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Although it is a standard practice in high-income countries, determination of the human immunodeficiency virus (HIV) load

is not recommended in developing countries because of the costs and technical constraints. As more and more countries

establish capacity to provide second-line therapy, and as costs and technological constraints associated with viral load testing

decrease, the question of whether determination of the viral load is necessary deserves attention. Viral load testing could

increase in importance as a guide for clinical decisions on when to switch to second-line treatment and on how to optimize

the duration of the first-line treatment regimen. In addition, the viral load is a particularly useful tool for monitoring

adherence to treatment, performing sentinel surveillance, and diagnosing HIV infection in children aged !18 months. Rather

than considering viral load data to be an unaffordable luxury, efforts should be made to ensure that viral load testing becomes

affordable, simple, and easy to use in resource-limited settings.
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BACKGROUND

Scaling up antiretroviral therapy in re-

source-limited regions requires a simpli-

fied approach [1]. Because of inadequate

laboratory capacity, many programs have

minimized laboratory monitoring [2] in

an effort to accelerate widespread avail-

ability of HIV treatment. In particular, the

measurement of HIV-1 RNA levels (i.e.,

viral loads)—which is done routinely to

monitor HIV-infected patients in high-in-

come countries—was not recommended

for use in resource-limited settings in the

2003 World Health Organization (WHO)

guidelines [3]. Equipment to determine

the viral load is often unavailable or sits

unused. Where available, viral load testing

is prohibitively expensive: a single viral

load test costs $20–$160 (in US dollars).

Because the majority of HIV-infected peo-

ple are still unable to access treatment, and

because funding remains limited, it has

been argued that resources should be ap-

plied to prevention measures and to the

initiation of treatment, rather than to per-

formance of expensive laboratory tests

used to monitor patients who are already

receiving treatment [4].

There are, however, a number of im-

portant reasons to implement viral load

testing in resource-limited settings. Nearly

1.5 million people worldwide are receiving

antiretroviral treatment, and this greatly

increases the need to detect cases in which

first-line treatment has failed. More than

800,000 infants are newly infected with

HIV each year, but infection cannot be

readily diagnosed without viral load test-

ing. As the need for viral load testing in-

creases, technologies to determine the viral

load are becoming simpler, and costs are

decreasing [5]. Given the $8.3 billion an-

nual investment in HIV treatment in re-

source-limited settings [6], the question of

whether high-quality, effective HIV care

can be provided without viral load mon-

itoring needs to be revisited. The focus of

this article is the clinical use of viral load

to manage antiretroviral treatment and to

diagnose HIV infection in infants. Other

uses, such as monitoring the level of drug

resistance in a population and assessing

the quality of a treatment program, are

also outlined.
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USE OF VIRAL LOAD
MEASUREMENTS IN HIGH-
INCOME COUNTRIES

In high-income countries, determination

of the CD4 cell count and viral load is

used to determine whether antiretroviral

treatment is indicated, and viral load data

are used to gauge whether antiretroviral

treatment is successful [7, 8]. When viral

replication is suppressed to low levels, re-

sistance mutations cannot emerge, and a

durable treatment response ensues. Viral

replication in the presence of antiretroviral

treatment favors selection of resistance

mutations and treatment failure. Viral

load assays and drug resistance tests are

used routinely in high-income settings to

guide most treatment decisions.

Viral load measurements are optimally

used to guide treatment when 2 conditions

are met. First, effective plasma drug levels

must be assured. It would be erroneous

to conclude that treatment has failed if the

patient’s adherence is poor or if the reg-

imen has not been taken as prescribed

(adherence is not the only issue; drug

quality, bioavailability, and drug interac-

tions can be detrimental). Second, alter-

native drugs must be available. In the ab-

sence of alternatives to a failing regimen,

the use of resources for viral load testing

is ill advised. In high-income countries,

120 antiretrovirals are now available, pro-

viding options for second-, third-, and

even fourth-line (“salvage”) regimens, and

new molecules, such as third-generation

protease inhibitors, integrase inhibitors,

and CCR5 inhibitors, will further expand

the possibilities for salvage therapy. How-

ever, only a few second-line drugs are

available in resource-limited settings.

