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Background The residual risk that remains after statin treatment supports the addition of other LDL-C-lowering agents and has sti-
mulated the search for secondary treatment targets. Epidemiological studies propose HDL-C as a possible candidate.
Cholesteryl ester transfer protein (CETP) transfers cholesteryl esters from atheroprotective HDL to atherogenic
(V)LDL. The CETP inhibitor anacetrapib decreases (V)LDL-C by �15–40% and increases HDL-C by �40–140% in
clinical trials. We evaluated the effects of a broad dose range of anacetrapib on atherosclerosis and HDL function, and
examined possible additive/synergistic effects of anacetrapib on top of atorvastatin in APOE*3Leiden.CETP mice.

Methods
and results

Mice were fed a diet without or with ascending dosages of anacetrapib (0.03; 0.3; 3; 30 mg/kg/day), atorvastatin (2.4 mg/
kg/day) alone or in combination with anacetrapib (0.3 mg/kg/day) for 21 weeks. Anacetrapib dose-dependently reduced
CETP activity (259 to 2100%, P , 0.001), thereby decreasing non-HDL-C (224 to 245%, P , 0.001) and increasing
HDL-C (+30 to +86%, P , 0.001). Anacetrapib dose-dependently reduced the atherosclerotic lesion area (241 to
292%, P , 0.01) and severity, increased plaque stability index and added to the effects of atorvastatin by further decreas-
ing lesion size (295%, P , 0.001) and severity. Analysis of covariance showed that both anacetrapib (P , 0.05) and non-
HDL-C (P , 0.001), but not HDL-C (P ¼ 0.76), independently determined lesion size.

Conclusion Anacetrapib dose-dependently reduces atherosclerosis, and adds to the anti-atherogenic effects of atorvastatin, which is
mainly ascribed to a reduction in non-HDL-C. In addition, anacetrapib improves lesion stability.
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Translational Perspective
The present study is the first intervention study in a well-established, translational mouse model for hyperlipidaemia and atherosclerosis
showing that anacetrapib dose-dependently reduces atherosclerosis development and adds to the anti-atherogenic effects of atorvastatin.
This effect is mainly ascribed to the reduction in non-HDL-C despite a remarkable increase in HDL-C and without affecting HDL functionality.
In addition, anacetrapib improves lesion stability.

Introduction
Interventiontrialsprovideampleevidence that loweringof low-density
lipoprotein-cholesterol (LDL-C) contributes to a reduction in cardio-
vascular (CV) risk.1–3 However, the residual risk that remains after
statin treatment, as well as failure for some patients to reach recom-
mended LDL-C targets despite statin treatment, support the addition
of other LDL-C-lowering agents and also stimulate the search for sec-
ondary treatment targets.3,4 Prospective epidemiological studies
propose high-density lipoprotein (HDL)-C as a potential target.5 Cho-
lesteryl ester transfer protein (CETP) plays an important role in lipid
metabolism by facilitating the transfer of cholesteryl esters from ather-
oprotective HDL to atherogenic (V)LDL in exchange for triglycerides
(TG), and inhibitionofCETPactivityhasbeenproposedasatherapeut-
ic way to increase HDL-C levels.6–11

In mouse models for atherosclerosis, CETP expression aggravated
atherosclerosis development.12,13 Most but not all studies in rabbits
and mice showed that CETP inhibition reduced atherosclerosis devel-
opment.14–19 However, torcetrapib failed to enhance the anti-
atherogenic effects of atorvastatin and induced a pro-inflammatory,
vulnerable plaque phenotype in APOE*3Leiden.CETP mice.19 In the
large clinical outcome trial (ILLUMINATE), torcetrapib increased the
risk of major CV events and mortality despite a 72% increase in
HDL-C and a 25% reduction in LDL-C.20 The unexpected detrimental
effects were ascribed to either an off-target blood pressure effect or
the possible generation of dysfunctional HDL particles.20 The much
less potent CETP inhibitor dalcetrapib increased HDL-C by 31–40%
with a minimal reduction in LDL-C, but did not translate into clinical
benefit and resulted in premature terminationof the dal-OUTCOMES
trial.21 Nonetheless, other CETP inhibitors are currently in clinical
development. Among these, anacetrapib and evacetrapib have
remarkable lipid-modulating abilities without the unwanted blood
pressure effect as observed with torcetrapib.22 In phase II trials, anace-
trapib (10–300 mg) decreased LDL-C by �15–40% and increased
HDL-C by �40–140% and evacetrapib (30–500 mg) decreased
LDL-C by �15–35% and increased HDL-C by �50–130%.23,24

