
the ordering induced byQ(·) or f (·|n), respectively, cannot be utilized in a straight-
forward way, meaning that it is hardly possible to determine the set ofx̃’s to be
summed over explicitly.

To derive a feasible implementation, we first notice that the logarithmic con-
ditional probability of observingx givenn can be expressed as ln(f (x|n)) =A(n)−
B(x) with A(n) =∑n∈n ln(Γ(n+1))− ln(Γ(N+1)) andB(x) =∑x∈x ln(Γ(x+1)).
Thereby,Γ(x) =

∫ ∞
0 tx−1exp(−t)dt denotes the Gamma function. This decompo-

sition in a term only depending onn and another term only depending onx is
extremely helpful, becauseA(n) can be pre-computed before iterating over thex̃’s.
Moreover, the transformation with the natural logarithm stabilizes computations
and protects against integer overflow. The additive structure of ln(f (x|n)) has the
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additional merit that it can be evaluated very efficiently by computer software, es-
pecially MATLAB, which provides the fully vectorized functiongammaln for eval-
uating the logarithmic Gamma function.

For implementing the iterations over the possible tablesx̃, it is essential to
notice that, givenn, each(2×2) tablex is already uniquely defined by the entry
x11. All other entries ofx can be calculated fromx11 andn. This means, a single
loop over the possible values ofx11 suffices to traverse all tables. In the(2×3) table
situation, a double loop overx11 andx12 is sufficient. Furthermore, one can restrict
the number of tables to be traversed even further by incorporating all constraints on
the entries of thẽx’s given by the marginalsn. More specifically, in the(2×2) table
situation,x11 has to be a member of the set{max(0,n1.−n.2), . . . ,min(n1.,n.1)}. In
case of a(2×3) table, it necessarily holdsx11∈ {0, . . . ,min(n1.,n.1)} and (as soon
as the value ofx11 is fixed)x12 ∈ {max(0,n1.−n.2−x11), . . . ,min(n1.−x11,n.1)}.

As supplementary material, we provide four efficient MATLAB routines for
calculating (non-)randomizedp-valuespQ andpFisher for both(2×2) and(2×3) ta-
bles upon request. We like to acknowledge Giuseppe Cardillo’s implementation
myfisher23, cf. Cardillo (2007), which already features many of the aforemen-
tioned implementational tricks except some restrictions onx11 andx12 and the com-
putation of realized randomizedp-values. Furthermore, correspondingR routines
will be included in the next release of theµTOSS software system for multiple
comparisons by Blanchard et al. (2010).

6 Performance on real-life datasets

6.1 Replication study by Herder et al. (2008), type II diabetes
endpoint

The study reported by Herder et al. (2008) aimed at replicating genetic variants
conferring an increased type II diabetes risk in a population in Southern Germany.
To this end,M = 44 SNPs on ten different genes were considered. In the ”Results”
section, the authors state that a ”(conservative) Bonferroni correction for 10 genes”
leads to a FWER-controlling multiple test procedure for this dataset. Setting the
FWER level toα = 5%, this correction means that a threshold of 0.005 has to be
used for raw marginalp-values. However, the claimed conservativeness is only
guaranteed in the artificial situation we discussed at the beginning of Section 3.3, i.
e., if all markers within a gene are perfectly correlated (r2

i j = 1). We re-analyzed the
data according to Algorithm 1. Before discussing the results it is worth mentioning
that the original study performed allelic (odds ratio-based) tests with simultaneous
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adjustment for covariates gender, age and body-mass index. Since a deep discus-
sion about the validity of Algorithm 1 in case of adjustment for covariates is way
beyond the scope of our work, we abstained from adjusting for covariates and only
analyzed the genetic component of the associations. However, as shown in Table 2,
adjustment for covariates changesp-values and odds ratios only marginally so that
it seems justified not to consider adjustments here. For shortness of presentation,
we only include the 13 SNPs on chromosomes 3 and 6 in Table 2; the results for
the remaining 31 SNPs are very similar and can be found in Appendix IV.

SNP Allelic OR one-sidedp Allelic OR one-sidedprand.