Although there is a consensus on the

triggers for initiation of treatment (CD4

cell count, 200–350 cells/mL) and on the

viral load targets during treatment (the vi-

ral load should be “undetectable,” mean-

ing that the HIV RNA level is !50 to 400

copies/mL, depending on the assay’s sen-

sitivity), opinions diverge on the critical

issue of the appropriate response to low-

level viremia in patients who are receiving

treatment [7, 8]. In high-income settings,

some clinicians interpret any sustained,

detectable viremia (viral load, 150 copies/

mL) as treatment failure that necessitates

a switch in the regimen, because some re-

sistance mutations are likely to emerge

even with low-level replication. Others

take a more flexible approach, weighing

clinical and immunologic measures of

treatment success, especially in heavily

treatment-experienced patients whose op-

tions for active antiretrovirals are limited.

Also, for any given viral load, the decrease

in the CD4 cell count is slower in patients

who are infected with drug-resistant HIV

than in those who are infected with wild-

type HIV [9]. In some triple-class–expe-

rienced patients, CD4 cell counts may re-

main stable for months or years, provided

that the viral load does not exceed 10,000

copies/mL [10–12].

POTENTIAL BENEFIT OF VIRAL
LOAD MEASUREMENTS
IN RESOURCE-LIMITED
SETTINGS

Treatment failure. Establishment of a

viral load threshold to guide treatment

switch decisions in resource-limited set-

tings is fraught with challenges. In most

national protocols, the options after a

failed first-line regimen are generally lim-

ited to a single second-line regimen. The

prices of second-line regimen drugs are

currently 10-fold higher than the prices of

first-line regimen drugs [13]. Viral load

and resistance testing are rarely available,

and where they are available, the cost and

complexity of testing (which requires skilled

technicians at a referral laboratory and sam-

ple transfer by cold chain) severely limit the

ability to perform these tests routinely. Thus,

the use of routine viral load monitoring in

support of a developed-world strategy based

on monitoring for maximal viral suppres-

sion has not been implemented in most re-

source-limited settings.

In the absence of routine viral load test-

ing, treatment failure has generally been

defined by clinical criteria and CD4 cell

count, and the revised 2006 WHO guide-

lines suggest a number of possible algo-

rithms [3]. However, changes in CD4 cell

counts are difficult to interpret as a result

of individual variations in the immuno-

logical response to antiretroviral treat-

ment. An algorithm based on clinical his-

tory, hemoglobin level, and CD4 cell count

has recently been proposed, but it has not

been validated in routine clinical care [14].

In fact, no validated definition of immu-

nologic treatment failure based on the

CD4 cell count exists, and there are no

data on the long-term outcome of CD4

cell count–guided treatment changes. A

recent study from Botswana suggests that

the utility of CD4 cell count data to predict

virological failure is limited [15]. Because

clinical failure is an even later develop-

ment, defining treatment failure on clin-

ical grounds alone is equally suboptimal.

In the few settings where viral load test-

ing is available, cost issues have modified

the way it is used to approach treatment

failure. A decreasing CD4 cell count trig-

gers concern about treatment failure, and

the viral load is determined to assess vi-

rological failure only in patients with de-

creasing CD4 cell counts. In principle, a

predetermined threshold of virological

failure would then trigger a switch in

therapy; in practice, decisions are made

on a case-by-case basis. Complicating

this approach, studies in resource-limited

settings have shown frequent discordance

between virological and immunological

responses to antiretroviral treatment, in-

cluding a marked increase in CD4 cell

counts in patients without complete viral

suppression or a decrease in CD4 cell

counts in patients with an undetectable

viral load [16].

Thus, 2 critical questions remain. First,

if viral load test results provide an early

sign of treatment failure and predict clin-

ical outcome, can a single viral load

threshold be used to determine when to

switch from a first-line to a second-line

regimen in resource-limited settings? And,
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if so, can a viral load test be made af-

fordable and practical for this use?

The answer to the first question de-

pends on the biology of virological fail-

ure and the availability of second-line

drugs. The longer that viral replication oc-

curs under ineffective plasma drug lev-

els, the more likely it is that mutations

will accumulate, jeopardizing future treat-

ment options. If programs had 2 sequen-

tial regimens with limited cross-resistance

available, resistance testing would not be

needed for at least for some years after

failure of the first regimen. Currently, fail-

ure of the WHO’s recommended first-line

regimens—2 nucleoside reverse-transcrip-

tase inhibitors plus 1 nonnucleoside re-

verse-transcriptase inhibitor—is associ-

ated with thymidine analogue mutations,

the M184V mutation, and nonnucleoside

reverse-transcriptase inhibitor mutations.