To elucidate whether pharmacological CETP inhibition is anti-
atherogenic and to what extent this is due to its LDL-C-lowering
and HDL-C-raising abilities, we evaluated the effects of partial to
full inhibition of CETP activity with a broad dose range of anacetrapib
monotreatment on lipid modulation, atherosclerosis development,
and HDL functionality in APOE*3Leiden.CETP mice. Secondly, to
mimic clinical intervention trials where dyslipidaemic patients also
receive statin treatment, we examined the possible additive/synergis-
tic effects of anacetrapib on top of atorvastatin treatment in this well-
established model for lipoprotein metabolism and atherosclerosis.
These mice respond in a human-like manner to lipid-modulating
interventions, including LDL-C-lowering19,25 and HDL-C-raising
drugs.19,26,27 See Supplementary material online for more detailed

information on the background of the APOE*3Leiden.CETP mice
and their response to hypolipidaemic drugs.

Methods

Animals and diet
Female APOE*3Leiden.CETP transgenic mice13 were fed a semi-
synthetic cholesterol-rich diet for a run-in period of 5 weeks (see Supple-
mentary material online). Animals were matched based on body weight,
total cholesterol (TC), TG, HDL-C and age (n ¼ 15 per group) and
received a control Western-type diet without or with incremental
dosages of anacetrapib (0.03; 0.3; 3; and 30 mg/kg/day; Dalton Chemical
Laboratories, Inc., Canada), atorvastatin (2.4 mg/kg/day) or a combin-
ation of atorvastatin (2.4 mg/kg/day) and anacetrapib (0.3 mg/kg/day)
for a treatment period of 21 weeks. All animals were sacrificed by CO2

inhalation and hearts were isolated to assess atherosclerosis develop-
ment. Animal experiments were approved by the Institutional Animal
Care and Use Committee of The Netherlands Organization for
Applied Research (TNO).

Plasma lipids, lipoprotein profile, endogenous
cholesteryl ester transfer protein activity,
cholesteryl ester transfer protein
concentration, serum amyloid A and HDL
functionality
Plasma TC, TG, and HDL-C were determined every 2–4 weeks and
average TC, TG, and HDL-C levels were calculated by total exposure
over number of weeks. To measure HDL-C, apoB-containing particles
were precipitated from plasma with 20% polyethylene glycol in
200 mM glycine buffer (pH 10) and cholesterol was measured in the
supernatant. The distribution of cholesterol over plasma lipoproteins
was determined by fast-performance liquid chromatography (FPLC) as
previously described.13

Plasma endogenous CETP activity and CETP concentration were
determined as previously described.28 Serum amyloid A (SAA; Tridelta
development, Co. Kildare, Ireland) was measured by using ELISA accord-
ing to manufacturer’s instructions.

Cultured arterial endothelial cells were incubated with HDL isolated
from control- and anacetrapib-treated mice and pro-inflammatory
cytokine-induced vascular cell adhesion molecule 1 (VCAM-1) expres-
sion and apoptotic cell death were assessed.