(adjusted) (adjusted) (unadjusted) (unadjusted)
rs11709077 0.74 0.0078 0.7668 0.0114
rs17036328 0.77 0.015 0.7911 0.0235
rs1801282 0.76 0.010 0.7764 0.0144
rs16860234 1.12 0.11 1.1357 0.0791
rs4402960 1.11 0.11 1.1258 0.0792
rs7651090 1.10 0.13 1.1111 0.1075
rs7640744 1.07 0.23 1.0806 0.1850
rs1470579 1.15 0.0499 1.1634 0.0403
rs10946398 1.30 0.00084 1.2661 0.0019
rs7754840 1.30 0.00073 1.2695 0.0017
rs9460546 1.30 0.00075 1.2695 0.0021
rs9465871 1.39 0.00040 1.3343 0.0015
rs7767391 1.37 0.00059 1.3164 0.0020

Table 2: Odds ratios andp-values for the first real data example

Utilizing LD information from HapMap (population ’CEU’), we applied
the Moskvina-Schmidt method for computing the effective number of tests and ob-
tainedKeff. = 16.73. As expected (different chromosomes involved in the analy-
sis), the Cheverud-Nyholt method leads to a very conservative estimation ofMeff. =
40.63. Notice that incorporating the effective number of tests alone does not reduce
multiplicity to the ”Bonferroni regarding number of genes”-type threshold men-
tioned before. However, additional estimation of the proportion of uninformative
markers leads tôπ0 = 0.4545 and, altogether, Algorithm 1 leads to the threshold
t∗ = 0.0066 for the rawp-values. Even if we would calibrate the nominal FWER
level to be employed in Algorithm 1 in such a way that our simulations indicate
that the target FWER level ofα = 5% is strictly kept for this small number of
M = 44, the corresponding new threshold would still exceed 0.005. In summary,
our proposed method confirms the heuristic argumentation in Herder et al. (2008)
and endorses that theCDKAL1 gene has been replicated in their study.
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Remark 5 For the estimation ofπ0 in case of one-sided p-values, we utilized the
slightly modified technique from Barras et al. (2010).

6.2 WTCCC dataset, Crohn’s disease endpoint

Here, we demonstrate the usefulness of our new method for the case of a genome-
wide association analysis. To this end, we re-analyzed the dataset for Crohn’s dis-
ease as part of The Wellcome Trust Case Control Consortium (WTCCC) study, cf.
The Wellcome Trust Case Control Consortium (2007), consisting of 455,086 SNPs
and 4,688 individuals (after quality control). Our proposed workflow in the GWA
case consists of two stages, a screening and a validation stage, as already consid-
ered by Evans et al. (2009), for example. To this end, we performed the following
procedure on the data.

(i) Split the WTCCC Crohn’s disease sample randomly into two halves, but
keeping the ratio cases / controls constant in both subsamples.

(ii) Consider the first sub-sample and apply an FDR-controlling (screening) cri-
terion to generate a list of candidate SNPs (there will be false positives in this
list).

(iii) Apply Algorithm 1 to the second subsample, but only considering the de-
tected candidate SNPs from the first subsample.

Our analysis can be regarded as a confirmatory pseudo-experiment consisting of
the two stages mentioned before. Of course, if all data are available for a combined
analysis, we donot recommend to split it. The aforementioned procedure shall only
mimic our target situation where a two-stage data ascertainment design has been
planned beforehand in order to pre-screen a set of candidate markers. Such a data
analysis strategy is often chosen in practice. In such a design, it would statistically
not be valid to combine the data for the pre-screened markers for final analysis. The
reasons that we used the data from the WTCCC study for this illustrative purpose
are that these data are well-known, of validated high quality and consisting of many
individuals.

In step (ii) of our analysis, we set the FDR level toq= 1/2, meaning that
we expect half of the output positions truly non-associated, but also ensuring that
most of the truly associated positions should be present in the output list. Indeed,
application of the FDR criterion with this parameter led to an adjusted threshold
of 0.0026 for realized randomizedp-values from the first sub-sample and selected
(almost) a superset of size 1,778 of the SNPs reported as associated with Crohn’s
disease in Tables 3 and 4 of The Wellcome Trust Case Control Consortium (2007),
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as expected, although we have drastically reduced power in comparison with utiliz-
ing the full dataset. Only one position on chromosome 19 that appears in Table 4 of
The Wellcome Trust Case Control Consortium (2007) could not be detected using
the FDR criterion.

In step (iii), we made use of LD coefficients computed from all controls
(which is valid, because there is no interrelation with the phenotype). For assessing
the stability ofKeff., we first performed computation of the effective number of tests
twice in the entire sample, once for LD computed in a window size of 10 kilobases
and once for a 100 kilobases window. Usage of a 10 kilobases window resulted
in an estimated effective number of tests ofKeff. = 346,167.96 and utilizing the
more informative LD-values in the 100 kilobase window led toKeff. = 329,079.66.
For determining the final threshold for the 1,778 p-values corresponding to the
positions selected in step (ii) and computed from the second sub-sample in step
(iii), we used the 100 kilobase window and obtainedKeff. = 1,350.45. Additionally,
we computedπ̂0(1/2) = 0.820 as already mentioned in the discussion of Figure
1 and arrived at a multiplicity-adjusted thresholdt∗ = 4.515× 10−5 for p-values
originating from the second sub-sample (the FWER level was set toα = 0.05 as in
the original publication).