A second-line regimen of 2 new nucleo-

side reverse-transcriptase inhibitors (aba-

cavir, didanosine, and/or tenofovir), com-

bined with a boosted protease inhibitor,

can be expected to retain reasonable ac-

tivity. Nonetheless, data from a cross-sec-

tional study from Malawi of 50 patients

who had been exposed to stavudine, la-

mivudine, and nevirapine and who had

viral loads 11000 copies/mL revealed a

highly predictable mutation pattern with-

out thymidine analogue mutations (al-

though the median duration of follow-up

in this cohort was only 8.3 months) [17].

Greater access to an expanded, low-price,

second-line formulary that has minimal

cross-resistance with the first line, com-

bined with rational use of viral load test-

ing, would be sufficient to minimize drug

resistance and maximize the likelihood of

success for patients whose WHO-recom-

mended first-line regimens fail.

Studies can also address the second

question: is there a single threshold or a

narrow range of viral loads that can be

used as a trigger for treatment switches?

Evidence from the PLATO Collaboration

and other studies suggests that, as long as

the viral load remains !10,000 copies/mL,

CD4 cell counts remain stable and the risk

of clinical progression is low [14–16, 18].

Some national programs have set 5000

copies/mL as a threshold for switching

regimens. Additional virological data from

ongoing clinical trials and observational

cohorts in resource-limited settings, com-

bined with genotype data from samples

from patients with low-level viremia, will

help to evaluate different thresholds and

guide the rational use of viral load testing.

Clearly, however, a qualitative test with a

cutoff value of 10,000 copies/mL would be

of immediate practical use.

The interpretation of low viral load data

using this approach warrants comment. In

high-income countries, the significance of

viral loads of 50–1000 copies/mL contin-

ues to be debated, and the concept known

a “blip”—transient, low-level viremia that

returns spontaneously to an undetect-

able level without apparent clinical con-

sequences—has been introduced [19, 20].

The interpretation of low-level viremia in

resource-limited settings may be even

more challenging because of the high rates

of comorbidities, such as tuberculosis, ma-

laria, and other common infections, that

may induce blips [21, 22]. However, with

an assay that has a cutoff value of 10,000

copies/mL, such blips would appropriately

pass unnoticed. Nonetheless, the nature of

blips in resource-limited settings is a re-

search priority.

Adherence monitoring. In Khayelit-

sha, South Africa, antiretroviral treatment

has been accessible since 2001; by April

2006, 13500 adults had started receiving

therapy [23]. Viral load and CD4 cell

count monitoring are routinely performed

at baseline, at months 3 and 6 after the

commencement of treatment, and every 6

months thereafter. Adherence support in-

cludes preparedness counseling, pillboxes,

support groups, and mandatory disclosure

to at least 1 “treatment buddy.” Viral load

testing is also used to identify patients who

need more-intensive adherence support.

When a patient with a viral load 1400

copies/mL is identified, he or she under-

goes a cycle of adherence checks, pill

counts, and weekly counseling sessions for

4 weeks, after which time the viral load is

reassessed.

After 4 years of follow-up, 70% of pa-

tients continued to received their original

regimens, with 17.9% migrating to a sec-

ond-line regimen. In a sample of 598 pa-

tients, 515 (87%) were found to have an

undetectable viral load at 3 months, and

416 (90%) were found to have an unde-

tectable viral load at 6 months. With re-

gard to the remaining patients with de-

tectable viral loads, the ability of their viral

load to return to an undetectable level cor-

related with the timing of detection of their

virological escape and the subsequent in-

tervention in adherence support provided.

Only 25% of patients who were not reeval-

uated for �7 months were able to achieve

an undetectable viral load, compared with

71% of patients who underwent an adher-

ence intervention and a repeated viral load

assessment within 4 months.

Thus, viral load testing combined

with an adherence intervention may

help patients with poor adherence to

therapy maintain use of their first-

line regimen, preventing unnecessary

switches in treatment. Moreover, in set-

tings with very high patient workload,

viral load testing may allow staff to tri-

age between patients who are eligible for

self-administered antiretroviral treat-

ment and patients who need more reg-

ular visits and support. The data from

Khayelitsha are preliminary, and it

should be noted again that broader im-

plementation of strategies to use viral

load data for early detection of non-

adherence to treatment in resource-poor

settings would require a simple, afford-

able viral load assay. Nonetheless, this

approach is proving useful in a number

of settings where viral load testing is

available, including positive experience

reported from programs in Nigeria (J.

Wenkel, personal communication) Bot-

swana (G. Brisson, personal communi-

cation), and Uganda [24]. Further eval-

uation is warranted.

Diagnosis of HIV infection in infants.