Atherosclerosis quantification
Cross-sections throughout the entire aortic root area were stained to
assess atherosclerotic lesion area and severity.The lesionswereclassified
into five categories: (i) early fatty streak, (ii) regular fatty streak, (iii) mild
plaque, (iv) moderate plaque, and (v) severe plaque according to the
American Heart Association classification and total lesion area,
number of lesions, undiseased segments and lesion severity were deter-
mined as previously described.28,29 Lesion composition of the severe
lesions (type IV–V) was assessed after immunostaining with anti-human
alpha actin (1:800; Monosan, Uden, The Netherlands) for smooth
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muscle cells (SMC), and anti-mouse Mac-3 (1:50; BD Pharmingen,
the Netherlands) for macrophages followed by sirius red staining for
collagen. Necrotic area and cholesterol clefts, monocyte adhesion to
the endothelium, and the calculation of plaque stability index were deter-
mined as previously described.28,29

Statistical analyses
Significance of differences between the groups was calculated non-
parametrically using a Kruskal–Wallis test for independent samples, fol-
lowed by a Mann–Whitney U test for independent samples. An analysis
of covariance (ANCOVA) was performed to test for group differences in
a lesion area with HDL-C and non-HDL-C exposure as covariates. To
test whether collinearity was present between the explanatory variables,
we calculated the variance inflation factor (VIF) and the condition index
(CI). Values of VIF .5 and values of CI .10 were used as a cutoff for
collinearity.30,31

SPSS 17.0 for Windows was used for statistical analysis. All groups
were compared with the control group and the combination group
was compared with the atorvastatin group. Bonferroni–Holm’s
method was used to determine the level of significance in the case of mul-
tiple comparisons. Values are presented as means+ SD. P-values ,0.05
were considered statistically significant.

For the full descriptions of the used methods, please see the Supple-
mentary material online.

Results

Anacetrapib, atorvastatin, and their
combination decrease cholesteryl ester
transfer protein activity despite an
increase in cholesteryl ester transfer
protein concentration
To assess the extent to which an ascending dose range of anacetrapib
inhibits CETP, we measured CETP activity after 8 weeks of treatment
and CETP concentration after 21 weeks of treatment (Table 1).
Anacetrapib monotreatment (0.03; 0.3; 3; and 30 mg/kg/day)
reduced CETP activity by 259 to 2100% (P , 0.001) and increased
plasma CETP concentration by +11% (NS) to +29% (P , 0.001).
Both CETP activity and concentration were decreased by

atorvastatin alone (229 and 224%, P , 0.001) and in combination
with 0.3 mg/kg/day anacetrapib (284 and 223%, P , 0.001). Thus,
adding anacetrapib to atorvastatin further reduced CETP activity
(278%, P , 0.001) without affecting CETP concentration when
compared with atorvastatin.

Anacetrapib alone and in combination
with atorvastatin reduces plasma
non-HDL-cholesterol and increases
HDL-cholesterol
During the study, plasma lipids were measured every 2–4 weeks and
average plasma TC (Figure 1A), TG (Figure 1B), non-HDL-C
(Figure 1C), and HDL-C (Figure 1D) were calculated. In the control
group, the Western-type diet resulted in an average plasma TC of
10.8+ 1.1 mmol/L, TG of 1.8+0.5 mmol/L, non-HDL-C of 9.5+
1.1 mmol/L and HDL-C of 1.2+ 0.2 mmol/L. When compared
with the control, anacetrapib monotreatment (0.03; 0.3; 3 and
30 mg/kg/day) decreased TC (219; 225; 227, and 231%, P ,

0.001 for all) mainly by decreasing non-HDL-C (224; 236; 242,
and 245%, P , 0.001 for all). In addition, anacetrapib monotreat-
ment increased HDL-C (+30; +60; +86; and +86%, P , 0.001
for all) and decreased TG (221%, P ¼ 0.07; 222%, P ¼ 0.06;
219%, NS and 227%, P , 0.01). Atorvastatin decreased TC
(233%, P , 0.001) by decreasing non-HDL-C (237%, P , 0.001)
and with no effect on HDL-C and TG. The combination treatment
decreased TC (248%, P , 0.001), non-HDL-C (260%, P ,