As shown in Table 3, the final output dataset consists of 24 genetic positions
that could be detected to have a significant association with Crohn’s disease and is
in good concordance with the results obtained by The Wellcome Trust Case Control
Consortium (2007).

7 Discussion

First, we discuss briefly how to choose between the two concurring marginal test-
ing strategies described in Section 2.2. Common knowledge among statisticians and
practitioners seems to be, on the one hand, that even for larger sample sizes, exact
tests of Fisher-type tend to behave conservatively. On the other hand, chi-squared
tests are considered inappropriate for small sample sizes, because they originate
from asymptotic considerations and because the chi-squared statisticQ is very sen-
sitive with respect to small expected cell countserc in its denominator. However,
these two general properties of the Fisher and the chi-squared tests are of qualita-
tive character and they do not yet allow for the choice of a testing strategy for a
concrete dataset at hand. A quantitative assessment of the degree of conservative-
ness of Fisher’s exact test can be found in Crans and Shuster (2008). The authors
also provide a numerical remedy by tabulating adjustment constants leading to an
exhaustion of the (marginal) significance level by Fisher’s exact test. Lydersen
et al. (2009) provide a biostatistics tutorial with practical guidelines for choosing
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Chromosome SNP two-sidedp-value
1 rs11805303 1.52815×10−6

1 rs10489629 4.32475×10−5

1 rs2201841 8.98027×10−6

2 rs10210302 1.37414×10−8

2 rs6752107 1.24311×10−8

2 rs6431654 1.46089×10−8

2 rs3828309 3.70906×10−8

2 rs3792106 1.26383×10−8

5 rs17234657 9.39656×10−7

5 rs9292777 7.45977×10−6

5 rs1505992 5.33684×10−6

5 rs1553576 2.2623×10−5

5 rs1553577 1.5899×10−5

5 rs4957313 2.6807×10−5

5 rs6896604 3.29288×10−5

5 rs4957317 2.63496×10−5

5 rs11750156 6.87614×10−6

5 rs10055860 8.0347×10−6

5 rs1122433 7.61894×10−6

5 rs11957134 3.62912×10−5

5 rs1000113 4.20982×10−5

5 rs11747270 1.61028×10−5

10 rs11816049 3.79493×10−5

16 rs2076756 3.83491×10−6

Table 3: Output dataset for the second real data example
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a marginal testing strategy. Our approach for working with realized randomized
p-values can be regarded as a generalization of the concept of ”midp-values” pro-
posed in the latter article.

Second, a question of practical interest is: how much gain can be expected
by applying Algorithm 1 in comparison with estimation of the effective number of
tests alone, for example? For instance, it may be argued that for large-scale GWA
studies in which only a tiny proportion of SNPs are expected to be associated with
the phenotype, the multiplicity reduction proposed in Section 3.4 will mainly be due
to the incorporation of the effective number of tests and that the additional estima-
tion of the proportion of true null hypotheses will only yield a negligible additional
contribution. Although this is true, an association analysis for a yet completely un-
explored phenotype typically consists of two stages: a screening and a validation
stage (meant here to be carried out under the scope of one study). Our workflow
proposes utilizing the same LD information (obtained from the control samples or
from an external reference database) in both stages. This is especially useful if the
validation data set is of much smaller sample size, making correlation estimates
less stable than in the first analysis phase. The latter contradicts the notion that the
second phase will provide more reliable statistical evidence. Moreover,π̂0(λ ) will
typically be small in the validation phase, giving rise to a notable increase in mul-
tiple power in comparison to mere determination of the effective number of tests.
This has been demonstrated by re-analyzing a replication study in Section 6.1 and
the WTCCC data for Crohn’s disease in Section 6.2.