In most resource-limited settings, children
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Table 1. Specifications of existing viral load assays and target specifications for a viral load assay appropriate
for resource-limited settings.

Characteristic Available viral load equipment/kit

Target requirements for
viral load devices designed for

resource-limited settings

Assay characteristic
Sample collection method Venipuncture Fingerstick/heelsticka lancet
Sample volume, mL 200–1000 100–200a

Sample preparation Three-step workflow, open system, ultracentrifu-
gation, separate sample preparation area

Minimal (plasma and whole
blood), closed system

Consumables per result 1 blood collection tube, 1 needle, 1 micropipetter,
6 pipet tips, 1 pipettor, 2–4 pipets, reaction
tubes, reagent tubes, reagent reservoirs

1 lancet, 1 capillary collection
tube, 1 disposable cartridge

Reagent characteristics Refrigerated kits (2�C–8�C) Reagents embedded on cartridge
and stabilized to 40�C

Test cost $14–$100 per result !$8 per result
Instrument characteristics

Power requirements AC mains Rechargeable battery
Characteristics Multiple equipment components Handheld/bench-top, single device
Instrument cost $30,000–$60,000 !$1000

Performance
Technician time 10–60 min !10 min
Time to result 3–8 h !2 h
Analytic/diagnostic range Quantitative: from 50 to 106 copies/mL; all clades Semi-quantitative threshold:

10,000a copies/mL; all clades
Training and skill level Advanced training in molecular biology techniques 1–2 days training, 10th grade

education

NOTE. AC, alternating current.
a For diagnosis in infants.

born to HIV-infected mothers are tested

with an antibody test to determine their

HIV infection status. These tests are only

conclusive after 15–18 months because of

the potential for false-positive results as-

sociated with persisting maternal antibod-

ies. Earlier identification of HIV infection

in exposed infants and referral for anti-

retroviral treatment are essential.

Detection of virus by nucleic acid am-

plification is the preferred method for di-

agnosis. Most experts agree that viral load

testing performed when the child is aged

4–14 weeks is optimal; diagnosis of infec-

tion in breast-fed infants may require ad-

ditional testing. Some programs have es-

tablished routine, early infant HIV testing,

in which at-risk infants are identified dur-

ing regular postnatal follow-up visits (e.g.,

vaccination visits) and are tested as early

as 4–6 weeks of age. DNA PCR is widely

used, largely because it is cheaper than

RNA PCR, although it is slightly less sen-

sitive [25–27]. Dried blood spots have

proven to be useful as samples transported

to a reference laboratory [28], but turn-

around of results may still take several

weeks, during which time many infants

are lost to follow-up.

Trials from Malawi, Kenya, and Uganda

have reported a 40%–50% mortality rate

among HIV-infected infants within the

first 24 months of life [29–31]. On-site,

rapid diagnosis of HIV infection in in-

fants would provide health care workers

and caretakers with results during routine

postnatal visits, allowing early treatment

initiation where needed. It would also al-

low savings for overburdened health ser-

vices by screening out as many as 90%–

95% of exposed but uninfected children,

limiting unnecessary use of trimethoprim-

sulfamethoxazole, and guiding strategies

for infant feeding in at-risk babies. For

diagnosis of HIV infection in infants, as

in monitoring in adults, a simple, quali-

tative viral load test with a detection

threshold of 10,000 copies/mL would be

more than sufficient [28].

Other uses: quality assessment, resis-

tance surveillance, and vaccine efficacy

studies. Viral load testing is also used in

resource-limited settings to assess HIV

treatment program quality, to monitor

drug resistance, and to evaluate candidate

vaccines. As a quality benchmark, the

WHO has proposed that 70% of patients

should achieve virological suppression

(defined as a viral load !400 copies/mL)

at 6 months of antiretroviral treatment

in resource-limited settings [32–37]. A

global network of drug resistance sur-

veillance has also been established [32],

and the US National Institutes of Health

has begun planning for viral load testing

in upcoming phase IIb and phase III vac-

cine trials (M. Schito and P. de Souza,

personal communication). The availabil-

ity of simple, affordable viral load tests
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Figure 1. Prototype dipstick to quantify amplified nucleic acids for simplified viral load measurement in resource-limited settings (courtesy of Magda
Dineva and Helen Lee, Diagnostics Development Unit, Cambridge University, United Kingdom).

would expand the reach of each of these

programs [38, 39].