0.001) and TG (233%, P , 0.01) and increased HDL-C (+56%,
P , 0.001). Anacetrapib enhanced the lipid-modifying effects of ator-
vastatin with greater reductions in TC (222%, P , 0.001),
non-HDL-C (236%, P , 0.001) and TG (232%, P , 0.001) and a
greater increase in HDL-C (+72%, P , 0.001) when comparing
the combination treatment to atorvastatinmonotreatment. Lipopro-
tein profiles confirmed the lipid-modifying effects of anacetrapib and
revealed the formation of larger HDL particles, as observed previ-
ously19 after treatment with higher dosages of anacetrapib (3 and
30 mg/kg).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Effect of anacetrapib, atorvastatin, and their combination on the cholesteryl ester transfer protein activity after
8 weeks of treatment and cholesteryl ester transfer protein concentration after 21 weeks of treatment

Plasma CETP activity (nmol/mL/h) Plasma CETP concentration (mg/mL)

Control 66.8+10.1 15.7+1.2

0.03 mg/kg/day anacetrapib 27.1+7.1*** (259%) 17.4+3.1 (+11%)

0.3 mg/kg/day anacetrapib 6.3+4.8*** (291%) 19.9+2.4*** (+27%)

3 mg/kg/day anacetrapib 0.7+3.3*** (299%) 20.2+3.1*** (+29%)

30 mg/kg/day anacetrapib 0.0+2.3*** (2100%) 18.5+4.1 (+18%)

Atorvastatin 47.5+8.2*** (229%) 11.9+2.3*** (224%)

Atorvastatin + 0.3 mg/kg/day anacetrapib 10.5+8.3***,### (284%) 12.1+2.1*** (223%)

***P , 0.001 when compared with control.
###P , 0.001 when compared with atorvastatin. Data are presented as means+ SD (% inhibition or increase when compared with the control); n ¼ 15 per group.
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Atorvastatin in combination with
anacetrapib reduces atherosclerosis
progression to a greater extent than
atorvastatin alone
After 21 weeks of treatment, the effects of anacetrapib, atorvastatin
and their combination on the progression of atherosclerosis were
assessed in the aortic root area as illustrated by representative
images in Figure 2. The number of lesions (Figure 3A), lesion area
(Figure 3B), undiseased segments (Figure 3C), and lesion severity
(Figure 3D) were assessed as previously described.28,29

For the control group, 4.1+0.6 lesions per cross-section devel-
oped with a total lesion area of 169+ 51 × 103 mm2. Approximately

71% of these lesions were severe lesions (type IV–V) and only 5% of
the segments were undiseased. Anacetrapib monotreatment (0.03;
0.3; 3; and 30 mg/kg/day) dose-dependently reduced the lesion
area (241%, P , 0.01; 272; 286; and 292%, P , 0.001 for all)
and the number of lesions and improved lesion severity as indicated
by less severe lesions (downto 15%,P , 0.001) andmoreundiseased
segments (up to 46%, P , 0.001). Atorvastatin monotreatment
reduced the total lesion area (263%, P , 0.001) and improved
lesion severity without affecting the number of lesions and undi-
seased segments. When compared with the control, the combi-
nation treatment further decreased the total lesion area (295%,
P , 0.001), the number of lesions (241%, P , 0.01), and lesion
severity and increased the percentage of undiseased segments.

Figure 1 Effect of anacetrapib, atorvastatin and their combination on total cholesterol, triglycerides, non-HDL-and HDL-cholesterol levels.
Plasma total cholesterol (A), triglycerides (B) non-HDL-cholesterol (C ) and HDL-cholesterol (D) were measured throughout the study and
average levels were calculated. Lipoprotein profiles for cholesterol were assessed by FPLC lipoprotein separation to study effects of anacetrapib
alone (E) and in combination with atorvastatin (F) after 18 weeks of treatment. **P , 0.01, ***P , 0.001 when compared with control;
###P , 0.001 when compared with atorvastatin. Data are presented as means+ SD (n ¼ 15 per group).
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Figure 2 Effect of anacetrapib, atorvastatin, and their combination on plaque morphology. Representative images of haematoxylin–phloxine–
saffron-stained atherosclerotic lesions in a cross-section of the aortic root area for the control group (A), 0.03 mg/kg/day anacetrapib
(B), 0.3 mg/kg/day anacetrapib (C), 3 mg/kg/day anacetrapib (D), 30 mg/kg/day anacetrapib (E), atorvastatin group (F), and the combination
group (G) after 21 weeks of treatment.
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When compared with atorvastatin monotreatment, the combination
treatment decreased the total lesion area (287%, P , 0.001), the
number of lesions (234%, P ¼ 0.06) and severity and increased
the percentage undiseased segments to a greater extent, indicative
of an additional effect of anacetrapib on top of the statin.