A further point worth discussing may be the question whether FDR control
is more appropriate than FWER control for genetic studies and how our methodol-
ogy relates to FDR control. Finner et al. (2010) describe the usage of realized ran-
domizedp-values and̂π0(λ ) in connection with an FDR-based analysis for Hardy-
Weinberg equilibrium. In such a case, type II error control (not to include too
many markers with a lack of genotyping quality in the analysis) is of much higher
importance than in the association test situation considered here, especially if no in-
dependent replication study is possible or desired. The FWER thus seems the more
natural criterion in our setup. However, utilizing realized randomizedp-values also
in the fifth step of Algorithm 1 in the screening stage of a study might be appro-
priate if a following validation stage is planned beforehand. This is due to the fact
that the final decisions are only made in this second (validation) stage. From a
methodological point of view, the open question with respect to a possible trans-
fer of our considerations to FDR-controlling multiple test procedures is how the
effective number of tests can be incorporated appropriately in the classical linear
step-up (LSU) test by Benjamini and Hochberg, for example. As shown in Finner
et al. (2007), positive correlations of medium magnitude lead to a very conservative
behavior of the LSU test, and a natural consequence of our work seems to adjust
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the FDR levelq by a factor depending on the effective number of tests and the pro-
portion of true nulls. However, the FDR is defined as the expected value of the
ratio of two dependent random variables and its value is therefore not necessarily
increasing in the value of the nominator. This imposes technical problems which
have not yet been resolved. Storey et al. (2004) have introduced an adjustment only
making use ofπ̂0(λ ), but additional consideration of the effective number of tests
has to our knowledge not been treated in the literature yet.

Finally, it will be interesting to explore how adjustment for covariates such
as age, gender or socio-economic variables can influence the correlation structure
assessment. This topic was briefly raised in Section 6.1, but goes beyond the scope
of our work and is devoted to future research.

Appendix I: Bias of the Schweder-Spjøtvoll estimator

In order to compute the bias ofπ̂0(λ ), we have to calculate

Eϑ [π̂0(λ )] = (1−λ )−1(1−Eϑ [F̂M(λ )]). (6)

To this end, we decompose

Eϑ [F̂M(λ )] = M−1

(

∑
i∈I0

Pϑ (pi ≤ λ )+ ∑
i∈I1

Pϑ (pi ≤ λ )

)

.

Due to the defining property of ap-value, i. e.,Pϑ (pi ≤ λ ) ≤ λ for all i ∈ I0, it
holdsEϑ [F̂M(λ )]≤ π0λ +M−1∑i∈I1Pϑ (pi ≤ λ ). Abbreviating

S≤ = M−1 ∑
i∈I1

Pϑ (pi ≤ λ ) and S> = M−1 ∑
i∈I1

Pϑ (pi > λ ),

leading toS≤+S> = 1−π0, we immediately obtain thatEϑ [π̂0(λ )]≥ (1−λ )−1×
(S>+π0(1−λ )) by substituting 1=S≤+S>+π0 in the second factor of (6). Thus,
the bias ofπ̂0(λ ) is lower-bounded by

Eϑ [π̂0(λ )]−π0 ≥
S>

1−λ
=

1
M(1−λ ) ∑

i∈I1

Pϑ (pi > λ )≥ 0, (7)

whereby the first inequality in (7) is an equality ifp-values under null hypotheses
are uniformly distributed on[0,1].

Remark 6 It may be worth to study the extremes of the bias ofπ̂0(λ ) under the
assumption that p-values under null hypotheses are uniformly distributed on[0,1].
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For the Dirac-case pi ∼ δ0 for all i ∈ I1, we obtain thatπ̂0(λ ) is unbiased for any
λ ∈ [0,1) which is in line with the findings in Finner and Gontscharuk (2009). On
the other hand, if pi ∼ UNI([0,1]) for all i ∈ I, the bias ofπ̂0(λ ) equals(1−π0) for
anyλ ∈ [0,1)meaning thatEϑ [π̂0(λ )] = 1.

Appendix II: Realized randomized p-values

Theorem 2 Let G : Ω → R and let f : Ω → R+ be a density onΩ of a discrete
random variateX, such that f(x) > 0 for all x ∈ Ω. Moreover let U denote a
UNI[0,1]-distributed variate which is stochastically independent ofX. Define

pG(x) = ∑
y:G(y)≤G(x)

f (y),

prand.
G (x,u) = ∑

y:G(y)≤G(x)

f (y)−u ∑
y:G(y)=G(x)

f (y), and

W = {pG(x) : x∈ Ω},

then it holds
P(pG(X) ≤ t)≤ t, for all t ∈ [0,1], (8)

P(pG(X) ≤ t) = t, for all t ∈ W , (9)

P(prand.
G (X,U))≤ t) = t, for all t ∈ [0,1]. (10)

Proof: Inequality (8) follows directly from (9). To prove (9) lett ∈W . Then
there exists az∈ Ω such thatt = pG(z)andpG(x)≤ t is equivalent toG(x)≤ G(z)
and thus,

P(pG(X) ≤ t) = P(G(X)≤ G(z)) =pG(z) = t.

