layed-onset primary cytomegalovirus disease and the risk of allograft failure and mortality after kidney transplantation. Clin Infect Dis **2008**; 46:840–6.

- Scemla A, Kreis H, Legendre C. Less pessimistic long-term results for patients with cytomegalovirus disease. Clin Infect Dis 2008; 47:1360–1 (in this issue).
- 6. Paya C, Humar A, Dominguez E, et al. Efficacy and safety of valganciclovir vs. oral ganciclovir for prevention of cytomegalovirus disease in solid organ transplant recipients. Am J Transplant **2004**; 4:611–20.
- 7. Limaye AP, Bakthavatsalam R, Kim HW, et al. Impact of cytomegalovirus in organ transplant recipients in the era of antiviral prophylaxis. Transplantation **2006**; 81:1645–52.

Reprints or correspondence: Dr. Raymund R. Razonable, Div. of Infectious Diseases, Mayo Clinic, Marian Hall 5, 200 First St. SW, Rochester, Minnesota 55905 (Razonable.Raymund @mayo.edu).

Clinical Infectious Diseases 2008;47:1361–2 © 2008 by the Infectious Diseases Society of America. All rights reserved. 1058-4838/2008/4710-0020\$15.00 DOI: 10.1086/592750

Cerebrovascular Complications of Infective Endocarditis

TO THE EDITOR-We read with great interest the article by Snygg-Martin et al. [1] that was recently published in Clinical Infectious Diseases, which analyzed the cerebrovascular complications of left-sided infective endocarditis using MRI and neurochemical brain damage markers. In that article, the authors found an elevated incidence of symptomatic and asymptomatic cerebrovascular complications among patients with left-sided infective endocarditis. Among the factors associated with cerebrovascular complications, the size of valvular vegetation was identified as a risk factor for symptomatic and asymptomatic complications, and only Staphylococcus aureus infection was associated with symptomatic complications in the microbiology analysis [1]. However, we feel that some of the issues raised in this article need to be addressed.

As noted in an article by Baddour and Bayer [2], the overall frequency of cerebrovascular complications in the study reported by Snygg-Martin et al. [1] was very high. However, the number of patients included in the study was small (60 patients), only 4 cases were due to gramnegative bacteria, and no cases were due to Candida species or other fungi (which are considered to be responsible for 1%-2% of all cases of infective endocarditis) [3]. In an extensive revision of the literature, Ellis et al. [4] found that 26% of patients with fungal endocarditis developed symptomatic CNS involvement. In a recently published article [5], 33 (1.2%) of 2760 cases of infective endocarditis were due to Candida species. In this article, Boddley et al. [5] reported that infective endocarditis due to Candida species was associated with a similar incidence of cerebrovascular complications, compared with infective endocarditis due to all other causes. In a recent comparative analysis published by our group [6], we retrospectively analyzed the medical literature on published cases of endocarditis due to Candida parapsilosis and endocarditis due to Candida albicans. We found that 17 (26.6%) of 64 patients with left-sided endocarditis due to C. parapsilosis experienced symptomatic cerebrovascular complications. Seven patients had intracranial hemorrhage, and 10 patients experienced ischemic strokes [6].

In addition, we suspect that the association reported by Snygg-Martin et al. [1] of symptomatic cerebrovascular complications with S. aureus infection only, as well as their finding of a high number of cerebrovascular complications, might be attributable to the small number of patients included in their study. It would be very interesting to perform a multicenter clinical trial to achieve a larger patient sample that would include more cases due to gram-negative bacteria and fungi. This could help us to better establish the relationship between the microbiological etiology of infective endocarditis and the risk of symptomatic and asymptomatic cerebrovascular complications.

Acknowledgments

Potential conflicts of interest. J.G. and J.A.: no conflicts.

Jorge Garbino and Juan Ambrosioni

Infectious Diseases Division, University Hospitals of Geneva, Geneva, Switzerland

References

- Snygg-Martin U, Gustafsson L, Rosengren L, et al. Cerebrovascular complications in patients with left-sided infective endocarditis are common: a prospective study using magnetic resonance imaging and neurochemical brain damage markers. Clin Infect Dis 2008; 47:23–30.
- Baddour LM, Bayer AS. Cerebrovascular complications in patients with left-sided infective endocarditis: out of site, out of mind. Clin Infect Dis 2008; 47:31–2.
- Moreillon P, Que YA. Infective endocarditis. Lancet 2004; 363:139–49.
- Ellis ME, Al-Abdely H, Sandridge A, Greer W, Ventura W. Fungal endocarditis: evidence in the world literature, 1965–1995. Clin Infect Dis 2001; 32:50–62.
- Baddley JW, Benjamin DK Jr, Patel M, et al. Candida infective endocarditis. Eur J Clin Microbiol Infect Dis 2008; 27:519–29.
- Garzoni C, Nobre VA, Garbino J. *Candida parapsilosis* endocarditis: a comparative review of the literature. Eur J Clin Microbiol Infect Dis 2007; 26:915–26.

Reprints or correspondence: Dr. Jorge Garbino, Infectious Diseases Div., University Hospitals of Geneva, Geneva, Switzerland (jorge.garbino@hcuge.ch).

Clinical Infectious Diseases 2008; 47:1362

© 2008 by the Infectious Diseases Society of America. All rights reserved. 1058-4838/2008/4710-0021\$15.00 DOI: 10.1086/592751

Reply to Garbino and Ambrosi

TO THE EDITOR-We thank Garbino and Ambrosioni [1] for their interest in our study of cerebrovascular complications (CVC) in left-sided infective endocarditis (IE) [2]. Our study is small, compared with some recent studies in this area [3-5], but the patients in our study were epidemiologically well matched with patients in the National Swedish Endocarditis Registry during the same period. Staphylococcus aureus was the only microorganism identified as a risk factor for symptomatic CVC in our study, which is in agreement with the findings of earlier studies [3-6]. As pointed out by Garbino and Ambrosioni [1], there is a need to evaluate uncommon microorganisms, such as Candida species or gram-negative bacilli, as potential risk factors for CVC. A much