Anacetrapib, atorvastatin, and their
combination improve lesion stability
In addition to atherosclerotic lesion size and severity,weassessed the
number of monocytes adhering to the endothelium as a functional
marker for vascular inflammation (Figure 4A). Adhering monocytes
per cross-section in the control group (i.e. 4.1+ 2.6) were
reduced by the higher dosages of anacetrapib (260%, P , 0.01
and 261%, P , 0.01), as well as by atorvastatin alone and in combin-
ation with anacetrapib (248%, P , 0.05 and 278%, P , 0.001).
When compared with atorvastatin, the combination treatment
reduced the number of monocytes to a greater extent (257%,
P , 0.01). In addition, we analysed the composition of the severe
lesions (type IV–V), since these lesions are considered to be
most vulnerable and prone to rupture. All parameters of lesion com-
position were calculated per cross-section as absolute values and as a
percentage of the lesion area (see Supplementary material online).
To this end, collagen content (Figure 4B) and SMC content in the
cap (Figure 4C) were considered as stabilization factors, and

macrophage content (Figure 4D) and necrotic content (Figure 4E)
were considered as destabilization factors. The severe lesions in
the control group consisted of �54% collagen, 6% SMC in the cap,
10% macrophages and 4% necrosis. The lesion stability index for
the control group presented as the ratio of stabilization to destabil-
ization factors was 4.9+ 2.0 (Figure 4F).

Whencorrected for the lesionarea, the two higherdosages of ana-
cetrapib (3 and 30 mg/kg/day) revealed a more stable plaque pheno-
type by increasing collagen content (+21%, P , 0.001 and +28%,
P , 0.001; Figure 4B) and SMC content in the cap (+120%, P ,

0.01 and +119%, P , 0.05) and by decreasing macrophage (253%,
P ¼ 0.06 and 260%, P ¼ 0.05) and necrotic (273%, P , 0.001 and
246%, P , 0.05) content. This is reflected by an increase in lesion
stability index in these two treatment groups (+427%, P , 0.001
and +366%, P , 0.01). Atorvastatin in combination with anacetrapib
tended to increase the SMC content in the cap (+194%, P ¼ 0.07)
and decreased necrotic content (296%, P , 0.05) with no effect
on the lesion stability index. However, it should be noted that
there were almost no lesions in the combination group and only
two mice that received the combination treatment of anacetrapib
and atorvastatin developed severe lesions.

Anacetrapib does not affect HDL function
To explore the contribution of the anacetrapib-induced increase in
HDL-C to the reduction of atherosclerosis, we investigated the

Figure 3 Effect of anacetrapib, atorvastatin, and their combination on atherosclerosis development in the aortic root area. The number of lesions
per cross-section (A), total lesion areaper cross-section (B), the percentage undiseased segments (C ), and lesion severity as apercentage of all lesions
(D) were determined after 21 weeks of treatment. Lesion severity was classified as mild (type I– III) and severe (type IV–V) lesions. **P , 0.01,
***P , 0.001 when compared with control; #P , 0.05, ###P , 0.001 when compared with atorvastatin. Data are presented as means+ SD
(n ¼ 15 per group).
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endothelial-vasoprotective properties of HDL, in particular with
respect to anti-inflammatory and anti-apoptotic properties in cul-
tured arterial endothelial cells. HDL isolated from anacetrapib-
treated mice had no effect on pro-inflammatory cytokine-induced
VCAM-1 expression (Figure 5A) oron apoptotic cell death (Figure 5B).