Similarly, one can prove (10). Note that for eacht ∈ [0,1] there exists a
q∈ [0,1] and az∈ Ω such thatt = prand.

G (z,q). Now prand.
G (x,u)≤ prand.

G (z,q) holds if
eitherG(x)< G(z)or G(x) = G(z)andu≥ q holds, and we have

P(prand.
G (X,U)≤ t) = P(G(X)< G(z))+P(G(X) = G(z),U ≥ q)

= prand.
G (z,q) = t. �
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Appendix III: Conditional expectation of π̂0

Recall thatU = (U1, . . . ,UM)t is a vector of stochastically independent, identically
uniformly on [0,1] distributed random variables. Moreover,U is stochastically in-
dependent of the vectorX = (X1, . . . ,XM)t of all contingency table data. Now, we
consider

E
U [π̂0(λ )|X = x] =

1−EU [F̂M(λ )|X = x]
1−λ

,

whereEU [·] refers to the mathematical expectation with respect to the (joint) distri-
bution ofU andF̂M denotes the ecdf. of the realized randomizedp-values. Since
for every 1≤ j ≤ M the variableU j that is used for randomization is stochastically
independent of the table dataX j , we immediately obtain that

E
U [F̂M(λ )|X = x] = M−1

M

∑
j=1

P
U j (prand.(x j ,U j)≤ λ ).

Let A j = {x̃ : f (x̃|n) = f (x j |n)} or A j = {x̃ : Q(x̃) = Q(x j)}, respectively. We
have to distinguish three cases: First, if the non-randomizedp-value p(x j) al-
ready fulfills p(x j) ≤ λ , we havePU j (prand.(x j ,U j) ≤ λ ) = 1. Second, ifp(x j) >
λ +∑x̃∈A j

f (x̃|n), it holdsPU j (prand.(x j ,U j) ≤ λ ) = 0. Third, if λ < p(x j) ≤ λ +

∑x̃∈A j
f (x̃|n), we easily calculate that

P
U j (prand.(x j ,U j)≤ λ ) = 1−

p(x j)−λ
∑x̃∈A j

f (x̃|n)
.

Altogether, this entails

E
U [F̂M(λ )|X = x] = #{1≤ j ≤ M : p(x j)≤ λ}/M+

∑
j:λ<p(x j)≤λ+∑x̃∈Aj

f (x̃|n)

(

1−
p(x j)−λ

∑x̃∈A j
f (x̃|n)

)

/M.
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Appendix IV: Remaining results for the replication
study by Herder et al. (2008)

SNP Allelic OR one-sidedp Allelic OR one-sidedprand.

(adjusted) (adjusted) (unadjusted) (unadjusted)
rs10001190 0.89 0.09 0.88 0.0635
rs4458523 1.01 0.55 1.00 0.4805
rs4689394 0.99 0.45 0.98 0.4233
rs5018648 1.02 0.60 1.01 0.4251
rs10012946 1.00 0.52 0.99 0.4314
rs1046314 1.02 0.61 1.01 0.4268
rs564398 1.00 0.52 0.98 0.3882
rs7865618 0.97 0.36 0.96 0.2842
rs2383208 1.04 0.67 1.04 0.3735
rs10811661 1.09 0.80 1.08 0.2207
rs5015480 0.87 0.038 0.87 0.0352
rs10748582 0.84 0.022 0.86 0.0276
rs7923866 0.86 0.031 0.87 0.0369
rs7901695 1.21 0.010 1.23 0.0059
rs4506565 1.21 0.012 1.22 0.0078
rs4132670 1.22 0.0082 1.23 0.0055
rs7928810 1.07 0.20 1.08 0.1784

rs5215 1.08 0.16 1.09 0.1453
rs12790182 1.13 0.91 1.13 0.9165
rs1845618 1.10 0.85 1.10 0.8650
rs1113132 1.09 0.85 1.10 0.8672
rs7945827 1.09 0.83 1.09 0.8374
rs729287 1.10 0.86 1.11 0.8831
rs897004 1.04 0.67 1.04 0.6925
rs9939973 1.14 0.051 1.11 0.0933
rs9940128 1.14 0.053 1.11 0.0872
rs1121980 1.15 0.047 1.12 0.0861
rs7193144 1.11 0.095 1.09 0.1505
rs8050136 1.12 0.08 1.10 0.1177
rs9939609 1.10 0.11 1.08 0.1520
rs9930506 1.14 0.058 1.12 0.0683

Table 4: Remaining odds ratios andp-values for the replication study by Herder
et al. (2008)
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