FUTURE ASSAYS FOR VIRAL
LOAD MEASUREMENT
IN RESOURCE-LIMITED
SETTINGS

Four systems to measure viral load are

now in use in high-income settings: the

Abbott real-time HIV-1 PCR assay, the

Bayer Versant HIV-1 RNA 3.0 (bDNA)

assay, the bioMérieux NucliSens HIV-1

QT (NASBA) assay, and the Roche Am-

plicor HIV-1 Monitor 1.5 (RT-PCR) assay,

which can also be run in a real-time for-

mat [40, 41]. Each system requires refrig-

erated reagents, multiple instruments, and

isolation rooms to prevent cross-contam-

ination. Highly skilled laboratory techni-

cians proficient in molecular biology tech-

niques and strong laboratory management

are essential. Generic, low-cost reagents

for real-time assays have been developed

for use in resource-limited settings, with

performance comparable to existing assays

[42], and price reductions have been ne-

gotiated for commercial systems [5]. Al-

though these developments are encour-

aging, because of the complexity of nucleic

acid amplification assays, expansion of vi-

ral load testing capacity has been highly

variable in low-income settings.

Two nonnucleic acid viral load detec-

tion methods have also been developed

[43]. One, the ICD p24Ag assay, measures

circulating HIV p24 protein after immune

complex dissociation; this was originally

developed as a research tool. The second,

the Cavidi ExaVir Load assay, uses a mod-

ified ELISA to measure reverse-transcrip-

tase activity, which correlates with circu-

lating HIV RNA levels. Although these are

less complex than nucleic acid assays, both

require refrigerated reagents, multiple in-

struments, and skilled laboratory techni-

cians; moreover, the Cavidi RT ELISA test

results are available only after 3 days [44].

Investigations of the use of p24 assays in

clinical management in Africa have been

disappointing [44, 45]. Clinical validation

for both systems is incomplete.

Given the limitations of current tests for

use in resource-limited settings, imple-

mentation of expanded viral load testing

has been delayed, even in countries such

as Brazil and South Africa, where labo-

ratory infrastructure is more robust. Thus,

in early 2006, Médecins Sans Frontières

organized an expert consultation among

academic experts and end users in re-

source-limited settings to identify the es-

sential characteristics for a new viral load

assay appropriate for resource-limited set-

tings [46]. A survey was also performed

among potential end users at 32 districts

and local hospitals and clinics involved in

the monitoring and care of ∼18,000 pa-

tients in developing countries [47]. The

critical specifications were established, in-

cluding thresholds for adult monitoring

and infant diagnosis, cost, automation,

power requirements, and the technical de-

mands on users (table 1).

Currently available assays do not yet

meet these specifications. Several biotech-

nology developers are attempting to de-

sign new assays along these lines. As one

example, scientists at Cambridge Univer-

sity have recently developed a new ap-

proach to quantify amplified nucleic acid

using a simple dipstick [48] and a signal

amplification system for visual detection

at lower thresholds (figure 1). Other ap-

proaches to viral detection that can meet

the specifications required of a viral load

assay appropriate for resource-limited set-

tings are also in development [49].

CONCLUSIONS

The revised WHO guidelines for HIV

treatment in resource-limited settings re-

leased at the XVI World AIDS Conference

in Toronto in August 2006 [3] specifically

recognize the increasing use of viral load

tests in many countries. For the first time,

viral load data are considered in the cri-

teria to define treatment failure, and viral

load thresholds for resource-limited set-

tings are suggested. These guidelines offer

useful guidance for further research on

this question. Although current assays re-

main expensive, viral load testing may

prevent unnecessary switches to expen-

sive second-line therapies, and the costs

of not monitoring viral loads need to be

considered.

The current practice in resource-limited

settings of basing treatment decisions on

CD4 cell counts and clinical signs can only

lead to potentially dangerous delays and

uncertain outcomes for a number of pa-

tients and widespread transmission of

drug-resistant virus—in particular, in ba-

bies born to mothers with partial treat-
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ment failure. With the increasing need for

availability of second-line regimens, there

is now a reasonable argument in support

of the widespread, rational use of viral load

testing. Although relatively expensive at

present, it has the potential to prevent un-

necessary switches to expensive second-

line therapies, to assist adherence inter-

vention programs, and to diagnose HIV

infection in infants. We anticipate that ad-

vances in diagnostic technologies will lead

to new viral load assays that will meet the

specifications appropriate for resource-

limited settings.

The focus in resource-limited settings

has been almost exclusively on increasing

access to drugs. Attention must now also

be paid to monitoring to limit the costs

associated with widespread use of expen-

sive second-line therapy and to provide

optimal treatment to patients.
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