Anacetrapib reduces atherosclerosis
progression primarily by reducing
non-HDL-cholesterol exposure
We evaluated whether the effects of anacetrapib and atorvastatin
on atherosclerosis development could be explained by either an in-
crease in HDL-C or a decrease in non-HDL-C or both. The lesion
area was normalized by cubic root transformation (lesion

area(1/3)). Univariate regression analysis showed that the lesion
area was predicted by TC (Figure 6A), mainly non-HDL-C
(Figure 6B) and to a lesser extent by HDL-C (Figure 6C). Analysis
of covariance showed that both anacetrapib treatment, at the
dosages of 3 and 30 mg/kg/day (P , 0.05) and non-HDL-C (P ,

0.001), but not HDL-C (P ¼ 0.76), independently determined
lesion size. Importantly, the variance inflation factors of HDL-C
and non-HDL-C (VIF ¼ 4.42 and 3.18, respectively) and the condi-
tion index (CI ¼ 4.43) did not exceed the threshold for collinearity
between the explanatory variables. Collectively, these data are
compatible with a mechanism that anacetrapib mainly decreases
atherosclerotic lesion development via a reduction of
non-HDL-C with an additional effect by the compound itself at
the higher doses (Figure 7).

Figure 4 Effect of anacetrapib, atorvastatin, and their combination on lesion composition. The number of monocytes adhering to the vascular
endothelium per cross-section (A) was calculated. In the severe lesions (type IV and V), collagen content (B), and SMC content in the cap (C)
were determined as stabilization factors and macrophage content (D) and necrotic content (E) were determined as destabilization factors, all as
a percentage lesion area. The plaque stability index was calculated as the ratio of the stabilization factors to the destabilization factors (F ).
*P , 0.05, **P , 0.01, ***P , 0.001 when compared with control; ##P , 0.01 when compared with atorvastatin. Data are presented as
means+ SD (n ¼ 15 per group).
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Anacetrapib slightly increased serum
amyloid A as a marker of inflammation
Toassess the effectof anacetrapibongeneral inflammatory status,we
measured plasma SAA levels, a systemic inflammatory marker after
16 weeks of treatment (Figure 8). Plasma SAA levels in the control
group were 1.6+ 0.5 mg/mL. When compared with the control,
0.3 mg/kg/day anacetrapib tended to increase SAA levels (+37%,
P ¼ 0.07). No effects on body weight (gain) and food intake were
noted with any of the treatments (data not shown).

Discussion
The present study is the first intervention study in a mouse model for
atherosclerosis designed to investigate the effects of the CETP inhibi-
tor anacetrapib alone and in combination with atorvastatin on the
progression of atherosclerosis, lesion stability, and HDL function.
In clinical trials, the effectiveness of novel treatment regimes in
CVD is only being tested in patients on a statin background which
makes this study unique in also evaluating the effects of anacetrapib
monotreatment. In APOE*3Leiden.CETP mice, a broad dose
range of anacetrapib dose-dependently reduced atherosclerosis
development. This effect was mainly ascribed to the reduction in
non-HDL-C despite a remarkable increase in HDL-C and without
affecting HDL functionality. Anacetrapib improved lesion stability
when given at a higher dose (3 and 30 mg/kg/day). In addition, a
moderate dose of anacetrapib (0.3 mg/kg/day) added to the anti-
atherogenic effects of atorvastatin.

In our study, incremental dosages of 0.03–30 mg/kg/day anacetra-
pib dose-dependently decreased CETP activity by .60%, decreased
non-HDL-C by 24–45% and increased HDL-C by 30–86%. These
lipid-altering effects are comparable with findings from phase I, II
and III clinical trials. In phase I trials, an anacetrapib-induced reduction
in CETP activity of .60% was accompanied by dose-dependent
LDL-C-lowering and HDL-C-raising effects both in healthy sub-
jects32 and in patients with dyslipidaemia.33 In line with our results,
these studies also report an increase in CETP concentration possibly

Figure 5 Effect of anacetrapib, atorvastatin, and their combination on endothelial-vasoprotective properties of HDL, in particular
pro-inflammatory cytokine-induced VCAM-1 expression (A) and apoptotic cell death (B). Data are presented as means+ SD.

Figure 6 Correlation between plasma cholesterol exposure and
lesion area. Linear regressionanalyses were performed on the cubic
root of lesion area plotted against total cholesterol exposure
(A), non-HDL-cholesterol exposure (B) and HDL-cholesterol
exposure (C).
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due to the formation of an inactive complex between CETP and
HDL.34 In a phase II trial, 8 weeks of treatment with ascending
dosages of anacetrapib monotreatment (10–300 mg/day) reduced
LDL-C by 16–39% and increased HDL-C by 44–139%. Similar to
our study, the addition of anacetrapib to atorvastatin produced incre-
mental LDL-C reductions.23

The present study in APOE*3Leiden.CETP mice demonstrates
that the total blockage of CETP does not reveal adverse effects on
the clinical end-point when compared with partial blockage: anace-
trapib dose-dependently reduced the progression of atherosclerosis
and increased plaque stability where the anti-atherogenic effects of

atorvastatin were enhanced in combination with a moderate dose
of anacetrapib.

Inconsistent data have been reported on the effect of other CETP
inhibitors on atherosclerosis development in animals expressing
CETP. In rabbits, dalcetrapib reduced atherosclerosis in one study
with no effect in another study.15,17 In contrast to the human situ-
ation,21 the reduction in atherosclerosis after dalcetrapib treatment
was accompanied by a 40–50% decrease in non-HDL-C together
with an increase in HDL-C.15 In mice, torcetrapib monotreatment
decreased atherosclerosis.19 However, unlike the present study,
these effects were not enhanced in combination with atorvastatin
in the same mouse model.19 In rabbits, torcetrapib treatment
decreased atherosclerosis where the aortic lesion area correlated
with the TC/HDL-C ratio.18 This could suggest a possible anti-
atherogenic role of increased HDL-C or other pleiotropic effects
of HDL. However, in the APOE*3Leiden.CETP mouse model, statis-
tical analyses revealed that HDL-C was not an independent predictor
of the lesion area when non-HDL-C was included as covariate, sug-
gesting that the effect of anacetrapib on atherosclerosis development
was mainly mediated through the reduction of non-HDL-C. The
higher dosages of anacetrapib (3 and 30 mg/kg/day) also revealed an
effect on atherosclerosis that was independent of non-HDL-C, but
this effect was not explained by the increase in HDL-C and could
point to other hitherto unknown (off target) effects of anacetrapib.

Besides atherosclerotic lesion size, lesion composition should
also be taken into consideration given that in the human situation,
a vulnerable lesion consisting of more macrophages, a large nec-
rotic core and a thin, collagen-poor, fibrous cap is more prone to
rupture.35 Previously, our group showed that torcetrapib produced
a pro-inflammatory, unstable plaque phenotype as seen by increased
monocyte adherence to the vascular endothelium and consequently
increased macrophage content of the lesions.19 In the present study,
anacetrapib decreased monocyte adherence and improved lesion

Figure 7 Hypothetical scheme of factors contributing to the effect of anacetrapib on the atherosclerotic lesion area as suggested by statistical
analyses. An analysis of covariance was performed to test for group differences in the lesion area with HDL-C and non-HDL-C exposure as covari-
ates. HDL-C was not an independent predictor of the lesion area when non-HDL-C was included as covariate, suggesting that the effect of anace-
trapib on atherosclerosis development was mainly mediated through the reduction of non-HDL-C. The higher dosages of anacetrapib (3 and 30 mg/
kg/day) also revealed an effect on atherosclerosis that was independent of non-HDL-C, but this effect was not explained by the increase in HDL-C.

Figure 8 The effects of anacetrapib, atorvastatin, and their com-
bination on plasma SAA levels were measured after 16 weeks of
treatment. *P , 0.05 when compared with control. Data are pre-
sented as means+ SD (n ¼ 15 per group).
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composition as shown by an increase in stabilization factors (collagen
and SMC content) and a decrease in destabilization factors (macro-
phage and necrotic content). The inconsistencies can be ascribed
to the off-target activation of the renin–angiotensin–aldosterone
system (RAAS) and blood pressure effect of torcetrapib.36 Indeed,
in our mouse model for atherosclerosis, torcetrapib also increased
aldosterone levels in plasma.19

The large phase III DEFINE trial was designed to further assess the
efficacy and tolerability of anacetrapib in statin-treated patients with
or at risk for coronary heart disease.37 Anacetrapib (100 mg/day)
decreased LDL-C by 40% and increased HDL-C by 138% with an ac-
ceptable safety profile and no indication for an increase in CV events.
In fact, post hoc analyses suggested a reduction in CV end-points.
These initial data provided a rationale for conducting a larger clinical
end-point trial of pharmacological CETP inhibition despite the con-
flicting outcomes of genetic CETP deficiency and the ILLUMINATE
trial.20 In view of the detrimental effects of torcetrapib in the ILLU-
MINATE trial, anacetrapib was thoroughly screened and revealed
minimal side-effects without any indication for an off-target pressure
effect.23,32,33

Despite the absence of reported side-effects of anacetrapib, there
are some concerns about target-related side-effects due to forma-
tion of large buoyant cholesterol-rich HDL-2 particles after CETP
inhibition,38,39 which may be dysfunctional with regard to their
endothelial-vasoprotective effects and consequently their athero-
protective properties10,34,40,41 and that this may have contributed
to the failure of torcetrapib.20 In the present study, we investigated
the effects of HDL isolated from control and anacetrapib-treated
mice on parameters of vascular inflammation and function. HDL
from anacetrapib-treated mice did not suppress cytokine-induced
adhesion molecule expression or cell apoptosis in endothelial cells.
This is in line with results from recent studies where no differences
were observed in the effect of HDL from control or anacetrapib-
treated hamsters and humans on inflammatory markers (adhesion
molecule expression, monocyte chemotactic protein-1 secretion,
monocyte adhesion, NFkB activation, and cytokine mRNAs) in endo-
thelial cells42 and macrophages.43 Importantly, although anacetrapib
treatment did not improve the anti-inflammatory and anti-apoptotic
effects of HDL, it also did not adversely affect these functions of HDL.
In addition, we found no effect of anacetrapib on serum paraoxonase
1 activity and the aortic content of reactive oxygen species (data not
shown). Formation of large cholesterol-rich HDL-2 particles in
CETP-deficiency or after CETP inhibition has also been suggested
to affect the cholesterol efflux capacity of these particles.38,39

Although we did not address this in the present study, data from lit-
eratureconsistently indicate that the cholesterol effluxcapacity is not
impaired but improved. HDL from CETP-deficient patients displayed
enhanced ability to promote cholesterol efflux from macrophages in
a ABCG1-dependent manner.38 In humans, anacetrapib-treated
HDL showed increased ABCA1- and ABCG1-mediated cholesterol
efflux capacity.43 Collectively, these data indicate that CETP inhib-
ition does not result in formation of dysfunctional HDL with regard
to its atheroprotective properties as assessed by ex vivo (cell) assays.

It should be noted that in the DEFINE trial, a non-significant 18%
increase in C-reactive protein, a marker of inflammation, after anace-
trapib treatment was found.37 In the present study, the inflammatory
marker, SAA was slightly elevated after anacetrapib treatment, but

this effect was alleviated when anacetrapib was given in combination
with atorvastatin.

The effects of two other CETP inhibitors, DRL-17822 and TA-8995
(DEZ-001), as well as a vaccine against CETP, ATH03, are being tested
in phase II clinical development. In large phase III clinical trials, the
effects of 100 mg anacetrapib (REVEAL) and 130 mg evacetrapib
(ACCELERATE) in patients on standard statin treatment on CV
outcomes are currently being investigated and results are expected
in 2016–17.44 The outcome of these trials will resolve the unans-
wered questions regarding possible beneficial effects of pharmaco-
logical CETP inhibition and may give additional insight into the
HDL-hypothesis and the contribution of HDL and non-HDL to CV
end-points.

Supplementary material
Supplementary material is available at European Heart Journal online.
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